

Creating Games

with Unity,

 Substance

 Painter, & Maya

https://taylorandfrancis.com

Creating Games
with Unity,
Substance

Painter, & Maya
Models, Textures,

Animation, & Code

Jingtian Li, Adam Watkins,
Kassandra Arevalo, and

Matthew Tovar

first edition published 2021

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL

33487-2742

and by CRC Press

2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data

and information, but the author and publisher cannot assume

responsibility for the validity of all materials or the consequences

of their use. The authors and publishers have attempted to

trace the copyright holders of all material reproduced in this

publication and apologize to copyright holders if permission

to publish in this form has not been obtained. If any copyright

material has not been acknowledged please write and let us know

so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this

book may be reprinted, reproduced, transmitted, or utilized in any

form by any electronic, mechanical, or other means, now known

or hereafter invented, including photocopying, microfilming,

and recording, or in any information storage or retrieval system,

without written permission from the publishers.

For permission to photocopy or use material electronically from

this work, access www.copyright.com or contact the Copyright

Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA

01923, 978-750-8400. For works that are not available on CCC

please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks

or registered trademarks and are used only for identification and

explanation without intent to infringe.

ISBN: 978-0-367-50603-2 (hbk)

ISBN: 978-0-367-50601-8 (pbk)

ISBN: 978-1-003-05049-0 (ebk)

Typeset in Myriad Pro

by codeMantra

http://www.copyright.com

To my parents, my sister Rui, my dog Walker,
and everyone who supported me!

– Jingtian Li

To Isaiah, Anaya, and (as always) my ravishingly beautiful
and stunningly intelligent wife, Kirsten.

– Adam Watkins

To my family and colleagues. Thank you for all the support.

– Kassandra Arevalo

Dedication to my parents, Alejandra & Manuel Tovar.

– Matthew Tovar

https://taylorandfrancis.com

Contents

Acknowledgments .xv

Authors . xvii

Introduction . xix

Chapter 1: Maya Modeling . 1

Basics of Navigation .1

Rendering .2

What is a 3D Model?. .3

Translation .3

Anatomy of a Model. .4

Edge. .4

Vertex .4

Face .4

Object Mode. .5

Normal .5

Modeling Rules .5

Polycount. .6

Topology .6

Size and Proportion .7

Basics of Modeling .7

Tutorial 1.1: Modeling a Security Camera7

Other Useful Commands 32

Grow and Shrink Selection 32

Extract Faces . 33

Combine and Separate . 33

Create Cables or Pipes. 34

Extrude Along a Curve . 37

Duplicate, Duplicate with Transform 38

Duplicate Special. 39

Mirror. 39

Center Pivot. 40

Change Pivot. 40

Snapping .41

Hide Model .41

View Control .41

Assignments .41

Geometry Errors . 42

vii

Tutorial 1.2: Modular Set Pieces 43

Grid. 44

Create a Base Floor . 44

Conclusion. 55

Chapter 2: Maya Set UV. 57

The UV Editor . 57

UV Points . 59

UV Tiles . 60

Cut UV . 62

The Problem . 62

UV the Floor . 63

Texel Density. 71

Chose the Right Texel Density 72

UV the Pod. .74

Conclusion. 89

Chapter 3: Set Texturing. 91

PBR . 92

Baking . 93

Tutorial 3.1: Texturing Modular Pieces 94

The Substance Painter UI 96

Navigation . 97

Light Direction . 97

Ambient Occlusion. 98

PBR Material Channels. 98

Generators. 100

Levels. 122

Assignment: Texturing the Rest of the

Models . 129

Conclusion. 132

Chapter 4: Unity Asset Creation 133

Game Engines. 134

Unity . 134

Tutorial 4.1: Installing Unity, Visual

Studio, and Starting a Project 136

A Bit about the Unity UI 140

Tutorial 4.2: Exporting Asset from Maya

and Substance Painter into Unity 144

Rebuilding Materials . 150

Moving On…For Now . 154

viii

Tutorial 4.3: �Creating Prefabs 155
A Bit about Colliders . 156
Tutorial 4.4: A Bit of Material Adjustment . . . 159
Conclusion . 169

Chapter 5:  Unity Level Creation 171
A Quick Review on Snapping 172
The Long View . 173
Tutorial 5.1: �Level Layout 173
Kitbashing . 185
Tutorial Conclusion . 198
Tutorial 5.2: �Walking Through 199
Conclusion . 205
Post Script . 206

Chapter 6:  Lighting and Baking 209
What It Means for You? . 211
Unity Lights . 212
Tutorial 6.1: �Lighting the Scene 216
The Power of Prefabs . 219
Make Way for Cookies! . 223
Baking . 233
Camera Adjustments and Postprocessing . . . 236
Final Challenge . 241
Conclusion . 242

Chapter 7:  Character Modeling 243
Concept Art . 244
Style Sheets . 244
Workflow . 245
Polycount . 245
Setting Up Image Plane in Maya 245
Eyeball . 247
Create the Eyelids . 249
Create the Eye Socket . 253
Forehead and Nose . 256
Mouth . 261
Rest of the Head . 262
Ear . 264
Neck . 265
Internal Structures . 267
Body . 268

ix

Hands . 274
Hairs . . 281
Weapon . 292
Final Clean Up . 295
Conclusion . . 297

Chapter 8:  UV Mapping . 299
UV Mapping . 300
Tutorial 8.1: Character UV Mapping 300
Mesh Inspection and Cleanup 300
Body UV . 302
Eye UV . 308
Hair UV . 309
Garment UV . 312
Conclusion . . 319

Chapter 9:  Character Texture Painting 321
Skin Texturing . 323
Hair . . 331
Eye . 333
Upper Body . 340
Pants . 348
Belts, Straps, Pockets, Holster, and
Boots . 353
Gloves . 354
Watch . 361
Gun . . 363
Other Details . . 363
Export Textures . 365
Conclusion . . 367

Chapter 10:  Rigging . . 369
Joint Behavior . 370
Joint Placement – Hip, Spine, Neck,
and Head . 371
Tutorial 10.1: Create the Joint Chain for
Our Character . 371
Joint Placement – Left Arm 374
Joint Setup – Right Arm 382
Joint Setup – Legs . . 383
Foot Roll Rig . 387
Setting Up the Foot Hierarchy 390

x

Tutorial 10.2: Bind and Paint Skin

Weighting . 391

Painting Skin Weights. 392

Mirroring the Skin Weights. 397

Copying the Skin Weights. 397

Tutorial 10.3: Set Up Arm Controls 400

Constrains. 402

IK Arm Setup . 403

Tutorial 10.4: Finger Controls 405

Tutorial 10.5: Clavicle and Body

Controls. 406

Gun Joint. 410

Final Hierarchy . 410

Conclusion . 410

Chapter 11: FPS Animation in Maya 413

FPS Animation Overview. 413

Referencing the Character Rig 414

Save Files. 415

Display Layers . 415

Camera Configuration 418

Game Animations . 420

Creating a Pose . 421

Weapon Movement Simplified 422

Two-Handed Weapon Setup 424

Frame Rate . 427

Idle Animation. 427

Cleaning Up Odd Jitters. 428

Ease-In’s and Ease-Out’s 429

Graph Editor. 429

Keywords Aside . 431

Attack Animation. 431

Walk Animation . 433

“Got Caught” Animation 434

Keywords Aside . 436

Reload Animation . 438

Considerations and Conclusion 440

Chapter 12: Auto Rigging . 441

Mixamo . 443

Tutorial 12.1: Mixamo-Based Auto

Rigging and MoCap . 443

xi

Substance Painter Output 450

Putting it All Together 451

Setting Up the Animator 454

Conclusion . 464

Chapter 13: Introduction to C# 465

C#. 466

C# in Unity and Visual Studio. 470

Tutorial 13.1: Hello World! 472

Tutorial 13.2: Opening Doors. 478

DOTween . 486

Variables . 489

A Final Note: Unity’s API. 498

Conclusion . 500

Chapter 14: FPS Animations . 501

Tutorial 14.1: First Person Animation in

Unity . 502

Maya Animation Preparation. 503

Baking Keys . 503

Substance Painter Output 508

Putting It Together in Unity 510

Importing and Adjusting Animation

Rigs . 513

Animations in Unity . 514

Controlling Animations 516

Controlling Animator with Code 520

Tutorial Conclusion . 531

Chapter 15: Raycasting and Render Textures 533

Tutorial 15.1: Animating the Camera 534

Tutorial Conclusion . 544

Tutorial 15.2: Raycasting 544

Tutorial Conclusion . 551

Tutorial 15.3: Camera Extras 553

Conclusion . 560

Chapter 16: Weapons. 561

Tutorial 16.1: Grenade Launcher 562

Making a “Smart” Grenade. 573

Tutorial Conclusion . 581

xii

Tutorial 16.2: Firing the Gun and

Introduction to Ammo. 582

Tutorial Conclusion . 593

Tutorial 16.3: Raycasting for Accuracy . . . 593

Problem and Solution 597

Conclusion . 601

Chapter 17: AI . 603

Tutorial 17.1: Creating an AI-Based

“Tic-Tac” . 605

Tutorial Conclusion . 614

Tutorial 17.2: Using Animations

(Animator) with NavMesh 615

Preparing FBX Animation Files 619

Placing Animations in the Animator 621

Changing the Triggers and Booleans

Via Script . 626

Tutorial Conclusion . 631

Tutorial 17.3: Animation Events and a

Working Weapon . 631

Creating the Function to Fire. 632

Animation Events. 634

Awkward Implementation 635

Tutorial Conclusion . 638

Tutorial 17.4: Assembling it all in

MainLevel . 639

Conclusion . 642

Chapter 18: Health and Inventory 643

Tutorial 18.1: Player Health Script 644

Tutorial Conclusion . 650

Tutorial 18.2: Building the AI Health

System . 651

Tutorial Conclusion . 659

Tutorial 18.3: Ammo . 659

Reloading Ammo. 666

Conclusion . 669

Chapter 19: UI. 671

Screen Space . 672

Tutorial 19.1: Reticle, Ammo, and

Health UI . 674

xiii

Health Indicator . 681

Tutorial Conclusion . 685

Tutorial 19.2: Using Code to Effect UI

Elements . 686

Case Switches or Switch Statements. 688

Health UI . 693

Tutorial Conclusion . 695

Tutorial 19.3: Buttons and Moving

between Scenes . 696

Interactive Buttons . 701

Tying Up Some Loose Ends 705

Conclusion . 708

Chapter 20: Boss Battle. 709

Tutorial 20.1: Final Boss. 710

Boss Health Bar . 722

Final Theatrics . 725

Conclusion . 731

Index . 733

xiv

Acknowledgments

It takes the effort and support of many people to finish
a book like this. We would like to say special thanks to
everyone who contributed to this book.

The work of Matthew Tovar and Kassandra Arevalo and
their careful additions to the rigging and animation
chapters make this a better book. And, of course,
the monumental undertaking of Jingtian Li and his
indominable spirit in creating monster sections of this
book is stunning to behold. If you’re lucky, someday you’ll
work will colleagues as good as these.

Adam Watkins

xv

https://taylorandfrancis.com

Authors
Jingtian Li �is a graduate of China’s Central Academy of
Fine Arts and New York’s School of Visual Arts, where
he earned an MFA in Computer Art. He currently is an
Assistant Professor of 3D Animation & Game Design at
the University of the Incarnate Word in San Antonio, Texas.

Adam Watkins �is a 20-year veteran of 3D education.
He holds an MFA in 3D Animation and a BFA in Theatre
Arts from Utah State University. He currently is the
Coordinator and Professor of the 3D Animation & Game
Department at the University of the Incarnate Word in
San Antonio, Texas.

Kassandra Arevalo �is an instructor of 3D Animation &
Game Design at the University of the Incarnate Word in
San Antonio, Texas. She previously worked as an animator
at Immersed Games.

Matthew Tovar �is an industry veteran animator. He
has worked at Naughty Dog, Infinity Ward, and Sony
Interactive on such games as The Last of Us, Call of Duty:
Modern Warfare, and, most recently, Marvel’s Avengers
with Crystal Dynamics. He is an Assistant Professor of
3D Animation at the University of the Incarnate Word in
San Antonio, Texas.

xvii

https://taylorandfrancis.com

Introduction

Making a game of their own is always the dream of many

people since they are teenagers. As new technology

emerges, that dream becomes more and more accessible

each year. There is an exponential growth of game

releases over the last decade. About 10,000 games were

released on Steam in 2019, and around 1000 games per

day were released on mobile devices.

One of the reasons that more games are coming out is

because there are more and better tools to make them. To

name a few, with the release of game engines like Unreal

Engine, Unity, and many other free game engines, making

games is within the reach of everyone. The competition

between the game engine developers pushes them to

implement new features every year, and we have seen a

burst of improvements to the tools.

Outside of the game engines, new developments are

happening in every corner of the game industry. Software

like the Substance Suite solve the texturing process in

innovative ways. Newer generations of hardware like

Nvidia RTX and PlayStation 5 push real-time rendering to

new heights. And new categories of devices like Oculus

Rift, Steam VR, Microsoft Hololens are pioneering new

user experiences. To add on top of that, services like

Quixel Megascan and Adobe Mixamo are providing

libraries of reusable assets that significantly improve

productivity.

It is the best time than ever before for anyone who wants

to dip into a game development journey. However,

making a game is never an easy task. It requires all kinds of

talents to put together a working game that has amazing

visuals, engaging gameplay, immersive audio, and an

overall well-balanced system. There are many sources you

can learn different ingredients of game development,

xix

but fewer sources explain the whole recipe. This book is

dedicated to cover the entire process of making a game,

from making assets to programming, and all the way to

package a complete game.

Who’s It For?

This book is designed for beginners who want to start

their game development journey and are unsure where

to start and which direction to go. As the reader, you are

going to jump into a well-organized learning track that

guides you through all aspects of game development.

It also shields you from noises and focuses on the

fundamentals, which gives you a solid foundation and

able to branch out to nitty-gritty details without losing

the whole picture.

For any game enthusiasts and students, this book is a

perfect fit to get started with game development. For

teachers, this book offers a well-structured solution for

your curriculum. For anyone who wants to utilize the

game engine for interactive products, this book covers the

skill you need extensively as well.

What Does this Book Cover?

This book covers all aspect of game development that

includes but is not limited to the following.

Environment Modeling

Environment modeling is the process of making 3D

models for environments. We are going to cover what is a

3D model, how to make them, and how to optimize them

for your game.

Character Modeling

Character modeling is the process of making 3D

characters. We will cover how to approach organic shapes

with additional modeling methods.

xx

UV Mapping

We are going to learn how to create a 2D coordinate of a

3D model to map textures to the model. The process is

called UV Mapping.

Texturing

Texturing is the process of defining the color and all other

aspects of the appearance of the model.

Rigging

Rigging is a technical skill to add skeleton and controllers

to animate the character.

Character Animation

We are going to cover the techniques and theories to

animate characters.

Game Engine Lighting and Baking

We are going to practice workflows on lighting an

environment, which includes how lights work in the game

engine, and technical details of baking the lighting.

Game Programming

We are going to cover programming languages, theory,

and practices to create gameplay.

We will also explore audio and VFX solutions, and many

other small details you need to know to create a game.

At the end of this book, you should have everything you

need under your belt to start making your next awesome

game!

Final Notes

It is critical to point out that game development is

time-consuming. Please dedicate your energy and time

to the learning process, and don’t easily give up on any

xxi

obstacles. With the internet at your fingertip, you can find
solutions for just about anything.

It is also important to acknowledge that tools change
all the time, and you should always learn new stuff and
explore new ideas. Please take away the theories we cover
in this book but don’t be religious of the tools we use.

The chapters are built so that the reader can jump into this
book where they would like. Don’t care about modeling?
Don’t do those chapters. Never want to code? Definitely
steer clear of those. Notice that all the chapters will
reference support files that can be downloaded to assist
your work in the chapters. In many cases, just grab the
support files from the chapter preceding the one you’re
about to start, and that’s the perfect place to start the
chapter at.

However, if you’re tough…really tough. Start this book at
the beginning and work your way all the way through and
you will have created a game from beginning to end!

Alrighty, we know you are tired of reading introductions,
and many people jump over it. It is time that we start this
fantastic journey and start making some awesome games!

Adam Watkins and Jingtian Li
May 9, 2020

San Antonio, TX, USA

xxii

CHAPTER 1

Maya Modeling

We will jump into the production by discussing modeling.

3D models are the foundation of the graphics of modern

games. They encompass the environment and characters

you see on the screen. An eye-catching visual is one of the

key components for a game to succeed. In this chapter, we

will discuss in detail about how they are built.

Basics of Navigation

Autodesk Maya will be our tool of choice for modeling.

It is not the best modeling tool on the market, but it is the

most used over the entire production pipeline, especially

1

for animation. So, let us get Maya up and running on your

machine. The UI (user interface) will look like Figure 1.1.

The large region in the middle of the UI is the viewport;

this is where we see our models. It is currently empty,

with just a grid in the middle to indicate the center of the

world. The center of this grid is called the origin.

To Navigate around the viewport, hold down Alt key and

drag the left-mouse button to look around the viewport.

To zoom in and out, hold down the Alt key and drag the

right-mouse button. To pan left and right, hold down the

Alt key and drag the middle-mouse button.

A 3D space has width, height, and depth, each

represented on three axes called the X, Y, and Z axes.

The lower left corner of the viewport shows the directions

of these axes.

Rendering

The shape is drawn by the Graphic API, but the lighting is

calculated by the Fragment Shader written by the game

engine programmer. It is a complicated process, and we

do not have to understand the details and math behind it.

It is enough to know that the renderer is the tool drawing

2

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.1 Maya’s user interface. The origin is the area at the center of the grid.

whatever you see on screen. Maya’s interactive renderer

(that shows you what is currently in your scene) is called

Viewport 2.0.

What is a 3D Model?

In the menus, go to Create->Polygon Primitives->Plane.

This will create a shape in the middle of the viewport.

On the right side of the UI, look for the Channel Box.

This is a brief list of essential attributes we can tweak

for the object. Under the INPUTS section, click on the

polyPlane1 to open it and change the Subdivisions Width

and Subdivisions Height to 1 to make the plane only one

polygon (sometimes called a “face”).

What we are seeing now is the building block of any

model – a face with four corners that we typically call a

rectangle in geometry classes; in 3D graphic terms, we call

this a quad. Any complicated shape can be composed by

assembling many quads together to create 3D forms.

Translation

On the right side of the UI, there is a column of

manipulation tools. You can try and use the Q, W, E, and

R buttons to switch between these tools: Q for the select

tool, W for the move tool, E for the rotation tool, R for the

scale tool.

To select the model, simply left-click on it or drag a

selection box over it. To deselect the model, click in the

empty space, or hold down Ctrl and click on the model,

or drag a selection box over it.

To move the model, after selecting it, hit the W button.

This will display new handles (called gizmos) that will

allow you to move the object. Try dragging the various

arrows to move it only along a particular axis. Look

carefully at the gizmo, and you will see squares that can

be dragged to move it along two axes at the same time;

you can even drag the cyan square in the middle to move

it freely along all axes in the 3D space.

3

Maya Modeling

To rotate the model, after selecting it, hit the E button,

drag the circles on the gizmo to rotate it around different

axes. You can also drag the yellow one on the outside to

rotate it around a plane that is perpendicular to the angle

of the viewport.

To scale the model, hit the R button, and drag the various

boxes to scale it along their respective axes. You can also

drag the various squares to scale it along two axes at the

same time; you can even drag the yellow box in the middle

to scale it up along all axes, essentially making it bigger.

There are more tricks about this sort of manipulation that

we will cover later on when we jump into modeling.

Anatomy of a Model

Edge

Hold down the right mouse button on the model, and you

will see a pop-up menu we call a Marking Menu. Here, we

can see various parts of the form we can switch to. With

the marking menu active, slide up and chose Edge; the

four edges around the face now appear to be in a lighter

blue color. You can click on any of the edges to select

them. When an edge is selected, it will be highlighted

with orange color. Once selected, you can change to the

Move tool (hit W on the keyboard) and drag the three

arrows to move the edge along the respective direction.

Vertex

You can also hold the right mouse button again and chose

Vertex. Four purple points will show up on the corner of

this face. These are the vertices where edges meet. You

can click to select any of them and move them around just

like how you can move an edge.

Face

Hold down the right mouse button again and chose Face;

you can now select the face and move it around as well.

4

Creating Games with Unity, Substance Painter, & Maya

Edge, Vertex, and Face are the three important elements

of any 3D form’s polygons. We can add and tweak these

elements to create any shape we want.

Object Mode

Hold down the right mouse button again. This time, we

chose Object Mode. This will allow us to move the model

altogether. Object, Vertex, Edge, and Face are the primary

modes we keep switching between while making a

model.

Normal

Use the alt-left, -middle, and/or -right mouse drag to

rotate your camera to look at the bottom of the face.

You can see it appears to be black. Any face in 3D has

a front side and a back side. The front side will appear

normal, while the back side will be black or invisible

(depending on the rendering engine). Maya makes the

back of the face black in the default setting. To view

this, using the top menus find Display->Polygons->Face

Normals.

Press the Q button to switch to the select mode to get

rid of the Move tool handles. We can now see a green

line sticking out from the front face of the model. In

general, the front of the polygon should face outwards.

It is possible though to render both sides of the face.

Consider a situation like rendering a piece of paper. Here

we would definitely want both sides of the polygons seen,

but otherwise we want to avoid rendering both sides, if

possible, to avoid performance overhead. Since games

have to draw many frames each second, we want to

always ensure that we aren’t drawing anything we don’t

need to (Figure 1.2).

Modeling Rules

Before we start modeling anything, let’s talk about a few

important rules when modeling for games.

5

Maya Modeling

Polycount

Each of those four-sided faces we looked at earlier

can be triangulated into two triangular polygons. We

typically use the number of triangles of a model as the

number for polycount, even we use quads to make

a model. The reason we use the number of triangles

instead of quads is because a triangle is guaranteed

to be a flat surface, while this is not guaranteed for a

geometric figure with more than three vertices. Thus,

the rendering process uses triangles as the basic

rendering unit. Fewer polygons means your game is

easier to run (less data); so find the balance of including

the needed number of polygons to describe a shape,

but not extras.

Topology

Topology is how the faces are laid out on the model.

Use quads if possible, because quads have a strong

sense of directionality and are easy to represent shape

evolution and deformation. We want the flow of the

quads to represent the change of the surface. Figure 1.3

shows how topology is critical for deforming a face. The

loops of faces around the orbicularis muscle, nasolabial

fold, and orbicularis oris create an essential structure

to support the facial expression. Long story short,

topology is for the purpose of better representing the

shape of the model and supporting the deformation for

animation.

6

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.2 The elements and normal direction of the quad.

Size and Proportion

Size is a critical aspect in 3D modeling, no matter how

detailed a model is. If the size or proportion is off, the

model will never look right. In Maya, the default unit is a

centimeter. This is the unit across many popular programs

including Maya, Unreal Engine, Blender, etc. Other

software, like Unity, use the meter as the default unit,

but converting between the two scales is an easy math.

One should always check sizes and dimensions to ensure

things will work with physics simulation, rendering, and

animation; for example, if you are modeling a staircase,

then you have to know that the general height of a stair

is around 18 cm and the depth is 28 cm. Converting to the

right scale as you move assets from Maya to your game

engine is trivial, but focus on building assets in Maya at

the correct scale for its unit size (centimeters by default).

Basics of Modeling

We will jump into modeling right away and introduce

various tools along the way. Keep in mind that the only way

to improve is to practice; there is no shortcut to get better.

Tutorial 1.1: Modeling
a Security Camera

Step 1: Basic Shape. Choose Create->Polygon
Primitives->Cube. This will create a cube at the
origin. This cube is also referred to as box by
3D artists. In fact, what we are doing now has
a nickname called box modeling.

7

Maya Modeling

FIGURE 1.3 Effective topology (the flow of polygons) is critical to support the

deformation that will come later in animation.

Tips and Tricks

In Maya, with nothing selected, you can hold down the

Shift + right mouse button to pull up a type of menu

called a marking menu. If you do this in the Viewport

where there is no other object, the marking menu that

will show up allows for the creation of new object. You

can use this to create a cube in the same way as Create-

>Polygon Primitives->Cube. Learning shortcuts like this

will drastically improve your modeling speed.

Step 2: Dimension. With a bit of research, you will
find that a common security camera is about
18 cm long, 10 cm high, and 10 cm wide. Make
sure that the box is selected and look to the right
side of the UI. In the Channel Box (Figure 1.4),

8

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.4 The Channel Box is at the top right of the Maya UI and allows you to

change the position, rotation, and scale of a selected object.

change the Scale X and Scale Y to 10 and change
the Scale Z to 18 (Figure 1.5).

Step 3: We are making a camera that looks like the
one in Figure 1.6; one of the major differences
between our box and the image is that the
camera’s corners are rounded.

Switch to edge mode (right-click
and hold on the box, and choose Edge
from the marking menu). Select the four
edges across the length of the box (seen
in Figure 1.7). Go to Edit Mesh->Bevel or
press Ctrl + B to bevel these edges. This
operation splits the edge you are selecting

9

Maya Modeling

FIGURE 1.5 Adjusting the size of a cube (box) via the Channel Box.

FIGURE 1.6 Our target camera.

to multiple ones. To round off these new
edges, look for the pop-up menu (labeled
polyBevel1) and change the Segments
value to 3. Change the Fraction to 0.38
to shrink the distance between the newly
beveled edges.

Tips and Tricks

To select the four edges, you can rotate the camera view

to look at the side of the box, and then drag a section box

over these four edges. Alternatively, you can select one

of them, hold down the Shift button, and double-click

the next one. Maya will select all edges that are between

the same loop of faces; we call this selection of edges an

edge ring.

Step 4: Soften edge. Swap out of Edge mode into
Object mode by right-clicking (and hold) and
choosing Object from the marking menu. Click
in an empty space in the viewport to deselect the
rounded cube. See a harsh line on the rounded-
out corner? This is due to that edge being
“hard.” To soften it, swap to Edge mode and
then select that edge and hold down the Shift
button and double-click the next one to select
the entire edge ring. Use Mesh Display->Soften
Edge to make all the lines of this ring a soft edge
(Figure 1.8).

Step 5: Frontal opening. Go to Face mode and select
the front face of the camera. Go to Edit Mesh->

10

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.7 Using the bevel tool to round the edges of our cube.

Extrude, or hold Ctrl + E to extrude the face.
This creates another segment right at the faces
we selected. Press the R button to switch to the
Scale tool. Drag the yellow box in the middle
of the Scale tool to scale the new face down to
make the thickness of the shell. Take a closer
look, and you can see the left and right contour
of the opening is rounded. With the Scale tool,
scale with just the red box handle (it will turn
yellow when you are using it) to scale the face
down across the X axis. Once done, we do
not need this in the middle anymore, so press
the delete button on the keyboard to delete it
(Figure 1.9).

Step 6: Add Curvature to the side edges. To round the
contour, we need more geometry. Go to Mesh
Tools->Multi Cut. Hold down Ctrl, and hover the
cursor on the side edge. Maya will give a preview
of the edges that will be created if you click the
mouse. Before clicking though, hold down the
Shift button, to snap where the previewed ring
will be created. This preview will snap every 10%
across the length of this edge. Move the cursor
until the preview lands at the middle of the edge,
and click to finish adding the new subdivisions

11

Maya Modeling

FIGURE 1.8 Softening the edges.

FIGURE 1.9 Using the Extrude tool to create an opening at the front of the camera.

(new edges). These edges have their tip and end
connected. We call this kind of line an edge loop.
Repeat and add the same edge loop on the other
side (Figure 1.10).

Step 7: Turn on symmetry. Modeling is time-
consuming, so we want to save time if possible.
To do this, we can turn on symmetry, so we
do not have to manually add the edge loop
on the other side. The setting is located on the
second row of buttons (Figure 1.11). By default,
the setting is at Symmetry: Off. Click on the
drop-down arrow on the right and choose
Object X to toggle symmetry on across the X
axis (Figure 1.11). After toggling symmetry on,
selecting and performing commands on one
side of the geometry will affect the other side.

Step 8: Add Curvature to the camera opening.
Double-click on any edge of the edge loops we
created in Step 6 to select the entire edge loop.
Press Ctrl + B to bevel the edge loop and change
the Segments to 2. Go to Vertex mode (right-click
and hold on the shape, and choose Vertex from

12

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.10 Added edge loops on either side of the camera chassis.

FIGURE 1.11 Turning symmetry on to allow us to mirror our modeling work.

the marking menu) and select the vertex in the
middle on the edge of the hole. Use the Move
tool (W) to drag it away from the center a little.
Select the vertex above the middle vertex, hold
down shift, and click on the vertex below the
middle vertex to add it to the selection. Drag them
also away from the center. Work your way around
the opening and adjust the vertices until you get a
proper curvature for the side (Figure 1.12).

Step 9: Extrude the inner face. Double-click on any
edge of the hole to select the edge loop around
the hole. Hold down shift and left-mouse-
button and drag the loop inward a little; this
is a quick shortcut to extrude a new ring of
polygons. Select the edge ring along the newly
extruded edge and hold down the Shift + right
mouse button. In the resulting pop-up menu,
select Soften/Harden Edges->Soften Edge; this
will make the inner edges soft. This command
is the same command in the Mesh Display->
Soften Edge. Hit the R button to switch to the
Scale tool. Hold down Shift again and drag
the yellow box in the middle to extrude a new
small ring of polygons. Switch to Move tool,
hold down shift and drag the new edge ring
toward the back of the form to fill out the inside
(Figure 1.13).

13

Maya Modeling

FIGURE 1.12 Using Vertex mode and symmetry to adjust the opening to create a

round opening.

FIGURE 1.13 Using the Extrude tool (Shift-drag) to create polygons for the inside

of the form.

Tips and Tricks

Shift + right mouse button is a very common shortcut.

Basically, it will pull up tools or commands to the current

element you have selected. If nothing is selected, doing

this will pull up a wide selection of primitive polygons.

Almost all commands we need can be found in this

pop-up marking menu.

Step 10: Camera lens. Click in some empty area of
the Viewport to deselect the camera body. With
nothing selected, hold down the Shift + right
mouse button and chose Cylinder. Go to the
Channel box and set the Rotate X to 90. This will
rotate the cylinder 90 degrees in X and lay the
cylinder down. Scale and move the cylinder so
that it is roughly the size of the lens of the Camera.

Step 11: Lens frontal rims. Switch to Vertex mode.
Select the vertex at the center of the front faces,
hold down the Ctrl + right-mouse button, and
in the resulting pop-up marking menu, chose
To Faces->To Faces. This will select all faces
that share this vertex. Turn off the symmetry
(remember up in the second row of the interface).
Press R to go to the Scale tool and hold down the
Shift button and drag the yellow box to extrude
the face in. Using the Move tool, hold down the
Shift button and drag the face back in; keep on
extruding with Scale and Move tools to create all
the rims of the lens (Figure 1.14).

Step 12: Bevel the rim. Select the harsh edge loops
on the rims of the lens (remember, you can do
this by double-clicking on an edge while in Edge
mode) and press Ctrl + B to bevel them. Select
all the edges in the front of the lens, do a Soften
edge command to soften the edge of the lens
(Figure 1.15).

Step 13: Curvature of the lens. Select the vertex at the
center of the lens. Hold down Ctrl + right mouse
button and chose To Faces->To Faces. Switch to
the Scale tool and hold down the Shift button
while you drag the yellow box to extrude the
faces down to about half of the original size. Use
the Move tool to drag the faces forward a little.
Grab the vertex at the center again and move it
forward a bit more. Select the edge loop around
the center vertex and press Ctrl + B to bevel it.
This will give us the curvature we need for the

14

Creating Games with Unity, Substance Painter, & Maya

lens. Finally, soften the edge loops we created to
make the lens feel smooth (Figure 1.16).

Step 14: Clean up history. Maya remembers
everything we’ve done and stores this in the
Input stack under the Channel Box (Figure 1.17).

15

Maya Modeling

FIGURE 1.14 Using the Extrude, Move, and Scale tools to create the front rim of

the lens.

FIGURE 1.15 Beveling and softening the edges to create the rim of the front lens.

Go to Object mode and drag a big
selection box to select both the shell and
the lens of the camera. Go to Edit-> Delete
by Type->History to clean up the history.
This will make all the construction history
disappear (the shortcut for this operation is
Alt + Shift + D). It is important to delete the
history of the model regularly to ensure the
model is stable and the scene is not getting
heavier and heavier.

Step 15: Outer shell. Select the outer layer of faces of
the lens that we made from a box. To do this, go
to Face mode and grab one of the faces that goes
across the depth of the model. Hold down Shift
and double-click the next one to grab the whole
loop across the depth of the model. Hold down
Shift + right-mouse button and chose Duplicate
Faces. Dragging the arrow that is facing away
of the face that the arrows are sitting on, this
Duplicate Faces command creates a new model
from the faces selected. This allows you to shift
the faces away so we can easily create a shell
(Figure 1.18).

16

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.16 Finishing off the lens by adding curvature to the glass portion.

17

Maya Modeling

FIGURE 1.17 The Input stack of the Channel Box. This shows the History of steps

created thus far.

FIGURE 1.18 Creating a shell by duplicating faces.

Step 16: Tweak the shape. Figure 1.19 shows
a sequence of steps using the techniques
introduced in earlier steps. Try following the
images to match the shape.

If you need help, the steps are: Grab the
Outer shell we created in Step 15 and use
the Scale tool to stretch it longer. Hold down
Shift + right mouse button and chose Multi
Cut. Hold down Ctrl and click to add an edge
loop closer to the back end of the shell. Press
Q to switch to selection tool and double-click
on any edge of the newly created edge loop
to select the whole loop. Scale this loop up
and drag it slight down to create the wider
portion of the shell. Add another loop closer
to the front of the shell. With this loop still
selected, press E to switch to the Rotate tool.
Hold down Ctrl + Shift and rotate the loop
to tilt it forward. (Note: you can see how the
edge is constrained on the surface of the
model when rotating, which is great to create
the tilted frontal shape.) Select the front loop
of faces and delete them. Toggle symmetry on
and add edge loops to mark out the edge of

18

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.19 Try and follow this visual guide to tweak the shape to match the

research.

the opening in the middle of the shell. Select
the corresponding faces and delete them. Add
an edge loop really close to the edge where
the seam between the upper and lower shells
is. Finally, delete the face loop in-between to
open the seam.

Step 17: Upper shell hole. Add an edge loop at
the center of the model. Then select the new
loop, press Ctrl + B to bevel it and change the
fraction to 0.32. Switch to Move tool and use the
Ctrl + Shift trick to slide the edge in the center
forward to mark the front edge of the opening.
If you are not sure if the face is gone or not, you
can go to Object mode and grab the shell and
press Ctrl + 1 to isolate it. You can press Ctrl + 1 to
toggle the isolation (Figure 1.20).

Step 18: Add thickness. Grab all the faces of the
model (using Face mode and either double-
clicking on any polygon or marquee-selecting).
Press Ctrl + E and drag the arrow to extrude the
faces out to add the thickness.

Step 19: Back arm. Create a cube. Move and scale it
to create the basic shape of the back arm. Add
an edge loop in the middle and bevel it to give it
curvature. Don’t forget to smooth the edges of
the rounded back (Figure 1.21).

Step 20: Connect back arm. Grab the back arm and
the inner shell of the camera. Go to Mesh->

19

Maya Modeling

FIGURE 1.20 Creating an upper shell hole, and finally isolating just the shell.

FIGURE 1.21 Creating the back arm by creating a simple cube, adding new edge

loops, and tweaking those to create the desired shape.

Booleans->Union. This will combine the selected
meshes, blast out the overlapped part, and fuse
the contact surface (Figure 1.22).

Step 21: Fix N-Gon. An N-Gon is any face with more
than four edges. This can be a problem in 3D
because it is unclear how the face should be
divided into triangles for the rendering process.
This can sometimes yield undesired output at the
time of rendering. So it’s best to rebuild N-Gons
to either four-sided polygons (quads) or triangles.
The big back face is a typical N-Gon. Switch to
Multi Cut tool, and click and drag on one of the
outer edges until it stops at one vertex. Click
and drag on one of the inner edges until it hits
another vertex. Maya will connect these two
vertices with a new edge. Press the G button to
commit the current operation and re-initiate the
same tool again. Keep clicking and dragging to
connect lines until there are no N-Gon anymore
(Figure 1.23).

Why?

Notice that we had to end up with some triangles, and this

is totally fine; otherwise, we need to add new edge loops

20

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.22 Using Booleans (Union) to merge two shapes together into one.

to the rest of the body, which takes more performance,

and the render result will be the same.

Tips and Tricks

Click on the Modeling Toolkit button (Figure 1.24) on the

right edge of the UI to switch to the Modeling Toolkit.

Under the Tools section, you can also see Multi Cut. Click

on it to toggle it on, and various settings of the tool will

appear underneath. Scroll all the way down and open

the Keyboard/Mouse Shortcuts section. You can see how

versatile this tool is. Experiment with these different

shortcuts to speed your workflow.

Step 22: Base. Create a cube, set the Scale X and
Scale Z of the box to 13, and set the Scale Y to
8. Grab the vertical edge of the cubes and press
Ctrl + B to bevel them. Change the Fraction to
0.62 and Segments to 3. Move it to the back of
the camera body and drag it higher (Figure 1.25).

Step 23: Base bottom shell. Select the bottom face
and extrude it down. Scale the new faces down
to match Figure 1.26. Next, go to Multi Cut tool,
and in the Modeling Toolkit, toggle on Edge flow
under the Cut/Insert Edge Loop Tool section. Add
an edge loop to the middle of the newly extruded
segment. In Figure 1.26, you can see how edge
flow automatically added the curvature.

Step 24: Base bottom arm. Grab the bottom face
again. Hold down the Shift + right mouse
button and choose Circularize Components.
This will round the shape up to a perfect circle.

21

Maya Modeling

FIGURE 1.23 Using the Multi Cut tool to create new edges to rebuild the N-Gon into

three- or four-sided polygons.

Unfortunately, it is tilted, but we can fix this by
changing the Twist value to make it straight
again. Extrude the face in the center down to
create the length of the arm. Using the same
technique used in Step 23, we can create a small
rounded bottom for the arm. Finally, use the
Multi Cut tool to fix the N-Gon (Figure 1.27).

Step 25: Create the arm bending socket edge. Select
the edges across the bottom of the arm and press
the R button to switch to Scale tool. This time,

22

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.24 The Modeling Toolkit can provide faster ways to work with advanced

modeling tools.

23

Maya Modeling

FIGURE 1.25 Using the same techniques covered above to create the base of the

camera.

FIGURE 1.26 Adding new faces and edges to round off the bottom of the base.

on the left side of the UI, look for the column of
buttons we call the Toolbox. Try pressing Q, W, E,
and R and you can see how to switch between
these tools with the keyboard shortcuts. Double-
click on the button that is highlighted when you
press R to pull out the Scale tool settings. Check
the Prevent Negative Scale option. Scale the lines
on the X axis until they are flattened (they will
not overshoot). Switch to Move tool and hold
down the V button to turn on Vertex Snapping.
While you are holding down the V button, drag
the arrow of the move tool along the X axis
(red-cone gizmo) and move your cursor to the
point lying on the outer rim of the handle to snap
the flattened line to that point only on the X axis.
Do the same thing on the other side. Add another
loop around the length of the handle to mark out
the upper edge of the opening socket. What we
are trying to achieve here is to mark the opening
edge of the socket. The opening of the socket is
highlighted in the last figure of Figure 1.28.

24

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.27 Creating the bottom arm and cleaning up the topology to eliminate N-Gons.

FIGURE 1.28 Building out the bottom of the arm using a few new tricks in each

tool’s options.

Tips and Tricks

Ctrl + Shift + right mouse button will also pull up the

settings of the current tool. You can find the Prevent

Negative Scale setting if you press R and then hold down

the Ctrl + Shift + right mouse button. To quickly select part

of a loop, select the beginning of the part of the loop and

hold down Shift and double-click on the end of the part of

the loop. This trick works on face loops, edge loops, and

edge rings.

Step 26: Opening the socket. Delete the faces
highlighted in the last figure of Figure 1.28. Grab
the bottom edges and extrude them up. Scale
them on the Y axis to flatten them. Switch to the
Move tool and hold down V while dragging the
edges up to snap the edges to the upper corner
of the opening. Do not change the selection and
hold down Shift + right mouse button and select
the Bridge tool from the marking menu. This will
bridge the two loops with faces. This command
requires an equal number of polygons on the
two loops (Figure 1.29).

Step 27: Merge vertices. Select the edge on the
upper corner of the opening and move it just
a little bit in any direction. Notice that there
are two vertices overlapping instead of one
merged vertex (Figure 1.30); this creates a tear
in the mesh.

To fix it, we need to merge these vertices
together. Press Ctrl + Z to undo the moving
of the vertex. Then hold down Ctrl + Shift
and drag over the two overlapping points to
select both. Check to ensure that you are not

25

Maya Modeling

FIGURE 1.29 Creating the notch of the arm by deleting faces, extruding edges, and bridging.

selecting anything else on the back of the
form. You can choose Edit Mesh->Merge to
merge these two vertices to one single vertex.
Alternatively, you can hold down Shift + right
mouse button and select Merge Vertices,
but this time, the Marking Menu will show a
nested sub-menu. We just keep dragging up
to select Merge Vertices to Center.

Step 28: Shrink and attach the camera to the base.
Grab the faces of the back arm of the camera
body and scale it up or down to make the size fit
with the opening of the base. Move the base to
attach the arm with the socket (Figure 1.31).

26

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.30 Our previous steps have created a form with holes in the mesh.

FIGURE 1.31 Scaling the faces of the back of the camera to fit the mounting base.

Step 29: Top switch. Create a cylinder (Create->
Polygon Primitives->Cylinder). Move and scale
it to the opening of the top shell of the camera.
In the input section of the Channel box, click on
the polyCylinder1 and change the Subdivision
Axis to 12 (Figure 1.32).

Why?

We made the Subdivision Axis smaller to lower the

polycount of the little top switch. It is such a small part

that we do not need the same number of loops as the

lens. In games, polycount is important, and trimming

away those we don’t need as we work will generate

cumulative benefits in the long run.

Step 30: Reduce polycount. It is always possible to
reduce polycount of a model to save a little bit of
performance. Go to Display->Heads Up Display
and check on Poly Count. You can see on the
upper left corner of the viewport that we have
1736 Tris in total. There are two ways we can
reduce polycount:

 1. Delete edge loops that seems

unnecessary. Grab the outer shell of

27

Maya Modeling

FIGURE 1.32 Roughing out the switch at the top using a cylinder.

the camera, select the edge loop in

the middle, and hold down Shift + right

mouse button and chose Delete Edge.

Notice that there is no difference in the

form after deleting it. Similar cleanups are

shown in Figure 1.33.

 2. If a loop cannot be completely deleted,

triangulate parts of the loop. We clearly

need no extra edge loop for the top flat

surface of the outer shell, but we have

two for the purpose of opening a hole

on the top. To fix this, go to Object mode

and hold down Shift + right mouse button

and select Target Weld Tool. Click and

drag the vertex in the middle area of the

upper edge of the shell to the point next

to it to weld it to that vertex. Using this

technique, we can weld a lot of points

without affecting the shape of the model.

We may end up with some triangles, but

it is totally fine for most non-deforming

28

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.33 Strategically deleting unnecessary edges reduces our polycount

without sacrificing form.

(not bending) forms, especially for a game

model. Similar reducing results are shown

in Figure 1.34.

Keep in mind that you still want to

avoid too many triangles; triangles are

harder to manage for the UV process (an

important part of the texture process

that we’ll cover later), and they make it

harder to do high-resolution sculpting

(if you need to do so for complex forms

including organic shapes). You can always

consult the supervisors of your team to

get their suggestions on the polycount

if you do work for a studio. The final

polycount after these optimizations is

1494 tris for our camera.

29

Maya Modeling

FIGURE 1.34 Reducing polycounts with careful vertex welding.

Tips and Tricks

The Delete Edge command should be what you use

all the time to get rid of edges. The delete button on

the keyboard does delete the edges but not delete the

vertices on the edge, which means that when the renderer

triangulates, it still produces the extra triangles from those

left-over points.

Step 31: Clean up. On the top of the base, there is a
big, flat N-Gon. Grab that top face and extrude
it in. Hold down the Shift + right mouse button
and select Merge Faces To Center. Select all
models we created, press Alt + Shift + D to delete
all the history. Finally, do a Modify->Freeze
Transformation to clean up the transform.

Why?

You may wonder what this Freezes Transformation does.

Well, in Maya, a model has two primary components:

transform and shape. Transform governs where the model

is, how it is tilted, and how it is scaled; these are reflected

in the translate, rotate, and scale values in the Channel

Box. Shape governs the vertices, faces, and edges and

how they are combined together to form the shape of the

model; the final appearance of the model is the shape of

the model moved, rotated, and scaled by the transform

of the model. If you do recall, we have scaled the outer

shell of the camera, and that scale value will appear in

the Channel Box; freeze transform will clean that up and

bake the scale we did to the transform of the model to

the shape of the model. Many processes later (Rigging,

UV Mapping) do require the transform of the model

to be baked to the shape of the model through Freeze

Transformation so that the final look of the model is the

actual shape instead of a shape getting scaled, rotated,

and moved by a transform.

Step 32: Naming and organization. On the left
side of the UI, there is a pallet with a tab called
Outliner; this is a list of the currently existing
objects in the scene. Select anything in the

30

Creating Games with Unity, Substance Painter, & Maya

viewport and you can also see it highlighted in
the list of the Outliner. Alternatively, you can
also select an object by clicking its name in the
outliner. In the Outliner, you can hold down Shift
to select multiple objects or hold down Ctrl to
deselect.

Tips and Tricks

If you cannot see the Outliner, go to the column of

buttons where we have the Move, Rotate, and Scale tools;

the last button in that column is the toggle to show or

hide the Outliner.

Select everything in the viewport in Object mode and

press Ctrl + G to place them into a group. Something called

group1 will appear in the outliner. This is a group (really a

parent object). You can press the plus sign in front of it to

open the group and see the children models inside of it.

Double-click to rename any object there. For now, rename

the group to security_cam_geo_grp. Spend some time

renaming all other objects; the final naming is shown in

Figure 1.35.

31

Maya Modeling

FIGURE 1.35 Names to use in naming the shapes build so far.

Tips and Tricks

Anything inside of a group will follow the group. You

can now grab the group in the outliner and move the

whole collection of shapes. You can put any object or

objects under a group by grabbing the objects first and

selecting the group last and pressing the P button on the

keyboard. This is also something we call parenting. If you

select something inside of a group and press Shift + P,

this will get the object or objects out of the group (called

unparenting). You can also parent one object to another

object instead of a group. In the outliner, you can click the

middle mouse button to drag anything around or drag

one object to another to parent one object under another.

Step 33: Clean up the outliner. We do not need
any other objects in the scene; there could be
other empty groups in the outliner due to some
operations we did to the model. We can grab
anything outside of security_cam_geo_grp and
delete them. Alternatively, we can go to File->
Optimize Scene Size and let Maya clean these up
for us.

Step 34: Save the file. Go to File->Save Scene, in the
pop-up Save window, change the File name to
game_set_models, navigate to a folder that is
safe and easy to find, and press the Save button
to save it.

Other Useful Commands

We have introduced some of the most important

commands for modeling. Let’s start a new scene and go

over a few more before we do some assignments.

Grow and Shrink Selection

Create a sphere (Create->Polygon Primitives->Sphere)

and select the top vertex. Hold down Ctrl + right mouse

button and choose To Faces->To Faces to select the

top faces. Hold down Ctrl + right mouse button again

and chose Grow Selection->Grow to select all the

direct neighbor faces. Press the G button three times

32

Creating Games with Unity, Substance Painter, & Maya

to redo Grow Selection three more times. You can also

find Shrink Selection in the Ctrl + right mouse button

marking menu.

Extract Faces

With the top four rows of faces selected, hold down

Shift + right mouse button, and choose Extract Faces. Drag

the blue arrow to shift the face away; you can now see

how Maya separated the model into two objects. Notice

that in the outliner, you can see the pSphere1 becomes

a group, and there are two objects inside of it. That

transform1 is the remaining construction history that you

can use Delete History to get rid of.

Combine and Separate

Some commands, like Bridge, can only be used for

component on the same object. So to bridge the

upper shell with the lower shell (Figure 1.36), you have

33

Maya Modeling

FIGURE 1.36 In order to bridge collections of polygons like this, you first must

ensure that the polygons are parts of the same single object.

to combine the models together into one object. To

combine models, grab all models you want to combine

and use Mesh->Combine. By the way, you can also see

the Separate command right below Combine. Separate

will separate the model into multiple ones based on their

connectivity.

Create Cables or Pipes

From time to time, we may want to create a cable or a

pipe. Go to Create->Curve Tools->CV Curve Tool, and click

and drag in the viewport to drop down a CV point. Click

and drag again to add a new one; keep doing this and you

will see a curve getting created. You can hit backspace to

roll back and drag the middle mouse button to refine a

placed CV point. When you are happy with the shape, hit

Enter to finish the creation (Figure 1.37).

CV stands for Control Vertices. Maya will interpolate

between the vertices to form a curve. This type of model

is called NURBS, which uses mathematical interpolations

between control vertices to create a form. These are

fundamentally different from the camera model (polygon)

we created earlier.

After creating the curve, you can still edit it by holding the

right mouse button on it and choosing Control Vertex.

Then you can move the CV to refine the shape as desired.

The curve will be created on the grid by default. You can

go to the front, top, or side view to create your curve

34

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.37 Using the CV Curve Tool to create a series of CVs that define a curve.

so that the curve snaps to the grid of that view. Go to

Create->NURBS Primitives->Circle to create a circle. Grab

the circle and the curve created previously, and go to

Surfaces->Extrude□ (be sure to click the square to pull up

the Extrude Options window). There, change the Result

position setting to “At path” and change the Pivot setting

to “Component”. Press the Extrude button, and you will

see that a tube is created (Figure 1.38). This Extrude is not

the same Extrude we did with polygons; it basically places

the circle along the curve to create a frame and then

interpolate a shape out of it.

You can scale the nurbsCricle1 to change the radius of

the tube, and you can still tweak the shape of curve1 to

change the shape of the tube (Figure 1.39).

However, this tube is not a polygon or polygon-based

(which we will need for games). So to convert it into a

polygon-based form, go to Modify->Convert->NURBS to

Polygons□. Change the tessellation method to “Control

points”. Press the Tessellate button to convert the tube to

a polygon (Figure 1.40).

35

Maya Modeling

FIGURE 1.38 Creating a tube using NURBS extrude.

Until now, you can still tweak the curves to change the

radius and the shape of the curve. When you are happy

with the form, select the polygonal shape and delete

the history and delete all curves and the original NURBS

surface as they’re no longer needed.

36

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.39 Once a NURBS form is created, the form can be adjusted by editing the

curves used to create it.

FIGURE 1.40 Tessellated NURBS form that is now a polygonal object.

Tips and Tricks

If, at any time, the tube model appears black, you can

rotate the circle on the X axis until it flips back to normal.

NURBS curves and surfaces are a different type of model

that are mathematically interpolated between the

control points we created. They are primarily used for

architectural or industrial design. Most times, we don’t use

this type of model in game scenarios. However, they can

be very useful to construct a form originally (that we then

convert into polygons).

Extrude Along a Curve

Another variant of creating a tube is to create a curve in

front of a face and then extrude that face along the curve.

To do this, select both the face and the curve (Figure 1.41),

and press Ctrl + E.

In the pop-up dialog boxes, increase the number of

the Divisions setting to create a smooth extrusion along

the curve (Figure 1.42). If the extrusion is backwards,

you can grab the curve, do a Curves->Reverse Direction

to fix it.

37

Maya Modeling

FIGURE 1.41 Extruding along a curve.

Duplicate, Duplicate
with Transform

You can grab any model and press Ctrl + D to duplicate it.

The duplicated model will be at the same location as the

original (although you’ll see the name of the new form

in the Outliner). Right after duplicating, you can use the

Move tool to move the new duplicate away (Figure 1.43).

38

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.42 Tweaking the Extrude along curve options to get the resolution you desire.

FIGURE 1.43 Duplicate allows for a quick copy of an original.

If you want to create another duplicate and have it move

the same distance (or rotate the same amount), you can

press Shift + D. You can keep pressing Shift + D to have

multiple duplications, each offset the same amount as last

time (Figure 1.44).

Duplicate Special

From time to time, we may want to create multiple

duplications but as instances. An instance is a copy that

keeps the link of the shapes between the original and the

copy; we can adjust any one of the duplications to update

the shape of all others (but not transform). Grab your

model and go to Edit->Duplicate Special□. Change the

Geometry type to “Instance”. Change the first number of

the Translate to 2 (the X axis), and the Number of copies to

“10”. Finally, press the Duplicate Special button, and you

will see ten duplications of your model, each two units

away from each other, and more importantly, editing any

one of them will affect all others (Figure 1.45).

Mirror

Anytime you forget to have symmetry on and want

to make the model symmetrical again, you can select

the model in Object mode and do a Mesh->Mirror. Try

different axes and directions to make sure you got the

correct side mirrored. The merge threshold should be

as low as 0.001 if you wish to only have the vertex in the

center mirrored. You can also change the Border setting

39

Maya Modeling

FIGURE 1.44 Duplicate with Transform (Shift + D) duplicates and transforms

(moves) the object in the same command.

to bridge or do not merge the geometry along the axis of

symmetry to have a different result.

Center Pivot

You can grab any model in Object mode and do a

Modify-> Center Pivot; this will move the pivot of the

model to the center of its bounding box. The Pivot is the

location where the object is rotating around. It is needed

whenever you want to be able to rotate or scale a model

from its geometrical center.

Change Pivot

In any mode, you can hold down the D button on the

keyboard and drag the gizmo to adjust the location

or orientation of your pivot; you can also click on any

elements on the model to snap your pivot to that element.

40

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.45 Using instances (as opposed to copies) to make copies of an object that will change when the original is

manipulated.

A good example that we want to do this is to change the

pivot of the body of the camera to the hinge of the arm so

that we can rotate it around the hinge.

Snapping

When moving an object or its various elements, you can

hold down the X button to snap to the grid and V button

to snap to vertices. The snapping toggles are on the Status

line, which is the row of buttons under the main menu.

The snap toggles are the six buttons with a magnet in

their icon. Try these toggles and see what they do.

Hide Model

You can grab any model or its other elements and press

Ctrl + H to hide them. To unhide, press Ctrl + Shift + H; this

will only unhide the object you are selecting (probably in

the Outliner) if you have something selected. It will unhide

everything if you have nothing selected. After making a

model, name it properly, freeze transformation, and hide

it so you can move on to the next one without the other

models blocking your view.

View Control

At any time, if your cursor is in the Viewport, you can press

the spacebar to go to the Four View layout, and this will

show you the Top, Perspective, Front, and Side views;

you can then move the cursor to any view, and press the

spacebar to maximize that view. However, we recommend

to just hold down space and drag up, down, left, and right

to go to these views.

Assignments

We have covered enough commands that you are

now able to create models of your own; go ahead and

start modeling some of your own models in Maya,

41

Maya Modeling

and make sure you find references and get the correct

measurement. Figure 1.46 shows a few examples of what

we are looking for.

Geometry Errors

Sometimes in the modeling process, some errors can

emerge. These errors might not even be readily visible in

your model, but without fixing them, you can run into some

serious problems later in a game engine. While these can

be pretty technical, and the hard-core specifics are a bit

outside the scope of this book, it’s worthwhile to talk about

them for a minute and – more importantly – evaluate how

to fix them. Here are some typical geometry errors that we

can now check on your model:

Non-Manifold Geometry. This geometry cannot
be unfolded and flattened to a 2D surface.
Typically, there is an edge shared by more than
two faces or inconsistent normal directions.
This type of model will confuse the renderer on
which side is the outside of the geometry.

42

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.46 A selection of props that can be built using the techniques covered in

this chapter.

Lamina Faces. Two faces that share all of their
edges. Typically, this is caused by duplicating and
combining meshes that have the same faces.

Zero Length Edge. A self-descriptive situation in
which an edge has no length.

N-Gon. We have covered N-Gon already; any face
with more than four sides is a N-Gon.

Luckily, even though the theory behind these errors is

abstract, fixing them is usually pretty easy. To clean up

the models, go to Mesh->Cleanup□. Under the Fix by

Tessellation section, check on “Faces with more than

4 sides”. Under Remove Geometry, check on “Lamina faces

and Nonmanifold geometry”. Press the Cleanup button;

this will, in theory, clean up all the errors. Maya may

choose to delete some of the faces because they are error

geometries; make sure you check around the model and

recreate any missing models.

Tutorial 1.2: Modular Set Pieces

Making a compelling and complex environment is a

daunting task. To ease the pain, we are going to adapt to

a modular workflow. This means we will make reusable

pieces that are easy to combine with each other, like a

system like Lego building blocks. The props we have

made previously as assignments are already designed for

that purpose, but to make the foundation of our game

level, we need a more unified system. This means we need

to have a chart of sizes that our models will have to exactly

match, so they can be assembled seamlessly.

There are two size systems we can use: decimal and binary.

For decimal, we will have sizes like 10, 20, 30, 50,
100…

For binary, we will have sizes like 16, 32, 64, 128,
256, 512… (both in cm)

Both systems are popular, and we are going to follow the

binary system. The author has found that it is easier to

combine modules seamlessly and easier to match with

textures sizes, which is also binary.

43

Maya Modeling

Grid

Go to Display->Grid□. Set the Length and width to 256,

and set the Grid lines to 64 and Subdivisions to 4. Drag

the slider of Grid lines and numbers to make it a blue color

and press Apply and Close. This will create a grid that has

its edge 256 cm away from the center and a blue grid line

every 64 cm with four extra divisions in-between every

blue grid line, which makes every grid 16 cm long.

To verify our sizes, go to Windows->General Editors->
Content Brower. Under the examples category on the left

side of the window, choose Modeling->People. Drag a

standing character to the viewport to import the human

model; the height of the model should be slightly shorter

than half of the grid length (Figure 1.47). If your character

appears gray, hit 6 on your keyboard to have Maya show

the materials as well.

Create a Base Floor
Step 1: Base floor dimension. Let’s hide our other

models, so we can start our new model with
nothing else visible. Create a cube, set its

44

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.47 Setting up our grid to build modularly. The person acts as a size and scale reference.

Translate Y to −8, set its Scale X and Scale Z to
256, and set its Scale Y to 16. Switch to the Move
tool and hold down both D and V buttons, and
drag the pivot of the box to the upper corner on
the negative X and Z quadrant. Release all the
buttons. Now, hold down X button and drag
the center of the gizmo to snap the model to the
positive X and Z quadrant (Figure 1.48).

Why?

We want the model to be easily snapped together.

Positioning the pivot to the corner of the box is extremely

helpful for the snapping. We also want the pivot to be at

the center of the world to avoid any offset.

Step 2: Floor edge trim. To help in adding trims to
the side of the floor, grab the top face, and press
Ctrl + E. Set the Offset setting to 16. This will give
us a rim on the outside of the floor (Figure 1.49).
Name this model floor_01 and hide it.

We are now done with this module. Every
time we finish a module model, we can name
it, hide it, and move on to the next one. This
way, all of our models are created in one
Maya file for easy access. This also allows us
to maintain the scale of our game. We are not
planning on making a whole lot of models for
our environment, so keeping them all in one
scene file is manageable. But if you’d rather,
you are more than welcome to create new
files for extra models instead. But be sure you

45

Maya Modeling

FIGURE 1.48 Creating and snapping the first-floor module to our grid.

maintain consistent Grid settings across the
various scenes if you do so.

Step 3: Base wall dimension. Create a cube and set
its Scale X to 256, Scale Y to 512, and Scale Z
to 32. Snap its pivot to the lower back corner
and then move it to the center of the grid
(Figure 1.50).

46

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.50 Creating a base wall module.

FIGURE 1.49 Creating the base trim of the module using Extrude.

Step 4: Add bottom trim. Add an edge loop
toward the bottom of the wall module.
Extrude out the bottom face and move the
top edge of the extruded face down to create
a bottom trim (Figure 1.51); name this model
wall_01.

Step 5: Arch wall. Follow the steps of Figure 1.52.
Create a pipe (Create->Polygon Primitive->Pipe).
Under the Input section of the Channel Box, click
on polyPipe1 and set the Radius to 128, Height
to 512, and Thickness to 32. Set the Rotate Z of
the model to −90. Delete the frontal and bottom

47

Maya Modeling

FIGURE 1.51 Creating trim for our wall_01.

FIGURE 1.52 Creating the arched top of the wall by combining a pipe segment.

quarters of the pipe. Next, hold down D and V,
and snap the pivot of the pipe to its back side
corner. Hold down V and snap the pipe to the
top of the wall we created in the previous two
steps. Duplicate the wall and delete its top face.
Combine it with the pipe by selecting both the
wall and pipe and choosing Mesh->Combine.
Grab the vertices of the pipe and the top of the
wall and while holding down X drag them down
until the top of the pipe is the same height as
the height of the original wall. You can go to
the side view to check out the alignment. Grab
all the vertices and hold down Shift + right
mouse button, go up and up again (or choose
Edit Mesh->Merge). This will merge the vertices
between the top of the wall and the bottom
of the pipe. Double-click on one of the edges
of the hole in front of the pipe and hold down
Shift + right mouse button. Choose “Fill hole”.
Name this model wall_02.

Tips and Tricks
Step 5 has many steps, but the idea is simple. We

want an arch on the top of the wall. Whenever
we need something complex, we can break it
up to smaller primitives. When we create these
primitives, we can snap them together, combine
them, and merge the vertices.

Step 6: Wall frame. Copy the arch wall we created
and move its pivot to the origin. Change its
Scale X to 0.25. Grab the front faces and press
Ctrl + E. Change the Local Translate Z of the
extrude to 16. Extrude the same amount
again, but this time, scale the faces in on
the X axis to create a little taper. Use scale
or snapping to flatten the top front faces
(Figure 1.53).

Step 7: Wall frame detail. Grab the faces in the
front middle part of the model and hold down
Shift + right mouse button and chose Duplicate
Faces. Set the Local Translate Z to 16. Grab the
bottom vertices and drag them up. Bridge the
bottom edges and bevel the primary turning
edges. This will give us extra volume; you can
create additional ones to make the model
more complex (Figure 1.54). Name this model
wall_frame_01.

48

Creating Games with Unity, Substance Painter, & Maya

49

Maya Modeling

FIGURE 1.53 Creating a tapered wall section.

FIGURE 1.54 Extra detail on the walls.

Tips and Tricks

Always name and clean up your models when you have

finished them. Your future self will thank you for making

everything clean and tidy.

Step 8: Wall corner. We can create rounded corners
for our rounded walls for when walls meet as we
assemble them. Duplicate and snap our modules
like the first figure in Figure 1.55. You can hold
down the J button while rotating to snap your
rotation for every 5 degrees. It is important that
the modules are snapped to each other exactly.
Have one blue (64 units) grid gap between
the two hallways or corridors and the turning
portion of the floor. This is to ensure that there is
space for the rounded transition part.

Moving on to the second figure of
Figure 1.55, select these two walls of the
turning point, duplicate (Ctrl + D) them, and
combine (Mesh->Combine) them. Grab the
two columns of the faces that will connect to
the turning portion. Hold down Shift + right
mouse button and chose Bridge Faces. The
result may look messy, so change the division
to 7, and Curve type to Blend. The resulting
middle part is going to be our turning
module; delete the extra ones on the side and
bridge the holes on the side to finish it. The
outer corner is done the same way.

Step 9: Floor variations. Create a few varying sizes
for the floor, like the gap we need to fill for

50

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.55 Creating a transition part for an outer corner.

the turning of the corridor we did for Step 4
(Figure 1.56). The sizes we choose to use are:
256 × 256 × 32, 256 × 128 × 32, 256 × 64 × 32.

Step 10: Stair frame. Create a cube and set the Scale
X, Y and Z to 256. Snap its pivot to the back lower
left corner and snap the cube to sit at the positive
quadrant. Move (and snap) its bottom and top
row of vertices to make a tilted frame for the
stairs. Its bounding box length is 6 × 64 units (six
blue grids). The footing of the shaft is 64 units,
and the thickness of the shaft is 16 units (one
gray grid). The results look like Figure 1.57.

Step 11: Stairs. Duplicate the stair frame to create
the other side. Snap the duplication so that their
whole width together is 256 units. Create a box,
make its Scale X 32, Scale Y 8, and Scale Z 200.
Move it to the first stairs location. It should be
around 18 units high. Bevel all the edges of the
box, and extrude from the two side faces to make
the connection to the frame. Bevel the bottom
edge of the frame to add a little detail. Fix the
N-Gon after the bevel. Finally, bevel the edges of
the frame (Figure 1.58).

Step 12: Stair handrail. Go to Create->Curve Tools->
CV Curve Tool; we have covered this tool

51

Maya Modeling

FIGURE 1.56 Creating other modular parts for floors.

FIGURE 1.57 Building the stairs. Note that for modularity to work, the exact

positions of the snapped vertices are important.

previously in the part about extruding along a
curve. Use the Curve tool to create the profile of
the handrail. Take care to make sure you have
enough points on the arcing part; the amount
of points you place will determine how many
segments you will have on the final polygon
shape. Use Extrude along curve techniques to
create the handrail. Addition columns can be
created using cylinders (Figure 1.59). Remember:
be sure to covert the NURBS form into polygons.

Step 13: Other modular pieces. Other modular pieces
are made with the same techniques covered
previously; here is a list of all the pieces modeled:
Walls – There are three walls, five wall frames,

and some random small blocks. The size of
the tall ones is 256 × 512 with a thickness of 32
(Figure 1.60).

Arcs – These arcs are having a radius of 256
units and a thickness of 32; an outside arc,

52

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.59 Creating the handrail using NURBS techniques.

FIGURE 1.60 Completed wall modules.

FIGURE 1.58 Creating the stair steps.

a wall, and a wall bottom trim are also built
(Figure 1.61).

Floor – Floors with 256 × 256 × 32, 256 × 128 × 32,
256 × 64 × 32 are built to create hallways with
different sizes. Two grid modules are also built
(Figure 1.62).

Pipes – Pipes came with three sizes, each with
a radius of 16, 8, and 4. Be sure to build some
turning structures to support complicated
combination (Figure 1.63).

Stairs – We have two stairs, a higher one with
a 256 units elevation and a lower one with a
64 units elevation. Handrails were also built
to support variations (Figure 1.64).

Windows – Window came in four sizes:
256 × 128 × 32, 128 × 128 × 32, 512 × 512 × 256,
96 × 64 × 160 (Figure 1.65).

There are 57 modular pieces. It is hard to
determine how many are needed, so it is wise
to build less and try creating a hallway or a
room and see if more modules are needed.

53

Maya Modeling

FIGURE 1.61 Completed arc modules.

FIGURE 1.62 Completed floor modules.

FIGURE 1.63 Collection of completed pipe modules.

Step 14: Hero assets. Hero assets are the assets that
we only use a few times and so might need a
bit of extra care and detail. We will create two
hero assets for the final scene; the creation
process of these hero assets is tedious, expect
to spend a lot of time on them and have a
higher polycount on these assets. But even
though the fidelity might be higher for these
assets, the tools and commands used to create
them are no more than what we have covered
(Figure 1.66).

54

Creating Games with Unity, Substance Painter, & Maya

FIGURE 1.66 Hero assets.

FIGURE 1.64 Stair modules.

FIGURE 1.65 A variety of finished window modules.

Conclusion

We have finished the environment modeling part of

our games. Well, of course, we’ve only created the

individualized separated pieces; currently they aren’t

a level...yet. However, we will move them to the game

engine and assemble them into our awesome level later.

However, before we do that, we still need to go through

UV mapping and Texturing so that our models are not

white ghosts.

If you are able to complete these forms in this chapter,

you’re in good shape. If it is overwhelming and you’d

rather move onto other stages, these completed models

are available on the support website.

We will move on to the UV Mapping of our assets in the

next chapter.

55

Maya Modeling

https://taylorandfrancis.com

CHAPTER 2

Maya Set UV

UV Mapping is a pretty tricky concept for beginners but

quite straightforward after you grasp the essence. It is

a 2D coordinate to map a 2D image to the surface of

the 3D model. Let us start with creating UVs for our first

and simplest modular asset, the 256 × 256 floor piece

(Figure 2.1).

The UV Editor

Go to the Workspace at the top right corner of the UI, and

in the drop-down list, choose UV Editing; the viewport

now splits into two windows. The UV Editor on the right is

57

the place we edit our UVs. You can hold down Alt + middle

mouse button to pan the view and Alt + right mouse

button to zoom in or out. On the right of that window,

we can also see a UV Toolkit panel, which contains many

useful tools and commands to edit UV.

Select our floor piece; inside the UV Editor, you can see a

blue shell that looks like an inverted T, this is the default

UV of a cube. If you do recall, we started with a cube (if it

is not blue, move the cursor to the UV Editor and press the

number 5 button). Click on the checker icon at the row of

buttons on top of the UI in the UV Editor. You can now see

a checker texture getting displayed in both the UV Editor

and on our model in the viewport (Figure 2.2).

Select the top face of the floor, and you can see how a

face in the UV Editor is also highlighted. That face in the

UV Editor is the UV of the top face of our 3D model. Go to

the UV editor, press W to switch to move tool, and move

this face in the UV editor to the U letter on the checker

texture. You should also see the U letter appearing on the

3D model (Figure 2.3).

This face-to-face match is how UV works. UV is a 2D

representation of the 3D model; it defines how an image

can be mapped to the surface of the model. UV is also like

a flattened shell of the 3D model if you will. This checker is

a convenient way to preview how our UV maps texture on

our model.

58

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.1 The 256 by 256 floor piece.

UV Points

Other than edge, face, and vertex, there is a fourth

element called UV points. These UV points are a reference

to a vertex in 3D in the UV space, and they are the building

blocks of the UV of the model. Go to the UV Editor, hold

down the right mouse button, and chose UV. You can

now select UV points, and you can move, scale, and

rotate them around just like vertices in the UV Editor.

59

Maya Set UV

FIGURE 2.2 Check the UVs with the checker texture.

FIGURE 2.3 Make the letter U appear on the model by moving the UV.

Moving UV points affects the shape of the UV and affects

the mapping of the textures. Figure 2.4 shows how scaling

down the UVs of the top face down makes the letter U

appear bigger than before.

UV Tiles

The checker texture has U1V1 1001 written on it, and

this is the UV tile name. Pan the UV editor up, and you

can see U1V2 1011 above U1V1 1001. This U1V2 1011

square area is just another UV tile. Hold down the right

mouse button in the UV Editor and chose UV; drag a big

selection box to select all the UV points. Press the W

button to switch to the Move tool, and drag the UVs to the

positive, X direction. You can see now Maya places more

checker textures to the tiles your UV is overlapping with

(Figure 2.5).

60

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.4 Scale the UV down to make the letter U look bigger than before.

FIGURE 2.5 Maya places more checker textures to the tiles your UV is overlapping.

In many modern renderers like Redshift, Octane, Arnold,

or V-Ray, UV tiles can be used to apply multiple textures to

one model. Every tile can receive a unique texture, but for

our game engines, this feature is not supported. We have

to ensure that all of our UVs are placed inside the U1V1

tile. You can grab all the UVs again and move them back

and scale them down. You know they are all inside of U1V1

when Maya only shows one checker with U1V1 1001 on it

(Figure 2.6).

Tips and Tricks

You are probably wondering what “U1V1, U2V2…” and

“1001, 1002…” mean; they are essentially different UV tile

naming conventions that different texturing software

adapt. U1V1 is a system ZBrush uses. ZBrush is a sculpting

software that allows artists to sculpt more detail on the

surface of the model. 1001 is first used by Mari, a super-

high-end texture software designed to create textures for

movies. The texturing software we are going to use later is

Substance Painter, which also adapts the 1001 system.

61

Maya Set UV

FIGURE 2.6 Maya shows only U1V1 1001 if all UVs are inside of the U1V1 tile.

Cut UV

Select all the edges of the top face and go to the UV

Editor. Hold down Shift + right mouse button (Remember

that in the previous chapter, we talked about how this

short cut will bring up the commands suited for the

elements we are selecting), and chose Cut. You can now

see these edges appearing thicker; switch to face mode

and select the top face. Move the face around in the UV

Editor. You can see how it is detached from the rest of the

UV. You can now move it freely without affecting the UVs

of other faces (Figure 2.7).

Try to select one of the edges of the detached UV and

move it in the UV Editor; you can see how another edge

also moves. This is because they are the same edge on the

actual 3D model. In other words, they are two references

of the same edge. UV points are also references of

vertices, and sometimes they reference the same vertex.

The Problem

Looking at the checker texture mapped to our model,

you can immediately see the outer frame of our model

has a super-stretched texture. This stretching effect is due

to the UV of these faces not being laid out correctly. We

want all UVs of all faces to be flattened with the correct

proportion and not overlapping with each other. We often

don’t rely on the default UV. Now, let’s start creating the

UV of our floor from scratch.

62

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.7 Cutting edges of the UV detach the face from the rest of the UV.

UV the Floor
Step 1: Project the UV. Select the floor piece in object

mode, and freeze its transformation. Navigate
the viewport so we are looking at the model at a
non-straight angle. Go to UV->Planar□. In the
pop-up Planar Mapping Options window, go
to the Project from section, and chose Camera.
Check on keep image width/height ratio and hit
the Project button. You can now see a projected
figure of our model in the UV Editor. This planar
projection projects our model form our viewing
angle in 3D to UVs in the UV Editor, or to the UV
space (Figure 2.8).

Step 2: Cut the UV Open. The projection will only
project the model but will not be making a cut.
Imagine you got a box package delivered to you.
Without cutting the plastic tape open, there is
no way you can flatten it to a 2D surface without
faces overlapping each other. Let’s check off the
checker texture, so it is easier to see the edges.

Select all the edges of the bottom face,
go to the UV Editor, hold down Shift + right
mouse button, and chose Cut to cut them

63

Maya Set UV

FIGURE 2.8 Project the UV to the UV editor.

open. Hold down the right mouse button in
the UV Editor and chose UV Shell. UV shell is
a shell of UV that all faces of it are connected.
Click on the top face of the model in the UV
Editor; all UVs that are connected to the top
face (or not cut out from it) should all be
selected. Use the Move tool to move it away.
Grab the four edges of the top part and four
vertical edges of the floor and cut them also.
The edges we cut should appear thicker
(Figure 2.9).

Step 3: Unfold. Select all the UVs in the UV Editor,
hold down Shift + right mouse button, chose
Unfold->Unfold. Maya automatically tries its best
to unfold the UVs to the same 3D shape and with
the same proportion for each face (Figure 2.10).

 Step 4: Orient UV. Currently, all the UVs are tilted.
To fix the orientation, go to the menus of the UV
Editor, chose Modify->Orient Shells. Maya tries
its best to make them straight. You can now
grab any UV shell and rotate them while holding
down the J button to adjust their rotation
(Figure 2.11).

64

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.9 Cut the UVs of the floor.

FIGURE 2.10 Unfold the UVs.

Tips and Tricks

There is no telling how a UV should be oriented, and

sometimes it doesn’t make a huge difference, but we want

similar UV shells oriented the same way most of the time.

Step 5: Layout the UV. Grab all the UVs, hold down
the Shift and right mouse button, and chose
Layout->Layout UV. The UV shells are now
automatically rearranged into the U1V1 space.
There is a small problem with this default
behavior: there is no gap between the UV shells;
there is also no gap between the edge of the
U1V1 tile and the UV shells.

Many texture software bleed the color
out of the UV shell a little to avoid the seam
reading the background. Go to the Layout
command again, but this time, click on the
box icon of the command to pull out the
Layout UVs Options window. Under the
Layout Settings, change the Shell Padding
and Tile padding to 10. This setting ensures
that all UV shells are at least 10 pixels away
from each other, and it also ensures they are
10 units away from the edge of the UV tile.
Press the Layout UVs button, and you can see
the difference this time in Figure 2.12.

Tips and Tricks

Pixels are the smallest unit of a picture. If you zoom in

close enough to any picture on a computer, you can see

small, square, solid colors arranged in rows and columns.

65

Maya Set UV

FIGURE 2.11 Orient the UVs.

All digital pictures are put together this way. When we are

talking about the resolution of a computer screen, like a

4K monitor, the 4K means there are around 4000 pixels

across its width. The exact number of pixels a 4K screen

has is 3840 pixels on its width and 2160 pixels on its

height.

Steps 1 to –5 can be used for almost all UVs, even
for a complicated character model. Do a planar
projection to project our model to UV space, cut
the seams we think are needed to flatten it, and
then Unfold, Orient, and Layout.

There is no universal rule on how UV
should be cut and arranged. However, it
is essential to know that if you don’t cut
enough, your UV is destined to be stretched.
If you cut too much, it’s hard to arrange.
For every cut you do, there is a potential
to see discontinued texture patterns on
that edge, and we call this a seam artifact.
Seam artifacts become less of a problem
with modern texturing software. One last
important note: you want to cut any edge
that is a hard edge. We are going to explain
why later.

Let’s do the UV of our security camera.
We have updated the security camera

and separated the vertical arm from the base
(Figure 2.13).

 We need the separation to rotate the
camera on the Y-axis. Changes like this
happen all the time, especially when the

66

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.12 Add shell padding and tile padding in the layout settings.

mechanic of the object (arm rotation in this
case) was not taken into consideration.

Step 6: Project the UV. Select all the models of the
security camera, do a planar projection the same
way we did in Step 1 (Figure 2.14).

Step 7: Cut the outer shell. Select the outer shell of
the security camera, press Ctrl + 1 to isolate it
(Ctrl + 1 is the toggle for isolating the current
selection). Set symmetry to Object X (This could
be easily Object Z if your model is rotated
differently). Go to UV->3D Cut and Sew UV tool, in
our 3D viewport, click and drag on the outer and
inner edge loops of the thickness of the shells to
cut them open. You can also double-click to cut
an entire edge loop. Holding down Ctrl while

67

Maya Set UV

FIGURE 2.13 Separated arm of the camera.

dragging or double-clicking sews the edges back
together. Go ahead and cut edges at the primary
turnings of the faces along the thickness of the
model (Figure 2.15). The 3D Cut and Sew UV tool
adds color codding to shells once they are cut off.

Tips and Tricks

Cutting using the 3D Cut and Sew UV tool is no different

than selecting the edges and cutting them in the UV

Editor. Sometimes one method is easier than the other, and

there are always multiple ways to achieve the same thing.

Experience can help you to decide which way is faster.

Step 8: Unfold. Grab all UVs in the UV Editor, go
to the UV Toolkit, under the Unfold section,
click the Unfold button. This one is also no

68

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.15 Cut the edges using 3D Cut and Sew UV tool.

FIGURE 2.14 Project the UV of the camera.

different than using the unfold command in the
Shift + right mouse button marking menu. The
author prefers the marking menu because one
fast drag invokes the Unfold command right
away (Figure 2.16).

Step 9: Optimize. With all the UV selected, go to the
Modify menu under the UV Editor. Click on the
square icon on the right side of the Optimize
command to pull up the Optimize UVs Options
window. Set the Iterations under the Optimize
Options section to 100; to repeat it 100 times,
click Apply and Close. You can see the UV has
slightly changed; what Maya does here is to
move UV points around to reduce stretching.
In case you haven’t tried, you can also find the
Optimize command in the Shift + right mouse
button marking menu and the UV Toolkit.

Step 10: Orient and Layout. Do an orient shell and
layout exactly like in Steps 4 and 5 (Figure 2.17).

Step 11: Do the UV of the inner shell. Go ahead and
create the UV of the inner shell the same way; the
cut and result are shown in Figure 2.18.

Step 12: Do the other UVs. You can also create the
other UVs the same way. Figure 2.19 shows all the
cutting choices of the rest of the pieces.

Step 13: Combine UVs. Select all the models of the
security camera, go to the UV Editor, grab all the
UVs, do a Layout UV command (Figure 2.20).

69

Maya Set UV

FIGURE 2.16 Unfold the UVs.

Why?

We put all the UVs of all security camera models in one UV

tile. By doing so, we can create one texture for the entire

camera and save performance for our game. It is essential

to pack UVs together in a uniform and organized way.

70

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.18 UVs of the inner shell.

FIGURE 2.17 UVs of the outer shell.

Texel Density

Now we have two models UV mapped, so let’s talk about

texel density. Grab all your UVs of the camera, and go to

the UV Toolkit. At the bottom of the Transform section,

you will see a Texel Density (px/unit) part. Click on the

Get button and you can see a value calculated; in our

particular case, it is 3.1016. This value means there are 3.1

pixels per unit (cm) if you are using a texture of 512 × 512

71

Maya Set UV

FIGURE 2.19 Cutting choices for the rest of the pieces.

FIGURE 2.20 Layout the UVs of the entire camera.

resolution, which is defined in the Map Size section. Select

the floor and press the Get button, and the value we get is

0.97. These two values indicate that the Camera is having

3 × 3 times, which is nine times the resolution of the floor.

You can also visualize the difference in the viewport with

the checker texture turned on. You can see how the edge

length of the square on the camera is roughly three times

smaller than the floor.

You may wonder what is so important about this. Through

the experience we have gathered while developing

games, consistency of the texel density helps a great

deal in maintaining assets, saving performance, and

having a consistent graphic. Ideally, 1 pixel of the texture

on your model gets rendered as 1 pixel on your screen.

A texture that has a higher resolution than that wastes

performance. A texture that has a much lower resolution

causes a pixelated or blurry result. If your texel density

is not the same on different models, then some of the

texture may feel more detailed than others, which causes

inconsistency.

Chose the Right Texel Density

How high the texel density is depends on the camera

view of your game. For third-person or first-person

games, we can get to an object closer, and so we need

more texel density. A top–down viewing angle requires

lesser texel density. Strictly speaking, we also want

the models closer to our player to have higher texel

density, while things further away can have lower texel

density.

Some games have two or three levels of texel densities.

The assets to which the players can get as close as they

want (characters, walls, weapons) have the highest texel

density. Assets that are farther away that the player

cannot reach but not very far (high ceiling, building, or

trees outside of the window) have medium-level texel

densities. Background assets (mountains, sky, the bird in

the sky) have the lowest texel density.

72

Creating Games with Unity, Substance Painter, & Maya

Luckily for us, we are making an interior in which the

player can pretty much get close to anything; so we are

going for one consistent texel density. There are plenty of

guidelines on exactly what the texel density is for various

games. In our case, we aim for a medium- to high-quality

texel density, like Uncharted 4. Our textures are going

to range from 512 × 512 pixels to 4k (4096 × 4096 pixels),

and the texel density is going to be around 5.12 pixels per

centimeter or 512 per meter.

It is worth noting that we are not aiming for a fixed

number for every asset. The texel density is allowed to

vary a little; the only way to judge if something is too far

off is by actually looking at it in the game engine.

Step 14: Assign material and mark resolution. Go to
our security camera, set the Map Size of the Texel
Density section in the UV Toolkit to 1024, and
press the Get button. We can see we are getting
a texel density of 6.2, and we will settle with this
for our camera. Select our camera models, hold
down the right mouse button, chose assign new
material, and select Blinn as the material. Hold
down the right mouse button again on any of
the models and chose Material Attribute to pull
out the attribute editor on the right side of the
UI. In the first text field of the settings, change
the name of the material to SecurityCamera_1k.
Naming the materials like this helps us remember
the texture resolution we intend to use for our
models.

Step 15: Packing Floor. Go ahead and UV map all of
our floor modules: there are five of them. Grab
all of them, go to the UV Editor and select all
the UVs. Go to the Layout UV option, Change
the Packing Resolution under the Pack Settings
section to 4096. Set the Texture Map Size under
Layout Settings to 4096, set Shell Padding and
Tile Padding to 10, and press the Layout UVs
button. Maya should now pack all the UVs in to
the U1V1 space.

Go to the Texel Density section under the
Transform section of the UV Toolkit and set
the Map Size to 4096. Press the Get button; we
get a resulting value of 4.2146, which is close
enough to our goal of 5.12 pixels per unit
(Figure 2.21).

73

Maya Set UV

Why?

We packed all of our floors into one UV shell and used a

4k (4096 × 4096) texture for them with a resulting texel

density of 4.2146 pixels per unit. Packing similar assets is a

common practice; we pack models together to have a big

texture for all of them, and this kind of texture is called an

atlas. By using atlases, we are reducing draw calls from the

game engine. 4K, of course, is a bigger texture and takes

longer to load and needs more space in the memory.

However, in many cases, the bottleneck is not how much

memory is used, but rather how often you are reading and

freeing memories. The standard may also vary from studio

to studio; consult with your technical guides to determine

the best practice for your platform and engine.

UV the Pod

One of the props we did for the environment was the pod

(Figure 2.22).

The pod is the place where genetically engineered

soldiers are created. It has a console, a tank, cables, and

keyboards. Notice that we have two models for the pod,

the glass and the rest of the pod. We do this because

the glass is fundamentally different material wise. It is

safe to separate these special types of materials, which

makes it easier to work with later on in the game engines.

74

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.21 Packing the floor.

The glasses of the windows of our modular pieces are also

separated the same way. Let’s move on to the UV of the

pod and introduce some more tricks of UV Mapping.

Step 16: Grab all the models of the pod, do a planar
project like before.

Step 17: Cut the cylindrical tank glass of the pod. Got
to the back of the pod, select the vertical edge
loop at the center of the glass of the tank, go to
the UV Editor, and do a Cut command. Select all
the UVs of the glass of the tank and do an Unfold,
and an Optimize command (Figure 2.23).

Step 18: Console monitor. Select the faces that
belong to the display of the console. In the
UV Editor, switch to face mode, hold down
Shift + right mouse button, chose Create UV Shell.
Switch to the Move tool and move the shell away
from its original position. You can see how the
outer edges are now cut; use Create UV Shell is a
different way to separate UVs. Do an Unfold and
Optimize command on the UVs of the display
(Figure 2.24).

Step 19: Keyboard UV Mapping. Select all the faces of
the keyboard, and press Ctrl + 1 to isolate them.
Select the back faces and do a Create UV Shell.

75

Maya Set UV

FIGURE 2.22 The pod model.

Apply an Unfold and Optimize command, and
move the shells out. Notice that the Create UV
Shell command also switches the selection mode
to Shell. We can use this to select all the keyboard
buttons quickly, move them out, unfold, and
optimize them (Figure 2.25).

Tips and Tricks

At the stage of cutting and unfolding UVs, we just do not

worry about their arrangement. That’s why we are moving

them around freely. We can easily pack them back to the

U1V1 space with the Layout UV command.

76

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.23 Cutting the tank of the pod.

FIGURE 2.24 UV the monitor of the console by using the Created UV shell

command.

Step 20: Separate other parts of the keyboard.
Select the face loop across the thickness of
the keyboard, and select the face loop that
represents the depth of the small monitor at
the top of the console. Add select the loop that
represents the depth of the depression of the
area of the keys as well. Do a Create UV Shell
command and move the separated shell out
(Figure 2.26); you can see how easily we can
separate UVs with this create UV shell trick.

Step 21: Cut and unfold other parts of the keyboard.
Select the edges highlighted in Figure 2.27 and
cut them, grab all the UVs of the keyboard,
unfold, and optimize them.

77

Maya Set UV

FIGURE 2.25 Create the UVs for the keys.

FIGURE 2.26 Separate other parts of the keyboard.

Step 22: UV Mapping the Cables. We have
meticulously placed the cables for this model
to give the model a sense of complexity and
functionality. As complicated as they appear, the
UV part is not as hard as you think. All we have
to do is select an edge loop across the length of
every individual cable, do a Cut, and then unfold
and optimize (Figure 2.28).

Step 23: Other parts of the console. Other parts of
the console should be straightforward; go ahead,
and cut and unfold the rest of the console part.

Step 24: Packing. Grab all UVs of the pod, do a
Modify->Orient Shells. Grab them again and
do a Layout UV command, and make sure you
have shell and tile padding set to 10 units in the
Layout UV Options. Figure 2.29 shows the UV of
our pod after layout. Notice that both UV sets
have empty spaces. Maya sometimes does not
do a good job using all the UV spaces.

78

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.27 Edges to cut for the keyboard.

Step 25: Manual Packing. Other than relying on
Maya to layout the UVs for us, we can also
manually pack our UVs. Grab all UVs of the
pod, switch to Scale tool, hold down D and X,
and drag the pivot of the scale tool to the lower
left corner of the U1V1 tile. Release the buttons
and scale the UVs up. Our UVs now exceed the

79

Maya Set UV

FIGURE 2.28 Create UV for the cables.

FIGURE 2.29 Pack the UV of the pod.

U1V1 range. You want to control how much
you are scaling, and the goal is to move the UVs
exceeding the U1V1 range back to the remaining
empty UV space inside of the U1V1 space
(Figure 2.30).

Tips and Tricks

The texel density of our manually tweaked UV layout is

4.7617; the texel density before our tweak is 4.295, that is

about 11% increase in resolution. We can always improve

our texel density by manually adjusting the UV layout.

However, it is going to be a time-consuming process. We

need to keep popping out assets to meet the deadline,

and sometimes this kind of optimization is not possible

with the agenda of the production.

Step 26: Finish all other UVs. Now it is your turn to
finish all other UVs. Please ensure that you have
similar texel density and give every group of
packed UVs a new material. Also, remember to
name the materials with the resolution intended
for these assets.

Figures 2.31–2.56 are the UVs and texel
densities for the rest of the models

Step 27: Organization. Check your outliners and see
if there is anything not named. Delete any empty
groups; make sure all materials are assigned
and appropriately named. When everything
is checked, do a File->Optimized Scene Size to
clean up redundant history and materials.

80

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.30 Manually pack the UVs.

81

Maya Set UV

FIGURE 2.31 All the UVs and texel densities for the rest of the models.

FIGURE 2.32 All the UVs and texel densities for the rest of the models.

FIGURE 2.33 All the UVs and texel densities for the rest of the models.

82

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.36 All the UVs and texel densities for the rest of the models.

FIGURE 2.34 All the UVs and texel densities for the rest of the models.

FIGURE 2.35 All the UVs and texel densities for the rest of the models.

83

Maya Set UV

FIGURE 2.37 All the UVs and texel densities for the rest of the models.

FIGURE 2.38 All the UVs and texel densities for the rest of the models.

FIGURE 2.39 All the UVs and texel densities for the rest of the models.

84

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.42 All the UVs and texel densities for the rest of the models.

FIGURE 2.40 All the UVs and texel densities for the rest of the models.

FIGURE 2.41 All the UVs and texel densities for the rest of the models.

85

Maya Set UV

FIGURE 2.43 All the UVs and texel densities for the rest of the models.

FIGURE 2.44 All the UVs and texel densities for the rest of the models.

FIGURE 2.45 All the UVs and texel densities for the rest of the models.

86

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.46 All the UVs and texel densities for the rest of the models.

FIGURE 2.47 All the UVs and texel densities for the rest of the models.

FIGURE 2.48 All the UVs and texel densities for the rest of the models.

87

Maya Set UV

FIGURE 2.49 All the UVs and texel densities for the rest of the models.

FIGURE 2.50 All the UVs and texel densities for the rest of the models.

FIGURE 2.51 All the UVs and texel densities for the rest of the models.

88

Creating Games with Unity, Substance Painter, & Maya

FIGURE 2.52 All the UVs and texel densities for the rest of the models.

FIGURE 2.53 All the UVs and texel densities for the rest of the models.

FIGURE 2.54 All the UVs and texel densities for the rest of the models.

Conclusion

The UV part of the model may not appear on the surface

of the artwork. However, it is the foundation of the texture

of the model and cannot be overlooked. There is an

automatic UV command under UV->Automatic; it is wishful

thinking that automatic UV can get you to a decent stage.

Please don’t use it unless you have a good reason. Based

on the previous experience of teaching UV, the author

already regrets mentioning this command. The students

always think automatic UVs are fine – they are not.

Once UVs are done, the fun task of texturing starts. Let’s

jump into that in the next chapter.

89

Maya Set UV

FIGURE 2.55 All the UVs and texel densities for the rest of the models.

FIGURE 2.56 All the UVs and texel densities for the rest of the models.

https://taylorandfrancis.com

CHAPTER 3

Set Texturing

UV Mapping is generally the painful, or at least annoying,

part of making 3D art. However, once we are done with it,

we can now jump into texturing, which is a real joy with

modern texturing tools.

Texturing is the process by which we define the color,

roughness, metalness, height information, and other

aspects of the surface of the model. All those aspects

are images that can be mapped to the surface of the

model with the UV we created. Textures are applied to

a material. The material will use the information on the

texture to determine the lighting and shading behavior of

the model. What is the color of the surface? Is the surface

91

shiny? Is it metal? All these factors play a significant role in

how the model looks.

Texturing is considered as important as the modeling

part. There are many ways to do texturing. You can paint

the texture in 2D with a UV snapshot, or in 3D with some

dedicated software. We primarily use a 3D painting

software called Substance Painter.

PBR

In the modern workflow, texturing has to define all

aspects of a material, like the color, roughness, and

metalness. In the game industry, we use a standard called

PBR to define a material. PBR stands for Physically-Based

Rendering. It enforces the result of the rendering to

be physically correct by limiting the number of inputs

allowed to be adjusted. Other related material properties

are calculated internally to ensure that the energy from

the light is reflected, refracted, and absorbed by the

surface of the model based on the laws of physics. For

example, if you know the color and roughness of a metal

surface, you can already calculate the brightness and

color of the reflection using the laws of physics. There

are variants of this standard, but the most popular one

is called PBR – Metallic Roughness, and it is composed of

five surface attributes:

Base Color
Height
Roughness
Metallic
Normal

Height and Normal attributes are surface shape details.

Strictly speaking, you don’t need any information in them

to describe a material. However, some renderers still want

to have them even they are only a flat color for consistency.

In this book, we will primarily be using Unity’s new High-

Definition Render Pipeline (HDRP), which uses a variety

of channels to store all of this information. This means

that, sometimes, the way shaders are built in software

92

Creating Games with Unity, Substance Painter, & Maya

like Substance Painter will feel a little disjointed from how

they will actually be assembled in Unity. Not to worry

though, Substance Painter has built-in export presets

that will output the appropriate PBR attributes into HDRP-

consumable shaders.

Baking

Texturing often requires another process called baking.

Baking is a process that generates textures that contain

different information about the geometry; they are as

follows:

The effect of the maps can be more evident if we have

a high-definition mesh with some sculpted detail on it.

You can add sculpting details to a model using sculpting

software. Currently, the best sculpting software is ZBrush.

Although ZBrush is a powerful piece of software, it’s

beyond the scope of this book; so we won’t be covering it.

However, in the long term, if you plan to work in the game

industry as a modeler, be sure you start working with this

powerful piece of software.

For now, let’s jump into texturing with Substance Painter,

where we will cover more essential aspects of texturing in

the process.

93

Set Texturing

Normal Extract high-definition detail in tangent space, the

rendering process will use this map to calculate the

lighting and make the high-definition detail appear on

the low-definition model as an illusion.

World Space Normal Extract normal coordinates relative to a fixed frame in the

object space.

ID Identification map to quickly isolate areas on the model.

Ambient Occlusion Becomes darker when the surface area is closer to other

surfaces. Used to enhance detail.

Curvature Extract a map that contains convexity/concavity

information of the mesh

Position Extract the x, y, z world coordinates of all points at the

surface of the mesh.

Thickness Extract the thickness of the different parts of the model.

Tutorial 3.1: Texturing
Modular Pieces

Step 1: Set up a Maya project. Open our model file in
Maya, go to File->Project Window, in the pop-up
Project Window, click on the new button at the
top row, and type in Game_Maya_Project. Click
on the Folder icon in the second row to define
a place to save our project, leave the rest as
default, and click on Accept. Press Ctrl + Shift + S
to save our file again, click on the scenes folder
on the bottom left column of folders, and save
our file there.

Why?

So far, we have been modeling with Maya with one single

file. It is because model files are relatively small, and so

managing them in one file is tidy and straightforward.

Another reason to have our models in one file is due to the

scale of our game being small enough. At some point, we

have to have more files for different models, characters,

and rigs. When we are creating more and more assets

and files, it is going to be harder and harder to trace stuff,

so we need to have a way to manage our files. Step 1

creates a folder structure that contains subfolders for us to

manage our files; we won’t need most of them. However,

since we are doing textures, the sourceimages folder it

creates is where we put our texturing file.

Step 2: Arrange our models. We are going to
texture multiple assets in one file to help ensure
consistency. However, to do that, we have to
move them away to avoid overlapping models.
Select all the modular pieces of our models,
press Ctrl + 1 to isolate them. Use the Move
tool to arrange them so that similar pieces are
put together but not overlapping each other
(Figure 3.1).

Step 3: Export models. Grab all the modular
pieces, go to File->Export Selection. In the
pop-up Export Selection window, chose the
sourceimages folder. Click on the yellow folder
button at the top left corner of the window
to create a new folder and rename it as

94

Creating Games with Unity, Substance Painter, & Maya

set_texturing. Go to the bottom of the window,
and type in modular_pieces in the file name,
click the drop-down menu of the Files of type
settings, chose FBX export. Go to the right side of
the window and under the Options, check on the
Smoothing Groups under the File Type Specific
Options->Include->Geometry section. Click on
the Export Selection at the lower right corner of
the window to export the file.

Why?

What about the other models you may ask. Well, texturing

files are, unfortunately, super big, and the performance is

slow when there are so many models. We need to break

our models into multiple texturing files.

Step 4: Import to Substance Painter. Open Substance
Painter, go to File->New. In the pop-up New
Project window, set the Template to Unity
HDRP, or Unity URP based on your engine of
choice. You can change this later upon output.

95

Set Texturing

FIGURE 3.1 The arrangement of the models before exporting.

Click on the Select button, find and select the
modular_pieces file we export in Step 3, and
press the Open button. Change the Document
resolution to 2048 and press the OK button.

Why?

You may think, wait a minute, don’t we require some of

the models to have 4096 × 4096 (4k) textures? The answer

is yes, but 4k is a heavy texture resolution for computers

to handle. One of the superpowers of Substance Painter is

the ability to upscale the resolution at any stage without

losing any detail. It achieves that by remembering every

stroke you did while painting your texture and upgrades

them to 4k.

The Substance Painter UI

Substance Painter’s UI is somewhat like Maya. As shown

in Figure 3.2, the area in the red box is the menu where

we load and change our models. The area in the yellow

box is the Status Bar, which has generic controls like brush

size, pressure sensitivity, symmetry, perspective. The

column of buttons in the purple box is the Tools bar. This

bar has essential painting tools like paint, erase, project,

polygon fill. The viewport is in the middle area inside the

96

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.2 The UI of Substance Painter.

blue box. It has a 3D viewport and a 2D viewport almost

identical to our Maya UV Editing layout. The shelf is below

the viewport in the cyan box. It contains brushes, alphas,

grunge maps, materials, and other useful assets to help

with texturing. Move to the right side. The brighter green

box is the Texture Set List. You can see that the names of

the materials we created in Maya are listed here. Every

material you created for the models in Maya ends up as

a Texture set in the Texture Set List. You can think of the

Texture Set List as Maya’s outliner. Substance Painter

only cares about different materials and treats their

associated models as different objects. The darker green

box is the Layers. This is the area we go to a lot to stack

multiple layers of textures together to get a final look. In

the orange box is the properties panel, which contains

brush or layer-specific settings; things like tiling, channel

toggles, alphas can be defined here. Finally, on the far

right in the white box, we have the UI Panel. The UI panel

lists all the panels that are not showing in the main UI.

Click on the various buttons to pull out other hidden

panels like Display Settings and Shader Settings.

Navigation

The navigation of the 3D viewport is the same as in Maya;

the navigation of the 2D viewport is the same as Maya’s UV

editor. You can press F2 to show only the 3D viewport, press

F3 to show only the 2D viewport, or press F1 to show both.

Light Direction

To change the direction of the light, hold down Shift, click

and drag the right mouse button.

Step 5: Baking. Click on the TEXTURE SET SETTING
tab on the left of the LAYERS tab. Find and click
the Bake Mesh Maps button. In the Pop-up
Baking window, set the Output Size under the
Common parameters section to 4096, check on
Use Low Poly Mesh as High Poly Mesh, and set
the Antialiasing to Subsampling 8 × 8. Click on
the Bake all texture sets button. Substance

97

Set Texturing

Painter now starts baking, and it may take a
while. We set the output size of the texture to
4096 because it is the highest resolution we are
after. The Use Low Poly Mesh as High Poly Mesh
setting makes the baker bake all mesh data from
the mesh we imported to itself; this way, relevant
mesh data like Curvature and AO are generated.
Antialiasing is crucial because it is going to
reduce artifacts. It is also going to increase the
baking time. After baking, the model looks
slightly different; its cavities or concave areas
appear to be darker. The darker color is the result
of the baked AO map, and it enhances the detail
of the model.

Ambient Occlusion

Ambient Occlusion is a natural phenomenon. It is caused

by the concaved surface or faces close to each other

sucking the lights in. Lesser light rays can bounce out

from these areas, which causes these areas to be darker.

This phenomenon is almost like what an acoustic Sound-

absorption Panel will do to sound.

PBR Material Channels

Go to the TEXTURE SET LIST and click on floor_4k; this

switches to the material of the floors. Notice that the 2D

viewport switches to the UVs of the floors. You can also

hold down Alt + Shift together and click on any model

of the floor to switch to the floor. Press Alt + Q to toggle

on isolation (press Alt + Q again to toggle off). Go to the

LAYERS panel, click on the button with a tilted bucket

icon, and you can see a new layer called Fill layer 1 created

above Layer 1. A fill layer is a layer that allows you to

assign solid colors or textures to the model. Go to the

PROPERTIES panel, scroll down to the MATERIAL section.

There are five buttons right under the MATERIAL section:

color, height, rough, metal, and nrm. These five buttons

are the toggles of the channels we mentioned in the PBR

section of this chapter. For every layer, you can click on the

buttons to toggle the channels on or off, which adds or

removes that channel’s effect from the layer.

98

Creating Games with Unity, Substance Painter, & Maya

The Base color defines the color of the model. You can

change it to any color you want to test.

The Height is how far the surface is elevated. Height

map is an illusion and is invisible unless there are some

variations. Click on the Height uniform color button,

in the search bar, and type in Metallic Grate wide. This

should filter out others, only giving you the texture

named Metallic Grate Wide. Click on Metallic Grate Wide

to use it as our heightmap; the patterns are now showing

up on the surface of the model. We can assign textures

like this to any channel we want. Change the direction

of the light, and you can see how the height map reacts

to the direction of the light – almost like there are actual

height variations on the surface. If you zoom in and look

at the model from a side angle, you can see it is still a flat

surface.

Roughness defines how rough the surface is: a higher

value makes it rougher, and a lower value makes it

smoother. Go ahead and drag the roughness slider to see

the differences.

Metallic defines the metalness of the surface. In the

natural world, surfaces are either full metal or not metallic

at all. However, sometimes when a metal surface is

covered with dust, we can use a middle value. Go ahead

and drag the Metallic attribute to see the difference.

Normal map is like a height map but with more information

about the directionality of the surface shape variation.

Right above the MATERIAL section, you can drag the

Scale, Rotation, and Offset values to tweak the repetition,

rotation, and offset of the applied textures.

Step 6: Floor base material. Double-click the
name of the Fill layer 1 and type in Metal;
this renames the layer to Metal. Set the base
color of the layer to a dark grey. Click on the
Roughness uniform color, in the pop-up menu,
and type Leak Dirty in the search bar on top.
Chose the first one called Grunge Leak Dirty.
Set the Metallic value to 1. We have just created
a dark metal material with some variations on
the roughness (Figure 3.3).

99

Set Texturing

Why?

Notice that we only had variations on the roughness, and

it can create fine details already. It is always worth noting

that roughness should never be overlooked. It is, in some

sense, as important as the color, if not more important.

Step 7: Floor scratches. Create another fill layer,
name it Scratches, and set the Roughness value
to 0.25 and Metallic to 1. Because this layer is
above the Metal layer, it is blocking the Metal
layer. We want this layer to only appear on the
sharp edges. Right-click on the layer and chose
Add black mask (this adds a mask to the layer).
A mask with black color means completely
see-through or transparent; that is why we are
now seeing the Metal layer again. Right-click on
the black mask, and chose Add generator. Go to
the PROPERTIES panel and click the Generator
button and choose Mask Editor. We can now see
how the edges of the model are showing our
scratches layer (Figure 3.4).

Generators

Generators are an essential feature of Substance Painter.

Generators generate colors based on the information and

setting you give. The most common usage of generators

100

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.3 Basic dark metal material.

is to generate masks based on the baked mesh data to

create things like edgewear or dust. We are going to cover

more details of generators further along the way.

Step 8: Tweak scratches. The Mask Editor is the
essence of the procedural texturing workflow in
Substance Painter; it is also the most commonly
used generator. Click on the Mask Editor
under the mask of the Scratch layer, and the
PROPERTIES panel is now showing up all the
settings it has. The settings may appear to be
intimidating at first, but notice that there are
just two sliders that are not 0: Global Balance
and Curvature Opacity. Global balance is used
to tune up or down the amount of opacity of the
generated mask. Curvature is currently the only
information used to generate the mask. Set the
Global Balance to 0.6 and the Global Contrast
0.2 to make the edge wear look stronger and
slightly tighter.

Step 9: Add variation to the mask. Right-click on
the mask of the Scratches layer and select Add
fill. Go to the PROPERTIES panel, click on the
grayscale button on the bottom, Search and
chose Grunge Scratches Fine. Click on the Norm
button on the right side of the Grunge Scratches
Fine and chose Multiply. This setting is called the
blending mode. Blending mode defines how to
blend the current layer to the layers below it. The
default blending mode is Normal, which blocks
everything underneath. The Multiply blending

101

Set Texturing

FIGURE 3.4 A new scratches layer.

mode multiplies the value of the current layer
with the layer underneath as the result. This new
layer adds subtle scratches to the mask, which
makes it more detailed (Figure 3.5).

Tips and Tricks

We have created a decent dark metal material without

drawing a stroke; this is called procedural texturing.

Procedural texturing has two main drivers: layering and

masks. With procedural texturing, not only can we get

faster and cleaner results but we can also tweak any step of

the process without having to redo other parts. Procedural

workflow is also none-destructive because of that.

Step 10: Create a Smart material. Hold down Shift,
click on the metal layer, and then the scratches
layer, press Ctrl + G to group them into a folder;
rename the folder Dark Metal Scratched. You can
click on the folder icon to expand or collapse the
folder. Right-click on the folder and select Create
smart material. A smart material is now added to
the shelf with the same name as the folder. You
can see many other smart materials shipped with
Substance Painter over there. A smart material is
fundamentally a group or folder of layers. After
creating our smart material, we can drag it from
the shelf and add it anywhere we want. Delete
our Dark Metal Scratched group in the LAYERS

102

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.5 Add extra scratches to the scratches layer.

panel. Drag our Dark Metal Scratched smart
material from the shelf above Layer 1 again.
You can see it just created the same thing.

Step 11: Top panels. Go the SHELF and under the
Smart materials section, look for Steel Painted
Scraped Dirty; drag it to the top of our layer stack
in the LAYERS panel. Open the Steel Painted
Scraped Dirty folder, click on the layer named
Paint to select it. In the PROPERTIES panel, click
on the color bar under the Basie Color, a color
pane pops out. Click and drag the three vertical
sliders on the right to change the hue, saturation,
and value (brightness) of the color. You can also
click and drag anywhere in the color gradient
box on the right to pick a color there. Change its
color to an orange color. This new material now
covers almost all areas of our model.

Step 12: Paint height map. Create a new fill layer
above the layer named Base Metal. Rename the
new layer to OuterPanel. In the PROPERTIES panel,
toggle off all channels except the height channel.
Drag the slider of the Height setting up to 1. Give
this layer a black mask. Right-click on the black
mask; select Add paint. Go to SHELF. Click on the
Brushes section, click Basic Hard to use the Basic
Hard brush. In the PROPERTIES panel, scroll down
to the bottom and change the grayscale of the
brush to white. Hold down Ctrl + right mouse
button and drag left and right to change the size
of the brush. You can now try to click and drag on
the model to paint extra height (Figure 3.6).

Why?

We created a fill layer; make the value of its height 1, and

use a mask to define where the height is. By doing so, we

are now able to go back to the fill layer and change its

height value to anything else. We could choose to create

a new paint layer and define the height we want to paint

in the brush settings, but then it is harder to change the

height value later.

Tips and Tricks

There are some basic short cuts to tweak the brush. Hold

down Ctrl + right mouse button and go left and right to

103

Set Texturing

change the size of the brush. Hold down Ctrl + right mouse

button and go up and down to change the softness of

the brush. Hold down Shift + left mouse button and go

up and down to rotate the brush. Hold down Shift + left

mouse button and go left and right to change the opacity

of the brush.

Step 13: Use the height as the mask of the outer
panel. Right-click on the mask of the OuterPanel
layer, select Add anchor point. Scroll up and find
the group called Steel Painted Scraped Dirty (this
is the group of the smart material we dragged
in). Give the group a black mask. Right-click on
the mask, and select Add fill. In the PROPERTIES
panel, click on the grayscale button, and under
the ANCHOR POINTS tab, select OuterPanel
Mask. What we should see now is the orange
outer panel should only appear in the area we
painted the height (Figure 3.7).

104

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.6 Test paint some height information on the model.

Why?

Anchor points are references of a texture. Our Outer Panel

Mask anchor point is a reference of the result of the layers

under it and inside the mask of the OuterPanel layer.

The fill layer we added to the mask of the Steel Painted

Scraped Dirty folder is using that anchor point. So it is

referencing the same mask we painted for the OuterPanel

layer. That is why where we paint white for the mask of the

OuterPanel, we also see the Steel Painted Scraped Dirty

appear.

Step 14: Set up symmetry. Press the L button to
toggle on symmetry (you can also find it in the
Status Bar, see what’s toggled on after you press
the L button). A Red plane shows up somewhere
in the scene (you may have to zoom out to see
it). Whatever you drew is going to be mirrored
over to the other side of the plane. We want to
draw the patterns symmetrically for the square

105

Set Texturing

FIGURE 3.7 Using anchor point to share masks.

floor piece on the right side. Press the Q button
to toggle on the gizmo (blue handles to move
the plane). Drag the blue arrows to the right to
position the plane to the middle of the square
floor piece (Figure 3.8).

Step 15: Paint panels. Press F6 to switch to the
Orthographic view (you can also find the switch
at the right side of the Status bar). The
orthographic view has no perspective distortion,
which makes it perfect for painting precise
shapes. Press the number 2 button to switch to
the Eraser (it is also at the Tools bar). Click and
drag to erase the painting we did earlier. Hold
down Shift while changing the viewing angle to
snap the viewing angle to a straight top view.
Move the brush outside and below the shape
of the Square floor piece and click to select.
Hold down Ctrl + Shift and move the brush up.
A dashed line shows up from where we clicked
to the current position of the brush; it also snaps
every 5 degrees when you move the brush. Make
sure the dashed line is vertical and covers the
entire floor piece and click again. A straight line
is now drawn across the dashed line. Keep doing
this until we have covered a good portion of the
floor with a square panel (Figure 3.9).

106

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.8 Toggle symmetry and place it for the square floor piece.

Tips and Tricks

You may have to go up and down twice to draw a line all

the way across. There are many ways we can fill a square.

We use the Ctrl + Shift combination to help us draw

straight lines. Once we have marked out the edge, how

you fill in the middle is all up to you. You can switch to a

bigger brush to free draw it to fill the gap.

Step 16: Paint extra panel Detail. Using Ctrl + Shift
combination, we can quickly draw some extra
detail to the panel (Figure 3.10).

107

Set Texturing

FIGURE 3.9 Draw a square panel with precision.

FIGURE 3.10 Extra panel detail.

Tips and Tricks

There is no way you can position the mirror plane at

the center of the floor accurately, but we can get close

enough. We have to texture individual pieces in different

substance files to have a perfect symmetry. However, it is

hard to manage that way for our one-man-army approach,

but if you have a team, then it is better to have them work

on their files.

Step 17: Anchor as micro detail. Our panel looks
fine except that there is no edgewear (the
scratches or other imperfections on the model).
In the Default settings, only baked height and
normal maps are used for finding edgewear.
To include our painted height, go to the layer
named Paint and click on its mask. Select
mg_mask_builder. This mg_mask_build
generates a mask that makes the edgeware
appear on the edge of the model; it achieves
this by using the baked normal and curvature
maps. At the bottom of the PROPERTIELS panel,
click Micro Height and choose the anchor point
we created for OuterPanel. The edgewear effect
should now appear on the panel we painted
(Figure 3.11).

Step 18: Use alphas. Go back to the Paint layer of
the masks of the OuterPanel by clicking on it. Go
to SHELF and click on the Alphas section. Type
in Shape Gradient in the search bar, and choose
the first one in the search result. The shape of the
brush is now the shape of the Shape Gradient
alpha. Press the X button to invert the color of
our brush. In our case, it changes from white to
black. Hold down the Ctrl + left mouse button to
go up or down to change the orientation of our
brush. Hold down Ctrl + right mouse button to go
left and right to change the size of the brush. To
get accurate orientation, go to the Angle setting
of the brush in the PROPERTIES panel, hold
down Shift while dragging the pin of the circular
shaped dial to snap to a certain angle. With an
angle of 180 and black color, we can paint a cool
ramp on the side of the panel (Figure 3.12).

Step 19: Try other alphas. There are many other
alphas; try them out and see if you can create
more breakups. Figure 3.13 shows the result of
some new shapes added using alphas.

108

Creating Games with Unity, Substance Painter, & Maya

Step 20: Normal detailing. Click on the button on
the left of the button that we use to create fill
layers to add a paint layer. While a fill layer
only allows us to use a solid color or a texture, a
paint layer is a layer we can paint anything on.
Name the new paint layer NormalDetail. In the
PROPERTIES panel, turn off all channels but the
nrm (normal) channel. Go to the Hard Surfaces
section in the SHELF. Find Niche Rectangle Top
Wide Rounded (you can search to find it or use
other shapes if you don’t like this one). Drag it
from SHELF to the normal in the PROPERTIES
panel. Click the X button on the Alpha of the
brush to get rid of the alpha of the brush. We
should now see the normal shape appears on the
brush fully. You can now click on the model to
stamp that shape (Figure 3.14).

109

Set Texturing

FIGURE 3.11 Use anchor point as extra micro detail.

110

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.12 Ramp added using an alpha.

FIGURE 3.13 Extra details added with alphas.

Tips and Tricks

Through height map and normal maps, we can add a

whole lot of surface detail to the model; that is why we do

not have to model very complicated shapes in Chapter 1.

It is crucial to design your workflow with the tools at hand

to determine the best way and best place to do certain

things.

Step 21: Edgewear for the normal map detail. Right-
click on the NormalDetail layer and choose
Add anchor point. Go to the mg_mask_builder
under the mask of the layer named Paint. In the
PROPERTIES panel, click on the Micro Normal,
and in the ANCHOR POINTS tab, choose our
NormalDetail anchor point. Set the Referenced
channel to Normal; this ensures we are getting

111

Set Texturing

FIGURE 3.14 Stamp normal details to the model.

the normal information instead of the base color.
The edgewear should now appear on the panels
we painted with the normal map. Scroll up to the
Micro Details section in the PROPERTIES panel.
Set the curvature Intensity down to 0.15 and
Height Details Intensity to 10 to tighten up and
sharpen our edgewear effect (Figure 3.15).

Step 22: Add more normal panel details. Please go
ahead and try to use other normal maps in the
Hard Surfaces section in the SHELF to add more
detail to the model (Figure 3.16).

Step 23: Add cables. Create a new fill layer and drag
it down to reposition it right above our Dark
Metal Scratched group and below our Steel
Painted Scraped Dirty group. Rename the new
fill layer Cables. Set the Base Color of the layer to
a darker gray, and set the Roughness to 0.2 and
Metallic to 1. Give the layer a black mask and
add a paint layer to the mask. Go to the Brushes

112

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.15 Add edgewear to the panels painted with normal.

section of the SHELF and chose Basic soft. You
can now use the Ctrl + Shift button combination
to draw straight lines to lay down some cables

(Figure 3.17).
Step 24: Fix height blend mode. There is a problem

of our blend mode of the height; the height map
of the cable we painted out is showing on the
orange panel. To fix that, Select Steel Painted
Scraped Dirty. Click on the drop-down list right
below the label of the LAYERS panel and change
it to Height. We are now viewing and tweaking
the height channel. Click the drop-down list
on the right side of the Steel Painted Scraped
Dirty layer, and change the setting to Normal.
The blending mode of the height channel of
this group is now normal, which blocks what is
happening under it. Our orange panel should
now block the cables (Figure 3.18).

Step 25: Extra layer of cables. Click on the number
100 on the right side of the paint layer of the
mask of the Cables layer. Drag the slider down
to 30; this makes it only 30% visible, or in other
words, makes it weaker. Add another paint to
the mask of Cables, and start drawing out new
cables. The new cables should now above the
previous cables (Figure 3.19).

113

Set Texturing

FIGURE 3.16 Extra details done with normal map.

114

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.18 Height blend mode fixed.

FIGURE 3.17 Paint out some cables.

Step 26: Cable holders. Select Cables and press
Ctrl + D to duplicate it. Rename the duplication
CableHolders and make its Base Color slightly
brighter and crank up the Roughness to 0.65.
Right-click on the masks of CableHolders and
choose Clear mask; this operation deletes the
paint layers or other things in the mask. Add
a new paint layer to the mask. Use the Basic
Hard brush and paint some horizontal bands
to mimic the holder for these cables. Press the X
button to switch to black color and click on the
two sides of the cable holders to add two holes
(Figure 3.20).

Tips and Tricks

We used a painted approach to get the cables; it is fast

and clean, but may not have the best shape. We could

choose to model some cables instead, but it is going to be

more cumbersome for the engine to handle. A different

way to achieve this is to bake a normal map from a model

that has cables modeled. To save time and reduce the

volume of this book, we choose to omit that workflow.

115

Set Texturing

FIGURE 3.19 Extra layer of cable added.

Step 27: Painter other panels. Using the same
technique, we can create many details already.
Go back to the various layers we added and
painted and paint panel and cable details for
our other two floor pieces. You do not need
additional layers to do this. Figure 3.21 shows the
result of the final design; the color of the panel
was slightly changed.

Step 28: Limit the details to the top of the floors.
Select all the layers except the Dark Metal
Scratched and press Ctrl + G to group them.
Name the new group Detailing. Give the group
a black mask and add a paint layer to the mask.
Press the number 4 button to switch to the
Polygon Fill tool. The Polygon Fill tool allows us
to select elements of the model to fill in colors. In
the Properties panel, toggle on the square button
of the Fill mode and set the color to 1. We can
now click on any face of the model to fill that face
to white color and keep clicking until the details
we painted all reappear on the top faces of the
floor pieces. By doing this step, we have limited
our painted details to the top faces. We have also
got rid of the overshoot artifacts. Now we have a
clean edge cut right at the edge of the top faces
(Figure 3.22).

116

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.20 Added cable holders.

Tips and Tricks

The Polygon Fill tool is a clean way to define masks. There

are four fill modes: Triangles, Quads, Objects, and UV

shells, each represented by a triangle, a square, a cube,

and a checker button. Switching to these modes allows

you to click to fill these different elements with the color

defined by the Color setting. For example, if you chose UV

shell mode, change the color to black, click on any part of

the model. This is going to fill the UV shell that contains

that part of the model to black color.

117

Set Texturing

FIGURE 3.21 Paint the other two floor pieces.

FIGURE 3.22 Limit the details to the top faces of the floors.

Step 29: Create a smark material. Select all the
layers and press Ctrl + G to group them and call
it GameScifiPanels. Right-click on the new group
and select Create Smart Material.

Step 30: Use the same material on the walls. Hold
down Alt + Shift and click on any model of the
walls to switch to the wall_4k texture set. Press
Alt + Q to Isolate it. Go to the Smart materials
section of the SHELF, and search for our
GameScifiPanel. Drag GameScifiPanels to the
layers. We should now see the dark metal appear
on the walls (Figure 3.23).

Why?

So, where are the orange panels? The answer is they have

no proper mask yet; neither do the cables. All Substance

Painter remembers is that we painted something in the

area of the floors, not on the walls; they are physically

not at the same spot in the scene. Even if they were, the

painting we did for the floor would not work for the walls.

We have to repaint them for our wall models.

118

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.23 Use the same material to get started on the walls.

Step 31: Paint wall Panels. Go to the various layers
and paint the panels for our wall model; don’t
forget that you can press the X button to switch
to black color to cut the panels out. Make sure
you also try different alphas. We chose not to
have cables on the walls, and so we hid the layers
of the cable. You can click on the eye-shaped
icon in front of the layers to toggle their visibility
(Figure 3.24).

Step 32: Add extra panels to the walls. Add another
fill layer on top of the OuterPanel. Name it
ExtraPanel. Toggle off all the channels except the
height channel, set the height value to 1. Add a
black mask to the layer, and add a paint layer to
the mask. Switch to the Basic Hard brush. Hold
down Ctrl + right mouse button and drag down
a little to make the brush softer. Start painting
some extra panels on top of the current panels
(Figure 3.25).

Step 33: Create edgewear for the extra panels. Right-
click on the masks of the ExtraPanel layer and
select Add Anchor point. Go to the layer named
Paint, right-click on it and add a generator. Click
on the Generator button in the PROPERTIES panel
and chose Curvature. Click the off button after
the Use Micro Details setting to toggle it to On.
Click the Micro Height button, under the
ANCHOR POINTS tab, chose ExtraPanel mask. We
should now see orange colors appear only on the
sharp ridges of the model and the height of the
extra panels we painted. Toggle the Global Invert

119

Set Texturing

FIGURE 3.24 Toggle the visibility by clicking on the little eye icons.

setting On. Go to the bottom of the PROPERTIES
panel. Click on the X button of the Curvature
map to unload it, and then drag the slider under
it down to 0. Now the edgewear should appear
only on the extra panels we painted (Figure 3.26).

Why?

We unloaded the curvature map because we do not want

the baked curvature to affect the mask. We only want

the painted height of the extra panel to have edgewear.

Given the proper Micro Height, the Curvature generator is

perfect for generating edgewear.

Step 34: Fix the blending mode of the curvature
layer. Notice that the only place we see edgewear
is on the extra panel we created earlier.

120

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.26 Extra Curvature generator to create edgewear for the extra panels.

FIGURE 3.25 Creating the ExtraPanel layer.

The effect of the new Curvature layer is blocking
the Mask Builder layer under it. To get the
edgewear we set up earlier back, simply change
the blending mode of the Curvature layer to
Multiply (Figure 3.27).

Step 35: Cables base material. Switch to the cables.
Go to the Materials section of the SHELF; find
and drag the Iron Diamond Armor to the layers.
In the PROPERTIES panel, drag the slider of the
Scale setting all the way up to 128 to repeat
the pattern more. In the LAYERS panel, set the
channel to Height and set the opacity of the
height channel of the Iron Diamond Armor layer
to 30 (Figure 3.28).

121

Set Texturing

FIGURE 3.27 The result that shows all the edgewear for the panels.

FIGURE 3.28 Base material for the cables.

Why?

You may argue that using an existing material shipped

with Substance Painter is not a good idea. After all, other

people may use it too. But we are not using it as it is,

we can combine multiple materials and get something

unique enough.

Step 36: Add another variant. Add another fill
layer to the layers, name it straps. Change the
blend mode of its height channel to Normal.
Make the Base Color darker, reduce the
Roughness to 0.2, and crank up the Metallic
up to 0.7. Go to the Procedurals section of
the SHELF. Find and drag Strips to the Height
input of the fill layer in the PROPERTIES panel.
Set the Scale to 16. It is too strong. Trying to
lower down the opacity makes it weaker but
also reveals the Iron Diamond Armor below
it. Instead, right-click on the Straps layer, and
select Add levels. In the PROPERTIES panel, set
the Affected channel to Height. Drag the black
pin at the bottom of the graph to the right; the
more you drag it to the right, the weaker the
height becomes. Drag the black pin really close
to the right side so the height is weak enough
(Figure 3.29).

Levels

Levels is a typical color adjusting tool. The graph of the

levels shows the color distribution of the color from black

(left side) to white (right side). There are three Pins on

top of the graph. The black pin represents the total black

color of the spectrum. The gray pin represents the mid-

tone, and the white pin represents the total white color.

Dragging them around clamps and shifts the color of the

image. For example, drag the black pin to the middle, and

any color darker than the mid-tone before becomes total

black. Drag the gray pin anywhere, and the color of that

point becomes the mid-tone. The two pins at the bottom

of the graph remap the color again. The color the black

pin is at is used as black. The color the white pin is at is

used as white color. The rest of the color is interpolated

between these two colors.

122

Creating Games with Unity, Substance Painter, & Maya

Step 37: Create a random mask for the Straps layer.
Give the Straps layer a black mask. Right-click
on the mask and add a Generator. Click on the
Generator button under the PROPERTIES panel
and select UV Random color. Add a level above
the UV Random Color, drag the black and white
pins at the top of the level to the middle. This
setup makes half of the cables show our Straps
and the other half show our Iron Diamond
Armor. If you don’t like the result, click on the UV
Random Color and click the Random button of
the Seed setting in the PROPERTIES panel to have
a different result (Figure 3.30).

Why?

First of all, the UV Random Color generates a random color

for each UV island. The Levels then tighten the colors up

to either black or white. This way, half of the cables have a

mask of white, and the other half have black.

123

Set Texturing

FIGURE 3.29 Add a straps layer with strap patterns.

Step 38: Add carbon fiber band layer. Drag the
Carbon Fiber material from the Materials section
of the shelf to the top of the layers, change its
Scale setting to 128 to repeat the pattern more.
Notice that Carbon fiber has no height channel.
We want to make it higher than the rest of the
cables. Add another fill layer above it, toggle
off all channels except the height channel of
this new layer, and name it CarbonFiberHeight
and set its height value to 1. Select both
CarbonFiberHeight AND Carbon Fiber. Press
Ctrl + G to group them and name the group
CarbonFiberWithHeight. Change the blending
mode of CarbonFiberWithHeight to Normal. Give
CarbonFiberWithHeight a black mask and add a
paint layer to the mask.

Step 39: Paint the mask of the carbon fiber. Press
F3 to go to the 2D view. Switch to the Basic
Hard brush. In the PROPERTIES panel, set the
Alignment setting to UV. Use the Ctrl + Shift
button combination to draw a few straight lines
across all the cables. Press F1 to see both the
3D and 2D views. We should now see bands get
randomly placed on the cables. To make them
more visible, click on the Carbon Fiber layer,
and set Color 1 and Color 2 to darker colors
(Figure 3.31).

Step 40: Create material for the cable base and cable
wrapper. For the cylindrical cable wrapper and
the base, we can throw a Steel Gun Material
at the top of the layer stack. Give the Steel Gun
Matte group a black mask, and add a paint layer
to it. Switch to the Poly Fill tool. Don’t forget to

124

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.30 Create a random mask for the Straps layer.

change the color to white and change the fill
mode to Objects this time (the button with the
cube icon). Click on the two models to make the
material show up on them (Figure 3.32).

Step 41: Pipe Material. We can use the Steel Gun
Painted also as the material of the pipes. Just
switch to the pipes and drag the Steel Gun
Painted smart material to the layers (Figure 3.33).

125

Set Texturing

FIGURE 3.31 The result of the placements of the carbon fibers.

FIGURE 3.32 The material created for the cable base the cable wrapper.

Step 42: Glass Materials. Hold down Alt + Shift and
click on one of the glass models to switch to
the classes. Press Alt + Q to isolate them. In the
TEXTURE SET LIST panel, click on the Main shader
drop-down list on the right side of the window_
glass_4k texture set. Select New shader instance.
The setting now shows as Main shader (Copy).
Main shader (Copy) is a new shader. A shader
is a collection of algorithms that calculates all
the shading aspects of the 3D model. We need a
new shader because the glass is fundamentally
different – it has transparency. Click on the
Sphere icon on the UI Panel to pull out the
Shader Settings panel. Click on the pbr-metal-
rough button and change it to pbr-metal-rough-
with-alpha-blending; this shader supports
transparency. Change the Instance name to
TransparentShader (Figure 3.34).

Step 43: Add Opacity channel. Go to the TEXTURE
SET SETTINGS panel (on the right side of
the LAYERS panel). Click on the + button on

126

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.33 Use Steel Gun Painted as the material for the pipes.

FIGURE 3.34 Create a new shader for our glasses.

the right of the Channels setting and chose
Opacity (Figure 3.35). An opacity channel
is needed to feed opacity value to our
TransparentShader.

Step 44: Create Glass Material. Go to the LAYERS
panel and add a new fill layer. Name the new
layer Glass. Under the MATERIAL section of the
PROPERTIES panel, you can now see an extra
channel called op. The op channel is the Opacity
channel we added in Step 43. Set the Base
Color of the fill layer to a mid-gray. Click on the
Roughness button, search and use Grunge
Fingerprints Smeared as the Roughness input.
Set the Opacity setting to 0.1 to make it more
transparent. Glasses are generally non-metallic,
so keep the Metallic setting 0 (Figure 3.36).

127

Set Texturing

FIGURE 3.35 Add the Opacity channel.

Why?

We don’t have too much happening on this glass

material. The shader of the game engine is going to be

very different for things like transparency. We are going

to define these attributes in the game engine when we

create these materials.

Step 45: Create materials for all other modular
pieces. We have covered enough techniques. It is
now time for you to finish all the other materials.
Figure 3.37 shows our result for the modular
pieces, and Figure 3.38 shows a close-up shot of
the textures of the stairs.

128

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.36 A new glass material.

Assignment: Texturing
the Rest of the Models

The way we texture the props and the hero asset is the

same way we texture our modular piece. Figures 3.39–

3.44 show the result of the textures we did. The only new

thing here is that for the screens, we added an Emissive

channel to the shader to allow emissive input to make

129

Set Texturing

FIGURE 3.37 The texture result for the modular pieces.

FIGURE 3.38 The close-up view of the stairs.

130

Creating Games with Unity, Substance Painter, & Maya

FIGURE 3.39 Completed versions of screens.

FIGURE 3.40 Completed versions of rounded set pieces, including glass shaders.

FIGURE 3.41 With a dark base, objects like this will contrast well with the orange

components.

FIGURE 3.42 Using a similar pallete keeps elements part of the same universe while

providing contrast with the orange walls.

the screen a bright blue color. We end up with five

substance files:

Modular_pieces_texturing.spp (Contains all of our
modular pieces.)

Props_texturing.spp (Contains all the prop meshes
that are not supposed to move in the game.)

Security_camera_texturing.spp (Contains only the
security camera.)

Door_texturing.spp (Contains only the door.)
Hero_asset_texturing (Contains only the hero

asset.)

There is no particular reason why we separate the camera,

the door, and the hero asset other than some organization

flaws we had during the production. You can have a

completely different distribution. Please go ahead and

have some fun texturing the rest of the models.

131

Set Texturing

FIGURE 3.43 Finished gun and camera.

FIGURE 3.44 Complete Hero asset and multi-part door.

Conclusion

Texturing takes time, but it is more fun to do. However,

while textured models are great to see, we’re not done.

Now, we need to get our textured assets into the game

engine, set up the materials, and assemble the completed

modules into a playable level.

In the next chapter, we are going to focus on importing

and assembling our level in the game engine.

132

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 4

Unity Asset Creation

In this chapter, we finally get to get into the game engine.

Until now, we’ve spent our time building geometry,

unwrapping UVs, and finally texturing that geometry.

You’ve learned a lot and come a long way, but now it’s

time to start moving our assets from the realm of asset

creation to the realm of interacting with those assets in a

game scenario.

It is important to point out that effective work in game

engines is predicated on effective and efficient work in

the previous steps. If the geometry has been messily

assembled with problems in topology or inefficient UV

layouts, there is nothing the game engine will be able to

133

do to compensate for that. On your first round with the

game engine, you may find that there are problems in

your model that need to be fixed. Not to fear. If something

isn’t looking like you want in game, go back and take a

look at the model/UV/texture and fix it. As you gain more

experience, you’ll know how to avoid these issues in the

future.

Game Engines

Game engines are software packages built to assemble

games. Think of a game engine as “middleware” where

not a lot of visual assets are created, but rather a place

where assets are assembled and made interactive. Game

engines have built frameworks or modules for rendering,

inputs, physics, AI, networking, UI (user interface),

VFX, and audio. Usually this framework is leveraged in

an “editor” that allows for asset assembly to happen.

Importantly, this is where interactivity through scripting is

created.

Unity

For this volume, our game engine of choice is Unity. Unity

has made a name for itself with its nimble authoring

cycle and ease of use. While Unity has always been

playing catchup with its biggest competitor (Unreal

Engine) in visual fidelity, the benefits in creating efficient,

lightweight, and quickly iterated games has made Unity

a quick riser in the world of game engines. Particularly in

the world of mobile, AR, and VR, Unity has nabbed a big

part of the market.

Because different devices have different levels of power

(measured in computations per second on a processor,

amount of data stored in random access memory, and

both for video cards), games are built with target devices

in mind. A game build for an PS5 is not going to run on

your iPhone (or presently, even on most PCs for that

matter). Similarly, a game that passes for beautiful on an

Android device feels woefully under-designed on your

134

Creating Games with Unity, Substance Painter, & Maya

large gaming PC. Despite both Unity’s and Epic Games’

(the maker of Unreal) efforts, Unity has dominated in

the mobile (lightweight, but extremely profitable) arena

but Unreal continues to lead the AAA market for non-

proprietary engines. However, with both engines, you can

build mobile-based and high-end PC builds.

In this volume, we will be creating a game for Windows

or Mac distribution with Unity. Making the leap to mobile

would not be hard, but it requires some extra layers of

working with touch input (for example) that are beyond

the scope of this book. With a PC or next-gen console

as our target audience, we need to take a moment to

talk about Unity’s new Rendering Pipelines. Rendering

pipelines reference how a computer deals with drawing

assets onto your player’s screen. Lately, Unity’s approach

has been to develop multiple rendering pipelines for

different deployment strategies. For years, Unity used

one rendering pipeline – the built in one upon which

a developer could bolt other modules on to expand

its capabilities. Recently though, Unity has introduced

Scriptable Rendering Pipelines that allow for much more

customization and control. Unfortunately, for a beginner,

this can be much too much information to process or

wrestle with. But understanding the basics of the two

rendering pipelines will be important as moving between

the pipelines is a labor-filled process:

Universal Render Pipeline (URP) – The pipeline
will ultimately replace Unity’s current built-in
rendering pipeline. It is designed to be a one-stop
workflow that allows a developer to develop
once and deploy across multiple devices. It is
more efficient that Unity’s old built-in pipeline
but also has a few limitations, particularly in how
it deals with lights. If you have an underpowered
PC, for the upcoming tutorials, you may want to
build the project using URP as it generally has
lower hardware requirements.

High-Definition Render Pipeline (HDRP) – This
is a higher-end rendering pipeline with much
higher fidelity. HDRP looks better, but it requires
better hardware. In early iterations, it also
required quite a bit of technical programming
know-how. However, in its most recent iteration,

135

Unity Asset Creation

it works well with built-in settings with Substance
Painter. An HDRP project will not run on a
mobile platform; thus, Unity advises clearly
defining where you plan to deploy your asset
from the beginning as HDRP assets are not
compatible with URP. HDRP has some interesting
new capabilities, including a shader editor
that allows for sophisticated shader creation
(URP also has these), and some interesting and
beautiful implementations of new lighting and
physical-based rendering techniques. It’s new
implementation of physically based camera
systems and built-in Post Processing Effects
(visual filters and visual interpretation processes
that add new levels of visual sophistication to
each frame) are particularly exciting. And yet,
with all of this excitement come the inevitable
bugs to be discovered and squashed. This
HDRP is young, and while promising, it has its
persnickety corners.

For our uses, we will be using the
HDRP. It is no longer in Beta and has been
approved for production. However, if you are
on a machine that you are worried about
carrying the load, you may choose to use URP
instead. Most of the strategies we employ in
constructing the level (in HDRP) can still be
used in URP, and all of the coding we do later
will work well in both rendering pipelines.

Alright! Enough discussion, let’s get
installed and building.

Tutorial 4.1: Installing Unity, Visual
Studio, and Starting a Project

Step 1: Download and install Unity Hub. Unity uses
something called the Unity Hub to manage
Unity installs and Unity project. As URLs can
change, the best way to always find this is
Google “download Unity Hub”. This will take
you to Unity’s download page (https://unity3d.
com/get-unity/download). There look for a
“Download Unity Hub” button and download
the UnityHubSetup.exe.

Step 2: Launch UnityHubSetup.exe from your
Downloads folder. Follow the Installer prompts
to install the Unity Hub.

136

Creating Games with Unity, Substance Painter, & Maya

https://unity3d.com
https://unity3d.com

Step 3: Unity Hub will then launch and ask where
you want to install Unity. For now, look for a
small option at the bottom left called “Skip
Install Wizard” (Figure 4.1).

Step 4: Unity Hub will open (Figure 4.2). On the left
will be four options: Projects (where we’ll set and
open Projects to work on), Learn (where you can
watch Unity-built tutorials), Community (where
you can go for some problem-solving help), and
Installs (where you decide which versions of Unity
you want installed). For now, click Installs.

Step 5: In the Installs section, click the Add button.
This will pull up an Add Unity Version window.
At the time of this writing, the most recent Latest
Official Release is Unity 2019.3.13f1. If yours is
higher than that, go ahead and choose that
release and hit the Next button.

Step 6: The next window will invite you to add
modules to your installation. Eventually, if
you choose to develop for Android, iOS, Linux,
Vuforia, etc., you will want to check these
modules (Figure 4.3). For now, don’t install any
of them (you can come back and install them

137

Unity Asset Creation

FIGURE 4.1 Unity Hub’s installation window. For now, just Skip Install Wizard so we can choose what to install with more

control.

later if needed). Do make sure to scroll down and
ensure that Documentation is checked. We’ll be
referencing this often.

138

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.3 Unity inviting you to install modules. For now, only make sure that Documentation is checked – leave the rest off

for now.

FIGURE 4.2 Unity Hub.

Why?

After checking, several things will actually be installed.

Unity Hub will install Unity (of course), but will also

install a version of Visual Studio, which we’ll use later to

write code. Go ahead and run through all the steps for

this installation. We will talk much more about Visual

Studio later.

Step 7: When Unity is installed, the Unity Hub will
indicate it in the Installs section. You can come
back here to install new modules, install new
updates of Unity, or uninstall versions of Unity.
For now, click on Projects on the far left of the
interface.

Step 8: Create a new HDRP project. The Projects
window is where we will create new projects
and where you should always open Unity
projects from. For now, click on the New button.
In the following screen, give your project a
name, decide its location, and click on the
High-Definition RP in the Templates section
(Figure 4.4). After hitting next, Unity will take a
while as it sets up the project and imports some
default scenes and other files.

139

Unity Asset Creation

FIGURE 4.4 Creating a new empty HDRP project.

Why?

From now on, whenever you plan to work on this Unity

project, access it via the Unity Hub. Open Unity Hub and

this new project should appear in the list of projects.

Double-click its name there, and this will open Unity for

you and open the project within it.

Step 9: Close HD Render Pipeline Wizard, since we
aren’t converting any old project.

Step 10: Optimize layout. The default layout
of Unity is inefficient (and frankly simply
mimics UE4 without leveraging the advantages
of Unity’s leaner UI). To change this, choose
Window>Layout>2 by 3 (Figure 4.5).

Step 11: Continue to optimize the Project window.
Look for the Project tab and, at the top right-hand
corner, look for three vertical dots. Click on those
dots and choose One-Column Layout (Figure 4.6).

A Bit about the Unity UI

Each part of the interface is labeled with a small tab at

the top left. Each of these interface parts, Scene, Game,

Hierarchy, Project, and Inspector, has a specific and

important function. Below is a quick overview of each:

140

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.5 A more efficient layout.

Scene – Imagine this as the creator’s view. You are

the creator, and from this view, you can see visual

representations of all the objects currently in the game. In

this window, you’ll see not only geometry but also icons to

represent cameras, lights, particles, effects, volumes, and

any other element that is present in your scene. This also

includes some other helping UI elements including a grid,

and navigation tools in the top right corner. Although,

usually I don’t use that navigation method. Instead using

the very Maya-esque Alt-left, middle, and right mouse-

drag will allow you to move around the Scene window.

Alternatively, in a very game-like fashion, you can hold

the right-mouse button down and use the WASD keys

to fly through the scene. Similar to Maya if any object is

selected, hitting the “F” key will frame that element in the

interface and make it the new center of rotation if you

are orbiting around it. Similarly, the keyboard shortcuts

of Maya (w-Translate, e-Rotate, r-Scale) are also in effect.

If you know Maya, you can maneuver in Unity.

Game – This is what the player will see when playing your

game. It is the view of one of the cameras in the scene.

When you play the game (using the Play/Pause/Step

buttons at the very top of the interface), it is this window

you will be interacting with. If you have two monitors, it is

often helpful to drag this tab (just click and drag the tab

that reads Game) onto that second monitor. This allows

you to play full-screen on one screen, while still observing

what’s happening in the Scene window. In this Game

window, there are lots of pull-down and button menus

at the top that we will be exploring in the future.

141

Unity Asset Creation

FIGURE 4.6 Optimizing the layout so that the Project window shows a single-

column layout.

Hierarchy – This shows the current elements in your

game. The top-most object listed there will be the name

of the level you are editing; when expanded, this will show

you the objects currently in your scene. This will be a text

accounting of objects you can see in the Scene window.

Project – The project window is like your library shelf.

This shows elements (models, textures, materials, scripts,

particles, scripts, etc.) that Unity knows about and that are

associated with this project. An asset must be in the Project

window before it can be incorporated into the level.

Inspector – This provides the details of any selected object.

When any object is selected (in the Scene, Hierarchy, or

Project windows), the exposed attributes (the attributes

you can change) will show up in the Inspector window.

To explore the interface, you might try rotating, panning,

and flying around the Scene view of the default level Unity

provides. Notice that if you click on any object, you can see

the specifics of it in the Inspector. When you’re done getting

familiar with moving around inside the space, move onto

the next step to get started constructing our own game.

Step 12: Create a new scene. Unity calls game levels
“scenes”. Although scenes can be more complicated
than simply one level of a game (via additive level
loading, etc.), for our purposes we’re going to
create one new scene and think of it as a level of
our game. Do this by selecting File>New Scene.

Step 13: Save it as MainLevel. Choose File>Save. This
will open a Save Scene dialog menu. Navigate
to the Scenes folder, enter “MainLevel” in the File
name: input field and hit save.

Why?

Notice that this is inside the folder that is storing this

Unity project. Specifically, it is saving it inside a folder

called Assets. It is important that you don’t save anything

outside of the Assets folder for use in this Unity project.

In fact, it’s important that generally you don’t mess with

where files are placed within your Unity project folder in

any other place but Unity. If you need to delete an asset,

do it in Unity (not in your Finder). This will ensure that you

142

Creating Games with Unity, Substance Painter, & Maya

keep your project clean and Unity is able to keep track of

where it expects assets to be.

Step 14: Clean up the Unity project. Unity has
provided a sample scene and a load of other
sample assets to get your started. Unfortunately,
these make the project needlessly large. To
keep things a bit leaner, in the Project window
select and delete (just hit the Delete button on
your keyboard) the following assets: Example
Assets (folder), Readme (file), and TutorialInfo
(folder). Also expand the Scene folder and delete
samplescene (scene file) and sample scene
(folder). Your remaining Hierarchy should look
something like Figure 4.7.

Step 15: Prepare Unity for asset import. Keeping
an organized project is important once we get
hundreds (and even thousands of assets). In the
Project window, create folders called Models,
Textures, Materials, and Scripts. Do this by right-
clicking in the Project window and choosing
Create>Folder, or clicking on the + button at
the top left of the Project window and selecting
Folder from the pop-down menu (Figure 4.8).

143

Unity Asset Creation

FIGURE 4.7 Streamlined project. We’ve eliminated assets Unity included as tutorial

files to keep the project lean.

FIGURE 4.8 Our organized Unity project. Folders here have been created into which

we’ll import a variety of assets to build our level.

Tutorial 4.2: Exporting Asset
from Maya and Substance
Painter into Unity

Now that our Unity project is created and we’re ready to

import assets, we can begin exporting assets from Maya

and Substance Painter. The steps here are not difficult,

but without a little bit of file preparation we can have

trouble down the road. So, making sure files are properly

prepared before importing into Unity is critical.

If you have been following the past tutorials and have

completed all the extra assignments, you can work on

your own file. Or if you’ve (ahem) skipped some of your

homework, you can use the files included on the support

website for this chapter to download and work with.

Step 1: Open Maya file. In Maya, set your project
and open Models_Complete_ReadyToExport.
mb. A quick snapshot of this file shows the assets
all separated as they were before export into
Substance Painter. This scene is also carefully
organized with geometry in groups as per
the materials that we created and painted in
Substance Painter.

Step 2: Delete History. Choose Edit>Delete All by
Type>History.

Why?

History can be of great help when modeling in Maya,

but is not of help when working in a game engine. A

model with History will bring in strange empty nodes

into your game engine that can cause problems later.

For static meshes – meshes that don’t move, getting rid

of any nodes that might still be hanging on will make

sure you only push geometry (with its UV layout) to the

game engine.

Step 3: Freeze the Transformations. Older engines
(like UE4) require that all models be actually
sitting at 0,0,0 in world space. Unity, as a newer
engine doesn’t have this restriction; however, it

144

Creating Games with Unity, Substance Painter, & Maya

is important that the assets report themselves as
being at 0,0,0. To do this, marquee-drag around
all the assets in the scene. This will select just
the geometry (not the groups (Figure 4.9)). Now
select Modify>Freeze Transformations.

Why?

Freezing Transformation resets the Translate X, Translate

Y, and Translate Y to 0. Unity will interpret these models as

being at “the origin” or 0,0,0 in world space. This will make

for easy placement and manipulation later.

Step 4: Export as FBX. Choose File>Export All….
As before, make sure that Files Of Type is set to
FBX Export. In the Options section, expand File
Type Specific Options>Include>Geometry and
make sure that Smooth Mesh and Triangulate
are checked. Additionally, in that same Include
section turn off Animation, Cameras, Lights,
Audio, and Embed Media. Navigate to your
Unity project and into the models folder (…\The
Escaper\Assets\Models). Enter “RawModules”
for the File name, and hit Export All.

145

Unity Asset Creation

FIGURE 4.9 Marquee select all the geometry (not the groups) and then freeze the transformations.

Why?

Again, our goal here it to export just the geometry.

We’ll get the textures from Substance Painter, and other

elements like cameras, lights, and audio will be created

or assembled in Unity. We want to pass along just the

polygons at this point.

Notice that we are also exporting directly into the Unity

project – and specifically into the Assets/Models folder.

This keeps the process fast, and we don’t have to be

moving files around out in the finder.

Step 5: Check import in Unity. By saving into the
Unity project, when Unity is activated again, it
will say, “Aha! There’s something new in Assets.
Let me take a look at that!” You may get a brief
progress bar that shows the RawModules.fbx
being imported. When done, the Project window
will show RawModules as an FBX ready for you
to work with. Just for fun, drag the RawModules
from your Project window into the Hierarchy
(or Scene window) to place it in your scene
(Figure 4.10).

Step 6: Adjust import settings. In the Project window,
select RawModules. The Inspector will show
the Import Settings Unity used to import the
FBX. To keep the scene lean, click on the Rig
button and change Animation Type to None.
Click the Animation button and turn off Import
Animation. Finally hit Apply.

146

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.10 Geometry imported into Unity. It’s not ready to use yet, but Unity knows about it and is ready to work with it.

Why?

Of course, this is still missing textures and shaders. We

haven’t brought those in from Substance Painter yet. And

currently it’s all one big file, which defeats the purpose of

a modular layout. Not to worry. We still have some work

to do before we can actually build with these modules.

By turning off Rig and Animation, we can make sure that

we only have the geometry in this file and nothing else.

Step 7: Make sure you’re running the latest version
of Substance Painter. Open Substance Painter
and go to Help>Check for Updates. If you need to
download and install an update, do so.

Why?

Our plan is to use Substance presets for output. As Unity

has adjusted their Render Pipelines, Substance has

updated their presets to match. For the smoothest move

from Substance Painter to Unity, we should have the latest

presets in action.

Step 8: Find and open the Substance Painter texture
files. In Substance Painter, open the files created
in previous chapters. If you’d like to use the
versions we built, they are on the website as part
of the Maya project for this chapter. The files are
stored in the sourceimages folder and called
props_texturing, modular_pieces_texturing,
Hero_asset_texturing, door_texturing,
security_camera_texturing.

Step 9: Export texture files from Substance Painter
into Unity. Figure 4.11 shows Substance Painter
with modular_pieces_texturing open. To export
the textures, choose File>Export Textures. In the
Export Textures window, first make sure that all
the materials created in this file are checked on
the left side. Then set the Output Director to your
Unity project’s Textures folder (…/The Escaper/
Assets/Textures). Change the Output Template to
“Unity HD Render Pipeline (Metallic Standard)”.
Change the File Type to Targa and 8 bits. Leave
the size as Based On Each Texture Set’s Size and

147

Unity Asset Creation

leave the Padding at Dilation infinite. Hit Export.
Depending on how many textures you have, this
can take a while to export.

Why?

Lots of “why’s” here. We’re exporting directly into the

Unity project to streamline the asset movement process.

In the next steps, we’ll look at how Unity imports these

new textures it will discover in its Assets/Textures folder.

By leveraging Substance Painter’s output templates, we

can make sure and export the assets we need for our

HDRP workflow. Targas are my preferred file format as it

is lossless and will maintain its fidelity, although Unity is

pretty good at bringing in almost any image file format.

Unity only deals in 8-bit textures, so no need to export

anything larger than that.

Step 10: Repeat export process for all Substance
Painter files. Be sure to mimic the settings shown
in Figure 4.12.

Step 11: Import textures into Unity. This is actually
pretty easy: just go to Unity, and when it realizes,
there are new files in its Assets folder it will
import them. This may take a while to complete.

148

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.11 Where we left off in Substance Painter for the modular_pieces_texturing file.

Step 12: Mark Normal maps as Normal Maps. At the
top of the Project window is a small input field
with a magnifying glass on it. In that input field,
type “normal”. This will show all the files that
have “normal” in their name. Notice that there
is likely one file that looks different than the
rest – a preset called NormalTexture. We won’t
mess with that one. But in the Project window,
select the first of the displayed normal maps and
then shift select the last. Deselect NormalTexture
(by Ctrl-clicking it). Then in the Inspector, change
the Texture Type to Normal Map (Figure 4.13).
Finally, in the Project window’s search input field,
click the little “x” to return the Project window to
regular view.

Why?

Normal maps are strange beasts with much more data in

them that meets the eye. Marking these normal maps that

Substance Painter output helps Unity know how to deal

with these maps and how to use them.

149

Unity Asset Creation

FIGURE 4.12 Export settings for use in Unity.

Step 13: Extract the materials for editing. In the
Project window, select our imported FBX
RawModules (in the Models folder). Then, in
the Inspector, in the Import Settings click the
Materials button. Click the Extract Materials…
button. In the Select Materials Folder, navigate
to the Materials folder within your Asset
folder of your project and click Select Folder.
You’ll see that all of the materials have been
filled in beneath that (Figure 4.14). Notice
also that in the Project window, if you expand
the Materials folder, there are lots of new
files there.

Why?

By extracting the materials in this way, we now are able to

manually rebuild them to use the textures we exporting

from Substance Painter. Until they are extracted like

this, they cannot be edited. Notice that these materials

(if selected in the Project window) are a shader called

HDRP/Lit and make use of the HDRP Metallic workflow.

Rebuilding Materials

So now you have a folder full of materials. These materials

are already applied to the geometry in the scene, but

without textures to define the various attributes of

the materials, they all look gray. The task now is to

rebuild the materials using the textures generated from

Substance Painter.

150

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.13 Setting all the normal maps to be imported as normal maps and not default texture maps.

Step 14: Rebuild hero_sphere_4K material with
textures. In the Project window, select hero_
sphere_4k. This will bring up that material
in the Inspector. Expand the section called
Surface Inputs. Notice that several of the inputs
have a dark gray to the left of their name.

151

Unity Asset Creation

FIGURE 4.14 Extracting the materials so we can adjust them and plug in our

textures.

To assign a texture to these attributes, find
the appropriate texture in the Textures folder
(so hero_hero_sphere_4k_BaseMap) and
drag the texture from the Project window into
the appropriate slit in the Inspector window
(Figure 4.15). Repeat for the Mask Map (hero_
hero_sphere_4k_MaskMap) and the Normal
Map (hero_hero_sphere_3D_Normal).

Step 15: Untint the Base Color. By default, materials
in Unity are a 50% gray. This is defined (in this
case) with the Base Map being tinted (Figure 4.16)
gray. But now we are defining the Base Map with
a texture map, and so need to untint it. Do this
by double-clicking on the little gray swatch (to
the right of the words Base Map and to the left of
the Eye Dropper icon) and use the Color picker to
change this to white.

Step 16: Repeat the last two steps for all of the hero
asset. Notice that (in our demo scene) there
are multiple materials (in the Materials folder)

152

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.16 Untinting the Base Map to white to allow the texture to define the

color of the surface.

FIGURE 4.15 Plugging in the textures for each material. The naming is fairly straightforward, so plugging each texture in is just

a matter of dragging from the Project window into the appropriate slot in the Inspector window.

called hero_base_4k1, hero_cable_circle_4k1,
hero_cable_sphere_4k1, hero_outshell_4k, and
hero_sphere_4k. The textures for each of these
should be easy to identify and plug in. Take your
time and be careful; it’s easy to zone out and
plug the wrong texture into the wrong place and
get weird results. Also remember to untint the
Base Map as you go.

Step 17: Check out the results. In either the Scene
window or the Hierarchy window, find the
object named “hero”, click it and hit F. This
will frame the asset. You should have a shape
with materials that is much more exciting
than the gray plastic we had just minutes ago
(Figure 4.17).

Step 18: Repeat for all the materials. I know, I know.
Boring and will take a while. I understand,
and usually in a case like this we would write a
script to automate this process for us. But with
what we know now, the good ol’ fashioned
manually-plugging-in-textures is the way to
do it. Remember that the name of the textures
often is related to the group the geometry is in.

153

Unity Asset Creation

FIGURE 4.17 Results of our handiwork rebuilding materials.

As you go, take a look at the models in the scene.
If something doesn’t look right, its usually an
error in plugging things in, so just double-
check the material and the textures you have
plugged in. When it’s all done, it should look like
Figure 4.18.

Tips and Tricks

Notice that in each material, not only is there a little gray

swatch where a texture can be dragged in, but there is

also a little bullseye target icon next to each channel

(like Base Map). If you click that little target icon, a

window will pop up that will allow you to select a texture

by name for the textures Unity knows are in the project.

Sometimes, this can be an easier way to populate

material channels.

Moving On…For Now

We’re not done with materials yet. You’ve probably

noticed that we have shapes that should be clear glass

that aren’t. And there are surfaces that should be emissive

and illuminated, but that aren’t yet. We’ll be back to revisit

and refine the materials later, but for now we’ll move on

to other tasks. Materials are highly dependent on the

lighting situation that is illuminating them, and even the

154

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.18 Finished rebuilt materials. Notice that this screenshot was taken on the

other side as earlier images. To be able to see this, the Directional Light was selected

in the Hierarchy and rotated.

camera settings of the camera looking at them. Before we

spend too much time delving into the fine tuning, we’ll

start building the set and make adjustments as we go.

Tutorial 4.3: Creating Prefabs

Prefabs are a powerful tool within Unity. What they

are are objects that might have simple attributes like

geometry and materials, but they can also be an object

that has scripts, and colliders, and visual effects, and

animation, and the list goes on. The idea of a prefab is

that the developer can construct an object and hang all

the components needed and then store this prefab in the

Project window. Then, when needed, prefabs can be

dragged out into the Scene or Hierarchy window, and it

brings all the preparation with it. There’s lots more to the

power of a prefab, including the ability to make a change

to one instance of a prefab in a level and propagate that

change to all the other instances (think changing the color

light and everywhere using that same light bulb updates),

but we’ll get to more of that later.

For now, the important idea is that we want to split the

textured geometry off of the FBX they came in on. While

we do that, we’ll create some very efficient collision

detections and prepare the files to modularly build out

our level.

Step 1: Create a Prefabs folder. In the Project window,
create a new folder called Prefabs. Remember,
you can do this by clicking on the “+” sign at the
top of the Project window and choose Folder.
We’ll store our prefabs here so we don’t get mixed
up with our non-prepared geometry.

Step 2: Create a folder called Floors in the Prefabs
folder. In the Project window, with the Prefabs
folder selected, again choose the “+” button and
create a new folder called Floors. This folder
should be inside the Prefabs folder. If it is not, just
drag it into that folder.

Step 3: Repeat and create new folders for each of the
categories of our imported assets: Arcs, Cables,
Pipes, Stairs, Walls, Windows, and Props. You can
organize differently if you desire (Figure 4.19).

155

Unity Asset Creation

A Bit about Colliders

In the Hierarchy, click on the object floor_01. Move

your mouse over to the Scene object and hit F on your

keyboard to frame the object. If you now look at the

Inspector, you can see some information about this

floor_01. There are several components there: Transform,

a Mesh Filter, Mesh Renderer, and the material. Each of

these components tells this object how it is to appear or

behave in the scene. Currently it knows where it is (in the

Transform node) and how it is supposed to appear (the

Mesh Filter and Mesh Renderer along with the Material

do that). But it currently doesn’t know how to be involved

in collisions. This means that if we play the game, and

walked on this floor, we’d fall right through it. Colliders are

components the game engines use to know when objects

have bumped into or penetrated each other. In our case,

they will be important so we can’t walk through walls or

fall through the floor.

By default, Unity imports meshes without colliders as it

assumes that if you want a collider, you’ll add one. Not all

colliders are equal, however, and some are much more

expensive than others. In most commercial games you

play, the colliders have been carefully designed to be

as efficient as possible. So, for instance, this floor would

usually have a Box Collider that is very cheap. There are

several cheap colliders in Unity based on basic shapes:

Box Colliders, Sphere Colliders, and Capsule Colliders.

We point this out because we’re about to take a quick

but expensive shortcut. Mesh Colliders are colliders that

makes every polygon detect collision. This is the most

156

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.19 Organizing our folders before creating our prefabs.

accurate collision detection, but also the most expensive.

For our purposes, this will be quick and easy, but it is

only fair to point out that it’s also fairly inefficient to the

performance of most games.

Step 4: Add Mesh Colliders and Lightmap UVs
to everything. In the Project window, select
RawModules (in the Models folder). In the
Inspector window, click on the Model button
at the top. These are options that set how the
geometry is interpreted or edited upon import.
Here, leave everything at its default setting, but
also make sure and check Generate Colliders
and Generate Lightmap UVs. Click Apply. Take a
break as this can take a while to process. Notice
that after this is done, if you select any of the
meshes in the Scene window the Inspector will
now show a new Mesh Collider component
(Figure 4.20).

Why?

We’ve already talked about collisions, but what are

Lightmap UVs? Later we are going to bake some of our

lighting (real-time light calculations are expensive).

Lightmap UVs are a separate UV set that will store the

lighting information when we bake. Right now, this will

seem like a strange and esoteric step, but it will become

clear later.

Step 5: Unpack the RawModules prefab. In
the Hierarchy window, right-click on the
RawModules object and choose Unpack Prefab.
This will allow us to then start moving individual
parts into their own Prefabs. Noticeably, the
texture for RawModules will change from blue

157

Unity Asset Creation

FIGURE 4.20 Newly added Mesh Collider. This is the quickest, but most expensive

collider to add.

(the color of a prefab) to gray (an instance of
an object).

Step 6: Create Prefabs for door and hero and pot.
Do this by dragging each object from the
Hierarchy into the Project window. Sometimes
this will be a group; so for instance start with
door and (from the Hierarchy window) drag
door (the parent door, not the individual parts)
into the Prefabs/Modular Pieces folder. You’ll
see a new “door” object appear in the Project
window, and door will appear in blue text
again in the Hierarchy. Repeat for “hero”, “pot”,
and “security_cam” (the pot and security_cam
groups are inside the Props group if you’re using
our tutorial file).

Why?

We’re doing these three first because they are groups.

The rest of the meshes will be their own prefabs, but

these three objects are composed of multiple meshes,

but meshes that will usually be placed as a group.

Step 7: Create individual Prefabs for the rest of the
objects in RawModules. This is easy but boring.
For the rest of the objects in the Hierarchy
(that are currently gray text), drag each one
(one at a time) from the Hierarchy window into
their accompanying folder in the Project window.
When you are done, you’ll have all the assets as
ready-to-place modular pieces (Prefabs) in the
Project window.

Tips and Tricks

As you go, it can be helpful to further organize the Project

window. Making new subfolders can help keep your

separated assets organized. Notice also that the process

of dragging an object from the Hierarchy to the Project

window doesn’t need to be terribly accurate at first.

You can drag an object from the Hierarchy window into any

empty space in the Project window and a prefab will be

created. I usually find it easier to quickly drag each prefab

into an empty spot in the Project window and then move

these prefabs into their appropriate folder afterwards.

158

Creating Games with Unity, Substance Painter, & Maya

Step 8: Delete RawModules from the Hierarchy.
It is important to keep track of which one you
are deleting here. We never want to delete
RawModules from the Project as this is the
library of geometry we build these prefabs from.
However, the instance of RawModules that is in the
Hierarchy/Scene window is no longer of use to us.
So in the Hierarchy window, select RawModules
and hit Delete on your keyboard. Note that the
original FBX is still in the Project window, and all of
our newly created individual prefabs are also still in
the Project window ready to be used.

Tutorial 4.4: A Bit of
Material Adjustment

Up to this point, we’ve been painting with a pretty

broad brush. All the objects have come in with the same

import settings (except the normal maps), and while

this usually works fairly well using the Maya->Substance

Painter->Unity workflow, there are a few things that we

need to get adjusted. Namely, we need to adjust objects

that were glass (like the pot), and emissive surfaces (like

the monitors and lights). To explore these and fix the

problems, we will create a very simple hallway.

Step 1: Adjust the camera exposure. Go to Edit>Project
Settings. In the Project Settings window, on the
left, choose HDRP Default Settings. On the right,
look for Volume Components and expand the
Exposure area. Change the Mode to Use Physical
Camera (Figure 4.21).

Why?

Auto Exposure is the idea that the virtual camera we are

using to see the scene is automatically adjusting its virtual

aperture depending on the amount of light it senses.

Many real cameras do this (as does your eye). However,

I find it to be a real problem in virtual environments.

Both UE4 and Unity now start with Auto Exposure

activated, and it means that as you change the light

intensities of the lights in the scene, the camera is

automatically adjusting at the same time. This means

159

Unity Asset Creation

that once you get above a certain intensity of light, as

you make it brighter and brighter, the camera closes the

aperture, untill it becomes smaller and smaller, and the

resulting light doesn’t seem to change. This is maddening

when designing a lighting scheme. Changing the Mode to

use a Physical Camera gives you all the power of a more

sophisticated virtual camera, but doesn’t automatically

adjust the amount of light the camera picks up.

Step 2: Place a floor prefab. In the Project window,
find the object floor_01. Drag it from the Project
window into either the Hierarchy or Scene
window. In the Hierarchy window, select it
and then in the Inspector window change the
Positions X, Y, and Z to 0. Hit F to frame it in the
Scene window.

Why?

It’s not necessary, but getting the first piece in the middle

of the world makes for easier understanding of where all

the pieces are laid out.

160

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.21 Adjusting the camera to Use Physical Camera. We’ll change this later.

Tips and Tricks

Now that we’ve adjusted how the camera sees the

lighting, you might find your scene a bit dark. If this is

the case, select your Directional Light (in the Hierarchy)

and then in the Inspector increase its Intensity (I’m using

100,000 as its Lux value).

Step 3: Duplicate the placed floor. In the Scene
window, select the newly placed floor by
clicking on it. Hit Ctrl-D to duplicate it. It will
not seem like much has changed, but if you
look at the Hierarchy you’ll notice a new
object called floor_01(1). Unity has indeed
duplicated the object, but it’s sitting at the
exact same place as the original. Hit W on your
keyboard (to shift to the Move/Translate tool)
and move the second floor away from the first
(Figure 4.22).

Step 4: Snap the floors together. Press-and-hold
the V key on your keyboard. You’ll notice the
handles on the object begin to move around.
What its actually doing is moving to vertices on
the selected object. Move your mouse to one of
the vertices you wish to snap from. Then (still
holding V down), click-drag to the vertex on
other floor that you want to snap to. This will
snap the first floor to the second (Figure 4.23).

Tips and Tricks

Some other game engines (like Unreal) work on the

assumption that you are going to be snapping to grids.

161

Unity Asset Creation

FIGURE 4.22 Moving the duplicated floor away from the first just to see the two separate pieces.

And, in fact, the model has been built on a grid-assembly

assumption. However, Unity offers more sophisticated

snapping methods. They are different than most 3D tools,

but very effective once you get the hang of it

Step 5: Place and rotate first wall. From the Project
window, drag wall_03 into the Scene. Hit the
E key to swap to the Rotate tool. Hold the Ctrl
key down (to snap) and rotate along the Y axis
(by click-dragging the green circle on the rotation
handle) to match Figure 4.24. Then hit W to
change to the Move/Translate tool and using
the snap method from Step 4, snap the wall into
place (Figure 4.25).

Step 6: Duplicate the wall and place on the other
side of the hall. Again, Ctrl-D to duplicate. E to
rotate, holding Ctrl down to snap the rotation.
W to Move, holding V down to snap by vertices.

Step 7: Create a ceiling with rotated floor pieces.
Select each of the floor pieces, duplicate them,
and flip them 180 degrees on their X axis, so the
orange side is facing down. Use the Move tool
and snap them to the top of our module group
(Figure 4.26).

Tips and Tricks

Your scene might be getting a little dark. If you notice in

Figure 4.26, the lighting has been turned off. To do this,

just check the little light-bulb button at the top left of the

Scene window. Remember though that you’ve turned this

off. It will be important that we turn it back on later.

162

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.23 Using the Vertex Snap method to snap one floor to another.

163

Unity Asset Creation

FIGURE 4.24 Rotating the placed wall module. Note that holding Ctrl down will

snap the rotation by 15 degrees at a time.

FIGURE 4.25 Using the Move/Translate tool and snapping to place the wall.

Step 8: Duplicate this module to create a hallway.
Either 1) Marquee drag around our wall and floor
pieces in the Scene window (making sure not
to grab the camera or lights) or 2) select each
element (shift-select) in the Hierarchy. Hit Ctrl-D
to duplicate all of them and then hold the V key
down and use the Move tool to snap the newly
duplicated shapes over. Repeat eight or ten times
to create a long hallway (Figure 4.27).

Step 9: Create a simple lighting scheme. We’ll talk
much more about lighting later, but for now
choose GameObject>Light>Point Light. Be sure
that lighting is enabled in the Scene window
(the light bulb button should be activated).
The results will likely be a very dark scene.

164

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.26 Duplicating the floor to make the ceiling. Notice that lighting has been turned off for this screenshot (see Tips and

Tricks).

Step 10: Adjust the settings of the new Point Light.
Select the new Point Light in the Hierarchy. In
the Inspector, look for the Light component, and
expand the Emission section. In the Intensity
area, change the unity pulldown to Ev 100 and
change the intensity to around 23 (Figure 4.28).
If you need to adjust the point light’s position to
make sure it’s in the hallway, do so now.

165

Unity Asset Creation

FIGURE 4.27 Hallway created by duplicating one section. Be sure to use vertex snapping to make sure they are snug with

each other.

FIGURE 4.28 Adjusting the intensity of a point light.

Why?

HDRP has some new ways of measuring light intensities –

not all of them easy to use. The default unit for lights

are Lumen. But the values needed for these are huge

(six million or so). Numbers that large are goofy to work

with, so I prefer using Ev 100 as the unit. This means,

sometimes, fine-tuning lights is tweaking in the tenths,

hundredths, or even thousandths of a unit, but it’s still

preferable to Unity showing a value of “1.31768e + 07”!

Step 11: Duplicate and move the point light to
illuminate the hallway. Don’t get too worked up
over this…just provide some light in the hallway.

Step 12: Place the pot in the hallway.
Step 13: Make the glass material transparent. The

pot prefab actually has two meshes: pot_body
and pot_glass. In the Hierarchy, expand pot and
choose pot_glass. In the Inspector, scroll down to
the pot_glass_2k material and expand Surface
Options. Change the Surface Type to Transparent
(Figure 4.29).

Step 14: Adjust Refraction Model. While this is a good
start, it doesn’t really look like glass yet. In the
Inspector in the pot_glass_2k material section,
continue scrolling down and look for Transparency
Inputs. Change the Refraction Model to Box and
shift the Index of Refraction to 1.7 (or so). The results
should be a much more realistic look (Figure 4.30).

Tips and Tricks

For fun, try playing with this section. Change the

Refraction Model to Sphere and change the Index of

166

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.29 Tracking down the glass material and changing it to a Transparent shader.

Refraction to 1 and change the Transmittance Color to

some non-white color and see the results. Be sure to

rotate around the object in the Scene window to see the

results. It’s easy to see how the shader can be adjusted

to make the pot go from an empty glass container to one

filled (Figure 4.31).

Finally, remember that at this point you can delete the

pot from the scene (or not) and the changes made to the

Material will be remembered by Unity.

167

Unity Asset Creation

FIGURE 4.30 Adjusting the Transparency Inputs by controlling the Refraction Model

(Box) and Index of Refraction (1.7).

FIGURE 4.31 Continued exploration with the Transparency Inputs (using Sphere

Refraction Model and a non-white Transmittance Color).

Step 15: Place ceiling_light_01 into scene. Place this
prefab into your scene by dragging it from the
Project window (Prefabs folder) into your scene.
Move it to some reasonable place on the ceiling
(Figure 4.32).

Step 16: Adjust the Light_2K texture to appear lit.
In the Scene window, make sure the ceiling_
light_01 is selected. In the Inspector, scroll down
and notice that there are two materials attached
to this single mesh: Light_2k and light_geo_2k.
The Light_2k is the one of interest to us, as it
doesn’t look like this light is turned on. Expand
the Light_2K material and change the Shader to
HDRP/Unlit. Then scroll down to Emission Inputs.
Expand it and check on User Emission Intensity
and Emission. Change the new Emission Intensity
unity to EV100 and enter Emission Intensity: 25.
Finally, change the Global Illumination to None
(Figure 4.33).

Tips and Tricks

At this point, the shader for the light looks better; but if

you back up in the scene, it’s still largely unconvincing.

Just for fun, delete the four point lights, and instead

create a Spotlight (GameObject>Light>Spotlight). Move

the spotlight so that it is at the bottom of the geometry

and adjust its angles and intensity so that it makes sense

for the geometry. Duplicate a few of these for the hallway

(Figure 4.34).

168

Creating Games with Unity, Substance Painter, & Maya

FIGURE 4.32 Placement of the wholly unconvincing light.

Conclusion

There’s plenty more to do. Notice that there are other

lights that need adjusted materials, and there are things

like monitors that also likely need emissive materials. Get

in there and start experimenting. Sometimes, learning

works best by pushing buttons and sliding sliders once

you know where they are and observing the results.

169

Unity Asset Creation

FIGURE 4.33 Adjusted shader to appear illuminated with Emission.

FIGURE 4.34 Adding a few finished lights to the hallway.

We’ve introduced some things in this chapter that we

will talk much more about later. Namely, we’ve started

using the modules to do some layout and we’ve made

some very basic lights. All of this has been glossed over

fairly quickly, and we need to talk much more about them

in the upcoming chapters. For now, experiment with

shaders and materials. We can always change them later.

Once you’re happy with the prefabs we have imported

and adjusted, move onto the next chapter and we’ll start

building our level in earnest.

170

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 5

Unity Level Creation

In the last chapter, we imported and refined the modules

created in the first part of this book. In this chapter,

we get to start to see all that hard work assembled. If

you followed the modeling tutorials and built to the

specifications Jingtian Li designed the assets to, you will

find great flexibility in this chapter as the parts will fit

together neatly in a variety of scenarios. You’ll be able

to build an infinite number of variations of spaces. Here,

we will use the modules to design the level for our game.

This process is usually called “layout” and is the process of

designing how a player will move through the spaces.

171

The art of layout is one that we won’t have time to work

with here. However, it is important to acknowledge the

importance of level flow and keep the player oriented and

know where to go within the level. Here, we will simply

look at how to use the modules to lay out one version of

the level. If, along the way, you decide you want to make

changes to the layout and how we are building the level,

go for it. Once you get the hang of how the modules are

designed to be assembled, you can “kitbash” the entire

level as you desire.

However, as we go, there are some organization tools

that will be important to create a reasonable project.

Yes, we could just start slamming all the modules into

the scene, but the scene would quickly get out of control

and the Hierarchy would be unmanageable later when

we needed to build interactivity. So, take a while in this

chapter and follow along to gather some of the organizing

and Prefab-manipulation techniques.

A Quick Review on Snapping

Remember that in the last chapter we looked at snapping

modules together using vertex snapping. Older engines

rely heavily on snapping to a grid, and Unity can do that

too. To use Grid Snapping in Unity, just hold the Ctrl key

down when moving an object.

However, the most flexibility comes from being able to

snap any element to any other element as we’ve built. So,

remember, when using the Move tool, select the object

you want to move, hold V down and move your mouse

to the vertex you want to use as your reference snapping

point. Then, click-drag and snap that object (by that vertex)

to the vertex of the object you wish to snap it to. If you’re

still having problems with this powerful workflow, take a

minute to be sure you’re familiar and efficient with it.

Similarly, remember that when using the Rotate tool,

holding the Ctrl button down will snap in 15-degree

increments. This will allow you to carefully be rotating

to 90 degrees so that your geometry snaps together.

From here on out in this book, every object moved

172

Creating Games with Unity, Substance Painter, & Maya

will be snapped to avoid gaps in the level. Be sure that

you are snapping as you go – don’t be satisfied with

“close-enough.”

The Long View

The basic design of this game is that you are attempting

to escape the laboratory in which you – a sentient

experiment – were grown. The thing that lets you out is a

freak accident that cuts power to the facility. You’ll sneak

your way out with the facility in backup-power mode,

avoiding cameras and other previously grown obedient

sentient guards. While we aren’t going to spend a lot of

time on the game-play design, knowing this up front gives

us some guidelines. First, we need to make sure that we

have plenty of places to hide as we attempt to escape.

Second, we’re going to need to have a couple of different

lighting schemes to switch between. And third we’ll need

to have cameras throughout. As you’re building, keep

these things in mind as you adjust your set.

Tutorial 5.1: Level Layout

We’ll be doing lighting in the next chapter; so for

now, we’ll be focusing just on layout out the parts. To do

this, we want to make sure that the set is as easy to see

and work in as possible. We’re going to make some

changes to the project settings, but we’ll get back to our

currently dark and brooding setting later.

Step 1: Adjust the camera to assist in construction.
Select Edit>Project Settings. In the resulting
Project Settings window, select HDRP Default
Settings on the left, and then look for Volume
Components. Expand the Exposure section
and change the Mode to Automatic. Then, still
in the Project Settings window, scroll down to
the Visual Environment (section right beneath
Exposure). There, check the Ambient Mode
checkbox, and change the drop-down to
Dynamic (Figure 5.1). Finally, look for the HDRI
Sky section. There activate Intensity Mode:
Exposure, then activate Exposure, and change
the value to 20.

173

Unity Level Creation

Why?

There are lots of ways to override these default settings.

Unity works with an idea called Volumes (Post Processing,

Sky and Fog Volumes, etc.), but for the scope of this book,

we’ll generally work with adjusting the default settings at

this point. There may be times you want to swap profiles

as you move from Level to Level (Scene to Scene using

Unity’s language); but for now, since we’re working with

one Scene, adjusting the default settings works like a

Global effect and will be easier to manage.

Note that after changing this setting, if any object is in

the scene (try putting the door out there for instance), the

dark side of the door will still appear dark until you zoom

in close on it. Then the camera will adjust.

Tips and Tricks

So, sometimes (and we think this is a Unity bug), when

a scene is reopened, the HDRI Sky Exposure settings

174

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.1 Adjusting our Project Settings to allow for ambient light throughout (although we’ll get rid of this later).

seem to have been forgotten. There seems to be some

conflict between the default profile that we just edited

in the Project Settings and other Global Volumes (Unity’s

method of controlling effects) that might be in the scene.

If you don’t get good HDRI lighting, or open the file and

everything is dark, in the Hierarchy, find the object Sky

and Fog Volume. There, find the Volume component, and

the HDRI Sky attribute. Adjust the Exposure there (try 20),

and often this will update the lighting settings.

Step 2: If there is still any geometry left in your
scene, delete it. You should be left with Main
Camera, Directional Light, and Sky and Volume.
Alternatively, you can create a new Scene
(File>New Scene) and then save the Scene over
your old MainLevel scene.

Step 3: Place floor_01 at 0,0,0. In the Project window,
find the prefab floor_01 from the last chapter
and drag it into the Scene window. In the
Inspector, set its position to 0,0,0 for its Positions
X, Y, and Z.

Step 4: Flip the floor over. Select the floor and either
use the Rotate tool (and hold down Ctrl to snap
the rotation) and rotate the floor 180 degrees in
X, or in the Inspector enter 180 in the Rotation X
input field.

Step 5: Duplicate, move, and snap two copies.
Swap to the Move tool (W), and then Ctrl-D to
duplicate. Move (with snapping (V)) the duplicate
so that it snapes to the edge of the first. Repeat
(Figure 5.2).

Step 6: Duplicate this row of three tiles three times
to create a square room. In the Scene window,
marquee drag around the three floor_01 objects

175

Unity Level Creation

FIGURE 5.2 Three floor_01 prefabs duplicated and snapped into place.

and then duplicate them, and move the three
over to match Figure 5.3. Repeat.

Step 7: Snap the corner pieces down to allow room
for grates. Select one of the corner tiles and then
Shift-select the other three. Snap with the move
tool and move these down so the top of them
lines up with the bottom of the rest of the tiles
(Figure 5.4).

Step 8: Place the grates (floor_04) in the gap. Drag
the floor_04 prefab into the scene and vertex
snap into place as seen in Figure 5.5.

Step 9: Add extra pizazz by replacing the area
under the grate with floor_02 prefabs
(Figure 5.6).

Step 10: Using floor_02 and floor_03, add trim
around three sides of the room (Figure 5.7).

Step 11: Group and name the floor. Set the Tool
Handle Position to Center. This is at the top of
the Unity interface (above the Scene window
(Figure 5.8)). Notice that it might say Pivot…
click it until it says Center. Marquee select all
the geometry we have currently built. Hit F to
frame it. Choose GameObject>Create Empty.
This will create a new GameObject in the
Hierarchy. In the Hierarchy window, select all
the placed floor elements and drag them onto
GameObject to make them children. Rename
GameObject to StartRoom_Floor.

176

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.3 Roughed out room with duplicated floor tiles.

177

Unity Level Creation

FIGURE 5.4 Snapping the corner tiles down to make room for grates.

FIGURE 5.5 Finishing off the grate.

FIGURE 5.6 Adding extra visual interest by swapping out the units beneath the

grates. Alternatively, you could also use floor_03 (although you’d need to place more

of them).

Why?

Lots going on in this step. Let’s break it down. The Tool

Handle Position (Pivot/Center) determines where the

handle (Move/Rotate/Scale) is displayed. If this is set to

Pivot, and a group of objects are selected, the handle

will appear on the last object selected. If set to Center,

Unity finds the geometric center of the group of objects

centered and displays the handle there. Then, when F is

pressed, Unity will center its view on the geometric center

of the group of selected objects. This becomes handy

because when a new object is created in Unity, it is created

at the view center. So being focused on the geometric

center of a group of objects means the empty GameObject

(no geometry of its own – just a container) is created right

in the middle of the objects its meant to contain.

178

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.8 The Tool Handle Position settings to change where the tool handles

appear on selected objects or (importantly) groups of objects.

FIGURE 5.7 Adding trim around three size of the room.

Making objects children of an empty GameObject is

very similar to how Maya handled groups. The objects

will move with the parent object, but can also move

independently of the parent. For us, this renamed

GameObject (now called Start_Room_Floor) can be

minimized to save space in the Hierarchy. We can also

select the StartRoom_Floor parent gameobject, and move

all the floor at once. However, it’s important to see that

to select the parent group; you need to select it in the

Hierarchy (not the Scene window).

Step 12: Create wall pieces. Use the wall_01 prefab
to create the walls shown in Figure 5.9. Roughly,
there is one above every one of the outer floor
trim pieces. Be sure to snap into place on top of
the floor pieces.

Step 13: Fill in the corners with Turning_wall_01
(Figure 5.10).

Tips and Tricks

Originally, Turning_wall_01 was designer to be used

on the outer corner of a wall. But it’s a nice look for the

inside corner of this room. It’s the power of a modular

workflow – you can mix and match modules or parts of

modules in whatever way you wish.

179

Unity Level Creation

FIGURE 5.9 Wall placement using wall_01. Notice that lighting has been turned off

for this screenshot by hitting the Toggle Scene Lighting button (the little light bulb at

the top of the Scene window).

Step 14: Build the door. Figure 5.11 shows the door
prefab and window_01 (with window_01_glass)
stacked above it.

Tips and Tricks

Figure 5.11 actually has a bit of adjustment we haven’t

explicitly covered in earlier tutorials. The glass and frame

are two different shapes, and the glass has its Material

attributes adjusted. Be sure you make the window_01_

glass a child of the window_01 prefab. Also, be sure to

adjust the material on the window_01_glass shape to

180

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.11 Roughing out the door and windows above.

FIGURE 5.10 Filling in the corners with Turning_wall_01. The inset shows the

vertex used to snap most efficiently.

be Transparent (if you haven’t done already). Finally, on

the window_glass_4k material, try experimenting with

the Smoothness Remapping attribute to get the look

you’re comfortable with. Remember that lighting in the

Scene view must be activated to see the glass shader

in action.

Finally, because many of the shapes here are beveled,

vertex snapping might not be the best solution. You can

snap to grid by holding the Ctrl key down while moving

an object.

Step 15: Finish out the door with door frames.
The ones used in Figure 5.12 are the prefabs
door_frame_flat.

Step 16: Finish off the wall. Figure 5.13 uses two more
wall_01 and two wall_corner_frame.

181

Unity Level Creation

FIGURE 5.12 Door frames (door_frame_flat) to round out the door.

FIGURE 5.13 Finishing off the walls using wall_01 and wall_corner_frame prefabs.

Step 17: Organize the walls by creating a new
GameObject (renamed to StartRoom_Walls) and
making all the walls a child of it.

Step 18: Use floor prefabs to create the ceiling. Be
sure the dark sides of the prefabs (if you’re using
floor_01, floor_02, and floor_03) are facing into
the room (Figure 5.14).

Step 19: Group the ceiling pieces into a new group
called StartRoom_Ceiling.

Step 20: If you haven’t lately, save your Scene
(File>Save). Unity is fairly stable, but why
tempt fate?

Step 21: Ensure light can pass through the windows.
In the Hierarchy window, find the glass prefabs
(arc_window_glass, Tilt_window_02_glass,
Tilt_window_03_glass, window_01_glass,
window_02_glass) and select them. In the
Inspector, look for the Mesh Renderer section
and the Lighting area. There change Cast
Shadows:Off (Figure 5.15).

182

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.14 Creating ceiling from floor prefabs.

FIGURE 5.15 Ensuring that our glass prefabs will let light pass through it by setting the geometry to not Cast Shadows.

Why?

Now that there’s a ceiling on the room, it’s dark in there.

Well, it’s dark until the camera compensates. Even

though the material for the glass panes may be set to

be transparent, the geometry still thinks it should stop

light. By making sure Cast Shadows is set to off, light can

stream through the glass. Importantly, by doing this to

the prefabs, every place we have placed the prefabs will

automatically use these settings.

The Directional Light that is default in the scene should

now be streaming through the windows above the

door. Try rotating the Directional Light to see the effect

(Figure 5.16).

Step 22: Add light geometry into the room. Drag
ceiling_light_01 into the room. Select it and, in
the Inspector, go to the Light_2k material, and
in the Emission Inputs area, change the Emission
Intensity back to 0. Figure 5.17 shows one
potential lighting scheme. It uses ceiling_light_01
and ceiling_light_02 placed at the ceiling.

Why?

You probably noticed that before we turned the Emission

Intensity back to 0, those lights were all aglow. This is

183

Unity Level Creation

FIGURE 5.16 Light streaming through our newly non-shadow casting glass panes.

because of our Adaptive Camera. We want to leave it

adaptive for a while longer as we build the geometry out,

but it can cause trouble in a room with low light like this

one. Later, when we are lighting the scene, we will turn

the Emission for the light materials back up.

Step 23: “Dress” the scene. Dressing the scene is the
process of putting props, boxes, vents, pipes,
etc. in the scene to finish it out. Remember to
not put too much stuff in there (the player will
need to move around eventually), but putting
some objects in the scene helps it feel finished.
Figure 5.18 is the solution we built – feel free to
vary to taste. Just be sure to group into a group
called StartRoom_Dressing.

184

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.18 Dressed set. Feel free to adjust as you see fit.

FIGURE 5.17 Placing some lighting geometry in the scene.

Tips and Tricks

The lighting is likely an annoyance at this point. You’ll likely

see some volumetric lighting artifacts and other things

that will bother you. Not to worry. After we get a bunch of

this geometry placed we’ll start in on the lighting and give

the space some real volume and ambiance.

Kitbashing

To “kitbash” is to take a kit of modules and bash them

together into endless variations. You can buy kits to bash,

although here we’ve created our own (which is really the

professional way to work). Hopefully in the previous steps

you got a good idea of the process of placing prefabs,

snapping them into position, and/or rotating, moving,

scaling the parts into a cohesive whole.

For the rest of this chapter, we will move quite a bit faster.

The reason is the specific pieces of the kit that you bash

together aren’t terribly important and you can deviate

from the proposed spaces all you want. However, we

will provide some quick suggestions on putting shapes

together to provide some guidance of the usefulness of

the various pieces of our kit.

Step 24: Create a floor block to roughly match
Figure 5.19. Notice that the center is two floor_01
prefabs. There are pairs of floor_03 on either side
of those with the grate (floor_05) on top of that.

Why?

A module here that is two units long allows for the grates

to be mirrored so the long hallway will have a more

interesting breakup.

Tips and Tricks

Figure 5.19 shows some elements, like the floor_05 grates

mirrored (both from across the walkway and from the one

closest to them). Mirroring is pretty simple in 3D packages,

185

Unity Level Creation

just change the Scale (in the Inspector) to −1 in any one

direction and you’ll have a mirrored mesh along that axis.

Step 25: Fill in some curved walls. Pairs of wall_02
are shown in Figure 5.20.

Step 26: Fill in the ceiling. Select the two center floor
modules (floor_01), duplicate them, and slide
them up to fill in the hole. This will use the dark
side of the floor modules for the inside of the
ceiling. Perfect (Figure 5.21).

186

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.20 Building up walls for the hallway with wall_02.

FIGURE 5.19 Start of a hallway module.

Step 27: Duplicate and organize. Select all the placed
prefabs of this hallway and duplicate (Ctrl-D)
and move. Repeat approximately three times
(Figure 5.22).

Step 28: Organize into EntryHallFloor,
EntryHallWalls, and EntryHallCeiling. Remember
the process is to select the elements of, say,
the walls; hit F to frame and then create a new
GameObject (GameObject>Create Empty).
Rename the empty GameObject and place
the relevant modules as children by dragging
them onto the parent. Finally, create one more
GameObject called EntryHall and make these
three groups a child of it.

187

Unity Level Creation

FIGURE 5.21 Filling in the ceiling with floor prefabs.

FIGURE 5.22 Duplicating the hall module.

Step 29: Dress the hallway. Pipes, lights, boxes,
vents. You know the drill (Figure 5.23). When
complete, make the dressing a child of a new
EntryHallDressing and make it a child of
EntryHall.

Tips and Tricks

There are few rules to this sort of dressing. Dress until you

get tired of the space. However, make sure that objects are

not penetrating each other, and remember that a player

is going to need to walk through this space; so don’t leave

any boxes too far out to trip on.

Step 30: Create the floor for a corner in the
hallway. This requires a little bit of extra real
estate beyond four floor_01 modules; note the
four floor_03 modules tacked onto the edges
(Figure 5.24).

Step 31: Use Turning_wall_01 and Turning_wall_02
to create the inner and outer wall of the
turn. Notice that you need to rotate each of
these 90 degrees in Y. Remember to snap by
vertex to match the end walls of the hallway
(Figure 5.25).

Step 32: Use floor_01 and floor_03 modules to put a
roof on the turn. Don’t worry about parts sticking
out; when we’re inside the hallway we won’t be
able to see them (Figure 5.26).

188

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.23 Dressed hallways.

189

Unity Level Creation

FIGURE 5.24 Building out the extended floor for a turn in the hallway.

FIGURE 5.25 Building in the curves of the hallway with our pre-built curved wall

modules.

FIGURE 5.26 Putting ceilings on using floor modules.

Step 33: Group all of these into a new
HallwayLeftTurn group. This will make this easily
used again later if desired.

Step 34: Duplicate EntryHall, rotate the group
90 degrees and put it on the end of our turn
(Figure 5.27). Tweak as desired.

Step 35: Use wall frame prefabs to provide other
variation to the space. Figure 5.28 shows one
solution using door_frame_flat, door_frame_
top, and wall_corner_frame. Notice the door

190

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.27 Leveraging effective grouping allows us to duplicate the hallway

quickly, rotate it, and build another long chunk of the level. Note that the pipes have

been removed in this version to allow for some other variation.

FIGURE 5.28 Further variations of the hallway using frame modules.

and window solution at the end of the hall (just
duplicated from the StartRoom).

Step 36: Create the CameraRoom. This room will
contain a monitor that the player can come in
and check out security monitors of the facility.
Make sure there is an exit besides the one used
to enter the room, but the specifics are up to you.
My solution is in Figure 5.29.

Step 37: Finish off the room with a bit of height
(floor_02 turning on its side added to the top of
the walls) and some Tilt_02 windows (Figure 5.30).
Finally, duplicate the floor and move it up for
the ceiling.

191

Unity Level Creation

FIGURE 5.29 Roughed out CameraRoom. Note that “CameraRoom” refers to the

name of the group all of these assets end up being the children of. Note that there’s a

temporary Point Light in the scene to help us see what’s happening in there.

FIGURE 5.30 Finishing out the room.

Step 38: Build a platform with stairs. Build per your
own design, but give some difference of height
here for variation. We’ll put the monitor up on
this platform (Figure 5.31).

Step 39: Save.

Tips and Tricks

At this point, we’re starting to have a lot of closed off

spaces. With our adaptive camera, sometimes the lighting

can be goofy to work with. If you find this to be the case,

drop some Point Lights into the scene (I’m using 25 EV100

for its intensity). We’ll delete them later, but they can be

useful while constructing inside a closed room.

192

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.31 Built platform with stairs. Build to taste.

FIGURE 5.32 Placed monitor using Monitor_02 and monitor_mounter.

Step 40: Add a monitor. Figure 5.32 uses Monitor_02
and monitor_mounter.

Step 41: Dress the room. Jingtian Li’s original design
of the space uses lots of dangling cables and
vents. Design as you prefer (Figure 5.33). Be sure
to group the dressing (CameraRoomDressing)
and make the dressing a child of CameraRoom.

Step 42: Create a new long hallway as we move
towards the entrance to the StorageHanger
(which we haven’t built yet). This time, use
the techniques we’ve looked at before but
look at creating a more complicated wall
unit (Figure 5.34) for one side, and use glass
windows for the other (Figure 5.35).

193

Unity Level Creation

FIGURE 5.33 Dressed out CameraRoom.

FIGURE 5.34 More complicated module collection for one side of the long hallway.

Step 43: Create a small armory (where the player
will get their first weapon in the game) towards
the beginning of this newly created long hallway
(Figure 5.36). Try using some of the modules we
haven’t used yet, particularly the arcs.

Step 44: Assemble the entry way and staircase to the
StorageHangar (Figure 5.37). This should be at
the end of the StorageHangarHallway.

Step 45: Map out the general shape of the
StorageHangar by building the floor. The specific
size is unimportant, but this is meant to be a
large storage space (Figure 5.38).

Step 46: Create some lower wall modules. Explore
new pieces and combinations (Figure 5.39).

194

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.36 Creating the small armory using some of the arc modules.

FIGURE 5.35 Utilizing some of the other modules we have to allow us a glimpse

outside, although we’ll adjust this in a bit to allow for the Armory.

Step 47: Finish off the lower walls. Figure 5.40 shows
one solution that includes some glass to see
outside. Notice that importantly, there is another
entrance (or for us exit) on the far side where we
will face the final boss.

195

Unity Level Creation

FIGURE 5.37 StorageHangarEntry.

FIGURE 5.38 StorageHangar floor mapped out.

FIGURE 5.39 New combinations of modules to create more sophisticated

combinations.

Step 48: Create a vaulted ceiling using the tilted
window collections. No rules here besides
completing the roof, but Figure 5.41 shows one
solution.

Step 49: Fill the ends of the roof off using windows
and the previously unused Tilt_04 (Figure 5.42).

Step 50: Begin filling in the StorageHangar with stairs
and catwalks. Remember that among the prefabs
is one called floor_5_support to make sure there
aren’t any floating objects (Figure 5.43).

196

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.40 Finishing off the lower walls of the StorageHangar.

FIGURE 5.41 Creating the roof using tilted windows.

FIGURE 5.42 Finishing off the dormers with windows and Tilt_04.

Tips and Tricks

In a big closed in space like this, a bit of rough lighting

will make the process much easier. For the screenshots

given for this section, there are several Point Lights placed

within the scene. Later we’ll get rid of those, but it makes

this part much easier.

It’s also fairly tricky to be figuring out where to place the

catwalks. In fact, it’s likely that once you start to play your

game, you will find that the flow of the level needs to be

adjusted. Not to worry, since the scene is entirely modular,

if we need to come back and adjust later, we certainly can.

One note to keep in mind is that we want to help the

player know where the other exit is. So if the layout of

catwalks and later boxes and other props can help guide

the player just a little bit, they will fail to curse your name

as they wander, lost through the space.

Step 51: Dress the set. Add boxes, crates, pipes,
cables, etc. Take special note to make sure the
exit door is easy to identify and that it looks
important (Figure 5.44). Be sure to be organizing
with groups as you go along.

Step 52: Build an entryway to the final boss room.
This is just the typical quiet respite space games
often provide players before the final battle.
To continue to provide vertical variation, we’ve

197

Unity Level Creation

FIGURE 5.43 Catwalks and stairs to begin filling out the space. This screenshot

taken with the ceiling turned off in the Inspector.

used a sequence of stairs (Figure 5.45). Adjust as
you’d like.

Step 53: Build the FinalBossRoom. Design the space
as you’d like. Do keep in mind, however, that this
area will need enough open space for the player
to run around during the final battle. So while
you’re designing the space and dressing it to be
a visually engaging experience, be sure that you
allow for plenty of play area too. Figure 5.46 is
the space we built. Organize as you go, and be
sure to use the Hero prefab (obviously).

Tutorial Conclusion

There are lots of ways to build an interpret this level.

Jingtian Li’s modules are designed in a way to allow

for most any configuration. Jingtian Li’s layout of

the boss room, for instance, differs significantly than

the interpretation seen in Figure 5.46 – and yours

undoubtedly will as well. No matter how you layout the

level, you’ll likely eventually adjust.

198

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.44 Dressed StorageHangar with emphasis on exit door.

FIGURE 5.45 Entryway to the final boss space.

Tutorial 5.2: Walking Through

Up to now, we’ve been moving through the level using Alt-

Left, Middle, Right Mouse drag, or Right-Mouse + WASD to fly

through the space. However, neither of these are the way the

game will be played. The design of this game is a first-person

shooter, and we should make sure we can move through the

space and experience it like the player would. Plus, it’s a bit

of a thrill to move through the space as a player.

Historically, Unity had built in a couple of controller

mechanisms. In recent years, they released a ball roll,

third-person, and FPS controller in a package called

Standard Assets. This was a bloated package of tools, but

once it was in your scene, you could easily pick a lot of

ways to move through a space, and explore a bunch of

sample assets. Unfortunately, at the time of this writing,

Standard Assets has been discontinued. Unity was

soliciting feedback on what to include in an updated

package; but it hasn’t yet been released. This is shameful

for Unity and they need to get this put right soon; but for

now we need to look at how to work around this problem.

On the Unity Asset Store (Window>Asset Store), there are

thousands of assets created specifically for quick import

into Unity. Some are free, and some are not; but the assets

are built for use in Unity, and usually implementation is

fairly painless. There are quite a few FPS Controllers within

the asset store, and some are quite expensive (although

199

Unity Level Creation

FIGURE 5.46 FinalBossRoom.

very powerful). For us, we will be using the FPSController

that originally shipped with Standard Assets. We’ve pulled

it out of the old Standard Assets package, cleaned it up a

bit, and made it available for download.

Step 1: Download FPSController Unity Package.
To get it, just go to the support website and
look into this chapter’s support assets. Look for
FPSController and download it.

Why?

This file is a Unity Package File, which are zipped archives

that can include anything from models to animations,

to scripts, to all of the above. Although up to now we’ve

simply saved things that we planned to use in Unity into

the Assets folder, for Unity Package Files we need to do

this just a little differently.

Step 2: In Unity, import the FPSController package.
Go to Assets>Import Package>Custom
Package…Track down where your downloaded
package is (likely in your Downloads folder) and
click Open. You’ll be presented with an interface
like Figure 5.47. Click Import.

Why?

Notice that this includes quite a few items. There are

several scripts in there, readme, and even some geometry.

This is the power of a Unity Package – it’s not only an

import, but it maintains the proper file structure for the

imported assets.

When this is done, you will notice a new folder in the

Project window called Standard Assets. In general, don’t

move anything into or out of this Standard Assets folder.

The organization is important to the functionality of the

FPSController we’ve just brought in.

Step 3: Put the FPSController into the StartRoom.
In the Hierarchy, select the StartRoom and hit F
to frame it. Navigate so you can see inside of it.
In the Project window, expand the windows to

200

Creating Games with Unity, Substance Painter, & Maya

navigate to Standard Assets>Characters>FirstP
ersonCharacter>Prefabs. Drag the FPSController
prefab from the Project window into the Scene
window. You may need to move it up so that it
isn’t sitting in the floor (Figure 5.48).

Why?

FPSController is a weird looking thing at first glance. There

are a lot of gizmos drawn there. You can see the green

capsule shape that is the collider, the camera, the audio

source, the frustum of the camera, etc. Don’t get too

caught up on any of it for now. We’ll be looking at all the

components attached to this over time.

201

Unity Level Creation

FIGURE 5.47 Importing a Unity Package. In this case, we’re bringing in the scripts and file structure for the Unity-built

FPSController.

The one note that is important here though is that when

you want to move the FPSController, be sure to select it

in the Hierarchy (not the Scene) as you want to make sure

you get all of it (not just, say, the camera).

Step 4: Delete the Main Camera. When we first
created the scene, Unity created a Main Camera.
If you’ve been noticing the Game Window, the
view presented there was from this camera.
For now, we only want one camera – the one
attached to FPSController. So, in the Hierarchy,
select Main Camera and hit Delete on your
keyboard.

Why?

Two cameras in a scene can be bad news. For one thing,

it means that the scene is being drawn twice (more

work than we want for the computer to do). For another,

both cameras have Listeners on them that define how

the player hears sound in the game – think of them as

microphones. If there are two Listeners, Unity isn’t sure

which to capture sound from. For now, we want to make

sure the only camera in the scene is the one attached to

FPSController.

Step 5: Resize the FPSController. In the Hierarchy,
select FPSController and then in the Inspector
change the Scales X, Y, and Z to 0.8.

202

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.48 Placed FPSController.

Why?

Unity’s default FPSController is two units tall. Two units in

Unity is 2 meters. This means the default character is over six

and a half feet tall. Resizing to 0.8 makes the character much

closer to the size of the character we will actually play as.

Step 6: Make a Point Light a child of FPSController.
Select GameObject>Light>Point Light. Make
the Point Light a child of the FPSController in the
Hierarchy. Select the Point Light and change its
Intensity to 25 Ev100. Expand Shadows and, under
Shadow Maps, click Enable and under Contact
Shadows click Enable again (Figure 5.49).

203

Unity Level Creation

FIGURE 5.49 Rough settings for the Point Light we’ve attached to the FPSController

in the scene.

Why?

So far we’ve done a lot of modeling, but no real lighting.

You may have created a few point lights in the scene to

help with modeling, but otherwise the level is going to be

pretty strange. This Point Light is a crude way of sticking

a lantern on our head so we can see things as we move

around. It’s not going to be a terribly flattering way to view

our level (that will come next chapter when we light it), but

we’ll be able to see what’s happening in the scene.

Step 7: Play the game to discover you’re locked
in the room. At the top-center of your Unity
interface are three buttons (Figure 5.50). The one
on the left is the play button, which will allow
you to play your game. Notice that Ctrl-P is the
keyboard shortcut for this and is generally the
best way to jump in and out of the game. When
you hit play, look in your Game window and use
your mouse to look around and WASD to move.
You’ll be able to move around in the room, but
not leave it.

Why?

Because everything has a collider on it, we luckily

don’t fall through the floor. But that means we also,

unluckily, can’t walk through the doors. Later, we’ll

create some script that will open the doors as we get

close. For now, we need to adjust them so we can walk

through them.

Step 8: Turn off the Mesh Collider for the doors. In
the Project window, track down where your
door prefab is (in mine it’s in the Prefab folder).
Double-click it to open the Prefab in the Prefab
Editor window. Don’t worry, your scene is still
there, we’re just editing attributes of this prefab.
Notice that the Hierarchy only shows the parts

204

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.50 The Play button in Unity to try experiencing your work in the Game

window.

of the door. Select door_l and in the Inspector,
check off the Mesh Collider component (to turn it
off). Repeat for door_r. Notice that in the top left
of this window you can see something similar to
Figure 5.51. When “Scenes” is clicked, you’ll exit the
Prefab editor and get back to your Unity scene.

Why?

By turning off the Mesh Collider for the door prefab, all

the doors that we’ve place everywhere in the scene will

now no longer have a collider. This means we’ll be able to

just walk through the doors. It’s the power of the prefab.

If we make changes to the original, all the instances of that

prefab inherit that change.

Step 9: Play the game again and you’ll be able to
pass through the doors.

Conclusion

Lots still to do. Hopefully, at this point, you feel

accomplished that you’ve built the level, but unsatisfied

as the lighting is so lame. Lighting is a critical part of the

design process that has not only functional uses (if we

can’t see it’s a boring game) but also artistic functions as

it can be one of the most effective ways to add ambiance

and mood to a scene.

In the next chapter, we’ll tear into Unity’s lighting tools.

Using HDRP, there are some really yummy functions to

explore. We’ll move our scene from clunky to gloriously

spooky.

If you’d like to see the results of this chapter, we’ve included

the Unity project in the Support files on the website.

205

Unity Level Creation

FIGURE 5.51 To exit the Prefab editor, just click on Scenes at the top left of the

Scene window.

Post Script

In the next chapter, when we do lighting, our concept is

that our incursion is happening at night under the cover

of darkness. The lighting schemes are more dramatic

that way. However, there certainly is a case for a daytime

lighting scenario. The problem is that we can look out the

window and see the outside of our facility and it doesn’t

look good. We’ve constructed the facility to be lovely from

the inside, but the outside is just the backsides of our

interior shapes (Figure 5.52).

Lots of solutions here: we could make the windows less

transparent, we could swap them out with a solid shape

instead of windows, or we could mask out the rest of

the building. Masking might be the most fun. It’s really

beyond the scope of this book, but Unity has a fun Terrain

modeler that allows for the creation of Terrain objects

(GameObject>3D Object>Terrain) that, using a variety of

built-in brushes, allow for the quick painting of rises in

altitude (Figure 5.53). Grab a few free assets from the Asset

Store (just search for Terrain maps or terrain trees) and the

terrain can quickly take shape (although there are some

restrictions in HDRP).

Alternatively photogrammetry is a technology that is very

exciting in game engines right now. Epic Games (which

makes the competing engine Unreal) recently purchased

206

Creating Games with Unity, Substance Painter, & Maya

FIGURE 5.52 Lovely daytime lighting – except that we can see parts of the facility

we oughtn’t.

Quixel, which had a great library of scanned objects. It

is subscription only, and since Epic now owns it, Quixel

MegaScans are not as easy to get into Unity as they once

were. However, scanned objects can still be downloaded

and placed into Unity. Or take a quick search on the Unity

Asset store and search for “photogrammetry.” Lots of free

and inexpensive scanned objects.

Importing into HDRP sometimes take a little bit of

tweaking. The objects will usually come in all pink as they

are using another type of shader. But with a little bit of

rebuilding (change the Material type to HDRP>Lit, and

then plug in the Abedo maps into the Base Map), you can

produce some nice output (Figure 5.54).

Having said that, we are likely to not see much of this in our

version of the next chapter because of our lighting choices

there. But it’s an easy thing to implement if you need it.

207

Unity Level Creation

FIGURE 5.53 Roughing out using Unity’s Terrain.

FIGURE 5.54 Blocking out unsightly areas with a bit of free downloaded

photogrammetry.

https://taylorandfrancis.com

CHAPTER 6

Lighting and Baking

Time for the sexy stuff: lighting! Lighting can be one of

the most effective ways to add a visceral, emotional, and

impactful atmosphere. Bad lighting can make the most

beautifully modeled and textured assets look like ancient

technology, while good lighting can make a mediocre asset

look AAA. Of course, by the time you’re done with the scene,

your incredibly crafted assets are going to look even better!

There are some core ideas that we need to cover before

diving into Unity’s lighting system. The first is that

lighting, and its accompanying shadows, bounced light,

ambient occlusion, and other natural phenomena, can be

expensive to render – particularly in real time for games.

209

High-end software rendering solutions like VRay and

Arnold have been used for years in film, and the output

there is amazing. However, it’s not unusual for a beautiful

VRay frame to take 12 hours to render. In games, where

we expect 60 frames to be rendered every second, this is

clearly not a workable solution.

When we play games, we are heavily reliant on the video

card to make the lighting and rendering calculations

quickly. And while video cards are becoming increasingly

sophisticated (just take a look at Realtime Raytracing that

is just now making its presence felt on games), we still

need to do some careful thinking about hardware-driven

lighting to make it useful, effective, and, most important

of all, keep the game moving.

At its core, there are two and a half different ways of

thinking about lighting:

Real time – This is lighting that is calculated every
frame. Every pixel on the screen is the results
of all the lighting sources in the scene being
accounted for, including where the lighting
emission is blocked by some other geometry
(resulting in shadows). You want a flashlight
in the hands of the player? Gotta be real-time
lighting. Want to be able to hit a hanging light so
that it swings wildly? Gotta be real-time lighting.

Some forms of real-time lighting are not
prohibitively expensive and can be used in
games. A direct light ray that shoots off in
a direction and dies when it hits a surface
is not going to break the rendering budget.
But if we expect that light ray to bounce off
a surface and that surface absorb the light
spectrum that represents the color we see,
and then have the resulting light ray repeat
as it strikes another surface with different
color attributes, well, this is beautiful, but
computationally heavy and therefore pricey.

Baked – This is a lighting scheme in which a
game engine pre-computes lighting (including
the complex scenario of bounced light). The
pre-computed lighting is then “baked” into
the texture information of the surfaces of the
game. Think of this like painting a shadow on
the floor (or wall). Because these shadows and

210

Creating Games with Unity, Substance Painter, & Maya

illumination are painted onto the surface, the
computer can take much longer to calculate
much more sophisticated renderings. Want a
photorealistic interior? It’s probably baked. Want
effective bounced light that picks up color as it
hits a red wall? It’s probably baked.

Baking light puts all the rendering
time up front on the developers side, so the
player’s machine doesn’t have to work quite
so hard. This can make for very sophisticated
lighting schemes and visual impact for the
player – as long as nothing moves. You see,
with baked lighting, if a shadow of a chair is
baked onto the floor, when the chair moves
the shadow remains where it was baked.
So baked lighting is most effective in a truly
static environment where lighting and
geometry are not going to change.

Mixed – This is a combination of the two. Mixed
lighting schemes bake much of the lighting in,
but leave some of it to be rendered in real time.
This means that looking down a long hallway
can display beautifully pre-rendered lights, but
the hanging light right above the player can
be bumped, and then the lights and shadows
it causes change. This usually take a little more
work on the developers side, but the results can
be very effective.

What It Means for You?

Many feel that baked lighting will eventually go away and

that all lighting will become real time as the hardware

grows in power and sophistication. This is likely true,

although we’ve been told for decades that eventually

polycounts won’t matter as computers will just get fast

enough to draw anything. But, as each generation of

hardware emerges, our expectations of visual accuracy

and artistry evolves. What once was cutting edge (seen

the original Toy Story lately?) seems quaint and flat today.

The point here is that understanding lighting, baking, and

how to effectively use it will definitely still be around for

several years to come. And while the game engines arms

race continues to rage (we, the users, benefit by this),

exploring the different techniques in lighting will always

be part of the game.

211

Lighting and Baking

Unity Lights

Let’s start by first taking a quick look at the different

types of lights that Unity provides. For a quick exercise,

Save your scene (File>Save) and create a new scene

(File>New Scene) as a playground. In this playground,

create a plane (GameObject>3D Object>Plane). Hit F to

focus on it.

Create a few simple shapes (I created four spheres) and set

them atop the plane (Figure 6.1).

Notice in the interface there are lots of Gizmos (the little

symbols that represent construction objects (in this case

the Main Camera, Directional Light, and Sky and Fog

Volume)). Each of the Gizmos shown in the Scene window

is represented in the Hierarchy.

There is already some light in the scene. Some of it comes

from the Directional Light, and some comes from the

HDRI Sky that we activated in the Project Settings.

Directional Light – Think of directional lights as
things like sunlight or moonlight. If you select
the Directional Light, you can see that it has
little rays that indicate the direction the light is
coming from and going to. Directional Lights
produces light rays that are all in parallel to
each other. The illumination from Directional

212

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.1 Playground with the default scene lighting.

Light comes from infinitely far away and is
thrown for an infinite length (no falloff).

Depending on how your camera is
interpreting the scene, the default intensity of
the directional light can be very low (as it is in
Figure 6.1). Notice that, by default, Unity lights
to not cast shadow, but they can be activated
in the Inspector under the Shadows>Shadow
Map>Enable. With the Directional Light
selected, you can adjust the brightness in
the Emission area and add a couple 0’s to
the Intensity value (Figure 6.2). Since we’re
doing an interior scene, we won’t worry too
much about this lighting type; but while we’re
here, notice that there’s a Color Temperature
area that, when activated, will allow you
to adjust the color temperature of the light.
Finally after you’ve played with it, delete the
Directional Light from the scene.

Point Light – Point lights are most analogous to a
light bulb. The light comes from a point in space
and emits in every direction. Try and create one
(GameObject>Light>Point Light) and place it in
your scene in a place that makes sense. Select it
and then, in the Inspector, change the Intensity
to 25 Ev100. Again notice, no shadows, but
they can be added under Shadows>Shadow
Map>Enable (Figure 6.3). There is one other point
to note with this light: notice that there is a big
light yellow sphere centered on the light. This is
the Range of emission for the light. Any objects

213

Lighting and Baking

FIGURE 6.2 Directional lights throw parallel lights from infinitely far away an

infinite distance. Notice by default they don’t cast shadows.

outside of this range (which can be adjusted by
dragging the tiny yellow squares on the Range
sphere or in the Inspector in the Emission section
and the Range numerical value) will not receive
any illumination for this particular light source.
The combination of increasing/decreasing the
Range and increasing/decreasing the Intensity is
part of the balance for controlling the brightness
for lights in Unity. Play with the light for a minute
and then delete.

Spot Light – Figure 6.4 shows a Spot Light placed
in the scene (GameObject>Light>Spot Light).

214

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.3 Basics of a Point Light.

FIGURE 6.4 Spot Light in action.

This light works like the lights we’ve looked at
(Intensity, Range, Shadows, etc.), but it also has a
Shape attribute. The shape attribute allows you
to change the shape from a Cone to a Pyramid
or Box, and it also (importantly) allows for the
Outer Angle and Inner Angles to be changed. Try
it and see how these angles can be changed in
the Inspector or the Scene view. Notice that if the
Outer and Inner angles are a long way from each
other, the edge of the illumination is soft. But if
these get to be the same value, the light becomes
focused and the edges hard. Experiment and
delete.

Area Light – Real-time Area Lights are an
interesting evolution in lighting. In previous
versions of Unity, Area Lights could only be
baked, but now this light (that you can think
of as a light box) can be used in real time.
Create one, turn on Shadows, and turn up the
Intensity (Figure 6.5 shows 30 Ev100). Notice
that the shadows are very soft. This is because
an area light produces light that doesn’t come
from a single point in space (like a Point or
Spot Light), but rather frames a rectangle
shape. This rectangle shape can be adjusted in
the Shape part of the Inspector although the
other shapes have limitations on whether they
work only in Real time (Tube) or Baked (Disc).
For most cases, the Rectangle shape is going to
be the winner.

As an experiment, change the size of the
Rectangle. You’ll see that the size of the Area
Light has a direct correlation to the amount
of illumination it provides.

215

Lighting and Baking

FIGURE 6.5 An Area Light.

Tutorial 6.1: Lighting the Scene

For the remainder of this chapter, we’re going to be using

these lighting instruments in our scene. There are other

attributes to these lights that we didn’t cover in the above

discussion, but we’ll get to many of them in the course of

the following steps.

Further, in this tutorial we will be Baking to see the effects

of the lighting choices we make in a baking situation

and how to actually bake a mixed lighting situation.

Finally, we’ll look at completing the look of the game by

wrangling Unity’s postprocessing effects to refine the look

of the scene.

Step 1: Close the experiment scene (Don’t Save) and
open MainLevel.

Step 2: Get to a blank lighting slate. At the top of
the Hierarchy is a search field. There type “Point
Light”. This will identify all the point lights we
may have created as we were modeling. Select
them and delete them. In the search input field,
click the little “x” to show everything in the scene
again.

Why?

We’re working on lighting this for the evening. As such

we don’t want a bunch of random lights we may have

inserted during building in our scene. We will be working

with practical lights (lights the player can clearly see the

source of), and mood lights, but we want to start with a

tabula rasa.

Step 3: Disable the Directional Light. In the Hierarchy
find Directional Light, and then in the Inspector
check off the check-box next to the words
Directional Light. This will turn the light off, but
not delete it (we’ll use it again later).

Step 4: Import alternate skyboxes/HDRI skies. Go
to the Asset Store (Window>Asset Store). There,
search for AllSky; you’ll find a free asset “AllSky
Free – 10 Sky/Skyboxes”. Click it, then Download,
and Import. In the Import Unity Package
window, click the Import button. This import

216

Creating Games with Unity, Substance Painter, & Maya

can take a little while. When this is done, there
will be a new folder in the Project window called
“AllSkyFree”.

Why?

AllSky is a nice collection of assets for – you guessed

it – skies. The paid version is worth every penny, but the

free version has some nice assets we can make use of.

Incidentally, skyboxes (the asset used to contain skies) can

be created from many other downloadable assets. Using

something like HDRI (high dynamic range images) can

determine how the ambient light in the scene appears. As

an example, Figure 6.6 shows the sample scene using a

variety of HDRI-based skies. Besides the obvious changes

to the color of the sky, the results on the geometry are

also clearly seen.

Step 5: Plug in AllSky_Night_MoonBurst_Equirect
as the HDRI sky. In the present scene, the HDRI
sky is stored in the object Sky and Fog Volume.
In the Hierarchy, find this object and expand
the HDRI Sky section; there is an input field
called “Hdri Sky” that should be checked. In the
AllSkyFree folder, expand any of the folders and
look inside for the cubemap asset (Figure 6.7).
Drag that cubemap into the HDRI Sky input field.
Experiment with several to see the effect, but
in the demo we ended up with the asset in the
Night_MoonBurst folder (Figure 6.8).

Tips and Tricks

This is definitely a bug. Closing the Unity project and

then opening it up again will yield the HDRI sky reverted

to default. Hopefully that is fixed by the time you are

217

Lighting and Baking

FIGURE 6.6 Identical lighting, with different HDRI-based skies and the resulting

changes in ambient light (global illumination).

reading this; but if not, and you open the scene to see

all the lighting seemingly changed, just remap as above

upon reopening the file.

Step 6: Change the camera to a fixed exposure.
Choose Edit>Project Settings. On the left, click on
HDRP Default Settings. On the right, scroll down
to Volume Components>Exposure. Change
the Mode: Fixed and the Fixed Exposure: 8.5
(Figure 6.9).

Why?

That Automatic exposure we were working with was fine

while modeling. But with a camera that is continually

adjusting, it is impossible to light. For instance, with

218

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.7 A Cubemap asset. Notice there are lots of other assets in the folder, but

the Cubemap is the required one to define the sky.

FIGURE 6.8 Results of the Night MoonBurst HDRI Sky.

Automatic exposure selected, the HDRI Sky exposure

could be changed to almost any value and the output

would remain the same – the camera would simply be

adjusting to let the same amount of the light into the

camera even though there was more light in the scene.

Fixed mode (although you may choose to go back to

Physical camera later) will provide us a constant intensity

as we build the lighting scheme.

The Power of Prefabs

The power and workflow of prefabs has been covered in

earlier chapters, but it is worth repeating. When a prefab

is placed in the scene, Unity is instancing that prefab.

That is, it is creating an instance (or a copy that is still

linked to the original) of the prefab. This means, if we

adjust the prefab, all the instances of that prefab are also

updated.

219

Lighting and Baking

FIGURE 6.9 Setting the camera exposure to a fixed amount. Notice the inside of the level will be very dark – just like we need it.

This will be useful for us as we have been placing the

geometry for lights throughout the scene. Now, if we add

a light object to the light geometry prefab, every place

that we placed a prefab light will suddenly also have a

Unity light attached. It will be so effective, in fact, that we

might find that we need to delete some of the lights.

Let’s start figuring out our lighting choices in the

StartRoom (where the FPSController is at). In the

Scene window, you may need to turn off lighting (light

bulb button at the top left) since the scene will be

very dark. Then navigate so you are inside the room

(Figure 6.10).

Step 7: Add a Spotlight to the prefab ceiling_
light_01. In the Project window, find the ceiling_
light_01 prefab (Prefabs>Props). Double-click it
to open the Prefab Editor. Create a spotlight with

220

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.10 Getting ready to light (the Game window will be really dark). This is the Scene window with lighting temporarily

turned off.

GameObject>Light>Spotlight. In the Inspector,
change the Position X, Y, Z to 0 to make sure it is
lined up with the geometry. Then move it down
in Y to approximate Figure 6.11.

Step 8: Adjust the spotlight settings. In the Inspector
(with the Spot Light still selected), change the
Outer Angle so that it roughly approximates the
bottom of the geometry (with my placement
this ended up being about 70). Adjust Intensity:
25 Ev100. Enable Shadow Map and Contact
Shadows (Figure 6.12). Finally, go back to the
Scene window by clicking Scene at the top left of
the Prefab Editor window.

Step 9: Re-enable lighting in the Scene window to
observe the mess (Figure 6.13).

Why?

What a mess. It’s actually pretty easy to clean up, but

this is often what happens with first guesses. Let’s break

down what is happening there. The dirty volumetric light

and big rings on the floor are because the light course

is up inside of the geometry and the rings of the light

are casting a shadow. The intensity might be a little hot

as well.

221

Lighting and Baking

FIGURE 6.11 Placed Spot Light.

222

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.13 The results of our initial pass at lighting.

FIGURE 6.12 Initial guess at the necessary settings for the spotlight.

Step 10: Still in the scene window, track down the
instance of ceiling_light_01 (just click it). In the
Hierarchy, the instance will show the Spot Light
object that is a child of the ceiling_light_01
geometry. Select it, and in the Inspector, find
Shadows>Shadow Map>Near Plane. As that
slider is moved to the right, watch carefully in
the Scene view. There a circle will descend from
the Spot Light’s origin to define this near plane
(Figure 6.14).

Step 11: Adjust other settings including Outer Angle
and Intensity. Figure 6.15 shows the results of
increasing the Outer Angle to 80 and reducing
the Intensity to 20. It keeps the light from being
blown out on the surfaces, but also allows a bit
more light in the room.

Make Way for Cookies!
Well, not those kind. Cookies in Unity reference a sort

of shadow casting effect on lights. In theater terms, this

would be known as a “gobo” – a piece of tin that is put

between the bulb and the lens of a theater instrument

that can give the effect on the lit stage of leaves that

aren’t really there, or light coming through a window

when there is none. For us in 3D, a cookie will help us steer

223

Lighting and Baking

FIGURE 6.14 Adjusting the Near Plane changes where Unity begins calculating

shadows from.

clear of the too even, too “computery” look that the Spot

Light currently has.

Technically, cookies are just images. Although they can

be in color, they are usually in grayscale. Usually, they are

square images that have a completely black border. There

are loads that can be downloaded online (just Google

“Unity cookie”), or you can build your own. For this

exercise, there are two included on the support website in

the Support Files folder for this chapter (SpotLightCookie.

jpg and FlashlightCookie.jpg).

Incidentally, there are more effective ways to create more

believable lights. IES (Illuminating Engineering Society)

files define specifically how different types of lights work

in both real and virtual worlds. UE4 allows for IES profiles

to be used directly in the engine and is a real shortcoming

for Unity. However, IES is on Unity’s roadmap and will be

welcome when it finally arrives. But since it isn’t currently

implemented, we’ll work with the next best thing: cookies.

Step 12: Create space in the Cookie Texture Atlas.
Access the Cookie Atlas by going to Edit>Project
Settings. On the left, choose Quality>HDRP. On
the right, click on the HDRenderPipelineAsset
profile near the top and scroll down to the

224

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.15 Continuing to refine the Spot Light.

Lighting section and expand Cookies. Change
the 2D Atlas Size: Cookie Resolution 1024
(Figure 6.16).

Why?

A Texture Atlas is a single file that holds the textures for

multiple objects. In this case, Unity is going to create an

atlas to store cookies. A 1024 atlas can store four 512 × 512

cookies. It stores these cookies in memory (which ties

up resources) but doesn’t require extra draw calls (the

process of actually drawing something) if more than one

is in the scene. This is new to Unity, but if you don’t clear

space in the Cookie Texture Atlas, Unity will complain

loudly when it is applied to a light.

Step 13: Import the cookies. In the Project window,
create a new folder called “Cookies”. Download
the two images (Flashlight_Cookie and
SpotLight_Cookie) from the support file for this

225

Lighting and Baking

FIGURE 6.16 Increasing the Cookie Texture Atlas to allow for multiple cookies.

chapter and then either drag the files from the
finder into your Cookies folder, or right-click
on the Cookies folder and choose Import New
Asset…and bring them in that way.

Step 14: Adjust the import settings. In the Project
window, select both Flashlight_Cookie and
SpotLight_Cookie. Then, in the Inspector
window, change Alpha Source: From Gray Scale.
Change Wrap Mode: Clamp. Finally, in the
Default tab, change Max Size: 512 (Figure 6.17).
Click the Apply button.

226

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.17 Important import settings for Cookies.

Why?

In previous versions of Unity, the images actually had to

be imported as Cookies. But HDRP prefers that they come

in as Default setting. However, the Cookie texture needs

to know which parts are to let light through, so changing

the Alpha Source to “From Gray School” allows Unity to

add an alpha channel to the image and allow light to

pass through white pixels but be stopped by black ones.

Finally, changing the Max Size to 512 makes sure that both

images come in as 512 × 512 and fit into our 1025 Cookie

Texture Atlas.

Step 15: Apply SpotLight_Cookie to the Spot Light.
In the Hierarchy, select the Spot Light we’ve been
working with and look in the Emission section for
the Cookie input field. From the Project window,
drag SpotlLight_Cookie into the Cookie input
field in the Inspector. The results should look
like that shown in Figure 6.18. You may need to
adjust the Intensity as cookies usually change
how bright a light shows.

Step 16: Apply Spot Light changes to all the prefabs.
In Hierarchy, select the ceiling_light_01 that is
the parent of the Spot Light. In the Inspector, look
for an Overrides drop-down menu on the Prefab
line (Figure 6.19). Click the Overrides drop-down
menu and select Apply All.

227

Lighting and Baking

FIGURE 6.18 Spot Light with cookie.

Why?

Working in the Prefab Editor has its limitations. We never

would have been able to see what intensity was

appropriate for the light (for example) in that interface. But

when we changed the settings in the Scene window for the

Spot Light, it was only changing that particular light (not

all the lights attached to all the other ceiling_light_01s). By

applying the Overrides, we have instructed Unity to apply

these changes to all instances of the prefab (Figure 6.20).

228

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.20 Applying Overrides to a prefab propagates the changes everywhere

that prefab appears in the scene.

FIGURE 6.19 Applying the changes made to a single instance of a prefab to all

instances of a prefab.

Step 17: Repeat the process for ceiling_light_02
but use an Area Light. In the Project window,
double-click on ceiling_light_02 to open
the Prefab Editor. Create an Area Light
(GameObject>Light>Area Light). Move it down
below the light cylinders and use the little yellow
box handles to change its shape to mimic where
the light would be coming from. Change the
intensity to about 15 EV100 (we’ll undoubtedly
change this later) and enable Shadow Map
(Figure 6.21). The result in scene should look
something like that seen in Figure 6.22.

229

Lighting and Baking

FIGURE 6.21 Placed area light with adjusted settings.

FIGURE 6.22 First pass at Area Lights.

Step 18: Play the game and see what it looks like from
the player’s perspective. Make adjustments as
needed. Figure 6.23 shows choices where both the
Area Light and Spot Light used Color Temperature
and were pulled a little colder (bluer).

Tips and Tricks

Cookies don’t work in Area Lights. Even though Unity has

left a Cookie input field there for the area light, don’t even

try and add something there. It usually breaks the Cookie

Texture Atlas. Hopefully they’ll remove this in future

versions, but for now, ignore that an Area Light even has

the option.

Step 19: Add an area light for the floor light.
Figure 6.24 shows roughly the solution we used.
Note that because the area light is smaller, the
intensity has to be a little higher to compensate.
Remember to turn on Shadow Maps.

Tips and Tricks

The Gizmos (the icons that represent things like Lights)

can sometimes get in the way. If they are, look at the top

of the Scene window for the Gizmos pulldown menu.

There you can change the size of Gizmos in your scene.

Step 20: Adjust the material to make the surface look
lit. We turned this down and off earlier so we could
see what was going on when we were constructing

230

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.23 Results of small tweaks after playing the game.

the level; but now it’s time for it to be back. Select
any of the geometry for any of the lights and in
the Inspector scroll down until Light_2k is visible.
Under the Emission Inputs, make sure the Emission
Intensity is set to a non-zero value. Since our scene
used a slightly blue color temperature, we also
adjusted the Emissive Color a bit (Figure 6.25).
Season to taste (Figure 6.26).

Step 21: Make sure all of your prefab lights have
passed the changes made in the Scene window
to all the prefabs. Remember to do this by
selecting the altered prefab (in Hierarchy) and
then, in the inspector, choose Overrides>Apply
All. Do this for each prefab (remember the

231

Lighting and Baking

FIGURE 6.24 Prefab Editor placing another area light.

FIGURE 6.25 Making the geometry appear emissive again.

prefab – not the light – has to be selected
to do this).

Step 22: Save.
Step 23: Reward yourself by running around the

level. Play the game. You’ll find all the places
you had already put lights in will now be lit.
In general, the level is likely too dark (we haven’t
baked in any bounced light). But the scene
should start to take shape.

Step 24: Make some decisions about the directional
light. Now, try turning the Directional Light
back on in the Inspector. It likely is way, way too
bright, and the Intensity will need to be brought
down considerably (Figure 6.27 uses an intensity
of 5000). But give it a look. Rotate it to create
different angles in the scene and make the Color
Temperature very, very cool (blue, like moonlight).
There are definitely reasons for and against it.
If you use it, you’ll need to consider masking
the outside of the buildings as discussed in the
last chapter. But it can have some lovely effects
through the windows. Explore your preference.

232

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.27 Without and with the Directional Light. Each tells a different tale, and

there isn’t necessarily a better choice. You chose.

FIGURE 6.26 Lighting so far with emissive shaders again.

Baking

Currently, everywhere the player looks they are seeing

real-time lighting. There are some benefits to this. For

instance, if we wanted to design game play that allowed

some of the boxes to be moved, real-time lighting would

be needed to update as the pieces moved. However, there

are also some drawbacks. For instance, if you have a small

video card you might be starting to run up against some

performance issues where your machine is unable to draw

the scene smoothly or interact quickly. Further, the lights

that are in the scene light the surfaces they strike, but that

light largely dies there. It does not bounce and further

illuminate other surfaces. This means that the ceilings

(that were already dark) are completely black (which in

most cases would not be accurate in the “real world”).

Baking allows us to do some of that expensive calculations

before runtime. This will bake the illumination into the

surfaces, including bounced light. It can be a slow process

for a really robust level like we currently have, but the

results can be worth it.

Now a quick disclaimer before we get started. There

is a lot that can be done to decide what parts of the

map get the most lightmap real estate. We’ve already

Generated Lightmap UVs when we imported the meshes

which means there is a separate UV set to store the

baked lightmap information. But we’re currently letting

everything have equal space on that baked lightmap UV

set (including the outside of walls). Long term, if you are

a lighting artist, understanding how to control who gets

what texel space will be an important skill. For us now,

we’ll paint with broad strokes.

Step 17: Mark the lights as Mixed. Open the Prefab
Editor for each of our lighting prefabs. Select
the Unity light in each and in the Inspector go to
General and change Mode to Mixed (Figure 6.28).

Why?

Mixed lights are those that react to movement when

close, but the results of the light can be baked into the

233

Lighting and Baking

surfaces when they are a long way away. By default, Unity

now creates lights as Real time only so they need to be

changed before baking.

Step 18: Tell the geometry in the scene to be
“bakeable”. In Hierarchy, select the all the groups
you’ve created. Then in the Inspector, look at the
top right corner for a Static check box. Check it. A
pop-up window will ask if you wish to apply this
to the children of the selected object; click Yes,
Change Children.

Why?

If an object moves, the light shouldn’t be baked for it

(remember the example of moving a chair and leaving

the shadow behind?). By marking the room (and all of

its children) Static, we are indicating to Unity that these

objects will not move and should be used in the baking

calculation.

Step 19: Set up the Baking parameters. Go to
Window>Rendering>Lighting Settings.
Leave most of the settings at default except
for Mixed Lighting>Lighting Mode:Baked
Indirect, Lightmapping Settings>Lightmapper>
Progressive GPU (Preview). Also change the
Indirect Intensity: 1.25. Click Generate Lighting
(Figure 6.29).

Tips and Tricks

Walk away. Progressive CPU (the default baking engine) is

terribly slow (it could take your machine all night to bake),

but it’s stable. The Progressive GPU we just activated is

much, much faster, but is prone to crash. Unity implies

234

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.28 Setting the lights in each prefab (and therefore all the lights in the

scene) to be Mixed. This means they will be involved in the baking process.

that users can continue to work in the engine while the

baking is occurring, but in our experience, this is a recipe

for crashes. Set it to bake and then take a break. Don’t

believe the estimated remaining time either. On my

machine, the first estimate was 54 minutes to complete

the bake, but it was done in less than 12.

One other bug that sometimes shows up: occasionally,

with a complex scene (like this is), partway through the

bake, Unity will suddenly shift back to Progressive CPU

(and explode the baking times). If this happens, in the

Window>Rendering>Lighting Settings window, uncheck

“Prioritize View” and even though the console with throw

a couple of errors, the scene will continue to bake with

Progressive GPU (Figure 6.30).

235

Lighting and Baking

FIGURE 6.29 Quick baking settings.

Camera Adjustments
and Postprocessing

Step 20: Adjust exposure. There is no need to be
satisfied with the results of the bake – especially
if it is too dark. Remember that we can work with
the exposure settings for the camera as well.
Open Project Settings (Edit>Project Settings)
and again go down to Volume Component
and expand Exposure. There, change the Fixed
Exposure up or down. Figure 6.31 on the left
shows a Fixed Exposure setting of 8.5 and
the one on the right shows 7.5. No baking, no
relighting, just adjusting how the camera sees
the extant lighting scheme.

Step 21: Create a Global Volume to better control
the Post Processing. Choose GameObject and
choose Global Volume. In Hierarchy, rename
this CameraEffects. In the Inspector, under the
Volume section create a new Profile by clicking
the New button.

Why?

Creating a Global Volume like this allows us to control

things like the Post Processing Effects. Postprocessing is

236

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.30 One hallway prebaked on the left and postbaked on the right.

FIGURE 6.31 Adjusting the camera’s exposure time to change the light intensities.

The left image is using a Fixed Exposure of 8.5, while the right is showing 7.5.

how Unity gives the last bit of polish to a scene. It can also

be a very expensive process. The default HDRP has loads

and loads of postprocessing going on (including irritating

things like Motion Blur). By creating a Global Volume and

then creating a Profile for that volume, we can take more

direct control over how the image is processed after the

geometry is rendered but before its shown to the user.

Once the Profile is created, Overrides can be added that

override whatever the default settings are for the project.

Step 22: Adjust Tonemapping. With the new
CameraEffects object selected, in the Inspector
click the Add Override button and choose start to
type “Tonemapping”. When it’s selected in the list,
it will show up as a new attribute. Try activating
Mode and change Mode: ACES. Figure 6.32 shows
a before and after of this sort of postprocessing.

Step 23: Add Vignette. Again, click the Add Override,
start typing “Vignette”. Activate the Mode:
Procedural, and activate Intensity, setting its
value to taste.

Step 24: Turn off Motion Blur by taking control of it
in this Global Volume. Do this by hitting the Add
Override button, typing “Motion Blur”. Then once
it’s an attribute, activate Intensity and set its
value to 0.

Step 25: Explore other Overrides. Figure 6.33 shows
the solution we finally ended up with. It adjusts
the color (reduces the Saturation) using Color
Adjustments. We changed the shadows to be a
bit brighter, but more towards the blue side using
Shadows, Midtones, and Highlights. We also
added a film-like grain using Film Grain. This
is a nondestructive process; so go crazy. Play
the game ever so often to see the overall effect
(Figures 6.34–6.38 are beauty shots of one
lighting scheme).

237

Lighting and Baking

FIGURE 6.32 Without ACES Tonemapping and adjusted Ambient Occlusion on the

left. With adjustments on the right.

Tips and Tricks

A few notes on performance: At the top right-hand side

of the Game window are a few buttons of interest. The

first is a button called Maximize on Play. If this is pressed,

when the game is played, this fills the screen. This can be

desirable in that the game play gets your full attention,

but also because the computer is only drawing the scene

once (in the Game window) rather than once in the Game

238

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.33 Extensive control over postprocessing effects can allow for a lot of detailed look development.

FIGURE 6.34 Beauty shot of lit and baked hallway.

window and once in the Scene window. This will become

obvious if you check the Stats button (also in the top

right corner). Among other things, this will show you

how many frames per second you are getting. This is a

critical measurement. If, when playing the game, you get

consistently less than 60 fps, your game is outstripping

your hardware’s capability. Here are some things that can

be done to reclaim your frames per second:

239

Lighting and Baking

FIGURE 6.35 Beauty shot using some volumetric light to shield the empty outside.

FIGURE 6.36 Beauty shot of the finished warehouse.

 1. Change the Max Resolution of all the textures. In this

case, it’s easy as they are all in the Textures folder.

Select all of them and change the Max Size from 2048

to 1024 or even 512 (although this can really start to

degrade the textures).

 2. Reduce the Far Clipping plane of your camera. In this

case, the Camera is called FirstPersonCharacter and

is a child of the FPSController. Under the General

240

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.37 Beauty shot of a dramatically lit entrance to the final boss.

FIGURE 6.38 Beauty shot of the final, lit boss.

section is an area called Clipping Planes. Reducing

the Far to 100 or smaller means that the camera

isn’t drawing objects that are a long way away –

particularly those that are behind walls that the player

can’t see anyway.

 3. Change the Shadow Settings to On Demand. For

each of the lights in the light prefabs, look down it

the Shadows area and change the Update Mode to:

On Enable.

 4. Bake all your lighting using lights whose mode is

Baked. Not just using Mixed, but Baked. This doesn’t

take long to set up. Just change all the Lights that

are children of the light prefabs to Mode:Baked.

Then, after marking your scene as Static (all of it), use

Windows>Rendering>Lighting Settings and bake.

Without any real-time lights and shadows to calculate,

the game will play much faster. The player won’t be

able to shoot boxes and watch them bounce around,

but if the game plays at 100 fps, this could be a

reasonable compromise.

Hopefully, you have superhuman computing hardware

and your target player also is well equipped. But finding

the balance between performance and beauty is always

part of the balancing act of game design.

Final Challenge

Another design choice could be a very low lighting situation

full of dark and foreboding shadows. The player, luckily,

has a flashlight so that everywhere they look, the scene

(and the resulting spooky shadows it creates are built).

Think about creating a Spot Light (make sure to use the

Flashlight_Cookie) and attaching it to the player’s camera

(FirstPersonCharacter). Be sure that its casting shadow, and

bit of light adjustment can help too (Figure 6.39).

Really into lighting? Although we won’t cover it here,

there is a powerful idea called Lighting Probes. These

are imaginary objects that are set throughout the scene

and the lighting for that area of the scene is baked into

them. What happens then is that when a nonstatic object

241

Lighting and Baking

(like a character) gets close to the probe, it informs the

object how it should be lit. This means that all the light

could be baked (great performance increase), but the

character would still yield excellent lighting looks.

If you’re getting a dramatic performance decrease, take

a look at this technology. It’s a great way to get ahold of

some frames again in the game. The final build included

in the support files will utilize Light Probes. The setup

for them will also be included in the final Unity project

(although not included in the support files for this

chapter). Take a closer look if you need it.

Conclusion

Time for you to explore. Now that the basic tools are in

your possession, you can start twisting and tweaking

them to your nefarious will. Much of the creativity process

of lighting is via experimentation so try something; if it

doesn’t work, tweak and try again.

For now we’re going to leave the set behind. It’s time to

work on characters for our scene.

242

Creating Games with Unity, Substance Painter, & Maya

FIGURE 6.39 Alternative lighting challenge using a flashlight attached to the

character.

CHAPTER 7

Character Modeling

Hello, and welcome to the character modeling chapter!

Character is always one of the critical aspects of a game. It

may not take a lot of screen space, but it is what the player

looks at for a long time; it is also what the players imagine

as themselves. Therefore, developing a compelling

character is an essential task of production.

Making characters requires dedication and patience so

that every little detail is thought through and perfect. To

keep the scope of this book suitable for all types of games,

we will develop a full-body character that can fit into

any camera placement. We will also ensure that it can be

rigged and animated fully.

243

Concept Art

Concept art is one of the most critical steps of character

development and should never be overlooked. The

back story, environment, occupation, and all other parts

of a character are thought through before the visual is

touched. Visual appearance also takes many iterations to

achieve the desired result. Our concept here is Ellen Mara.

She is one of the genetic clones of a mindless killing army

but somehow becomes self-aware and want to escape

from fate. The design we settled on is shown in Figure 7.1.

Style Sheets

It is critical to have a clean style sheet that lays out the

full character, and it is more practical to avoid fancy

shading and use clear lines to represent the shapes. It is

also essential to have different views of the character to

match each other accurately. For example, the bottom of

the chin should be in the same location in both the front

and side view. There are two different poses we can model

our character in: T pose and A pose. T pose has the arms

straight, while A pose has the arms down naturally. We

choose A pose for a better definition of the shape of the

shoulder. Otherwise, the shoulder of the character in a

natural pose has to be defined by rigging.

244

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.1 The design of Ellen Mara.

Workflow

Through the years of development, the workflow to make

a character has changed a lot. The modern workflow

mostly has a sculpting software called ZBrush involved.

However, to limit the amount of software and the cost

to follow this book, we are going for a more traditional

approach – box modeling. Box modeling may not be the

state-of-the-art workflow, but it is the best practice to

teach topology, which is technically critical for rigging and

animation. On the other hand, it is also going to force the

artist to think about big shapes and proportions first.

Polycount

Polycount is one of the first things to think about before

start making the model. It is drastically different based on

the targeted platform, engine, and how many characters

are going to appear on the screen. Polycount becomes

lesser of a performance hit compared to the amount

of lighting, shadowing, and textures, and we can safely

assume an amount of 30k tris acceptable. This is not to say

that we should reach 30k tris, finding the right balance

between quality and performance is always needed.

Setting Up Image Plane in Maya
Step 1: Open a new Maya scene and save it as

Ellen_Mara.mb.
Step 2: Go to the front view, choose View->Image

Plane->Import Image, and load Ellen_Style_
Sheet_Front.jpg.

Step 3: Switch to the right view, choose View->Image
Plane->Import Image and load Ellen_Style_
Sheet_Side.jpg.

Step 4: Create a cube, scale it up to 160 units, and
move it up 80 units. The size of the cube is
roughly the size of our character.

Step 5: Go to perspective view, select the two image
planes, and scale and move them up so that the
size of the character is roughly the size of the box.

Step 6: Go back to the front view and select
ImagePlane1 in the outliner. Move it so that

245

Character Modeling

the front view of the character is aligned to the
center of the grid.

Step 7: Switch to the right view and select
ImagePlane2 in the outliner. Move it so that the
side view of the character is aligned to the center
of the grid.

Step 8: Go to the perspective view and delete the
cube. Move ImagePlane1 away from the center
on the Z-axis and move ImagePlane2 away from
the center on the X-axis (Figure 7.2).

Why?

The two image planes are references we need to get an

accurate result. We are moving them away from the center

to avoid clipping between our geometry and image

planes.

Step 9: Select imagePlane1, press ctrl + a to open the
attribute editor. In the Image Plane Attributes
section, change the Display attribute to look
through the camera. Do the same thing for
imagePlane2.

Why?

This step is to keep the perspective view clean, but it is

optional. Some modelers may think having image planes

visible in the perspective view is more helpful.

246

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.2 Import and arrange the image planes.

Eyeball
Step 10: Create a polygon sphere and rename it

Ellen_l_eye_geo. This sphere is going to be the
eyeball (Create->Polygon Primitives->Sphere).

Step 11: Reduce eyeball polycount. Select Ellen_l_
eye_geo, go to the channel box, under the
INPUTS section, click polySphere1, and change
the subdivision Axis and Subdivision Height
to 16.

Why?

Although eyeball is important, our gamer is very unlikely

to see it terribly close; reducing its polycount can help

increase the frame rate in the game. Note that based on

the type of the game, the subdivision level can very.

Step 12: Fix eye topology. Select the top center vertex
of the eyeball (this is the front of the eye), holding
down Ctrl, and then hit the delete button on the
keyboard. We are now rid of all the triangles
in the center. Switch to the Multi-Cut tool and
connect the points to a grid-like topology
(Figure 7.3).

Why?

Any vertex that has more than four edges connected is

called a pole. Pole is notoriously bad for smooth shading,

especially when it has a lot of lines connected to it.

Because the eye is one of the most important parts of a

character, we choose to recreate the topology of the front.

Step 13: Fix curvature. Go to the front view, select the
vertices of the top row, and holding down shift +
right mouse button, in the marking menu, select
Average Vertices. The Average Vertices command

247

Character Modeling

FIGURE 7.3 Recreate the topology of the front of the eye.

averages the position of the selected vertices and
give you some curvature. They are also collapsed
down; use the move tool to move them back up.
Repeat the Average Vertices and move operation
until the eyeball is back to a spherical shape
(Figure 7.4).

Step 14: Add cornea bulge. Switch back to the
perspective view. Select the vertex at the top
center, holding down the B button to enable soft
selection. Drag the left mouse button to make
the falloff range roughly the size of the cornea.
Use the move tool to move up just a little bit to
create the form of the cornea bulge (Figure 7.5).

Why?

The shape of the eyeball is not exactly a ball. The corneal

area is bulging out a little bit more, mimicking the same

shape that will help the refraction and highlight of the

eyeball.

248

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.4 Change the shape back to spherical.

FIGURE 7.5 Create the cornea bulge.

Step 15: Rotate the eyeball 90 degrees on the X-axis.
Move and scale the eyeball until it matches the
left eyeball in both the front and side image
planes (Figure 7.6).

Step 16: Duplicate the eyeball, name the new one
Ellen_r_eye_geo, change its translate x from
positive to negative (mine went from 3.938 to
−3.938).

Create the Eyelids
Step 17: Make eyeball live. Select Ellen_l_eye_geo,

go to the Status-Line and click on the last
Magnetic Icon. Our eyeball model is now
live; when the geometry is live, any creation
or movement will be snapped to its surface.
Making the eyeball live helps us to get the correct
curvature of the eyelid.

Step 18: Draw eyelid geometry. Press the number
5 button on the keyboard to go to the solid
shading mode, in the viewport menu, select
Shading->X-Ray to turn on X-Ray. With nothing
selected, hold down the Shift button and the
right mouse button, select the Quad Draw Tool.
Go to the front view, click on the eyeball to the
drop-down points; create four points and then
holding down Shift and click in the middle
of the four points to fill in a quad geometry
(Figure 7.7).

Step 19: Finish the eyelid loop. Create two more
points and fill another quad that connects to
the first quad. Keep doing the same thing until
you get a loop wrapping around the contour of
the eyelid (Figure 7.8). You can drag any point or
edge to move them, hold down Ctrl + Shift, and
click on any point or edge to delete them.

249

Character Modeling

FIGURE 7.6 Match the eyeball model with the reference images.

Why?

Quad Draw Tool is a re-topologizing tool that allows us to

create the topology for any geometry. We use it to get the

correct curvature of the eye. One important usage of this

250

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.7 Use the Quad Draw Tool to draw a face for the eyelid.

FIGURE 7.8 Finish drawing the loop of the eyelid.

tool is to re-topologize a high-resolution model sculpted

from a sculpting software like ZBrush, and we call that

high to low workflow.

Step 20: Refine the eyelid shape. Turn off the live
object, switch to the Selection tool, and go to
object mode. Move the eyelid model forward
a little, so there is a gap for the thickness of the
eyelid. Go to side view and drag individual points
to match the shape to the contour of the eyelid in
the side view.

Step 21: Refine the inner corner. Select the two
endpoints of the inner corner; use Move, and soft
selection to drag the inner corner area forward
(Figure 7.9).

Why?

Although the outer corner of the eyelid rests on the side

of the eyeball, the inner corner does not. Underneath

the inner corner of the eyelid, there are structures like

caruncle and Papilla lacrimalis, which displace the inner

eye corner forwards. That’s why we drag it forward.

Step 22: Extrude the thickness of the eyelid. Go to
edge mode, and double click to select the inner
edge loop of the eyelid. Extrude the loop towards
the eyeball, do another extrude to extend
the inner surface to warp around the eyeball
(Figure 7.10).

251

Character Modeling

FIGURE 7.9 Drag the inner corner of the eyelid forward.

Step 23: Create the caruncle. Follow the steps shown
in Figure 7.11 to create the caruncle.

Here, we first add an edge loop in the
middle of the eyelid thickness face loop.
We then select the top and bottom second
faces from the inner corner and do a bridge
face. After that, we select the loop of the
hole between the inner corner and the new
bridged face and delete it. We then double
click the resulting hole and do a fill hole
command, don’t forget to fill the hole on the
back as well. Finally, we add a horizontal
edge loop to the new structure created, and
move the vertices to make it looks like a flat
oval shape.

252

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.10 Extrude the thickness of the eyelid.

FIGURE 7.11 Create the caruncle.

Why?
Step 23 seems to be a lot of work, but this part is a

must-have to make the eyes look good. We are
trying to achieve high-level results here; feel free
to skip this if you are not trying to make a very
detailed eye.

Step 24: Round up the ridge of the eyelid. Select the
loop at the turning edge of the upper eyelid that
transitions from its front to its thickness, drag it
up a little bit. Select the same loop of the lower
eyelid and drag it down. This is to make the
correct curvature of the transition of the eyelids;
see Figure 7.12 for detailed illustration.

Step 25: Soften the normal. Go to object mode, make
sure Ellen_body_geo is selected, hold down
Shift + right mouse button, and then choose
Soften/Harden Edges->Soften Edge.

Why?

We tend to limit our polycount, but we do not want to see

hard polygon edges. Soften Edge command helps smooth

out the shading between edges of the faces.

Create the Eye Socket
Step 26: Mark the edge of the eye socket. Select

the outer edge loop of the eyelid, extrude out

253

Character Modeling

FIGURE 7.12 Drag the edges to round up the ridge of the eyelid.

another loop of faces, and move the vertices so
that the new outer edge loop is at the edge of the
eye socket (Figure 7.13).

Step 27: Eye socket Inter Detail. Add an edge loop
in the middle of the face loop extruded in the
previous step, and tweak the vertices to give it a
correct curvature (Figure 7.14).

Step 28: Refine the inner structure. You can add
more loops to any part around the eye to support
more detail. In our case, three more loops around
the eyelid were added and tweaked to support
the bottom edge of the lower eyelid and the fold
above the upper eyelid (Figure 7.15).

254

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.13 Create an edge loop that extends to the edge of the eye socket.

FIGURE 7.14 Add additional loop to define the inter detail of the eye socket.

Why?

From Step 26 to Step 28, we used a workflow of mark

the edge first and then added detail in the middle. This

workflow ensures that we can get the bigger shape first

and never lose control.

Step 29: Mirror. Select Ellen_body_geo, go to
Modify->Freeze Transformations. Go to the front
view, holding down D and X and use the Move
tool to move the pivot to the center of the grid.
Go to Edit->Duplicate Special□. Change the
geometry type to Instance, and change the scale
to −1,1,1. This setting creates an instance of the
model so we can see the full face while modeling
on one side.

Tips and Tricks

After modeling a while, your model might become heavy

due to all the construction histories. Make sure you press

Alt + Shift + D to delete history from time to time to avoid

performance issues, strange behavior, or crashes.

255

Character Modeling

FIGURE 7.15 Add more loops to define the curvature of the eye socket.

Forehead and Nose
Step 30: Root of the Nose. Select a few edges on the

center side of the model, and extrude out these
edges towards the center of the grid. Scale them
down on the X-axis to flatten them, use Move,
and grid snapping to snap them to the center. Go
to the side view and drag them forward, move
individual vertices to align them to the bridge of
the nose (Figure 7.16).

Step 31: Add curvature to the root of the nose. Add a
vertical loop to the root of the nose, and move it
forward to distinguish the front and side plane of
the nose. Keep adding new loops and tweak the
vertices until it can represent the curvature of the
nose. Two more loops were added, as shown in
Figure 7.17.

Step 32: Connect nose to the eyebrow. Extrude the
top loop of the eye socket twice and merge them

256

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.16 Create the root of the nose.

FIGURE 7.17 Add curvature to the root of the nose.

with the side loop of the root of the nose. We now
have a geometry flow that went through the side
of the nose to the brow ridge (Figure 7.18).

Why?

The edge flow is the only tool to represent turns of any

structure. We built the loop in Step 32 to accurately

represent the structural change of the nose and eyebrow,

almost like how you would place the bricks on an arch.

Step 33: Forehead. Extrude the top loops upwards to
the edge of the forehead. Add more horizontal
edge loops to support the curvature, just like
what we did for the root of the nose (Figure 7.19).

257

Character Modeling

FIGURE 7.18 Connect the nose to the eyebrow.

FIGURE 7.19 Create the forehead.

Step 34: Nose bridge. Extrude the bottom edges of
the root of the nose downward and forward.
Adjust the vertices to match it with the shape of
the nose bridge (Figure 7.20).

Step 35: Mark the loop of the nasolabial fold.
Extrude an edge downwards from the bottom of
the nose bridge. Select the side edge of the new
face, and extrude sideways around the side of
the nose. Don’t forget to rotate it after extrusion,
so the loop’s edge flows naturally as the direction
of the face changes. Keep extruding until the
entire nasolabial fold is created and extended
around the mouth area (Figure 7.21).

Step 36: Tweak the loop of the nasolabial fold. Go to
the right view. Drag the vertices of the nasolabial
fold loop to adjust its shape, so it lays around the
mouth nicely (Figure 7.22).

Step 37: Mark other essential loops. Extrude a few
loops to represent the contour of the side of the
nose, nostrils, and bottom of the nose. These
loops help us define the primary areas of the
nose (Figure 7.23).

258

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.20 Create the nose bridge.

FIGURE 7.21 Mark the loop of the nasolabial fold.

259

Character Modeling

FIGURE 7.22 Adjust the loop of the nasolabial fold.

FIGURE 7.23 Essential loops of the nose.

Note that this is not a trivial task, and it takes careful
moving of the vertices in all different views to
ensure the shape is good at all angles. Some of
the loops are touching, so their edges are fused.

Why?

Making the contour of different parts gives us the

framework of the shape. Once finished, all we need to do

is to fill in the gaps. Topology is basically edge loops like

what we did in Step 36 with grid-like internal fills.

Step 38: Fill the side of the nose. Select the hole of the
side of the nose, hold Shift + right mouse button,
and choose Fill Hole. Use the Multi-Cut tool to
fill in the geometry. In Figure 7.24, highlighted
lines are the newly added lines to get a clean
topology. Drag the vertices around to refine the
shape of the side of the nose.

Step 39: Fill the tip of the nose the same way we did
in Step 38 (Figure 7.25).

260

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.24 Fill the side of the nose.

FIGURE 7.25 Fill the tip of the nose.

Mouth
Step 40: Mouth. Extrude from the bottom of the nose

to create the philtrum. From the bottom of the
philtrum, extrude out the loops for the lip. Add
extra loops to help define the shape better. Be
careful about the curvature of the model from
different angles. It is very easy to end up with
a flat result, so make sure that the arc of the
contour is always managed (Figure 7.26).

Step 41: Fill in the gaps between the mouth and the
nasolabial fold. Bridge the outer edge of the lips
to the inner edge of the nasolabial fold; if there is
a mismatch on polycount, just add more loops. A
pole is needed to sort out the upper right corner
mesh flows (Figure 7.27).

261

Character Modeling

FIGURE 7.26 Create the topology of the mouth.

FIGURE 7.27 Fill in the gaps between the mouth and the nasolabial fold.

Rest of the Head
Step 42: Frame the rest of the head. Create more

loops around the head to mark the edge of the
side of the face, ear, top, and back of the head.
Create loops for the neck and the jawlines as well
(Figure 7.28).

Step 43: Fill in the front of the face. Start bridging
faces of the front of the face using the Bridge,
Extrude, Fill Hole, and the Multi-Cut command.
Find the crucial loop that needs to be established
first, and then fill in the gaps. Make sure that
everything you added must be tweaked on some
level to have the correct shape (Figure 7.29).

262

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.28 Frame the rest of the head.

FIGURE 7.29 Fill the front faces.

Tips and Tricks

After filling in the gaps, the face might not look smooth

at all. Select the model with object mode, hold down

Shift + right mouse button and choose Sculpt Tool, hold

down Shift + right mouse button again, and choose

Grab. You can now drag any part of the model like you

are sculpting it. Hold down B button, and then drag to

change the brush size; be aware that the size of the brush

might be too big, so you need to zoom out a lot to see

it changing. You can also hold down Shift and then drag

on the surface of the model to smooth it. Remember that

shape is always more important, don’t drown yourself in

topology. You will get better and better at topology, but

if you don’t pay enough attention to shapes, you may not

get better at it.

Step 44: Fill in the side of the face. We can fill the side
of the face using the same method as in previous
steps (Figure 7.30). The outer corner of the eye
does not have enough polycount to connect to
the other side, so two more loops were added to
compensate that. They are marked in Figure 7.30.

Step 45: Fill in the top of the head. The topology
of the top is basically a cube smoothed twice.
The important thing is to find the two corner
points, and they are indicated in Figure 7.31. It
is these two points that redirect the flows of the
polygons. After these two points, geometries
either go from front to the back or from side to
middle. Note that Grab and Smooth sculpting
were used to achieve a smooth result after
getting the topology working.

263

Character Modeling

FIGURE 7.30 Fill the side of the face.

Step 46: Fill in the back of the head.

Ear

The ear might be not as important as the eyes and nose,

but it is something that if you do not do well, it jumps out

and ruins your model. We will address the ear carefully in

detail.

Step 47: Create the main loop of the ear. Just as how
we did the nose, the ear can also be modeled
by first laying out the primary structures using
poly loops. Extrude from the back of the ear,
and then start building the loops from there.
There is a color-coded version of the ear loops in
Figure 7.32.

Step 48: Fill the ear. We can use the bridge and
extrude command to fill in the gaps between
the loops; don’t forget to leave a hole open to
extrude out the ear hole (Figure 7.33).

Step 49: Connect the ear. Keep bridging and
extruding faces to connect the ear to the face

264

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.31 Fill in the top of the head.

FIGURE 7.32 Create the main loop of the ear.

(Figure 7.34); the polycount might not match
exactly, and you will need to choose to add or
delete edge loops.

Neck
Step 50: Fill the bottom of the head. There are many

lines coming down from the head. However, we
do not want that much happening on the neck.
Redirecting these edge flows to turn to the center
and meet on the other side is a good way of
getting rid of them altogether (Figure 7.35).

Step 51: Extrude the neck. We chose to make the
neck as simple as possible because the turtleneck
collar is covering it. All we do is to extrude from
the bottom of the neck hole to the base of the
neck, and add extra loops in the middle to match
the shape of the concept (Figure 7.36).

265

Character Modeling

FIGURE 7.33 Fill the ear.

FIGURE 7.34 Connect the ear.

266

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.35 Redirect the line of the face loop to the center and fill the bottom of

the head.

FIGURE 7.36 Extrude the neck.

Internal Structures
Step 52: Nostrils internals. Select the loop of the hole

of the nostrils and extrude up and inwards a little
bit; do it two more times so that the hole looks
extended all the way, and make sure the end is
not visible (Figure 7.37).

Step 53: Mouth internals. The mouth Internal is the
same topology as the nostrils but needs more
loops and inflation of the space inside. Select
Ellen_body_geo, press Ctrl + 1 to isolate it. Then
select the edge loop of the seam between the
lips, extrude inwards, and then expand out.
Make sure that there is space for the teeth. Keep
Extruding more until the oval mouth internal
cavity is constructed (Figure 7.38).

267

Character Modeling

FIGURE 7.37 Extrude the internals of the nostrils.

FIGURE 7.38 Extrude the internals of the mouth.

Body
Step 54: Create the center loop of the torso. Extrude

from the front bottom of the neck; keep
extruding until the geometry wraps around the
contour of the right view. Merge to the back of
the neck (Figure 7.39).

Step 55: Chest. Create loops around the chest and
the armhole, then bridge a loop from the neck
to the armhole to mark the range of the chest.
Fill the hole of the chest; use the Multi-Cut tool to
fill in the missing topology; add extra lines if the
polycount does not work. Use the sculpting tool
to smooth and refine the shape after getting the
topology done (Figure 7.40).

268

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.39 Create the center loop of the torso.

FIGURE 7.40 Create the chest.

Step 56: Fill the back. Using the same method of Step
55, we can fill the back of the body (Figure 7.41).

Step 57: Fill the torso. Using the same method of Step
55. We can fill the waist (Figure 7.42).

Step 58: Tweak the flow of the pelvis. Extrude out
a loop from the bottom hole of the torso, and
tweak the shape so that there is a loop around
to represent the upper edge of the pelvis
(Figure 7.43).

269

Character Modeling

FIGURE 7.41 Fill the back.

FIGURE 7.42 Fill the torso.

Step 59: Loop of the leg hole. Create a loop of the leg
and fill the gap between the pelvis loop to the leg
loop (Figure 7.44).

Step 60: Create the leg. Extrude from the leg hole to
make the leg. We can use a very simple cylinder-
like topology to represent it; keep in mind that
at least three loops are needed to bend the knee
and ankle properly (Figure 7.45).

270

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.43 The tweaked topology of the pelvis.

FIGURE 7.44 Create the loop of the leg hole.

Tips and Tricks

After we create the loops that outline different structures,

it is critical to define its profile properly so that further

extrusion or fills have the perfect shape already.

Step 61: Ankle. Extrude down from the leg, make an
angle shape at the bottom. The bottom vertex
will be the primary turning point of the edge
loops – the pole (Figure 7.46).

Tips and Tricks

One thing to always keep in mind is to have the same

polycount on the two sides you know that will merge. In

Step 61, you need to make sure that the front and back of

the bottom point have the same polycount. Otherwise,

you are going to have to add extra lines or delete lines

later.
Step 62: Create the feet. We use the same technique

we have been using to create the framework
of the feet first and then fill in the gaps after
(Figure 7.47).

271

Character Modeling

FIGURE 7.45 Create the leg.

Step 63: Create the deltoid. Go to edge mode, select
the top half of the armhole. Extrude out two
loops, bridge the side of the second loop to the
edge right below the previously selected edges.
Tweak the shape so that the contour matches
the image plane and has a tilted armhole
(Figure 7.48).

Step 64: Create the arm. Extrude from the armhole
to create the arm. The process is exactly like how
we did the leg (Figure 7.49).

272

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.46 Create the ankle.

FIGURE 7.47 Create the feet.

273

Character Modeling

FIGURE 7.48 Create the deltoid.

FIGURE 7.49 Create the arm.

Hands
Step 65: Palm. Extrude from the wrist to create the

palm; add a few loops to define the size change
of the palm (Figure 7.50).

Step 66: Thumb. Add one more loop to mark out the
base of the thumb and then extrude the faces out
to create the first segment of the thumb. Go to
Edit->Circularize to make the extruded face more
rounded, keep extruding, adding edge loop, and
tweaking to finish the thumb (Figure 7.51).

Step 67: Thumb Tip Topology. Delete all the lines the
tip of the thumb has, and use the Multi-Cut tool
to create a new topology like Figure 7.52. Make
sure that you tweak the shape afterward.

274

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.50 The base of the palm.

FIGURE 7.51 Extrude out the thumb.

Step 68: Create the index finger. Start with a cube,
move it to the base of the index finger, and
extrude the tip out twice to mark the three
segments of the finger. Tweak the size of the
different segments (Figure 7.53).

Step 69: Add finger detail. Delete the face at the root
of the finger. We need it to open to connect to the
palm. Switch to Insert Edge Loop tool; hold down
Shift, and add two more edge loops to round up
the finger (Figure 7.54).

275

Character Modeling

FIGURE 7.52 The topology of the tip of the thumb.

FIGURE 7.53 Create the base of the index finger.

Step 70: Add the finger loops. Add more loops to the
finger; at least three loops are needed for the
bending of each segment. Tweak the shape after
adding new loops (Figure 7.55).

276

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.54 Add details to the finger.

FIGURE 7.55 Add the finger loops to support bending.

Step 71: Duplicate the fingers. Duplicate the index
finger, move, and scale the duplication to the
position of the middle finger. Keep in mind that
the base of the four fingers is not a flat plane but
rather a convex arc (Figure 7.56).

Step 72: Combine fingers. With all fingers selected,
select Mesh->Combine. Select the inside two
edges of the two adjacent fingers and bridge
them. Add one vertical edge loop to the bridged
faces and drag it inwards to mimic the gap
between the fingers (Figure 7.57).

277

Character Modeling

FIGURE 7.56 Duplicate the index finger for the other three fingers and arrange them

properly.

FIGURE 7.57 Combine the fingers.

Step 73: Attach fingers to the hand. Select both the
body and the fingers; select Mesh->Combine.
Press Alt + Shift + D to clean up the history. After
combining, some redundant groups may remain.
Delete all empty groups and name the combined
model Ellen_body_geo. Bridge the faces of the
two ends of the finger geometry and closest
faces of the palm and fill the two holes left
(Figure 7.58).

Step 74: Refine hand topology. Use Multi-Cut to
connect the lines from the finger to the palm. It
is obviously going to have different polycount;
just cut through the edge of the palm for now.
Make sure you spend some time evening out the
vertices (Figure 7.59).

Step 75: Reduce polycount. Merge the two adjacent
points to the point that belongs to the line
that goes across the gap between the fingers
(Figure 7.60).

Step 76: Clean up the triangles. Please reference the
result of Figure 7.61. What we do is to delete the
middle line of the resulting triangle shape in the
previous step and drag the bottom point down.
Use the Multi-Cut tool to add an extra loop that
goes across the middle of the previous triangle
shape and has a line connected to the middle
line between the fingers.

Step 77: Fix N-gons. Use the Multi-Cut tool to redirect
the extra lines that do not meet with the bottom
structure sideways. These lines can meet and
cancel each other out without having to add
extra lines to the arm. One more edge loop is
also added to the big gap between the fingers
and palm. Figure 7.62 highlights all the new lines
added.

278

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.58 Attach the fingers to the palm.

Step 78: Mirror. Select all the edges in the middle of
the body, scale them along the X-axis to flatten
them. Hold down X and drag them along the
X-axis to snap to the center of the grid. Switch
to object mode, hold Shift + right mouse button,
and choose Mirror. In the floating setting menu,
set the Merge Threshold to 0.01 (Figure 7.63).

279

Character Modeling

FIGURE 7.59 Use the Muti-Cut tool to fill the missing topology.

FIGURE 7.60 Reduce the polycount on the palm.

FIGURE 7.61 Clean up the triangles.

280

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.62 Fix the N-gon of the palm.

FIGURE 7.63 Mirror the body.

Step 79: Tweak the overall shape. After the body is
all done, it is a good time to tweak the global
shape and proportion. Hold down W and drag
the left button up and up again; this should turn
on the symmetry and allow you to tweak the
model symmetrically. Start tweaking the body
with whatever tool you feel comfortable with
(Figure 7.64).

Hairs
Step 80: Hair Sculpt. Create a cube, move, and scale

it to roughly the location and size of the hair.
Smooth it four times (Mesh->Smooth), so we
get many polygons to work with. It may shrink
after smoothing, so scale it up again. Go to
the Sculpting shelf, pick the grab tool to sculpt
the shape of the hair. We only care about the
shape of the hair for now. We can give it proper
topology later (Figure 7.65).

Step 81: Auto re-topologize the hair. Select the
hair, choose Mesh->Retopologize. Maya now
automatically creates a topology for us. After the
retopology is done, more tweaks can be applied
to make the shape of the hair better.

Step 82: Add hair detail. Smooth the hair twice, and
now you can use all the sculpting tools to tweak

281

Character Modeling

FIGURE 7.64 Tweak the body of the character.

FIGURE 7.65 Sculpt the hair shape.

and add more detail to the hair. In Figure 7.66,
sculpt brush was used to add some basic
clumping details to the hair.

Tips and Tricks

Maya is not the best tool to sculpt; if you want to create

detailed hair, ZBrush is going to be the tool you use.

Step 83: Final Hair topology. Select the hair model.
Go to Status-Line, click on the last magnetic icon
to make it live. With nothing selected, hold down
the Shift + right mouse button, and choose the
Quad Draw tool. Click and drag on the hair to
create new points, and hold down Shift to fill a
quad between any points. Start re-topologizing
the hair and make sure the loops flow with the
direction of the clumps (Figure 7.67).

Step 84: Finish hair topology. Keep re-topologizing
the hair; keep in mind that the flow of the loop
should follow the shape (Figure 7.68).

Tips and Tricks

When doing topology for games, it is acceptable to end

up with some triangles to save polycount. It is always

possible, though, to avoid having triangles. After all, the

cause of having a triangle is mismatched polycount.

282

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.66 The sculpted hair shape.

283

Character Modeling

FIGURE 7.67 Start retopologizing the hair.

FIGURE 7.68 Finished hair topology.

Step 85: Eyebrow. Select the model and make it live.
Use the Quad-Draw tool again to layout the
geometry of the eyebrow. Extrude the eyebrow
faces to give it thickness. Add a few edge loops
across the eyebrow and drag the vertices to
round it up; give the hair and the eyebrow a
darker material (Figure 7.69).

Step 86: Eyelashes. Eyelashes can be done the same
way we did the eyebrow, but more dragging is
needed to make the shape stick out (Figure 7.70).

Step 87: Sweater base. Duplicate the model, and
name it Ellen_sweater_geo. Delete the faces that
are not part of the sweater. Do an extra tweak of
the topology and the shape to give the sweater
a clean edge on the chest. Select all vertices of
the sweater model, hold down W + right mouse

284

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.69 Create the eyebrow.

FIGURE 7.70 Create the eyelashes.

button, and choose Axis->Normal. Drag the N
axis just a little to inflate the sweater (Figure 7.71).
Don’t forget to switch the moving axis back to
the object.

Step 88: Sweater collar and rolling sleeves. Extrude
from the top edge of the collar inwards and
then downwards to mimic the thickness of the
turtleneck. Add extra edge loops in the middle;
drag the face of the collar out to give it the
correct volume. Make extra adjustments to add
variations and crevices. It should appear to be
thicker on the top and bottom, and narrower in
the middle. The rolling sleeves can be done the
same way (Figure 7.72).

Step 89: Outer garment base. Duplicate the Ellen_
body_geo, name it Ellen_outfit_geo. Delete the
faces above the chest. Make the Ellen_body_geo
live again, select Ellen_outfit_geo, hold down
Shift + right mouse button, and choose the
Quad Draw Tool. Use retopology to create the
missing upper part of the outfit and refine the
already existing shapes. Tweak the shape so that
it is above the sweater, and add thickness by
extruding the edge of the outfit inwards twice
(Figure 7.73).

285

Character Modeling

FIGURE 7.71 Create the base of the sweater.

Step 90: Preview materials. Hold down the right
mouse button on different models and choose
Assign New Material; click on Lambert on the
pop-up window. Go to the Attribute Editor and
change the color of the material based on the
reference. Assigning different colors can help us
spot clipping geometry and better visualize our
model (Figure 7.74).

286

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.72 Add the collar and the rolling sleeves.

FIGURE 7.73 Create the base of the outer garment.

Step 91: Belt. Duplicate the Ellen_outfit_geo; delete
everything but the loop around the belt. Extrude
it out to make the belt. Extrude the middle two
loops of the belt to mimic the buckle. Give it a
new lambert material, make it darker, and name
the belt Ellen_belt_geo. Select all the faces below
the belt, assign a new lambert material to them,
and change the color to the color of the pants
(Figure 7.75).

Step 92: Create the patterns of the boots. Select
Ellen_body_geo and make it live; use the Quad
Draw tool to draw out the patterns of the shoes.
Turn off the live object, adjust the shape of the
boots to match the concept, and name the
model Ellen_boots_geo (Figure 7.76).

Step 93: Boots bottom. Duplicate Ellen_body_geo
one more time, and delete everything but the
bottom of the foot. Adjust its edge so that it
matches the shape of the bottom of the boot.
Extrude all the faces down to give it thickness;
select the faces on the back and extrude again to
create the heel.

287

Character Modeling

FIGURE 7.74 Assign different colors for the garments.

Select the edges of the upper and lower rim of the model,

hold down the Shift + right mouse button, and choose

Bevel Edge. In the pop-up menu, reduce the Fraction

attribute to make the bevel smaller. Fix the N-gon

generated by the bevel command (Figure 7.77).

Step 94: Add thickness to the patterns. Select the
outline edges of the patterns of the boots, and
extrude out the thickness. Bridge the edges of

288

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.75 Create the belt.

FIGURE 7.76 Create the patterns of the boots.

the seam lines, select the rest of the outline, and
extrude in again for extra thickness (Figure 7.78).

Step 95: Boot Belts. Select Ellen_body_geo and
make it live; use the Quad Draw tool to draw
the upper belt out and extrude the thickness,
duplicate, and move it down for the bottom one
(Figure 7.79).

Step 96: Create the base shape of the gloves.
Duplicate Ellen_body_geo, select all faces that
you wish to be the glove, press Ctrl + Shift + I to
reverse the selection, and press delete button to
remove all other faces. Select all points on the
hand, hold down W + right mouse button, choose

289

Character Modeling

FIGURE 7.77 Create the bottom of the boots.

FIGURE 7.78 Add thickness to the patterns.

Axis->Normal, and drag the N axis to move the
points out (Figure 7.80).

Step 97: Add details to the glove. Add more loops
at the wrist part of the glove; scale them up and
down to mimic a layering effect. At the opening
of the glove, extrude more loops, and scale them
to create a ridge. Eventually, add thickness to
the glove by extruding the edge loops on all the
openings to add thickness (Figure 7.81).

Step 98: Glove belt. Create the belt of the glove using
the same method as in Step 97 (Figure 7.82).

Step 99: Watch. Follow the steps shown in Figure 7.83
to create the watch.

Start with a cube, add edge loops in the middle, and

expand the loop in the center. Bevel the four corner loops

to create the base shape of the watch. Extrude the top

face in and down to create the area of the watch panel.

Don’t forget to use the Multi-Cut tool to fix the N-gon

in the center. Extrude from the side of the watch to add

the connections for the watchband. Select the primary

turning edges of the watch and bevel it; move it to the

right hand when it’s all done.

290

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.79 Add the belts of the boots.

291

Character Modeling

FIGURE 7.80 Create the base shape of the gloves.

FIGURE 7.81 Add details to the glove.

Step 100: Watchband. The wrist band can be easily
done the same way we created the boot belts in
Step 97 (Figure 7.84).

Step 101: Final body adjustment. Spend some time
to adjust the whole body; if you have a team, it is
also an excellent chance to talk with them. The
adjusted result of the character looks like that
seen in Figure 7.85. A few pockets were added to
the belt.

Weapon
Step 102: Create the base shape of the gun. Create a

cube, name it Ellen_gun_geo, scale it down on its
X-axis to make it narrower, and extrude from its
front, back, and bottom faces to create the slide
and handle. Keep adding loops and extruding to

292

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.82 Create the belt of the glove.

FIGURE 7.83 Steps to create the watch.

add extra detail. Figure 7.86 shows the process of
the shape evolving.

Step 103: Add extra detail to the gun. Duplicate
the gun, select the faces that could be the extra

293

Character Modeling

FIGURE 7.84 Create the watchband.

FIGURE 7.85 The finalized model.

FIGURE 7.86 The process to create the base shape of the gun.

panels on the gun, press Ctrl + Shift + I to reverse
the selection, and press delete to get rid of other
faces. Extrude out the thickness of the panels,
drag the vertices around to make the shape more
interesting, add new edge loops, and extrude out
extra detail (Figure 7.87). Combine the body and
the panels together, delete the history, and name
it Ellen_gun_geo.

Step 104: Gun holster. Follow Figure 7.88, move the
gun to the side of the right leg, and make the
Ellen_outfit_geo live. Use the Quad Draw tool to
layout the shape of the base of the gun holster,
and move it outwards a little afterward to
separate it from the leg. Using the same method,
we can get the profile of the outer layer of the
holster. We need to move points out to wrap it
around the body of the gun. A few loops were
added to support the curling shape. Two straps
were created around the leg afterward.

Tips and Tricks

When making weapons, it is crucial to make sure that the

size of the weapon is suitable to the character. The handle

of the gun was extended to make sure it fits in the hands

of the character.

294

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.87 Add extra detail to the gun.

FIGURE 7.88 Create the gun holster.

Final Clean Up

Step 105: Delete hidden geometry. Duplicate the
Ellen_body_geo, name it Ellen_full_body_ref,
and press Ctrl + H to hide it. Select Ellen_body_
geo, select the faces that are hidden under the
garments, and delete them (Figure 7.89).

Why?

We have a copy of the full body and hid it as a backup

in case something needs to be changed or added. We

rely on the body to add all the garments and props. For

rigging, it is easier to bind the joints with a full-body,

do the skin weighting, and copy the weight over to the

garments.

Step 107: Separate and rename. Select Ellen_
body_geo and Click on Mesh->Separate. The
model now separates to multiple ones based on
connectivity. Combine the hands and arms, and
name the new model Ellen_hands_geo. Select
the head and name it Ellend_head_geo. Press

295

Character Modeling

FIGURE 7.89 Delete the faces that are hidden under the clothing.

Alt + Shift + D to delete the history. Select the
resulting group Ellen_body_geo, and click Edit-
>Ungroup to ungroup it. The outliner ends up as
shown in Figure 7.90.

Tips and Tricks

Facial Expression rig requires something called

Blendshape. It is much cheaper to do Blendshape on a

simpler model; that is why, if possible, separate the head

from the body.

296

Creating Games with Unity, Substance Painter, & Maya

FIGURE 7.90 The outline of the finished model.

Conclusion

We made it! We have a character that is ready to go for UV

texturing, rigging, and animation; the polycount is 29,250

Tris, a little lesser than our prediction. The whole character

is designed and modeled in a week. We have used many

techniques. However, there are far more areas of character

modeling we have not touched, like ZBrush sculpting and

Marvelous Designer, to name a few. If you ever want to

have more advanced knowledge on character modeling,

ZBrush is the next to jump in, and it is a super fun

software. Feel free to stay here and do more tweaking of

the shape of the character before moving on. It is critical

to have a good-looking character with proper topology

for rigging and animation. The final model is shown in

Figure 7.91.

In the next chapter, we will go over the UV Mapping of the

character. UV is the foundation of texturing and is of great

importance to bring life to our solid colored character.

297

Character Modeling

FIGURE 7.91 The final model.

https://taylorandfrancis.com

CHAPTER 8

UV Mapping

UV for characters is particularly important. It is the

foundation of good texture mapping, which is the primary

way we add color and detail to our character. With a

proper texture set, we can make a 30k tris polygon looks

like a million tris.

It is, however, safe to say, modeling is more critical now

than it was 10 years ago. This is the last time we are asking

you to check your model before moving on. Make sure

that you and your team are 100% happy with the shape of

the character. Once we move further on, changing of the

shape will need you to change the UV to avoid stretched

textures.

299

UV Mapping

UV mapping algorithm has been improved through

the years; so, all artists need to do is to define the seam

properly and lay out the UV the efficient way. There

are other tools like Unfold 3D that are dedicated for UV

Mapping, but Maya’s UV tools are already amazingly good.

So, we will stick with Maya for the ease of not having to

move to a different package.

Tutorial 8.1: Character
UV Mapping

In this tutorial, we will jump into UV mapping of the

character. We are going to do a basic error checking of the

model, define seams of the UV shell, unfold them, layout

and organize the UV, and assign shading groups. Along

the way, we could discover more modeling problems, and

we will address it right away.

Mesh Inspection and Cleanup

Based on how experienced you are at modeling, there could

be many problems in your model. Let’s review some of the

common problems in case you have them on your model.

Step 1: Flipped faces. In the viewport menu, go to
Lighting and check off Two-Sided Lighting; if
any faces of the model appear to be black, select
these faces and do Mesh Display->Reverse.

Step 2: Check N-gon. Select the model you want
to check, go to Mesh->Clean Up□. Change the
Operation to Select matching polygons and
check on Faces with more than four sides in
the Fix by Tessellation section. Press the apply
button. If there is any face that is selected, they
are N-gons.

Step 3: Fix N-gons. N-gon is basically caused by
polycounts that are not matching; to fix N-gon,
you either add more loops on one side or delete
loops on the other side. Figure 8.1 shows two
options to fix a pentagon; unless there is a
particular reason to add a new loop, deleting
one is a better choice. Another option is to use

300

Creating Games with Unity, Substance Painter, & Maya

the Multi-Cut tool to cut the N-gon to triangles
and quads.

Step 4: Overlapping faces. There could be a chance
that you have two faces stacked right on top of
each other and sharing the same edges. Select
the model and hit 3 to smooth preview the model
and check the flow of the wireframe. If you find
something irregular (Figure 8.2), you know that
something must be wrong. It is recommended to
delete these faces and redo them to ensure it is
bug-free.

301

UV Mapping

FIGURE 8.1 Two ways to fix an N-gon.

FIGURE 8.2 Overlapping faces results in strange edge flows in smooth preview.

Step 5: Middle line problem. Select the model you
want to check, go to edge mode, double-click
to select the vertical loop in the center. If the
selection is not all the way to the other side,
go check the breaking point and fix it. The
problem could be that the points there are not
merged; an extra face is extruded, or more lines
are overlapping in there (Figure 8.3). It is also
recommended to delete the problematic area if it
is unclear what is wrong.

Step 6: Clean up the history and freeze
transformation. Select all models and press
Alt + Shift + D to delete their history. Go to
Modify->Freeze Transformations to clean up
their transformation.

Why?

Topology error occurs all the time, even for industry

veterans. It’s important to fix them before moving on to

the next steps to avoid having to redo things like rigging,

UV, and more.

We have done UV mapping with the environment already,

and the techniques we will be using here are not that

different. In the author’s opinion, it is sometimes easier to

do UV for organic shapes because there are no clear hard

edges. Most of the times, we think of only three things:

hide the seam, avoid stretching, and texel density.

Body UV
Step 7: Setup workspace. Go to the upper right

corner of the UI, and under workspace, select UV
Editing. Move the cursor to the UV editor, press

302

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.3 Potential topology errors that could happen to the middle of the model.

the number 5 button to toggle on the Shaded
viewing mode. This view mode gives every
different UV shell a different solid color.

Step 8: Projection. Select Ellen_head_geo; navigate
the view to a 3-quarter view, go to UV->Planar□.
Under the Project from section, choose Camera.
Click on apply to project the UV from the
perspective camera that we are currently looking
through (Figure 8.4).

Step 9: Cutting the ear. Go to object mode, hold
down W, and drag the left mouse button up and
up again to turn on symmetry. Choose UV->3D
Cut and Sew UV Tool. Click and drag the lines
around the ear until it is cut off. You know it’s
completely cut off when it turns a different color.
Double-click the loop of the earhole to cut it out
to avoid stretching. Don’t forget to double-click
on one of the inner loops of the ear hole to cut it
open like a cylinder (Figure 8.5).

Tips and Tricks

When using 3D Cut and Sew UV Tool, click and drag cuts

the lines under the cursor. A double-click cuts an entire

edge loop. Holding down Ctrl while doing the previous

operations sews the lines back together.

303

UV Mapping

FIGURE 8.4 Project the UVs.

Step 10: Cut the mouth and the nostrils. Double-
click to cut the edge loop that is the touching
edge loop on the inner side between the upper
and lower lip; this will cut off the mouth cavity.
Double-click to cut the center loop of the upper
part of the mouth cavity. Using the same
method, we can cut the inner part of the nostrils
out (Figure 8.6).

304

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.6 Cut the mouth and the nostrils.

FIGURE 8.5 Cut the UVs of the ears.

Step 11: Cut the jaw and neck. Cut the loops under
the jawline and the back of the neck (Figure 8.7).

Step 12: Cut arms and hands. Project the UV of Ellen_
hands_geo the same way using UV->Planar. The
arm is basically a cylinder. Go to UV->3D Cut and
Sew UV Tool and double-click the bottom loop of
the arm to cut it open. Cut the middle line on the
side of the fingers to separate them into up and
bottom shells (Figure 8.8).

Step 13: Unfold and optimized the UVs. Turn off
symmetry, go to object mode, and select both
Ellen_hands_geo and Ellen_head_geo. In the
UV Editor, hold down the right mouse button
and choose UV, and drag-select all the UV points.
Hold down the Shift + right mouse button, go to
unfold->unfold□, and set the Method to Unfold
3D; press the Apply and Close buttons. The shells
should now be unfolded nicely.

Hold down the Shift + right mouse
button, go to Optimize□. Under the Optimize
Options section, set the Iterations setting
to 30, press Apply and Close (Figure 8.9).
You can do optimize many times to reduce
stretching further.

305

UV Mapping

FIGURE 8.7 Cut the jaw and the neck.

306

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.9 Unfold and optimize the UVs.

FIGURE 8.8 Cut the arms and the hands.

Tips and Tricks

When using Optimize to help reduce stretching, it may

cause some UV to overlap each other. Make sure that

you check for overlapping UV after using the Optimize

command.

Step 14: Layout UV. With all the UVs selected in the
UV Editor, hold down the Shift + right mouse
button, go Layout->Layout□. Under the Pack
Settings section, change Packing Resolution
to 4096; under Layout Settings section, set
Texture Map Size to 4096, Shell Padding to 30,
and Tile Padding to 30. Click on Apply. The
UVs are now arranged for us automatically
(Figure 8.10).

Step 15: Manually adjust the UV layout. The UV laid
out is technically fine but could be enhanced. We
can see some unutilized space and some tilted
shells that could be more straight. Double-click
any UV point of a UV shell to select the entire
shell; in the UV editor menu, select Modify->
Orient shells to make it straight. Rotate the shell

307

UV Mapping

FIGURE 8.10 Layout the UVs.

while holding down the J button on the keyboard
to snap it to the correct orientation. Scale all UV
up a little bit, and move and rotate the shells
around to get maximum UV space utilization.
Avoid overlapping of the shells and keep all shells
inside of the UV space (Figure 8.11).

Why?

We want to squeeze all the possible performance and quality

out. That means even a little better UV space utilization is a

win; that’s why manually adjusting the UV is necessary.

Eye UV
Step 16: Eyeball UV Mapping. Select Ellen_l_eye_

geo, go to UV->Planar to project it to the UV
Space. Go to UV->3D Cut and Sew UV Tool, and
double-click to cut the vertical loop in the middle
of the eyeball. Select all the UV vertices, hold the
Shift + right mouse button; go Unfold->Unfold.
Double-click any UV point of the front shell to
select the entire shell, hold the Shift + right mouse
button, go Layout->Layout. Scale the shell down
just a little bit to avoid it touching the edge.
Select the back shell, scale it down, and move it
to any corner (Figure 8.12).

308

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.11 Manually adjust the UV layout of the character.

Why?

We will never see the back of the eyeball, so there is no

point in wasting UV space; that’s why we scaled it down

and moved it to a corner.

Step 17: Copy UV to the other eyeball. Select Ellen_l_
eye_geo, add select Ellen_r_eye_geo. In the main
menu, go to Mesh->Transfer Attributes□. Under
the Attribute Settings section, set the Sample
space to Component, and press the Transfer
button. Press Alt + Shift + D to delete the history.
After the operation, both eyeballs should have
identical UV Layout.

Hair UV
Step 18: Hair UV. Project the hair UV to the UV Editor

the same way we did for the body and eyeball.
Go to 3D Cut and Sew UV Tool, find a relatively
hidden loop to cut the frontal hair clump open;
it is also helpful to cut the back half of the hair
open. With all UV vertices of the hair selected, do

309

UV Mapping

FIGURE 8.12 UVs of the eyeball.

an Unfold command and an Optimize command
to unfold it. Move it, so it fits in the UV space
nicely (Figure 8.13).

Step 19: Eyebrow UV. Select Ellen_eyebrow_geo, and
do a planner projection. Go to 3D Cut and Sew
UV Tool, cut the backside and bottom edges to
open it. Select all the UV vertices of the eyebrow,
do an Unfold, Optimize, and Layout command
(Figure 8.14).

Step 20: Eyelash UV. Do the eyelash UV the same way
we did in Step 19 (Figure 8.15).

Step 21: Combine the UVs of the eyebrows,
eyelashes, and the hair. Select Ellen_hair_geo,
Ellen_eyebrow_geo, and Ellen_eyelashes_geo.
In the UV Editor, select all UV vertices. Do a layout
command. Select all the eyebrow and eyelash
UVs. Scale, rotate, and move them to take over all
the UV space (Figure 8.16).

Why?

We have scaled the eyebrow and eyelashes up, and this

will result in uneven UV distribution. However, it gives us

more resolution for the eyebrow and eyelashes. It is going

to help us to add more detail to them if necessary.

310

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.13 Create UVs for the hair.

311

UV Mapping

FIGURE 8.14 Create the UV of the eyebrows.

FIGURE 8.15 UVs of the eyelashes.

Garment UV
Step 22: Project the rest. Select the rest of the models

together, go to UV->Planner to project them all
at once (Figure 8.17).

Step 23: Cut the sweater. Select Ellen_sweater_geo;
use the 3D Cut and Sew UV Tool to cut the
sweater. Cut the two arms, two rolled back
sleeves, and the collar out; these parts are
basically cylinders. Just find a relatively hidden
loop to cut them open. Cut the rest of the body to
front and back pieces in the middle (Figure 8.18).

Step 24: Cut the outfit. Select Ellen_outfit_geo, Cut
the model to front and back pieces through the
middle on the outside and between the legs. Cut
through the loop of the waist where we have
the separation of the color of the pants and the
upper part (Figure 8.19).

Step 25: Cut the UVs of the belt. Select Ellen_belt_
geo, cut the loop on the inner side of the bottom
of the belt, cut the center vertical loop on the
back, and cut the buckle out (Figure 8.20).

Step 26: Cut the pockets. The pockets are basically a
cube; if you look at the default UV of a cube, that
is going to be exactly how we cut the pockets,

312

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.16 Combine the UVs of the eyebrows, eyelashes, and the hair.

313

UV Mapping

FIGURE 8.17 Project UVs for the rest of the model.

FIGURE 8.18 Cut the UVs of the sweater.

314

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.19 Cut the UVs of the outfit.

FIGURE 8.20 Cut the UVs of the belt.

almost exactly how a pizza box is opened
(Figure 8.21).

Step 27: Cut the gun. The gun is a bit complicated,
but just like any hard surface UV we have done,
we can deal with individual pieces one by one;
the cutting choices we’ve made are shown in
Figure 8.22.

315

UV Mapping

FIGURE 8.21 Cut the UVs of the pockets.

FIGURE 8.22 Cut the UVs of the gun.

Tips and Tricks

When we are trying to figure out where to cut the UV,

there are three things to think of:

 1. Stretching – Find the primary turning part of the

shape and cut there. If not, stretching is most likely to

happen.

 2. Hide the Seams – Cut places that are hard to see if

possible. Try to cut less if possible.

 3. Texel Density – Make sure there is a consistency of

the resolution of the textures on the 3D model.

It is also up to the texturing habit of the artist and the

nature of the tools to determine some of the cutting

rules. Texturing with photoshop will require lesser

seams while texturing in Substance Painter is pretty

much free from seam problems, or the seam is at least

easily fixable.

Step 28: Cut the rest of the model. Using a similar
method as before, we can cut the rest of the
models. Figure 8.23 shows all the cutting choices
we’ve made.

Step 29: Unfold, optimize, and layout. Grab all the
garment models we projected and cut. Select all
UV vertices, do an Unfold, Optimize, and Layout
command (Figure 8.24).

Step 30: Separate the UVs. We can Separate the UVs
of all the garment into four UV sets:

 1. the upper body.

 2. the pants, shoes, and belts.

 3. the gloves and watch.

 4. the gun.
First, move all the UVs away from the U1V1
space. Start with selecting the upper body
parts, and this includes the sweater and the
upper part of the outfit. After selecting, do a
Layout command to lay out the UVs selected
to the U1V1 space. Don’t forget to do some
manual arrangements afterward.

Go to the UV Toolkit on the right side
of the UV Editor. In the Transform section,
change the value of the Move setting to 1.
Click on the right-angle arrow to move the UV

316

Creating Games with Unity, Substance Painter, & Maya

317

UV Mapping

FIGURE 8.23 All the cutting choices of the rest of the models.

FIGURE 8.24 Unfold, optimize, and lay out all the UVs.

set to the next UV space on the right; click six
more times to move it to the seventh UV tile
on the right. Keep doing this until all four tiles
are created (Figure 8.25).

Why?

We have purposely arranged the UV to the four tiles to

get more resolution. The gloves, the watch, and the gun

also have higher resolution because they are close to the

viewer in the game. We can check the relative resolution

by checking on the Checker Map option in the Textures

menu in the UV Editor. The smaller the checker pattern is,

the higher the resolution.

Tips and Tricks

When it comes to arranging the UV sets, it is helpful to

arrange them based on material type. Fabric, metal, and

leather should be put into their separate UV sets.

Step 31: Assign garment materials. We will give each
UV set we created a different material. Starting
by selecting all the faces of the gun in the UV
Editor, hold down the right mouse button in
the perspective view, and choose Assign New
Material. In the pop-up window, select Lambert. In
the attribute Editor, name the material Gun_mtl,
and drag the slider of the Color attribute of the
material down to make it darker to differentiate
it from others. Do the same thing for the other
three tiles. Then, name them as Lower_body_mtl,
Glove_and_watch_mtl, Upper_body_mtl, and
Gun_mtl. After assigning the materials, grab the
UVs of each UV set and use the Move button in the
Transform section of the UV Tool Kit editor to move
these all back to U1V1 space.

Step 32: Assign all other materials. Grab Ellen_
hands_geo and Ellen_head_geo, give them a

318

Creating Games with Unity, Substance Painter, & Maya

FIGURE 8.25 Separate the UVs and put them into different UV tiles.

Lambert material and name the material Body_
mtl. Grab the two eyeballs, give them a Lambert
material and name the material Eye_mtl. Finally,
grab the hair, eyebrow, and eyelash models, give
them a Lamber material and name the material
Hair_mtl. The final material distribution is shown
in Figure 8.26.

Why?

There are seven materials created for the character; it is a

little heavy to use, but we are going to get good quality.

How many materials are used is based on the engine and

the target platform. For our desktop game, we can spoil

ourselves a little.

Conclusion

We have now finished the UV Mapping process. It takes

some time but is often not considered difficult to do.

All we did here is to project, cut the seams open, unfold,

and layout. However, the arrangement and the packing

of these UV pieces require some serious thinking. UV

319

UV Mapping

FIGURE 8.26 Final Material distribution of the character.

Mapping is the foundation of the texturing process and

cannot be overlooked. Please double and triple check

your UVs and material assignments to ensure that there

are no overlapping UVs and all materials are named

properly. We are going to move on to the next exciting

chapter – Character Texturing.

320

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 9

Character Texture
Painting

Character texturing is very similar to the set texturing we

did in Chapter 3. However, a more complicated process

might be needed to get a good-looking skin and enough

detail on the clothing. It is also a fun part of doing 3D art.

Since we have talked about the tools before, we will jump

into the texturing process right away.

Step 1: Export. Select all models except the hidden
full-body, and go to File->Export Selection. In the
pop-up widow, change the Files of type setting
to FBX export, and set the File Name to Ellen_
Texturing_to_SP.fbx. Click on the sourceimages

321

under the Current Project list, click on the yellow
folder shaped button on the top row of the
window to create a new folder, and name it
ellen_texturing. Double-click the newly created
ellen_texturing folder, then click on the Export
Selection button to export the model.

Step 2: Import the model to Substance Painter. Open
Substance Painter; here, we import our model
with the same setting we used when we import
our environment assets.

Step 3: Baking. On the right side of the UI of
Substance Painter, find TEXTRUE SET SETTINGS
panel; click on the Bake Mesh Maps Button.
Change the Output Size to 4096. Check on Use
Low Poly Mesh as High Poly Mesh, and change
the Antialiasing to Subsampling 8 × 8. Click on
the Bake All Texture Sets button to start baking.
We set the best quality, give it a few minutes to
finish the baking task (Figure 9.1).

Step 4: Check baking error. Look around the
model to check if there are any baking errors.
It is very unlikely to see errors if we bake the
model using the Use Low Poly Mesh as High
Poly Mesh option. Zoom in to the head, the
eyeballs may appear to have some baking
artifacts. The artifacts on the eyeballs are due
to overlapping UVs – both eyeballs are using
the same UV mapping. Hold down Ctrl + Alt
and right-click on one of the eyeballs to select
the Eye_mtl. Go to TEXTURE SET SETTING, and
under the Mesh maps section, click on the X
button on all the maps in the list to get rid of
the baked maps.

322

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.1 The baking result of the character.

Why?

The eyeballs can look around, baking an ambient

occlusion map and other maps would not make much

sense. There are other moving parts like the mouth that

we should, in theory, open when baking so that no dark

ambient occlusion is baked on the part where the upper

and lower lips meet.

Skin Texturing
Step 5: Basic skin color. Hold down Ctrl + Alt and

right-click on the face to switch to Body_Mtl. Go
to the LAYERS panel. Click on the bucket icon
to add a fill layer. Double-click on the name of
the Fill layer 1 to rename it as Skin_Base. Go the
PROPERTIES panel, change the base color to a
basic skin color, and drag the Roughness slider
higher to make it less shiny (Figure 9.2).

Step 6: Skin red tint base. Create another fill layer,
rename it to Red_Tint, change the color to a pure
red color. Under the MATERIAL section, click on
height, rough, metal, and nrm to turn off these
channels. Right-click on the Red_Tint layer and
select Add black mask. Right-click on the black
mask and select add fill. On the right side of
the fill, set the visibility percentage to 80. In the
PROPERTIES panel, click on the grayscale, type
in clouds in the search bar and click Clouds 1, set
the Projection to Tri-planar projection, and set
the Scale setting to 16 (Figure 9.3).

Why?

It may appear to be crazy after Step 6. However, we are

going to layer multiple textures together to get a proper

final skin result. And we can get very rich color variation

by doing it this way. Tri-planar projection projects the

texture from the front, side, and top views of the model;

this enables the avoidance of any seams.

Step 7: Paint red color distribution. Right-click on the
mask of Red_Tint, and select add paint. Press 1
button to switch to the paint brush. Go to SHELF,

323

Character Texture Painting

under Brushes, find and click on the Dirt 1 brush.
Turn on symmetry, and start painting on the
redder areas. These areas are the cheek, tip of the
nose, lips, ear, and anywhere with more blood,
typically the muscles and higher areas of the face
(Figure 9.4).

Step 8: Paint blue color distribution. Select Red_Tint,
and press Ctrl + C and then Ctrl + V to duplicate
the layer. Name the new layer Blue_Tint, and
change the color of the layer to a pure blue
color. Click on the mask of the layer, and select
Clouds 1. In the PROPERTIES panel, click on the
grayscale Clouds 1 button, switch it to Clouds 3
so that the blue color uses a different noise.

324

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.2 Add a basic skin color with a fill layer.

Click on the X button on the right side
of the Paint mask layer to delete it. Create a
new Paint layer and start paint the variation
of the blue color. The areas on the face that
have more blue tint are the eye socket, jaw,
and typically low areas or cavities. Some of

325

Character Texture Painting

FIGURE 9.3 Add a fill layer with red noises.

FIGURE 9.4 Paint the redder area.

the areas of the face like the cheek and nose
may need lesser blue tint; hit the X button to
change the color of the brush to black and
erase blue off these areas (Figure 9.5).

Step 9: Paint yellow color distribution. Copy paste
the Blue Tint layer, and name the new layer
Yellow_Tint. Change the color to a slightly greyed
out warm yellow color. The color should be close
to the color of the bone but more saturated. Click
on the mask of the layer, select Clouds 3, and set
its visibility to 30; under the PROPERTIES panel,
change the Scale setting to 3. Delete and recreate
the paint layer and paint the variation of the
yellow color. Yellow color mostly appears on the
bony area (Figure 9.6).

326

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.5 Paint the blue area.

FIGURE 9.6 Paint the yellow color distribution.

Tips and Tricks

The color variation of a human face is complicated.

However, you can follow this rule of having the high areas

red, low areas blue, and bony areas yellow.

Step 10: Add a white color overlay. Copy and paste
the Yellow_Tint layer, name it White_Cover,
change the Cloud 3 to Fractal Sum 1, and reduce
the opacity to 50. We do this to add an overall
white coverage to even out the color variation
(Figure 9.7).

Step 11: Balance skin variation. Select Red_Tint
layer, hold down Shift, and click on White_Cover
layer to select all the color layers. Press Ctrl + G
button to create a group. Name the group Color_
Variation. Add a black mask to this group and
add a fill layer to the mask. In the PROPERTIES
panel, change the GRAYSCALE value to 0.15. Add
a paint layer to the mask; use the paint brush to
make the color tint more visible on the cheek,
nose, and eye socket (Figure 9.8).

Step 12: Overall adjustments. Add a new paint layer
on top of the Color_Variation folder. Change
the name to Overall_Adjust. On the upper right
corner of the layer, change the blending mode

327

Character Texture Painting

FIGURE 9.7 Add a white color overlay.

from Norm to Passthrough. Any adjustment we
apply to this layer should affect all layers below
with the Passthrough blend mode.

Right-click on the Overall_Adjust layer, and
select Add Filter to add a filter to it. Select the
Filter layer added to it; under PROPERTIES panel,
turn off height, rough, metal, and nrm. Click on
the Filter button, and chose HSL Perceptive. We
can now use the setting in the PROPERTIES panel
to tweak the hue, saturation, and lightness of
the texture. The Hue, Saturation, and Lightness
are set to 0.51, 0.53, and 0.51, respectively. Add
another adjustment layer, and chose Blur as
the filter; set the Blur Intensity to 2. The visibility
of the Blue_Tint layer is also reduced to 80
(Figure 9.9).

Why?

It seems a huge waste of time doing all the blending and

eventually blurring it. However, it can make a substantial

difference with all the noisy blendings. It is also because

of the stylized art style that we blurred our texture quite a

bit to make it look clean.

328

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.8 Balance the skin variations.

Step 13: Lips. Create a new fill layer, and name it
Lip, set its color to a darker red color, and set its
roughness to 0.2. Give the layer a black mask,
and add a paint layer to the mask. Go to the
Brushes shelf, chose the Basic Soft brush, and
paint on the lips to make them red.

Reduce the visibility of the Lip layer to 50
to have better blending. Add another filter to
the mask; in the PROPERTIES panel, change
the Filter to Blur, and set the Blur Intensity
setting to 1.5 (Figure 9.10).

Tips and Tricks

Instead of trying to figure out the color of the lip, it is

easier to control by adding a pure red color first and then

reducing the visibility to determine the color. After all, the

reason the lip is redder is because it has more blood vessels.

Step 14: Fingernails. Create a new fill layer, and
name it Fingernails. Set the color of the layer
to white, and set its roughness to 0.3. Give the
layer a black mask and add a paint layer to the
mask. Go to the Brushes shelf, chose the Basic
Hard brush, and paint on the fingernails. Finally,
reduce the visibility of the Fingernails layer to
40 to have better blending (Figure 9.11).

329

Character Texture Painting

FIGURE 9.9 Skin appearance after adding the adjustment.

330

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.11 Paint the fingernails.

FIGURE 9.10 Add color to the lips.

Hair
Step 15: Hair base color. Hold down Ctrl + right

mouse button on the hair to switch to the Hair_
mtl. Add a new fill layer, and name the new layer
Hair_Base. Set the Base Color of Hair_Base to a
dark red and set the roughness to 0.45.

Step 16: Hair dark color. Copy and paste Hair_Base
and name the duplicate as Hair_bottom.
Make the color darker and change its Height to
−0.5. Right-click on the layer and give it a black
mask. Add a paint layer to the mask. Press the D
button to toggle the steady stroke; steady stroke
makes your stroke more fluid. Start drawing lines
to mimic the edge of the various clumps on the
hair (Figure 9.12).

Tips and Tricks

When drawing the hair clumps, make sure that the lines

are fluid and flow with each other. When a line meets

another, make sure its direction is gradually aligned with

the other line when they meet instead of cutting into the

other line directly.

Step 17: Blur the hair clumps. Right-click on the mask
of Hair_Bottom, and chose Add filter. Click the
Filter layer, go to the PROPERTIES panel, change
the Filter to Blur, and set the Blur value to 1.5
(Figure 9.13).

Copy and paste the Hair_Bottom layer;
name the duplicate as Hair_Bottom_Sharp.
Change its Blur value of the Blur filter of
its mask to 0.5. Make another duplication

331

Character Texture Painting

FIGURE 9.12 Draw lines to mimic the edge of the various clumps of the hair.

and name it Hair_Bottom_Soft, change its
Blur value of the Blur filter of its mask to 3
(Figure 9.14).

Why?

We used three layers to add the height information and

utilized different blur values to achieve good control

332

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.13 Blurred hair clumps.

FIGURE 9.14 Add more layers to refine the curvature of the hair clumps.

of the slope of the hair clumps. It would be difficult to

achieve both defined and soft results at the same time

with only one layer.

Step 18: Hair bright color. Copy and paste the
Hair_bottom layer, name the duplicate Hair_Top,
change the color to a brighter color, and change
the Height to 1. Right-click on the Paint layer in
the mask, select Add filter, change the new filter
layer to Bevel, and change the Distance setting
of the Bevel to 1. Add another filter layer on top of
the Bevel layer and change the Filter to Invert. Set
the visibility of the Hair_Top layer to 10. The hair
should now have a subtle bright tint on the high
ground of the hair clumps (Figure 9.15).

Step 19: Eyebrow and eyelashes. Create another
paint layer on top of the mask stack of the mask
of the Hair_Top layer; paint black color over the
eyebrow and eyelashes to make them dark.

Eye
Step 20: Eye white. Switch to the Eye_mtl, create a

new fill layer, and name it Eye_White. Change
the color of the layer to a red color, give it a black

333

Character Texture Painting

FIGURE 9.15 Add bright tint to the high ground of the hair clumps.

mask, and add a fill layer to the mask. In the
PROPERTIES panel, click on the grayscale button.
In the search bar, type in polygon 2, and select
polygon 2. Toggle the Invert option on, and set
the Histogram position to 0.65. Under the Pattern
section in the PROPERTIES panel, change the
Sides setting to 32. The eye white should now
have some red tint on the corner.

Step 21: Iris group. Click the folder icon under the
LAYERS panel to create a new folder, and name
it Iris. Create a new fill layer, drag it into the Iris
folder, and rename it as Iris_Base and change the
color of Iris_Base to a dark brown color. Right-
click on the Iris folder and add a black mask; give
the black mask a fill layer, and make it polygon 2.
This time, set the Histogram position to 0.28,
Histogram contrast to 0.96, and Sides to 32. The
mask now constraints everything under the Iris
group in the circle area defined by polygon 2
(Figure 9.16).

Why?

We chose polygon 2 as the mask instead of painting

it ourselves with a brush. Using polygon 2 makes it

more flexible and cleaner; this is also something we call

procedural texturing.

Step 22: Iris contour. Copy and paste Iris_Base and
name the new layer Iris_Contour. Make the color
darker, and give it a black mask. Right-click
on the mask of Iris folder, chose Copy mask,
right-click on the Iris_Contour, and chose Paste
into mask. The polygon 2 from Iris group is now
copied to Iris_Contour. Add another fill to the
mask of Iris_Contour, chose polygon 2 again,
and change the fill layer blend type to Subtract.
In the PROPERTIES panel, set the Histogram
position to 0.23, Histogram contrast to 0.9,
and Sides to 32 (Figure 9.17). Again, we have
procedurally made the dark rim of the iris with
the polygon 2 texture.

Step 23: Pupil. Copy and paste Iris_Base, name the
new layer Pupil, make the color darker, give it
a black mask, and add a fill layer to the mask
with polygon 2. In the PROPERTIES panel, set the
Histogram position to 0.1, Histogram contrast to
0.85, and Sides to 32 (Figure 9.18).

334

Creating Games with Unity, Substance Painter, & Maya

Step 24: Iris top shading. Copy and paste Iris_Base,
name the new layer Iris_Dark and make the color
darker. Give the new layer a black mask, and
add a fill layer to the mask. In the PROPERTIES
panel, click on the grayscale, search, and choose
Gradient Linear 1. Under the Parameters section
in the PROPERTIES panel, set the Balance to
0.475, and the Contrast to 0.9 (Figure 9.19).

Step 25: Iris bottom light. Copy and paste Iris_Base;
name the new layer Iris_Bright. Make the color
brighter, click and drag it to move it above
Iris_Dark. Give Iris_Bright a black mask and add
a paint layer to it. This time, we use the Basic

335

Character Texture Painting

FIGURE 9.16 Create a folder for the iris and add a mask to it.

Soft brush to paint around the bottom portion
of the Iris to mimic lights traveling out of the Iris
(Figure 9.20).

Add another filter to the mask of Iris_
Bright and change the filter to Blur to blur the
mask (Figure 9.21).

Why?

In theory, the darkness of the upper portion of the iris is

caused by shading. The brighter color on the bottom part

336

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.17 Add the contour of the iris.

of the iris is lighting traveling out. Our model is too simple

to support such accurate shading, so we faked it using

textures.

Step 26: Iris fiber. Create a new fill layer above
Iris_Bright, name it Iris_Fiber, change its color to
a dark brown, and set the height value to −0.3.
Give the layer a black mask and add a fill layer
to the black mask. In the PROPERTIES panel, click
on the grayscale, search and select Circular Stick.
In the Parameters section, set the Number to 64,
Offset to 0, Bar Length to 1, and Bar Width to
0.005. We now have a dense fiber covering the

337

Character Texture Painting

FIGURE 9.18 Add pupils to the eye.

338

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.20 Add a brighter layer at the bottom of the iris.

FIGURE 9.19 Add top shading to the iris.

iris. Add a blur filter to the mask to make it softer
(Figure 9.22).

Step 27: Fix height error. Select the Iris_Contour
layer, under the LAYERS panel, right beneath
the LAYERS label, and change the Base Color
to Height. Change the blending mode of the
Iris_Contour to Normal to make the dark contour
block the height information below it.

Select the bottom Polygon 2 in the mask
of the Iris_Contour layer, set the Histogram
Position to 0.3 and Histogram contrast to 1 to
cover the outer edge of the Iris (Figure 9.23).

Step 28: Eye roughness. Create a new fill layer at the
top of the layer stack and name it Roughness. In
the PROPERTIES panel, turn off the color, height,

339

Character Texture Painting

FIGURE 9.21 Blur the brighter color at the bottom of the iris.

metal, and nrm channels. Set the roughness to
0.25 to tighten up the highlight (Figure 9.24).

Upper Body
Step 29: Sweater base. Switch to the Upper_body_

mtl, add a new fill layer and name it Sweater_
Base, change its color to a dark gray, and
roughness to 0.8. Press Ctrl + G to group it under
a folder; name the folder Sweater. Add a black
mask to the folder and give the mask a paint
layer. Hit the number 4 button on the keyboard
to toggle the polygon fill tool; in the PROPERTIES
panel, click on the checker box button to switch
to UV shell selection mode. Change the Color to
1, go to the 2D view, and click on the UVs of the
sweater (Figure 9.25). The mask should now be
white on the sweater.

340

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.22 Add fibers to the iris.

Step 30: Sweater pattern. Go to Materials, find Scarf
wool, drag it above Sweater_Base, and rename
it as Sweater_Pattern. In the PROPERTIES panel,
change the color to a dark gray; under the
Technical Parameter, change the Height Range
to 0.25 (Figure 9.26).

Step 31: Fix the pattern direction of the left sleeve.
Add a white mask to the Sweater_Pattern and
add a paint layer to the mask of Sweater_
Pattern. Hit the number 4 button to switch to
polygon fill tool, change the color to black, and
click on the sleeves and the collar. The pattern
should now be removed from these parts.

Duplicate the Sweater Pattern, name
the new layer Sweater_Pattern_Sleeve_L,
delete the paint layer of the mask of the new

341

Character Texture Painting

FIGURE 9.23 Make the contour of the iris block the height of the fibers.

layer, and add a new paint layer. Hit the 4
button, change the color to black, and click
on the UV shells that are not the left sleeve
to mask them out. Go click on the icon of
the new layer and change the rotation in
the PROPERTIES panel so that its direction is
aligned with the left sleeve. Create two more
duplications of the layer to fix the pattern
direction of the right sleeve and the collar
(Figure 9.27).

342

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.24 Tweak the roughness of the iris.

FIGURE 9.25 Create a layer and a folder for the sweater.

Step 32: Add smart material to the outfit. Go to
the SHELF, select Smart materials in the left
column, and find Fabric UCP. Drag it to LAYERS
and move it below Sweater. Open the folder
added called Fabric UCP, find Fabric UCP
layer, go to PROPERTIES, and change Color 01,
Color 02, Color 03 to three different blue colors
(Figure 9.28).

343

Character Texture Painting

FIGURE 9.26 Add the Scarf wool material to the sweater.

FIGURE 9.27 Fix the direction of the patterns with new layers.

Step 33: Edge variation. Duplicate Fabric UCP and
name the duplicate as Fabric UCP_Edge. Right-
click on the layer and click add levels. Select the
newly added Levels – Base Color, drag the middle
pin of the top row of the level graph to the left
just a little to make the color brighter.

Create a new black mask to Fabric UCP_
Edge, go to the Smart Masks in the SHELF,
and drag Fabric Edge Damage to the mask
of Fabric UCP_Edge. The edge of the garment
should now become brighter, which mimics
real-life scratches (Figure 9.29).

Step 34: Top strap height. Create a new fill layer
below Fabric UCP_Edge, name it Top_Strap_
Height. Turn off the color, rough, metal, nrm
channel of the layer, and change its height
value to 0.75.

Create a black mask for Strap_Height
and give the mask a paint layer. Use the
Basic Hard brush and white color to paint on
the areas that belong to the top strap layer
(Figure 9.30).

344

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.28 Add Fabric UCP as the material of the outfit.

Tips and Tricks

Don’t worry about painting over the sweater, we can

change the height blend mode of the Sweater folder to

normal to override it.

Step 35: Sewing seam. Duplicate Top_Strap_Height,
name it Sewing_Seams, set its height to 1, delete,
and recreate the paint layer in the mask. Hold
down Shift while clicking to create the sewing
seams (Figure 9.31).

345

Character Texture Painting

FIGURE 9.29 Add subtle edge wear to the outfit.

Why?

It is difficult to paint clean lines, so we use the Shift-click

trick to draw straight lines instead of trying to create a

fluid arc line.

Step 36: Waist patch color variation. Duplicate
Fabrick UCP and name the duplication Fabrick
UCP_Waist. Make the color of the new layer

346

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.31 Add Sewing seams to the outfit.

FIGURE 9.30 Add height to the top strap.

darker and more saturated. Gave the new layer
a black mask and add a paint layer to the mask.
Use Brush Hard to paint over the area on and
below the horizontal seam in the middle painted
in Step 34 (Figure 9.32).

Step 37: Waist side patch. Create a new fill layer
above Fabric UCP_Edge, name it Waist_Side_
Patch. Go to the PROPERTIES panel, set the
Scale value to 25, click on the height uniform
color button, in the search bar, type in Circles
to find the Circles mask, and click on it to
use it as our height. Set the height blending
mode of Waist_Side_Patch to Normal, give
it a black mask and add a paint layer to the
mask, and use the Basic Hard brush with white
color to paint over the side patch of the outfit
(Figure 9.33).

Tips and Tricks

Whenever we need to paint something clean, we can hold

down the Shift button and do left mouse clicks to draw

straight lines to mark out the contour of the area and then

fill in the middle.

347

Character Texture Painting

FIGURE 9.32 Add color variation to the waist patch.

Pants
Step 38: Pants base color. Switch to the Lower_body_

mtl, go to SHELF, click on the Materials section,
search for Fabric Baseball Hat, and drag it to the
layers. Name the new layer Pants_Base, change
the Scale of the layer to 3, and tweak the rotation
value so that the direction of the lines in the
pattern becomes vertical. Finally, change the color
to a darker grayed out blue color (Figure 9.34).

Step 39: Pants gradient. Duplicate Pants_Base,
name the duplication Pants_Darker, and make
the color of Pants_Darker darker and bluer.
Give the layer a black mask, add a generator
to the mask, in the PROPERTIES panel, and
change the generator to Mask Editor. In the
PORPERTIES panel, set the Curvature Opacity
to 0 and the Position Gradient Opacity to 1.
Open the Position Gradient section, turn on
the Invert, and set the contrast to 0.7. Tweak
the Balance value so that the transition of the
brightness of the color starts around the knee
(Figure 9.35).

348

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.33 Add circular patterns to the side patch of the outfit.

349

Character Texture Painting

FIGURE 9.34 Add the material for the pants.

FIGURE 9.35 Add a gradient to the color of the pants.

Tips and Tricks

Gradients are happening all of the places in nature, they

are great for add detail.

Step 40: Pants front flipper. Create a new fill layer
above Pants_Darker, name it Pants_Height_
High. Toggle off the color, rough, metal, nrm
channel of the layer, and change the Height to
1 to make it a high ground. Add a black mask
as well as a paint layer to the mask.

Draw a long square at the front of the
hip to mimic the shape of the flipper. Create
a new fill layer above Pants_Height_High,
name it Pants_Height_Low, change its height
to −1, and give it a black mask and add a
paint layer; make the brush smaller and
draw a vertical line on the side of the flipper
(Figure 9.36).

Step 41: Pockets. Add a new paint layer to the mask
of Pants_Height_High and name it Pocket_
Height. Drag it beneath the previous paint layer,
turn on symmetry, and use the Basic Hard brush
to paint over the area of the pockets. Make sure
the brush size is big and covers much more area
around the pocket.

Add a Blur filter above Pocket_Height and
below the Paint layer; set the Blur Intensity to 7.

Add another paint layer to the mask, call
it Pocket_Opening. Make the brush smaller,
press the X button to flip the color from white
to black. Paint across the opening of the
pocket to cut the seam open, and paint off
all the high areas behind the opening of the
pocket (Figure 9.37).

350

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.36 Create the high ground and the seam of the flipper of the pants.

Tips and Tricks

Whenever we need to paint something more complicated,

we can break it down to multiple steps, just like we did in

Step 40. We create the soft bump with the combination of

a harsh brush stroke and a blur filter. We then paint half of

it out to mimic the opening of the pocket.

Step 42: Seams. Go to the paint layer of the mask of
Pants_Height_Low, use a small brush to cut the
seams on the side of the pants (Figure 9.38).

Step 43: Back Pocket. Use similar techniques we
used for the pockets and flipper; we can create
the back pockets with ease. Don’t afraid to paint
over to other parts because we will cover these
with materials on top (Figure 9.39).

Step 44: Stitches. Create a new layer on the very
top and name it Stitches. In the PROPERTIES

351

Character Texture Painting

FIGURE 9.37 Add the shape of the pockets.

FIGURE 9.38 Add seams to the pants.

panel, toggle off metal and nrm, set Base Color
to white, set the Height, and the Roughness
to 1. Give it a black mask with a paint layer. In
the Brushes section of the SHELF, find and click
on Stitches 1. Reduce the size of the brush to
0.9, use the Shift-clicking techniques to draw
stitches out on the sewing lines of the pants
(Figure 9.40).

Step 45: Organization. Select all layers we created so
far, press Ctrl + G to group them in a folder, and
name the folder Pants.

352

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.40 Add stitches to the pants.

FIGURE 9.39 Create the back pocket.

Belts, Straps, Pockets,
Holster, and Boots

Step 46: Leather material. Go to the Smart materials
section in the SHELF. Find Leather Stylized,
drag it above the Pants folder, and give Leather
Stylized a black mask with a paint layer. Press the
number 4 button to switch to Polygon Fill tool. In
the PROPERTIES, click on the checker box button
to switch to UV shell mode. Set the color to white,
click on the Belts, Straps, Pockets, Holster, and
Boots to make the leather show up on these
parts. Open the Leather Stylized folder, select
Base Color, change its color to a darker brown
color (Figure 9.41).

Step 47: Refine curvature. Add a paint layer to the
mask of the Curvature layer inside Leather
Stylized. Select the Basic Soft brush in the
Brushes section of the shelf. Change the color of
the brush to black and paint out the overgrown
edge wear on the pockets and gun holster
(Figure 9.42).

Step 48: Boots bottom. Go to the Smart materials
under the SHELF. Drag Rubber Dry to the top
of the layer stack and name the group Boots_
Bottom. Give it a black mask with a paint layer.

353

Character Texture Painting

FIGURE 9.41 Add leather material to the leather parts.

Use polygon fill tool with UV shell selection mode
to assign the rubber material to the bottom of
the shoe (Figure 9.43).

Gloves
Step 49: Glove Base. Switch to the Glove_and_watch_

mtl and drag Leather Stylized into the layer stack.
The result should look like Figure 9.44.

354

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.43 Add the Rubber Dry material to the bottom of the boots.

FIGURE 9.42 Refine the edge wear of the leather materials.

We can see many bad triangular
artifacts. These artifacts are due to us baking
using the low-resolution geometry as the
high-resolution one. It is all fine if our texture
does not rely heavily on the curvature map.
Pull out the baked curvature map, and you
can see the artifacts already existing on the
baked map (Figure 9.45).

355

Character Texture Painting

FIGURE 9.44 Glove material artifacts.

FIGURE 9.45 Baked artifacts of the glove.

We have two solutions:

 1. Go to TEXTURE SET SETTINGS, under the

Mesh maps column, click on curvature,

set the Algorithm to Per Vertex, this will

give us a much clean curvature map

(Figure 9.46).

 2. Go back to Maya, select the glove models,

go to Mesh->Smooth, smooth the glove

model twice (Figure 9.47).
We can use this smoothed model as the
high-resolution model. Grab both the gloves
and the watch, export them out as an fbx file.
Back to Substance Painter; go to TEXTURE
SET SETTINGS and click on Bake Mesh Maps.
In the common settings, check off Use Low
Poly Mesh as High Poly Mesh. On the side of
the High-Definition Meshes list, click on the
file icon to load the file exported from Maya,
then bake again (Figure 9.48).

Solution 2 was used to get a better curvature
map, and the result is that the leather material
on the glove looks like Figure 9.49.

356

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.46 Baking result with the Per Vertex Algorithm.

357

Character Texture Painting

FIGURE 9.47 Smooth the glove model.

FIGURE 9.48 New baking result with the smoothed mesh as the high-resolution

model.

Step 50: Refine the amount of edge wear. Open
the Leather Stylized folder and select the Mask
Editor of the Curvature layer. In the PROPERTIES
panel, change the Global Balance to 0.35 and
the Global Contrast to 0.83. Go to the mask of
the Darker Touch layer and select its Levels layer.
In the PROPERTIES panel, drag the three pins
on the top of the LEVELS graph to the right to
minimize the amount of darker touch. Go to the
Base color layer and change it to a darker color
(Figure 9.50).

Step 51: Add extra height to the glove. Create a new
fill layer above Base Color, name the new layer
Glove_Extra_Height. In the PROPERTIES panel,
toggle off color, rough, metal, nrm, and change
the Height attribute to 1. Add a black mask with
a paint layer, and use the Basic Hard brush to
start painting in some extra layers around the
finger and palm. Add a Blur filter above the
paint layer to blur out the slope of the height
(Figure 9.51).

358

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.49 New leather material appearance with the new curvature map.

Tips and Tricks

The Shift-click trick was used a lot to create clean straight

lines. Now, hit the X button and erase to create valleys. We

use the Hard brush first to lay out the patches, and then

we blur it using a blur filter. This workflow gives us the

flexibility to tweak how blurred we want it to be.

359

Character Texture Painting

FIGURE 9.50 Refine the amount of edge wear.

FIGURE 9.51 Add extra height detail to the glove.

Step 52: Extra scratch to the new patches. Duplicate
the Curvature layer, name the duplication
Extra_Curvature, and toggle its height on and set
the height value to −0.05. Delete the Mask Editor
under its mask and add a new Generator to the
mask. In the PROPERTIES panel, add a Curvature
as the Generator; under the PROPERTIES, set the
global balance to 0.7 and global contrast to 0.45
to get a basic color variation on the edge and
high grounds.

Right-click on the mask of Glove_Extra_
Height, select Add Anchor Point (we have
covered anchor point before). Back to
the Curvature mask of Extra_Curvature,
in the PROPERTIES panel, toggle on Use
Micro Detail. Under the Image inputs, click
Micro Height, go to the ANCHOR POINTS
tab, and select Glove_Extra_Height mask.
Go to the Micro Detail section, drag Curvature
Intensity up to 5, and set the Height Detail
Intensity to 1.8 (Figure 9.52).

Step 53: Refine the edge wear. Add a paint layer on
top of the Curvature under the Extra_Curvature.
Use Dirt1 brush to paint extra edge scratch and
imperfections (Figure 9.53).

360

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.52 Use anchor point to create edge wear for the heightmap we painted.

Watch
Step 54: Add a basic material to the watch. Go to the

shelf, drag the Plastic Fake Leather material on
top of the Leather Stylized. Give it a black mask
with a paint layer, press the number 4 button
to use Poly Fill tool, and change the mode of
the Poly Fill tool to UV shell mode. Set the color
to white, and click on the watch to assign the
material to the watch (Figure 9.54).

Step 55: Add material to the screen of the watch.
Create a new fill layer and name it Watch_
Monitor. Change the Base Color of the layer to a
dark gray, height to −0.35, roughness to 0.01, and
the blend mode of the Height channel to normal.
Give it a black mask and use the Poly Fill tool to
make it appear only on the screen of the watch
(Figure 9.55).

Step 56: Add extra height to the watch. Create a new
fill layer, name it Watch_Extra_Height, and drag
the Height down to −1. Add a black mask with a
paint layer and start to paint extra detail on the
watch. After painting, drag both Watch_Monitor
and Watch_Extra_Height to Plastic Fake Leather
and rename the folder Watch (Figure 9.56).

361

Character Texture Painting

FIGURE 9.53 Hand paint more details to the edge wear of the glove.

362

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.55 Add material to the screen of the watch.

FIGURE 9.54 Use the Plastic Fake Leather material as the base material for the watch.

Gun
Step 57: Gun rebake. Switch to the Gun model and

press Alt + Q to isolate the gun. The portion inside
of the holster is darker due to the baked Ambient
Occlusion. Open Maya and load the model in
there, grab the Ellen_gun_geo, go to File->Export
Selection, use the FBX format, and export with
the name Gun_High. Back to Substance Painter,
go to TEXTURE SET SETTINGS, and click Base
Mesh Maps. Check off Use Low Poly Mesh as High
Poly Mesh, load Gun_High in the High-Definition
Meshes, and click on Bake Gun_mtl Mesh Maps
to bake the mesh maps for the gun again.

Step 58: Texture the Gun. The Method we use to
texture the gun is the same we used to texture
our environment modules. Go ahead and finish
texturing it; Figure 9.57 shows our result.

Other Details
Step 59: Chest Logo. Switch back to Upper_body_mtl

and create a new fill layer above Fabric UCP.
Name the new layer Chest_Logo, change its

363

Character Texture Painting

FIGURE 9.56 Paint extra height to the watch.

color to a darker gray, height to 1, and give it a
black mask with a paint layer. Use the Basic Hard
brush to paint out the circle of the logo, shrink
the brush size, and hit the X button to reverse the
color. Paint out the middle to create the outer
ring of the logo.

Change the Stroke opacity slider above
the viewport to 50 and hit the X button to
reverse the color back to white. Make the
brush a little smaller and paint over the
middle of the circle to add a half-transparent
and half-height circular pattern. Change
the Stroke opacity back to 100 and use the
Shift + Left click combinate to draw a letter
“A”. Finally, hit X again to switch back to
black; make the brush small and paint the
dots across the outer circle (Figure 9.58).

Step 60: Metal bolts. Switch to the Lower_body_mtl,
go to the Materials of the shelf, find and drag

364

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.58 Paint a chest logo.

FIGURE 9.57 The finished texture of the gun.

Nickel Pure to the top of the layer stack, and name
it Bolts. Change the height blending mode of this
new layer to replace. Toggle on the height channel
and set the Height value to 0.5. Change the color
to a darker brown and increase roughness to 0.3.

Give Bolts a black mask with a paint layer,
and press the number 1 button to switch to
the paint brush. Use Basic Soft as the brush,
hold down Ctrl and drag right mouse button
up to make the brush sharp. You can now
left-click to add bolts or paint any areas that
are supposed to be metal. Do the same thing
to the gloves (Figure 9.59).

Export Textures
Step 61: Export Textures. Go to File->Export Textures.

In the pop-up Export Document settings
window, go to CONFIGURATION and choose
the same configuration we did in Chapter 4.
Go back to EXPORT, change the format from png
to targa, click on the directory, and change it
to the sourceimages folder of the Maya project.
Add a new folder there and name the folder

365

Character Texture Painting

FIGURE 9.59 Add metal bolts.

Ellen_Textures. Select Ellen_Textures, and press
Select Folder. Change the resolution of the Eye_
mtl and Hair_mtl to 1024 × 1024 to save some
performance; press Export to export all maps.

Step 62: Test the textures in Maya. Open our
character scene in Maya, select Ellen_head_geo,
and press Ctrl + A to open the attribute editor.
Select the Body_mtl and click the checker box
icon after the color to pull out the Create Render
Node window. Select File in the list and click on
the Folder button on the right side of the Image
Name setting in the Attribute Editor; choose
Ellend_Body_mtl_BaseColor.tga and press open
to load it. Press the number 6 button on the
keyboard to show the texture.

Hold down right mouse button on the
model and select Material Attributes to go back
to the material. In the Attribute Editor, click
on the checker box to assign a file node to the
bump mapping. Maya creates a bump2d node
automatically. Change the Use As setting to
Tangent Space Normal in the Attribute Editor.
Click on the button with a square and an arrow on
the left side edge to go to the file node. Load the
Ellen_Body_mtl_Normal.tga; for a normal map,
we need to change the Color Space setting to Raw.

Do the same to all other materials
(Figure 9.60).

Step 63: Move the gun to the origin. We have placed
the gun to ensure that the gun works with the
proportion and color scheme, but for rigging
and game mechanics, the gun should be placed
at the origin. Select Ellen_gun_geo, and switch
to the Move tool, hold down D button, and click
on a side face of the barrel to move the pivot to
that face. Go to Modify->Bake Pivot. Maya then
generates transformation values based on the
current location and orientation of the pivot.

366

Creating Games with Unity, Substance Painter, & Maya

FIGURE 9.60 Test the textures in Maya.

Go to the Channel Box and zero out all the
translate and rotate values; the gun should now
no longer be tilted. Do a Modify-> Center Pivot,
hold down D and drag the Y and Z axes to move
the pivot to the handle; do another Bake Pivot
and zero out the translate and rotate values.
Finally, rotate the gun back if it is flipped and
do another Modify->Freeze transformation
(Figure 9.61).

Why?

Bake pivot calculates the location and rotation of the pivot

relative to the origin and overrides the translation values

with that. We can use it to get the rotation of a tilted model

back, even if we have done a freeze transformation on it.

Conclusion

That’s it, we have finished our character texturing! Overall,

with Substance Painter, the texturing process should be

a joyful one. With smart masks, generators, height map

painting, and PBR workflow, we can get many things

done. Be aware that we have seven texture sets, or

materials, each with 2k images to achieve this crisp, high-

resolution result. It is a pretty ambitious setup and would

not be recommended for low-performance platforms.

However, we could spoil ourselves on a PC game like what

we are doing.

Moving on from here, we will jump into a pretty technical

process – Rigging.

367

Character Texture Painting

FIGURE 9.61 Move the gun to the origin.

https://taylorandfrancis.com

CHAPTER 10

Rigging

Now that we have the 3D model created and UV mapped

and textured, we can begin the rigging process. Rigging

is essentially placing joints inside the character so that

the animator can then animate those joints and bring the

character to life. Each joint will influence a nearby polygon

vertex and cause the deformation of that polygon. Once

there’s enough joints influencing enough vertices, the

character will appear to be in motion. This will make more

sense as we go on. Let’s first take a quick look at how

joints behave in Maya.

369

Joint Behavior

Create a new Maya file and go to the side view. In the

rigging module, click Skeleton, create joints. Click in

the side view once, then move your cursor to a new

area above and click again. Do this one final time and

press Enter. We now have a three-joint chain created

(Figure 10.1).

Take a peek in the outliner; notice that the joints are

created in the hierarchy on clicking. The top joint is the

first joint you created. Look at the first joint, notice the

orientation is pointed in the direction of the next joint.

As joints are created, they automatically orient to the

direction of the next joint. There are ways to add or

remove joints to your joint structure but, for now, the main

thing to know is to press Enter to finalize your joint chain.

370

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.1 Three-joint chain.

Few things to note:

 1. The best views to create joints are in the top, side, or

front views.

 2. If you hold down the shift button while creating joints,

the joints will be created in a straight line.

 3. You can easily change the hierarchy of joints in the

outliner. For example, Select joint 3 and press Shift + P.

You have now unparented joint 3; it stands alone, as

seen in the viewport. To add it back to the hierarchy of

joint 1, select joint 3 in the outliner and middle mouse

drag it under joint 2. As you can see, we are now back

to our original joint hierarchy.

 4. You can translate joints in the viewport to get them

in the position you want, but generally you do not

want to rotate the joints. We’ll discuss this more as the

tutorial progresses, but, ideally, you want your joint

rotations to be at 0,0,0. This will make the animation

process go much more smoothly.

To get comfortable with the joint creation process, create

a few new joint chains and alter their structure in the

outliner. Once you’re comfortable with creating joints and

moving them into positions, we should be ready to create

a skeletal joint structure for our game character.

Joint Placement – Hip,
Spine, Neck, and Head

Let’s start this chapter by creating joints for the root (the

base joint from which all other joints will arise), spinal

cord, neck, and head. We will use the create joints tool.

Tutorial 10.1: Create the Joint
Chain for Our Character

Step 1: Reference in the model. Create a new Maya
file. Then go to File->Create Reference and point
towards the 3D character Maya file we created in
the previous chapters.

371

Rigging

Why?

Referencing is an industry-standard process. We reference

in characters, environment, and rigs into scenes so that

should the characters, environments, or rigs will be

updated. The file that we are working on automatically

grabs those updates. This allows us to make sure we are

working on the most up-to-date models and rigs.

Step 2: Go to your side view.

Why?

By creating our joints in the side view, the joints will

be created directly in the center of the character. This

is especially important because we’ll be mirroring our

left arm and left leg joint to the right side to save some

time.

Step 3: Create a spine joint chain. Go to the menu
of the viewport, and check on Shading->X-Ray
Joints to see the joints through the models.
Create the root joint by clicking in the middle of
the hip area. Once that’s done, while holding
down the shift button, add three more joints
going straight up and press Enter. You should
now have a 4-joint chain (Figure 10.2).

Step 4: Rename the joints. Let’s name our joints
before we move on, starting with joint 1. Double-
click joint 1 in the outline and type in hip. For the
rest of the joints, label them spine_01, spine_02,
and chest.

Step 5: Make the joints evenly apart. Let’s make it so
that spine_01, spine_02, and the chest joint are
equally apart from each other. We can do this
by using the translation attribute in the right-
side channel box. Select spine_01, spine_02,
and chest, go to the Channel Box, and type in
a value of 8 in Translate X. The value may vary
depending on the size of your character. The
goal here is to get the chest joint to end up a little
below the chest area of your 3D character. This is
where the chest will rotate from.

Once that’s done, we can now move onto the neck
and head area. We’ll do this by creating a new
joint chain.

372

Creating Games with Unity, Substance Painter, & Maya

Step 6: Create the joint chain of the neck: Hit Create
joints again and start with the base of the neck.
Place the next joint right below the w line and
then while holding shift, make the last joint be at
the top of the head. See Figure 10.3.

Step 7: Name the joints. Let’s name these joints as
neck, head, and head_end.

Step 8: Parent neck joints to the spine. We have now
created the joint chain we’ll use to animate the
neck and head of our character. The next thing
we need to do with this chain is to add it to our
existing hip joint hierarchy. To do this, we are
going to go in the outliner and middle mouse-
drag it onto the chest joint. Your joint system
hierarchy should now look like this (Figure 10.4).

Before we move on, there’s a couple
of things to note. So far, we’ve only been
translating our joints. Double check that all
your joints have no values in the rotation
channels (Figure 10.5).

373

Rigging

FIGURE 10.2 Root and spine joints.

Why?

This is the cleanest way of setting up a rig for animation.

By keeping the rotation values at 0, animators can easily

reset the joints to their original position by entering values

of 0 in the rotation rather than some odd number.

Joint Placement – Left Arm

Let’s now move onto creating the left arm joint structure.

The goal here is to create a left arm structure along with a

simple finger joint setup and then mirror that same setup

to the other side for the right arm.

Step 9: Create the clavicle joint. Switch to the
Create Joint tool; in the front view, click in the
area where the clavicle would be (between the
shoulder and neck areas).

374

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.3 The joint chain for the neck.

375

Rigging

FIGURE 10.4 Parent neck joints to the spine.

Step 10: Create the arm joints. While holding down
the shift button, add the shoulder, elbow, and
wrist joint; they should form a horizontal joint
chain at the moment (Figure 10.6).

Step 11: Rename the joints. Let’s relabel these as
left_clavicle, left_shoulder, left_elbow, and
left_wrist.

We now need to rotate the joints to be in
their correct direction. However, we do not want
to rotate using the regular joint rotation. We
want to use what’s called joint orient, which can
be found in the attribute editor once you select a
joint (Figure 10.7).

Why?

Using joint orient allows us to rotate the joints while

keeping the original joint orientation clean.

Step 12: Position the arm joints to the right spot. First,
move the clavicle if it is too far in the front or in
the back. Next, select the left_shoulder joint and

376

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.5 Before moving on, make sure there are no non-zero rotation values

for the joints.

FIGURE 10.6 Create the arm joints.

go to the attribute editor. While holding down
the Ctrl key, middle mouse drag the values in the
joint orient box that correspond with the direction
you need to rotate the joint. In our case, we need
to rotate both the joint orientations Z and Y to
get the direction of the shoulder to properly line
up with the arm. Once the direction of the joint
is correct, you can change the translate X of the
child joint (left_elbow) to change the length of the
shoulder joint (Figure 10.8).

Step 13: Repeat the process we did for the shoulder joint
to the elbow and wrist joint until the arm joints are
all positioned in the right spot (Figure 10.9).

377

Rigging

FIGURE 10.7 Attribute editor for the left_wrist joint.

FIGURE 10.8 Position the clavicle and shoulder joint.

Tips and Tricks

Through the instructional experience we have, more than

half of the students don’t follow this rule. So we are going

to write this down three times with all capitals:

DON’T ROTATE THE JOINT, CHANGE JOINT ORIENT!

DON’T ROTATE THE JOINT, CHANGE JOINT ORIENT!

DON’T ROTATE THE JOINT, CHANGE JOINT ORIENT!

Step 14: Parent the left_clavicle underneath the
chest joint (Figure 10.10).

378

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.9 Finish the arm joints.

Now it’s time to create the finger joints.
We’ll just use a basic setup for the fingers that
consists of three animatable joints for each
finger.

Step 15: Turn on the Snap to Projected Center option.
Let’s turn on “Snap to Projected Center” option,
which can be found in the top menu among the
buttons with icons of magnetics. This allows us
to create joints in the “perspective” viewport and
automatically place the joints inside the hand
mesh (Figure 10.11).

Step 16: Create the index finger joints. Create the first
joint at the base of the knuckle; add three more
joints down the finger, with the last one being at
the tip of the finger.

379

Rigging

FIGURE 10.10 Parent the left_clavicle to the chest joint.

FIGURE 10.11 Turn on the Snap to Projected Center option.

Step 17: Name the finger joints. Let’s now label these
joints left_hand_index_01, left_hand_index_02,
left_hand_index_03, and left_hand_index_04
(Figure 10.12).

It’s possible that our joint orientations
are a little skewed after creation. Let’s go
and zero out the values of the joint orient of
left_hand_index_02, left_hand_index03,
and left_hand_index_04.

Why?

Upon doing this, we now have a clean structure wherein

the fingers are all straight. Now we can get the orientation

correct by changing the joint orientation values in the

attribute editor the same way we did for the arm joints.

Now that we got that all cleared up and ready to go, let’s

duplicate and use that same joint setup for the rest of the

fingers.

380

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.12 The joints of the index finger.

Step 18: Duplicate the index finger for the rest of
the fingers. Select the left_hand_index_01 and
press Ctrl + D. This makes a duplicate copy of
that joint system. Move that new system onto
the middle finger and adjust the joint orient
accordingly. Remember only to translate the
joints and use the joint orient to rotate the joints
into place. It’s your choice to either create the
thumb from scratch or use a duplicate from the
index finger.

Repeat the same process for the rest
of the fingers and name them accordingly
(Figure 10.13).

Step 19: Parent the fingers to the wrist. The last step
is to grab all the first finger joints in the outliner
and middle mouse drag them underneath the
left_wrist joint. This will connect all the fingers to
the wrist (Figure 10.14).

Tips and Tricks

As you’re doing this, be sure to keep your orientations

cohesive. Make sure all your fingers rotate the same

direction so that, as your animating, you can grab all the

fingers and animate them all at once in one axis.

381

Rigging

FIGURE 10.13 All fingers duplicated.

Joint Setup – Right Arm

To get the right arm created, we could run through the

whole process again, but we’re going to take a shortcut

for this one. We’re going to do a process called Mirror

Joints. This will essentially duplicate one side of the joints

to the opposite side and save us much time.

Step 20: Mirror the joints. Select the left_clavicle.
In the Rigging menu, select Skeleton->Mirror
joints□. Here, set the Mirror across to YZ so the
joints are getting mirrored across the Y and Z
planes. The other thing we want to do is relabel
all of our new joints to start with right, instead
of left. In the Search for text field, type in left. In

382

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.14 Parent the finger joints to the wrist joint.

the Replace with text field, type in right. If you
labeled all of your left joints correctly, all of your
new mirrored joints should be properly labeled
for the right side (Figure 10.15).

Hit the Apply button. And we’ve finished
the right arm.

Joint Setup – Legs

The legs will be most likely animated using a method

called Inverse Kinematics or IK. However, for now, we need

to create a basic joint structure. Few things to note: we’ll

be creating this in the side view, and we need to be sure

not to create the joint structure straight down. We need

to create a slight bend from the thigh to the knee to the

ankle.

Step 21: Create the leg joints. In the side view, create
a new joint at the center of the hip area and
name it left_thigh. Create another joint at the
knee and then the ankle; name them accordingly
(Figure 10.16).

383

Rigging

FIGURE 10.15 Settings to mirror a joint chain.

Step 22: Create the foot joints. Add two more joints
for the ball of the foot and the toe, name them,
and parent the ball joint to the ankle joint after
creation (Figure 10.17).

Once our structure is created, we need
to go to the front view of the character and
move left_thigh to match the leg joints to
the left leg and parent it to the hip joint
(Figure 10.18).

Step 23: Mirror the leg joints. The next step would be
to mirror this leg the same way we mirrored the
clavicle.

Step 24: Parent the hip joints underneath the hip
joint.

384

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.16 The naming and hierarchy of the leg joints.

Once this is done, we now have the left
leg joint structure complete. We can now
create what is called an IK chain for the leg.
IK works a little differently than the forward
kinematics that we’ve been using so far. IK
allows us to move a point or a target and
have the connected joints automatically
rotate the joint to point to that target. This
will make much more sense as we create one,
so let’s do that for the left leg.

Step 25: Go to Skeleton->IK handle□, and click on
the Reset Tool button. We will only need the
default setting of this tool.

Step 26: Apply the IK handle to the leg. Click the
center of the left hip joint and then at the left
ankle joint. The IK handle has now been created.

385

Rigging

FIGURE 10.17 Final joint chain for the left leg and foot.

To see how this works, grab the IK Handle1 in the
outliner and translate it around. The leg is now
animating with inverse kinematics instead of
forward kinematics. Go ahead and name this IK
handle, left_leg_ankle_IK.

Step 27: Create IK chains for the foot joints. Create
another IK handle from the ankle to the ball of
the foot. Label the new IK handle, left_leg_ball_
IK. Create a final IK handle from the ball to the
toe and label it left_leg_toe_IK. We should now
have three IK chains. If you cannot see them,
go to the menu of the viewport and check on
Shading->X-Ray (Figure 10.19).

Step 28: Make the IK handles sticky. The last step
for these IK chains is to make them sticky.

386

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.18 Match the leg joint to the model and parent it to the hip.

To achieve this, go to the outliner and select the
IK handles, then in the attribute editor under the
IK handle Attributes section, turn on Sticky under
Stickiness. Do this for each of the IK handles
(Figure 10.20).

Foot Roll Rig

The next thing we need to do is create controllers for the

foot. We’ll be animating these later instead of trying to

grab the IK chains in the outliner.

Step 29: Create the controller for the left toe. Go to
Create->NURBS primitives->Circle. This will create
a NURBS circle at the origin. Let’s label this one

387

Rigging

FIGURE 10.19 The new joint chain.

left_toe_ctrl. NURBS models are mathematically
constructed, lightweight, and perfect for creating
controllers.

Step 30: Group the controller. After labeling the
curve, we need to group it by selecting the NURBS
curve and then pressing Ctrl + G. Name the group
left_toe_ctrl_group. The group is what we’ll use
to position the curve where we need it to go,
leaving the NURBS curve attributes clean.

Why?

We’ll be animating with the NURBS curves later on, and we

need those to not have any values on them to make life

easier for the animators. By keeping the values empty, we

can easily reset the controller back to default by entering

0 in the values.

Step 31: Position the group to the toe joint. Select
the left_toe_ctrl_group and then add select the
left_toe joint. In the top menu, select Modify-
>Match Transformations->Match All Transforms.
The left_toe_ctrl_group should now be moved to
the left_toe joint.

If you don’t see the controller, press
Ctrl + 1 to isolate the group, and you can see it
is just too small. To make it bigger, hold down
the right mouse button on the curve and

388

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.20 Make the IK handles sticky.

select Control Vertex. Marquee select all the
vertices and scale and rotate them, as shown
in Figure 10.21.

Why?

We could easily scale the controller up, but that introduces

scale values in the Channel Box, which will cause

problems for animation and rigging later on. Always

remember, the Translate X, Y, Z and Rotate X, Y, Z values of

your controller should remain 0, while the Scale X, Y, and Z

values should remain 1.

You can press Ctrl + 1 again to toggle isolation.

Step 32: Create the controller for the left ball joint.
Repeat the same process given in Steps 29–31 for
the left_ball joint.

389

Rigging

FIGURE 10.21 Position and reshape the controller.

Step 33: Create the heel controller. Create another
controller and group pair, and name them
left_heel_ctrl, and left_heel_ctrl_group. This
time, instead of match transformation, place
the left_heel_ctrl_group to the base of the heel
(Figure 10.22).

Setting Up the Foot Hierarchy

The next part of the process is putting the controllers into

the correct hierarchy so they can control the joints.

Step 34: Parent IK to the controllers. Make Left_leg_
ankle_Ik a child of left_ball_ctrl. We can achieve
this by middle mouse dragging leg_ankleik onto
left_ball_ctrl. Follow the same trend, do the
following parenting operations:
Make left_leg_ball_IK a child of left_toe_ctrl
Make left_ball_ctrl_grp a child of left_toe_ctrl
Make left_leg_toe_IK a child of left_heel_ctrl
Make left_toe_ctrl_grp a child of left_heel_ctrl.

Your hierarchy should now look like
Figure 10.23.

Step 35: Create a main foot controller. Create
another controller and group pair. Name the
controller left_foot_ctrl and name the group
left_foot_ctrl_group. Place left_foot_ctrl_group
directly underneath the foot. Hold down the right
mouse button on the curve and select Control
Vertex. Marquee select all the vertices and scale
them to match their size to the bottom of the
foot. Finally, parent left_heel_ctrl_group to
left_foot_ctrl.

390

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.22 The left foot controller setup.

Step 36: Repeat Steps 25–35 on the right leg.
Currently, the joints are not influencing

any of the geometry. The next thing we
need to do is have it such that the joints are
now influencing the character vertices or
polygons. To do this, we’ll be using a method
called Bind skin.

Tutorial 10.2: Bind and
Paint Skin Weighting

Step 1: Select all the joints and the models. In the
outliner, select the root_motion joint and then
on the top menu, go to Select->Hierarchy; this
will select all the joints. Now, while holding down
the Ctrl button, add all the character meshes
except the gun to the selection.

Step 2: Bind the models to the joints. In the Rigging
menu, go to skin->bind skin□. In the pop-up
Bind Skin Options window, click on Edit-
>Reset Settings to use default skinning options
(Figure 10.24).

Press the Bind skinbutton. (Binding skin
will bind the vertices to the closest joints
so that when you rotate or translate the
joints, the corresponding geometry deforms
accordingly.)

Now that our geometry is bound to the
joints, we need to refine the skin weights. The
process is known as painting skin weights,
which is the process of adjusting the intensity
values on each vertex to the corresponding
joint. This part of the rigging process is

391

Rigging

FIGURE 10.23 Left foot rig setup hierarchy.

one of the most important as it allows us
to make sure each joint is deforming the
corresponding geometry properly and
smoothly.

Painting Skin Weights

The goal here is to make sure only the specified

geometry bends with the corresponding bind joint.

Another thing we’re going to do is copy the skin weights

from one side of the body to the other. So we’ll paint the

skin weights for the character’s left side and copy them

to the right side.

To make things easier, we’ll paint the skin weights on the

Ellen_full_body_ref geometry and then transfer the skin

weights to the main character geometry.

Step 3: Hide all the geometry except for the
Ellen_full_body_ref. Select the geometry pieces
in the outliner and press Ctrl + H. Next, be sure
to unhide the Ellen_full_body_ref if it’s hidden.
Select the geometry in the outliner and press
Shift + H.

Step 4: Open the Paint Skin Weight Tool. Select the
Ellen_full_body_ref in the viewport, hold down
the right mouse button, and select the Paint
Skin Weights tool. This now activates the skin
weighting process for the geometry and joints.

392

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.24 Bind skin options.

There are a few things to take note of in
the Tool Settings that pop up. The first is that
you’ll see is a list of all the joints. Select one
of the joints in the list, and you’ll see which
part of the geometry that joint is affecting.
The controlled geometry area is displayed in
white, as shown in Figure 10.25. We will be
mainly using the Add and the Smooth options
under paint operation.

Step 5: Paint the weighting for the head. Let’s start
with the head joint. Select the head joint in the
influences list on the paint weight tool settings
box that popped open. Once selected, make sure
the paint operation is set to Add and the opacity
is at 1.0000. We’ll also put the Value at 1.0000.
The goal here is to paint the head geometry
to have a value of 1 so that when the head
joint is animated, the head geometry rotates
accordingly.

Paint the whole area of the head to white
to make the head joint take full control of the

393

Rigging

FIGURE 10.25 Skin weight painting window.

head. Moving down to the neck joint, and
paint the neck area to white to make the neck
joint control the neck (Figure 10.26).

Tips and Tricks

When painting, completely white means that vertex has a

weight value of 1.

Step 6: Smooth the weighting between the head
and the neck. Now that we’ve got the head and
the neck completely painted with an influence
of 1 (white), what we’ll want to do is smooth the
weighting between the two joints. To do this,
select the head joint in the list and switch to the
Smooth operation option in the tool settings.
Once that’s selected, press the Flood button
(located under the opacity option) a few times.
You’ll now see the blend is much smoother
to the neck joint. This will allow for a smooth
deformation when bending the joint.

Tips and Tricks

You can also hold down Shift and paint to smooth out any

area. To verify if your skin weights are looking nice and

clean, grab the head joint and rotate it. You’ll see how the

geometry is deforming. Once you’re done testing it out,

be sure to set the joint back to 0,0,0 (Figure 10.27).

394

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.26 Paint the weighting for the head and the neck.

Step 7: Paint the weight down the chain. The next
step would be to work our way down the chain.
The chests would be the next joints to paint.
Do the same process as before. Use Add, and
paint the influence of the chest joint. Once
done with that area, you can smooth out the
transitions (Figure 10.28).

Tips and Tricks

Sometimes as you’re going through your paint weighting

process, you’ll see a vertex with influences from an

unwanted joint. In these cases, select the vertice, and go

to the Windows->General editors->Component Editor.

Once there, you’ll see a Smooth Skins tab that shows

which joints are influencing that vertice. If there’s a joint

that is influencing and you do not want it to, you can enter

0 in the box associated to that joint (Figure 10.29).

395

Rigging

FIGURE 10.27 Head skin weighting smooth to neck joint.

Step 8: Repeat the weight painting process for the
rest of the spine. You will repeat this process
down the spine. Below is an image showing the
cutoff points for each joint (Figure 10.30).

Once you’re done with the spine, it’s time
to do the arms and legs. Remember, we’re
only doing one side, and then we’ll copy the
weighting to the other side. So, let’s do the
character’s left side.

Step 9: Paint the weighting for the left clavicle.
Starting with the left clavicle, repeat the process
of painting in Add mode, and then smooth it out
(Figure 10.31).

Step 10: Finish the weighting of the rest of the body.
The next joint would be the shoulder, then the
elbow, wrist, and finger joints. Once the arm is
done, the next thing to do would be the left leg,
starting from the hips.

396

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.28 Chest weighting completed.

Mirroring the Skin Weights

Instead of painting the right side of the body, we’re going

to mirror the skin weights from the left side.

Step 11: Mirror the skin weights. Select the geometry
and go to Skin->Mirror Skin Weights□. In the
Mirror Skin Weights Options window, make
sure the Mirror across option is set to YZ and the
Direction Positive to negative (−X to X) is checked
so that it’s mirroring from Positive to Negative
(+x to −x) (Figure 10.32).

Hit Mirror. The skin weights have now
been mirrored to the right side of the body. Be
sure to double-check this is in fact the case.
Test it by animating or rotating the joints. Be
sure to set them back to 0,0,0 afterward.

Copying the Skin Weights

Now that we’ve got the Ellen_full_body_ref painted, we’re

going to transfer the skin weights from this model to the

397

Rigging

FIGURE 10.29 The Component Editor.

rest of the models. This is a simple process that’ll only take

a few minutes.

Step 12: Unhide the models. Unhide the geometry
that we hid before. Select all of the geometry in
the outliner and press Shift + H.

Step 13: Copy skin weight to the sweater. Select
Ellen_full_body_ref and then shift select Ellen_
sweater_geo. Go to Skin->Copy Skin Weights.
The order of selection is important; you must
select the source first, then the destination. Once
you’ve hit copy skin weights, the skin weighting
should now be applied to the Ellen_sweater_geo.
Test it out again by animating the joints.

398

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.30 Full-body joint skin weighting cut-off areas.

Step 14: Repeat the same process for all of Ellen’s
geos.

Once you’ve copied all of the skin weights
over, test out the deformations. While copying
the skin weights over does a great job, it’s
never 100%, so be sure to test out and adjust

399

Rigging

FIGURE 10.31 Left clavicle skin weighting.

FIGURE 10.32 The mirror skin weights settings.

accordingly using the paint skin weights
process that we did before.

Now that the skin weighting is out of the
way, let’s start creating controllers for the arm.

Tutorial 10.3: Set Up Arm Controls
Step 1: Duplicate the left arm joints. Select the

left_shoulder joint and press Ctrl + D to duplicate
it. You should now have a new chain called left_
shoulder1, left_elbow, and left_wrist. The fingers
were also probably duplicated, but we don’t
need those. In the outliner, delete the duplicated
finger joints.

Step 2: Unparent the new joint chain. Grab
left_shoulder and press Shift + P. This will
unparent the new joint chain that we created
since we want it to function separately from the
deformation joint system.

Step 3: Rename the new joints. Rename the
duplicated joints as left_drv_shoulder,
left_drv_elbow, and left_drv_wrist. As a final
step on this joint chain, place it under a group
and name the group left_drv_arm_group
(Figure 10.33).

 This new joint chain we created is often
called a driver joint chain. It receives the
controller’s input and drives the original
joints. We also call the original joints the
binding joints.

What we want to do now is create
controllers to control this driver joint chain.

Step 4: Create the controller. Go to the top menu
and select Create->NURBS Primitives->Circle.
This will create a NURBS circle at the origin.
If you do not see it, be sure to go to the
perspective view.

Step 5: Delete history. With the circle selected, go to
Edit->Delete by Type->History.

Step 6: Rename the controller to
left_fk_shoulder_ctrl.

Step 7: Group the controller. With the controller
selected, press Ctrl + G. This creates a group
on top of the controller. Rename that group,
left_fk_shoulder_ctrl_grp.

Step 8: Match the group to the shoulder joint. Select
the group and then shift select the left shoulder
joint. Go to the top menu, Modify->Match
Transformations->Match all Transformations.

400

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.33 New arm joint setup.

This will place the group and controller in the
exact place and orientation of the selected
object.

Step 9: Tweak the shape of the controller. You’ll want
to resize the controller if it is not looking right.
Manipulate the control vertices to change its size
and shape (Figure 10.34).

Step 10: Duplicate the controller group. Select the
left_fk_shoulder_ctrl_grp and duplicate it by
pressing Ctrl + D. This creates another group;
rename the group to left_fk_elbow_ctrl_grp.
Open the group and rename the controller under
it to left_fk_elbow_ctrl.

Tips and Tricks

It’s important to keep the actual controls clean with

zero values on them. That’s why we’re using the groups

to move them into position and adjusting the control

vertices to rotate or scale them into your desired size

and shape.

401

Rigging

FIGURE 10.34 Arm control setup.

Step 11: Match the left_fk_elbow_ctrl_grp to the
elbow joint. Grab the left_fk_elbow_ctrl_grp
and add select the elbow joint; do a match all
transformations. Then resize the controller to
your liking by manipulating the control vertices.

Step 12: Repeat Steps 10 and 11 for the wrist.
Step 13: Put the controller into a correct hierarchy.

The last step for the controller set up is the
hierarchy of the groups and their controls.
It’s important that after we do this, we are
moving the groups on top of the controls in
the outliner. The hierarchy should be from the
shoulder down. So first, grab the elbow group
and drag it underneath the shoulder controller
(not the group, the controller under the group).
Then grab the wrist group and drag it under the
elbow controller (Figure 10.35).

Step 14: Use the controllers to control the driver
joints. Select left_fk_shoulder_ctrl and then
shift select the left_drv_shoulder joint and select
Constrain->Orient. (Be sure that the maintain
offset option is checked in the settings.) Do the
same thing for the elbow and wrist. In the end,
you should have three orient constraints, one on
each joint. If you did things correctly, you should
be able to rotate the controllers and see the joints
rotate with it. These will be the FK arm setup.

Constrains

After you apply constrains to objects, the second one

in the selection starts to follow the first one in the

selection. Orient constraint makes the object follow this

rotation only. Go to the constrain menu, and you can

still see Parent and Point. Parent constraint makes the

object follow both the translation and the rotation. Point

constraint makes the object follow the translation only.

402

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.35 Arm controller hierarchy.

IK Arm Setup

Now let’ setup the IK arm controls.

Step 15: Create the IK controller for the wrist.
Duplicate the left_fk_wrist_ctrl_grp and
unparent the new duplicate. Replace the “fk” in
the names of the new group and the controller
under it with “ik”.

Step 16: Reshape the new IK controller by right-
clicking and going into the Control vertex mode.
All you have to do is make it look different than
the left_fk_wrist_ctrl (Figure 10.36).

Step 17: Create the IK controller for the elbow.
Duplicate the left_ik_wrist_ctrl_grp and replace
the “wrist” in the name to “elbow”. Select the
new group, match it to the elbow joint with
Modify->Match Transformations->Match all
Transformations. Select the group and translate
it back so it sits behind the elbow. Change the
shape of the controller as shown in Figure 10.37.

Next, let’s setup the IK control system for
the arm.

Step 18: Create the IK Handle. Go to the rigging
module, then Skeleton->Create IK handle. Use
the default settings. Click on the left_drv_
shoulder then left_drv_wrist (Isolate them so you
can easily click on them). This will create an IK
handle. Rename it as left_wrist_IK.

403

Rigging

FIGURE 10.36 Reshape the new IK controller.

Step 19: Parent the IK handle to the IK wrist
controller. Select the left_wrist_IK in the outliner
and middle mouse drag it onto the left_ik_wrist_
ctrl. Now left_ik_wrist_ctrl should be driving the
IK system.

Step 20: Set up the IK elbow control. Select the
left_ik_elbow_ctrl you created in the outline.
Holding down Ctrl and select the left_wrist_IK,
go to Constraint->Pole Vector. This pole vector
control should now be able to control the IK
elbow position.

Step 21: Apply wrist rotation control. The last
thing we need to do is add an orient constraint
between the left_ik_wrist_ctrl and the left_drv_
wrist joint. Select the left_ik_wrist_ctrl, then
shift select the left_drv_wrist joint, and select
Constrain->orient constraint.

Now that we have the IK created, one of
the last things we need to do is constrain the
new duplicate arm driver joints to the original
binding joints. What we’ll be doing is parent
constraining our binding joints to the new
driver joints.

Step 22: Parent Constraint the binding joints to the
driver joints. Select the new left_drv_shoulder
joint and shift select the left_shoulder binding
joint. Select Constrain->Parent Constraint to
apply a parent constraint to the binding joint.

404

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.37 IK elbow control setup.

Go ahead and do the same thing for the elbow
and the wrist joints.

Now that we have our arm rigs done, we
need to clean up the groups in the outliner.

Step 23: Group all the controllers. Select left_fk_
shoulder_ctrl_group, left_ik_wrist_ctrl_group,
and left_ik_elbow_ctrl_group. Group them and
name the new group left_arm_ctrl_group.

Step 24: Group the controllers and the driver joints.
Select left_arm_ctrl_group and left_drv_arm_
group. Group them and name the new group
left_arm_rig_group (Figure 10.38).

You will need to repeat the entire Tutorial
10.3 for the right arm.

Tutorial 10.4: Finger Controls

Now that we have the arm completed, we need to create

controls for each finger joint.

Step 1: Create the fk controllers. Create the fk
controllers for the fingers the same way we
created the controllers for the arm. You can think
of the fingers as mini arms. Don’t forget to parent
the controllers to their correct hierarchy the same
way we did for the arm controllers (do not create
IK ones).

Step 2: Parent constraint the joints. Once you’re done
with all of the fingers’ controls, you’ll need to
parent constraint the joint to each corresponding
finger controller. This is the same process that
we’ve been doing for the other controls. The finger
joints should now rotate as you rotate the controls.

Step 3: Group the controllers. Next let’s group all
finger groups under one group and call it left_
hand_group. This group should hold all your
finger controls and their groups (Figure 10.39).

405

Rigging

FIGURE 10.38 The final hierarchy of the left arm.

Step 4: Make the hand follow the wrist. The last
step of this process is to parent constrain the
left_hand_grp to the left_drv_wrist joint. This
will make sure the group follows along with the
arm motion.

Tutorial 10.5: Clavicle
and Body Controls

Since we have the driver joints and the binding joints for

the arm, we need to do a similar setup for the clavicles.

406

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.39 Final finger control hierarchy.

Step 1: Create the driver joint. To start things off, we
need to duplicate the left_clavicle joint. This will
duplicate the joints underneath. We only need
the clavicle and shoulder; go ahead and delete
everything else. Once those are deleted, rename
the joints to left_drv_clavicle and left_drv_
shoulder. Group left_drv_clavicle and rename
the group to left_drv_clavicle_group. Finally,
unparent the group (Figure 10.40).

Step 2: Creating Clavicle controls. Now we need to
create controls for the clavicles using the same
method as before. Create a NURBS circle and
group it. Move the group to the position of the
clavicle joint by matching all transformations.
Name the controller and the group following
using the same convention we’ve been using.
Finally, group the top group of the controller
and the driver joint to a new group called left_
clavicle_rig_group (Figure 10.41).

407

Rigging

FIGURE 10.40 Left clavicle and shoulder joint setup and hierarchy.

FIGURE 10.41 Clavicle rig groups and hierarchy.

Step 3: Create an IK handle. Next, we are going to
create an IK handle to animate the clavicles
when the arm is in IK mode. Go to Skeleton-
>Create IK handle□. In the Tool Setting window,
change the Current Solver setting to Single-
Chain Solver. Click on left_drv_clavicle, then
left_drv_shoulder to create an IK handle and
name it left_clavicle_IK (Figure 10.42).

Step 4: Parent left_clavicle_IK to the left_clavicle
controller (Figure 10.43).

Step 5: Constraint the original joints. Next, we need
to have these driver joints drive the binding
joints. Select the left_drv_clavicle joint and then
shift select the left_clavicle joint. Do a Constrain-
>Parent Constraint.

Step 6: Constrain the shoulder driver joints. Next,
we need to select the left_drv_shoulder of the

408

Creating Games with Unity, Substance Painter, & Maya

FIGURE 10.42 Clavicle IK and joint setup.

FIGURE 10.43 Left clavicle IK and controller hierarchy.

clavicle driver joints and then add select the
left_drv_arm_group, and do another parent
constraint. This will allow the driver joints from
the arm to follow the clavicle.

Step 7: Constraint the shoulder FK controllers. Select
the left_drv_shoulder of the clavicle driver joints
and then add select the left_fk_shoulder_ctrl_
group, and do one more parent constraint.

Step 8: Make the clavicle follow the chest. Now, we
need to make the clavicle group follow the chest
control. Select the chest joint, and then shift
select the left_clavicle_rig_group, and do one
last Constrain->Parent Constraint.

Now you have done the left clavicle, do
the same thing for the right clavicle.

Now it’s time to create the root and spine
controllers. Remember, the controls will all
need groups.

Step 9: Create the hip controller (NURBS circle), name
it, group it, and rename the group as well.

Step 10: Grab the group and match all
transformations to the hip joint.

Step 11: Parent constrain the hip joint to the hip
controller.

Step 12: Repeat this same process for the joints that
lead all the way up to the head (Figure 10.44).

409

Rigging

FIGURE 10.44 Body controller setup.

Gun Joint

We now need to add one last joint that will be used for the

weapon in the game.

Step 13: Select Skeleton->Create joints. Create a joint
at the origin and then translate it inside the gun,
and rename the joint to gun_joint.

Step 14: Bind the geometry of the gun to gun_joint.
Select the gun geometry, and add select the
gun_joint. Do a Skin->Bind Skin.

Step 15: Paint the weight of the gun so that the gun_
joint has complete control of the gun.

Final Hierarchy

Now that we have all the controls created, we just need

to clean them up in the outliner and make sure they’re

placed in the correct order and under the proper groups.

Step 16: Create the world controller. Create a new
controller at the origin and rename it as world_
ctrl. Group the world controller and rename it as
Ellen_rig_grp.

Step 17: Parent other controllers and driver joints
under the world controller. The world controller
should be the root of the hierarchy. Parent all
the controllers and driver joints under the world
controller (Figure 10.45).

Conclusion

We have finished our rig, but bear in mind that this setup

is the bare minimum of rigging; we ripped off everything

we could to keep rigging simple for you. However, if you

want to have more advanced rigs, there are plenty of

auto rigs out there. Plug-ins like Advanced Skeleton and

Rapid Rigs can make all the controls for you in a matter

of minutes. Maya has its own auto rig as well, located at

Control->Create Control Rig.

There are more things to explore in the world of rigging.

To name a few, we did not do any facial expression

controls, and we cannot even move the eyes, or open the

mouth. We also did not set up any stretching. However, we

410

Creating Games with Unity, Substance Painter, & Maya

should always avoid overdoing the rig. If we don’t need

facial expressions, it makes total sense not to rig the face.

Rigging can be super confusing, so if you don’t

understand some of the steps, try to read through them

again. Also, if you don’t feel like rigging at all, we have a

finished rig file for you, and you can work the animations

with it in the next chapter.

See you there!

411

Rigging

FIGURE 10.45 Final hierarchy of the whole rig.

https://taylorandfrancis.com

CHAPTER 11

FPS Animation in Maya

FPS Animation Overview

First-person shooter (FPS) animations are utilized in

games where player immersion is significant. It is as if

the player were stepping into the character’s shoes and

becoming that character. The player will usually only see

their character’s hands and weapon if the gameplay calls

for one. Since we only see a fraction of the character,

creating FPS animations is usually simpler than animating

characters we will see in full view, such as non-player

characters. In the animation phase, our job is to create

believable character movement. There are a few technical

considerations to think about before starting the FPS

413

animations, but once those are set up, breathing life into

our character should be straightforward. Before moving

on, if you feel like speeding up the workflow, you can

jump to the next chapter where the second half shows

how to use motion captured data as our animation

instead of doing it manually.

Referencing the Character Rig

Instead of opening Ellen_rig as usual, you have the

option of referencing the character rig in a new Maya file.

Referencing in the rig will allow you to animate an instance

of the character while leaving the original file untouched.

Step 1: Start with a clean Maya file, and go to
File>Create Reference. Navigate to Ellen_rig
and click on Reference to bring in the instanced
version of the Ellen rig. This is the file you will
begin your animations in.

Why?

When you start animating and maybe realize that you

need to make model or rigging adjustments, you can

jump into the original rig file, Ellen_rig, and make those

changes. When you return to your animation file with the

referenced rig, those adjustments will be reflected on

the model and/or rig, and your animation should still be

intact. If you do not see those changes immediately, go

to File>Reference Editor, right click on the rig name in the

newly appeared window, and choose Reload Reference to

bring in those changes into your animation file.

Besides the ease of updating the model and rig separately

from the animation data, referencing makes it such that

altering the rig while you are animating is impossible. You

will not be able to delete any controls or any parts of the

model by accident.

Tips and Tricks

Referencing character rigs is optional and not required to

animate. You can always just animate straight on the original

414

Creating Games with Unity, Substance Painter, & Maya

rig file. Be sure to incrementally save your files regardless

of which method you decide to go with. For example, let

us say you have been working in a Maya scene named

AnimationFile_1. After an allotted time, such as 10 minutes,

I would recommend creating a new iteration named

AnimationFile_2. Sometimes animation files can crash, so

if AnimationFile_2 becomes corrupted in an unexpected

crash, you will still have AnimationFile_1 as a backup.

Save Files

All the animations for each weapon set will be housed in

their own Maya file. When you save this Maya file, name it

Ellen_gun_animations to distinguish it from other files.

Display Layers

Seeing your character without any obstructions is

important while you animate. Display layers can be used

to hide certain aspects of the model or rig when they are

not needed, while also removing the need to dig through

the Outliner every single time you want to hide those

character parts.

Step 2: Shift-select all the parts of the geometry
that we do not need to see for FPS animation
creation. Navigate to the Display Layer Editor
in the lower right-hand side of the screen, and
go to Layers>Create Layer from Selected. A new
display layer named layer1 will appear right
below the area you just clicked. Let’s rename the
new layer to something more specific by double
clicking on the name layer1. In the Edit Layer
window, type RestOfBodyMesh in the Name
input box and click on Save to exit the window.

The columns of boxes to the right of the
display layer name will allow us to quickly
control the display layers. The first column
containing the letter “V” controls the visibility
of the object. To turn off the RestOfBodyMesh
display layer, click on the letter “V” so that the
box becomes empty. Ellen’s upper body and
arms should be the only visible parts of the
geometry in your viewport.

415

FPS Animation in Maya

Step 3: Repeat this process with the controls that are
not needed for FPS animations and name the
layer NotNeededControls.

Step 4: Let’s also create a display layer for the
visible parts of Ellen’s mesh and instead utilize
a different feature of display layers. When you
click on the blank third column box, the letter “R”,
meaning referenced, will eventually be revealed.
Turning on the letter “R” will cause the geometry
to not be selectable.

Why?

During the animation process, you will want to only move

the controls created during the rigging process, not the

character geometry. By putting Ellen’s upper body, arms,

and weapon geometry on their own display layers with

the referenced option active, you will not have to worry

about setting stray keyframes beyond the controls.

Figure 11.1 shows an example of the various display layers

created so far.

Tips and Tricks

As you animate, you will need to quickly preview your

animation without the controls, which is how we will

ultimately see the character in the game. In the Viewport

menu bar, click on Show, which will bring up a long list

of components that you can hide and unhide, as seen in

Figure 11.2. Click on NURBS Curves or use the keyboard

shortcut Alt + 1.

416

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.1 List of display layers.

417

FPS Animation in Maya

FIGURE 11.2 Show>NURBS Curves to hide the controls.

This will cause both the checkmark next to NURBs Curves

and all the controls in the scene to disappear temporarily,

which is like turning off the visibility of a display layer. I

recommend using the display layer visibility toggle if you

want to hide a part of the character for a long period of

time. Use the Show>NURBS Curves hotkey shortcut while

you are in the middle of animating to do quick checks on

movement clarity.

Camera Configuration
Step 5: Select the Front/Persp quick layout button,

located right above the Outliner button, to
bring up two viewports on your screen. We will
create a dedicated FPS camera in the left-hand
viewport by going to Panels>Perspective>New.
Name it FPS_Cam. In that same viewport, turn
on the resolution gate by clicking on the icon
seen in Figure 11.3. Also click on the gate mask
icon, which is to the right of the resolution gate
icon, so that a light grey, shaded area will appear
around the gate.

Step 6: On the right-hand-side viewport, we will
move FPS_Cam so that it mimics the player
character’s line of sight. If you do not see a
floating green camera, check if camera visibility
is on by going to Show>Cameras in the Viewport
menu bar. Grab FPS_Cam and move it so that is
near Ellen’s eyes (Figure 11.4). You may turn on
the visibility of the RestofBodyMesh display layer
temporarily so you can position the camera with
Ellen’s head geometry on.

Why?

This viewport setup will allow you to see the FPS camera

view and your working area at the same time. Since the

resolution gate and gate masks are visible on the left-

hand side, you will be able to focus on what the player

will see in the game. Grabbing controls will be easier in

the right-hand-side viewport since you can move freely

around the scene.

418

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.3 Resolution gate icon.

Step 7: Now that we have a dedicated FPS
camera, we will create our own reticle based
off this camera’s location. In the main menu,
create a locator by going to Create>Locator.
Locators have a variety of uses, such as acting
as a middleman when connecting different
parts of a rig. We will be using the locator as
our reticle in Maya. Select the locator, shift-
select FPS_Cam, and go to Modify>Match
Transformations>Match Translation. The locator
will snap to FPS_Cam’s location. Translate the
locator along the z-axis so that it is directly
in front of the camera. You should be able to
see the locator in the middle of the left-hand-
side viewport, as seen in Figure 11.5. Make the
locator unselectable by putting it in a referenced
display layer. You can also lock its movement
by going to the Channel Editor, click-dragging
all the channel attributes, right clicking the
blue highlighted selection, and clicking on Lock
Selected (Figure 11.6).

419

FPS Animation in Maya

FIGURE 11.4 Line up FPS_Cam with Ellen’s eyes.

Why?

In FPS games, a reticle is a small icon, like a crosshair

or dot, in the center of the screen that is used to assist

the player with aiming. There will be a different reticle

created in the game engine, but our locator reticle will

still be useful. We can reference it while posing our

character and make sure that the weapon is pointed

towards the reticle.

Game Animations

We are close to being able to animate full speed ahead.

At this point, we can start crafting our first pose. Game

characters have a set of animations that will play in

the game depending on the circumstances. One of

the most important animations will be the idle. An

idle animation will be playing when the player has not

input any commands. It is meant to keep the character

alive even though they are not performing any specific

movements. The idle is the first to be created in a set

because it will serve as the returning point for most

animations. When Ellen is done walking or has finished

firing her gun, she will return to the idle animation.

420

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.5 Creating the reticle.

The only time Ellen will not return to idle is after she is

caught by the security cameras and the game is over.

The other animations that Ellen will need are attack,

walk, “got caught”, and reload.

Creating a Pose

Animation is a time-based art form, and the illusion of

movement is created when a series of poses are played

one after another. When we create a pose, we will need

to tell Maya that we want it to be played at a specific time.

The Time Slider at the bottom of the screen will be where

421

FPS Animation in Maya

FIGURE 11.6 Right clicking channel attributes to lock the locator’s movement.

we define those times. The grey highlight is the current

time indicator and can be changed by click-dragging left

and right on the Time Slider. The length of your animation

can be adjusted by entering values in the entry fields on

either side of the Time Slider.

You can create the pose by translating or rotating the

character controls that were set up in the rigging stage.

When you are ready to save the pose, select all the

controls and press “S” to set a keyframe. A red tick will

appear at the selected frame number on the Time Slider.

The key tick’s timing can be adjusted by shift-selecting

it and click-dragging it to a new time. If you do not like

a pose, you can remove it by selecting all the character

controls, right clicking on the unwanted keyframe and

pressing Delete. When there are multiple key ticks you

would like to adjust, click-drag across those ticks while

holding down Shift. This will create a red highlighted

selection that can be moved or deleted.

Once you place your first keyframe, do not be afraid

to tinker with its original timing later. Getting a feel for

the correct timing is an essential part of the animation

process.

Weapon Movement Simplified

One thing to consider is how our character will hold her

weapons: will Ellen carry her weapons with one hand

or both hands? Before attaching the weapon to the

character, it is good to begin creating the idle pose first. If

she will hold them with one hand, follow Step 8 and skip

to Step 12. If she will hold the weapons with two hands,

head straight to Step 9 and continue through Steps 10

and 11.

Step 8: Move Ellen’s right arm to an upright pose.
The rigging file we provide has one more
feature we did not go over in the rigging
chapter. It has an IK FK blend slider, located on
the outside of the arm (looks like a lollipop).
If you are using your rig done in chapter 10,
your arm will not move with the FK controllers.
You need to do 2 things to make the FK work.

422

Creating Games with Unity, Substance Painter, & Maya

The first thing is to find left_ik_wrist_ctrl and
select the left_wrist_IK parented under it. In the
Channel Box, set the Ik Blend attribute to 0 to
switch to FK(set it back to 1 to switch back to
IK). The second thing is about the wrist, select
left_drv_wrist; in the Channel Box, find the last
2 attributes: Left Fk Wrist Ctrl W0 and Left Ik
Wrist Ctrl W1. Set the Fk one to 1 and Ik one to
0 to switch to FK(flip the values to switch back).
The lollipop slider we provided in the rig does
these 2 things automatically if you drag it up
and down. The names of the controllers might
be different in the rig we provided. Because of
the length restrictions, we removed this lollipop
controller in the rigging chapter. However, this
animation chapter was developed parallel
with the rigging chapter when we have this
lollipop controller. Select the shoulder control
ac_r_fk_shoulder, use “E” on your keyboard to
turn on the Rotate Tool and rotate the arm so
that it is almost parallel to the ground. Rotate
the elbow and wrist controls, ac_r_fk_shoulder
and ac_r_fk_wrist, to help the arm pose look
more natural. Translate the gun model group,
Gun_grp, so that the gun is resting in Ellen’s
right palm. Rotate the finger controls so that
the fingers are wrapped around the gun handle
(Figure 11.7).

Once you have solidified the finger
posing, select ac_r_fk_wrist and shift-select
Gun_grp in the Outliner. With the Rigging
menu set to active, create a parent constraint
connection between the wrist control and the
gun group by using Constrain>Parent. Now,
whenever the right arm moves, the gun will
also move.

423

FPS Animation in Maya

FIGURE 11.7 Creating the single-handed gun idle pose.

Select all the arm controls and press “S” to
save this pose on frame 0. Head straight to Step 12.

Step 9: For Ellen to hold the weapon with two
hands, we will have to switch the arm movement
method from forward kinematics (FK) to inverse
kinematics (IK). Drag the lollipop sliders on both
side of the arms down to switch to IK. (or use the
method mentioned at the beginning of step 8 if
you are using your rig file).

Use the ac_r_ik_wrist and ac_l_ik_wrist
controls to move Ellen’s hands upward so that
she can aim the gun in front of her. When you
select one of the controls, use “W” to turn on
the Translate Tool. When the arms are in IK
mode, they can be moved via translation and
rotation. Keep in mind that the elbow controls,
ac_r_ik_drv_elbow and ac_l_ik_drv_elbow,
could be used to help the pose feel more natural.
Once you have the arms roughly positioned in
the lower right-hand section of the FPS_Cam
viewport, translate the gun group, Gun_grp,
so that the handle is resting in between Ellen’s
hands. We will not permanently attach it just yet.
Use the gun model as a frame of reference for
adjusting both hands and moving Ellen’s fingers.
Rotate the finger controls so that the fingers are
wrapped around the gun handle. The left-hand
fingers should be wrapped around the right-
hand fingers (Figure 11.8).

Select all the controls that were moved
and press “S” to save the pose on frame 0.
Continue to Step 10.

Tips and Tricks

Be sure to be check the FPS_Cam viewport as you pose

the character in the perspective viewport. The gun and

hand should end up in the lower right-hand side of the

screen and not be blocking the reticle.

Two-Handed Weapon Setup

If you decided to go the two-handed weapon route, we

will need to create a way to move both hands and the

weapon all at once. Trying to move the hands and weapon

in sync will be hard without tying them together using

424

Creating Games with Unity, Substance Painter, & Maya

locators and parent constraints. Our goal is to create a

single NURBs curve that will move the hands and weapon

all together. In this chapter, we will cover this setup with

the handgun, but this system can be applied to both the

pipe and grenade launcher.

Step 10: Create a new NURBs circle named gun_CTRL
and translate it so that it is positioned around the
center of the gun and scale the circle up so that
is slightly larger than the gun mesh (Figure 11.9).
This NURBs curve will drive the primary
movement of the hands and gun, so make sure
it is easy to grab in the viewport. While holding
down “D”, translate gun_CTRL’s manipulator so
that the pivot point is at the gun handle, as seen
in Figure 11.10.

Now we need to attach the gun to the
new control. Navigate to the Outliner, select
gun_CTRL first and then shift-select Gun_grp.
With the Rigging menu set active, create
a parent constraint connection between
the two objects by using Constrain>Parent.
Whenever gun_CTRL is moved, the gun will
now follow.

Step 11: To wrap up the two-handed weapon setup,
we will now attach the hands to gun_CTRL.

425

FPS Animation in Maya

FIGURE 11.8 Left hand wrapped around the right hand.

Create a locator named rightHand_locator,
shift-select ac_r_ik_wrist and match the IK
control’s position by going to Modify>Match
Transformations>Match Translation and Match
Rotation. Shift-select rightHand_locator, select
ac_r_ik_wrist_grp in the Outliner and create a
parent constraint so that the locator moves the
right hand while still giving you the freedom to
move ac_r_ik_wrist. Select gun_CTRL, shift-
select rightHand_locator, and then create one
more parent constraint. Now the right hand will

426

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.10 Changing gun_CTRL’s pivot point.

FIGURE 11.9 Creating a control for the gun.

follow gun_CTRL. The rightHand_locator can
now be hidden for the time being. Repeat this
process for the left hand. You will primarily use
gun_CTRL in your animation workflow.

Frame Rate

Animations created for film and television are generally

created at 24 frames per second. Standard playback rates

for video games are 30 and 60 fps. Always double check

the frame rate in Maya before starting an animation.

Step 12: Change the frame rate from 24 frames
per second to 30 frames per second using
the drop-down menu below the right-hand
side of the Time Slider (Figure 11.11). Go to
Windows>Settings/Preferences>Preferences
and click on Time Slider in the left-hand column.
Under Playback, change the Playback speed to
30 fps × 1 (Figure 11.12).

Idle Animation

We will create a breathing idle animation for Ellen. It is

possible to create idle breakers that are animations that

still play when the player has not input any commands,

and they generally show a bit more personality. Our main

idle animation will be a simple inhale and exhale with a

touch of weight shifting.

Step 13: Since most game animations loop
continuously, they need to have the same start
and end pose. Select all controls, right click on
frame 0 on the Time Slider, which should contain

427

FPS Animation in Maya

FIGURE 11.11 Standard game animation

frame rate is 30 frames per second.

FIGURE 11.12 Switching Playback speed to 30 fps × 1.

the pose that was created when we attached the
gun to the hand(s), and click on Copy. Drag the
current time indicator to frame 60, right click
on the Time Slider, and press Paste>Paste. The
pose from frame 0 should now be on frame 60.
Paste this same pose one last time on frame 120.
Frames 0, 60, and 120 will be the inhale moment
of the idle. Have the gun move downward on
frame 30, set a keyframe for all the controls
by pressing “S”, and do the same on frame 90.
Your Time Slider should look like the one in
Figure 11.13.

The shortcut to play and pause an
animation is Alt + “V”. Play through your
animation to make sure that the poses flow
together and the overall movement makes
sense.

Tips and Tricks

In the beginning stages of an animation, it is smart to set

a key on all the controls each time you create a main pose.

Adjusting the timing will be easier since you will know

that all controls have been accounted for in each of the

main poses.

Step 14: Add a simple weight shift to add more
variation to the breathing. On frame 60, have the
hands and gun move towards our right a tiny bit.
From frames 0 to 60, Ellen will weigh shift to our
right, and from frames 60 to 120, she will return
to the idle pose by weight shifting to our left.

Cleaning Up Odd Jitters

You might start to notice weird glitches in the animation,

even if you did not set any specific keys to define that

movement. Right clicking on the timeline and pressing

Tangents>Auto should remove those hitches.

428

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.13 Time Slider with the idle key poses.

Ease-In’s and Ease-Out’s

The main poses have been set for the idle animation,

but the movement might feel floaty. There is no sense

of weight in the animation yet. We can insert additional

keyframes to help show ease-in’s and ease-out’s. This

is important to utilize in your animations because most

movements take time to start up and come to a natural

stop. Ease-in’s and ease-out’s can also be used to add

a moment of hold. If you take a deep breath in real life,

your upper body will hold still for a few seconds before

exhaling. That stillness is like an ease-in. When you exhale,

you are gradually easing out of the inhale “pose.”

Graph Editor

Animators must become acquainted with the Graph Editor

to finetune their work. All keyframes are represented on

a graph as plotted points that can be adjusted, and the

interpolation between each keyframe is represented

as curves. With a basic understanding of curves, the

Graph Editor can be used to create quick ease-in’s and

ease-out’s.

Tips and Tricks

Try opening the Graph Editor by going to

Windows>Animation Editors>Graph Editor. If you have

a second monitor available, I suggest having the Graph

Editor maximized on one screen. If you have one monitor,

you can have it open on one of the viewports by going to

Panels>Panel>Graph Editor.

Step 15: Select ac_r_fk_shoulder if you are
animating just one arm or select gun_CTRL if you
are animating both hands holding the weapon.
Open the Graph Editor. On the left-hand side,
select the primary channel that is responsible
for the upward and downward movements. For
the one-handed weapon setup, select Rotate Y,
and for the two-handed weapon setup, select
Translate Y. That specific channel is the only one
that is visible (Figure 11.14). If you cannot see the

429

FPS Animation in Maya

green curve clearly, press “F” to quickly zoom in
towards the curve.

Similar to scrubbing through the Time
Slider, you can adjust the time by click-
dragging the yellow Current Time Marker
left and right within the Graph Editor. Select
the Insert Keys tool in the upper right-hand
corner of the Graph Editor and click on the
curve to insert keys on frames 13, 25, 35, 46,
73, 85, 95, and 106. Press “W”, click on frame
13, and middle-mouse-click-drag it upwards
closer to frame 0. Grab frames 25 and 35 and
middle-mouse-click-drag those keys towards
frame 30. Continue this for the remaining
keys that we just added. Refer to Figure 11.15
for a general idea of how your curve should
look. Do not worry if it is not an exact replica.
The animation should have a slight moving
hold each time the character inhales.

Why?

Understanding what the curve shapes represent is more

important than just simply copying. The curve shape from

frames 0 to 13 is an ease-out. The gentle slope represents

small movement over a long period of time. We know

that frames 13–25 will be faster due to the steep slope

that showcases a large value change over a short period

of time. Frames 25–35 is another ease-in. Ease-in’s and

430

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.14 gun_CTRL’s Translate Y curve in the Graph Editor.

ease-out’s help vary the spacing between each main pose

and helps add more weight to the movement.

Keywords Aside

Timing is the object’s speed, while spacing is how the

object will move from point A to point B. Spacing will

help determine moments of acceleration and moments

of hold.

Tips and Tricks

When you are adding ease-in’s and ease-out’s, you do not

necessarily have to select all the controls and press “S”.

At this stage of the animation, you can be more selective

with keyframe placement.

Attack Animation

The attack animation is up next. The gun firing should

be rapid and impactful. As soon as the player presses the

button to attack an enemy, we want the player to see and

feel an immediate response in the gun. A combination

431

FPS Animation in Maya

FIGURE 11.15 Added keyframes to create ease-in’s and ease-out’s.

of fast timing and careful spacing consideration help us

achieve this goal.

Step 16: Select all the controls, copy the first frame
of the idle animation, and paste it on frames 200
and 212. Frame 200 will be the start of the attack
animation, and 212 will be the end. On frame
204, create the recoil pose by moving the gun
back closer to Ellen and rotate the gun so that
it is pointing upward. Maya should now show
the initial movement between frames 200 and
204, but it is still too slow. To help show snappy
gunfire, move the gun backwards towards Ellen
on frame 201.

Step 17: Let’s add some final touches to the attack
animation. Set a keyframe on frame 208 for
the main movement control. Open the Graph
Editor and create an ease-in using the newly
added keyframe. Go through all the Translate
and Rotate channels on the left-hand-side bar
to check if there is a moving curve to add an
ease-in. Figures 11.16 and 11.17 are two examples
of how this ease-in could be implemented on
frame 208. If there is a horizontal line instead
of a trending curve, this means that there is

432

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.16 Adding an ease-in on gun_CTRL’s Translate Y curve.

no movement, so you will not need to add the
ease-in for those specific channels. Once you
have finished this step, the animation should
come to a more natural stop.

Walk Animation

A basic walk animation consists of the following main

poses: contact, down, passing, up, and back to contact

pose to repeat the cycle. This animation will be simpler

to create as first-person shooter animation in contrast

to a full-body piece, but we can still move the arms and

weapon in accordance with the main poses.

Step 18: Begin the walk cycle by setting down the
contact poses. Select all controls, copy the idle
pose from frame 0, and paste a key on frames
300 and 331. Slightly rotate the gun so that it
points to our left on frame 315. On contact pose,
the upper body will twist the most side to side.

Step 19: The next pose to block is in the passing pose,
which is the halfway point between each contact
pose. On frame 307, translate the character to
our left, and on frame 323, translate her to our
right. The character has shifted their weight the
most to the left or right on passing pose.

433

FPS Animation in Maya

FIGURE 11.17 An ease-in added to gun_CTRL’s Rotate X curve.

Step 20: We will finish blocking in the walk with
the down and up poses. The character should
translate down on frames 303 and 318, and she
should translate upward on frames 312 and 327.
The gun should also rotate down and up, but
we can add an offset in the rotation’s timing so
that movement feels looser and more broken up.
Rotate the gun down on frames 308 and 324 and
add in an upward rotation on frame 316.

Step 21: As a final touch, add ease-in’s and ease-
out’s to make the animation feel less even.
Figures 11.18 and 11.19 showcase how the
ease-in’s and ease-out’s could be applied to the
contact and passing main keys in the Graph

Editor.

“Got Caught” Animation

When Ellen is caught by one of the security cameras, she

will raise her hands up in shock. If you are animating her

with both hands on the weapon, we will need to detach

one of the hands from the gun handle. This animation will

be “game over” for the player, so we do not necessarily

have to loop the animation.

434

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.18 Adding ease-in’s and ease-out’s to the contact poses.

Step 22: Select all the controls, copy the idle pose,
and paste it on frame 400. If you are animating
with the two-handed weapon setup, select
leftHand_locator and make sure that it also has
a keyframe at 400. If the locator did not have
any keyframes placed beforehand, you should
notice a new attribute in the Channel Box called
Blend Locatorleftparent 1. On frame 400, Blend
Locatorleftparent 1 should be set to 1. To detach
the left hand from the gun handle, change
Blend Locatorleftparent 1 to 0 on frame 401.
Hide leftHand_locator while you create the “Got
Caught” animation. You can now move ac_l_ik_
drv_wrist independently of gun_CTRL.

Tips and Tricks

Remember to select leftHand_locator and change

Locatorleftparent 1 back to 1 when you want the left hand

to be attached to the gun handle again.

Step 23: Create the last pose of the animation on
frame 426. The right hand still holding the gun
will move back and move towards the right of

435

FPS Animation in Maya

FIGURE 11.19 Additional keyframes to give more weight to the passing poses.

the screen. Move the left hand towards the left
edge of the screen and spread the fingers out
(Figure 11.19).

Keywords Aside

Depending on the speed of an action, we might need to

add an overshoot pose to give more time to the audience

to take in what just happened. The overshoot will move

past the last pose we just created and will settle into the

last pose more slowly.

Step 24: Let’s add in an overshoot to both hands on
frame 413. Select all controls, copy frame 426,
and paste it on frame 413. This will be our starting
point for the overshoot pose. The left hand’s last
pose ends up close to the left side of the screen, so
the overshoot will be a tiny continuation of that
movement. Translate and rotate the left hand ever
so slightly to the left, and do the same for the right
hand, except towards the right-hand side of the
screen. The left-hand fingers can also be a part of
the overshoot. Rotate the fingers to the left just a
tad bit (Figure 11.20).

Step 25: We can create a more fluid motion in both
hands by examining their motion trail. Select the
left-hand control, and with the Animation menu
set active, go to Visualize>Create Editable Motion
Trail. A curve representing the left hand’s path of
action has now appeared (Figure 11.21). When
you add a keyframe to that control, the motion
trail should update. Move the hand downward
on frame 402 so that it will dip before traveling

436

Creating Games with Unity, Substance Painter, & Maya

FIGURE 11.20 “Got Caught” pose.

to the main pose on 406. In your perspective
viewport, zoom in close to the motion trail at
frames 413–426. Add additional keyframes to
create a more rounded shape in the motion trail
(Figure 11.22). Compare Figures 11.21–11.23. The
motion trail has more apparent arcs. Go ahead
and delete motionTrail1Handle in the Outliner.
Repeat this entire step for the other hand.

437

FPS Animation in Maya

FIGURE 11.21 Motion trail representing the left hand’s path of action.

FIGURE 11.22 Adding more keyframes to round out the motion trail.

FIGURE 11.23 Final motion trail for the left-hand control.

Why?

Most living beings move in arcs, while machinery tend

to move in a linear fashion. Exaggerating the arcs of an

object’s motion trail can be a quick way to add a layer of

fluidity to the animation.

Step 26: Use the Graph Editor to assist in creating a
natural settle for the ending of the animation.
Add an ease-in at frame 416.

Reload Animation

The reload animation will be a culmination of everything

that we have covered, as well as adding one more object

for Ellen to interact with. If the two-handed setup is in use,

the left hand will need to leave the gun handle once more.

The added challenge is that we must get the character

to return to the idle pose, in contrast to the “Got Caught”

animation that did not have to loop. In this animation,

Ellen will first shake the empty magazine out of the gun.

Her left hand will temporarily leave the screen to grab the

new magazine. Once the left hand returns to the player’s

view, Ellen will reload the gun, and the left hand should

return to its original idle pose.

Step 27: We will create a system in which the
magazine can be attached to either the gun
or left hand. Create an empty group named
gunClip_CTRL_group. Match the group’s
transforms to Gun_clip_grp. Create a locator
named gunClip_Locator, match its transforms
to Gun_clip_grp, and make it a child of
gunClip_CTRL_group. Select gun_CTRL, shift-
select gunClip_CTRL_group, then create a
parent constraint so that the magazine will now
follow the main gun control. Select the left-
hand control, shift-select gunClip_Locator, and
create a parent constraint so that we can tell the
magazine to follow the left hand.

At the start of the reload animation,
we will want the magazine to be following
the gun control. Let’s turn off the gunClip_
Locator’s constraint for the time being.

438

Creating Games with Unity, Substance Painter, & Maya

With the locator selected, change Blend
Parent 1’s value to 0.

Step 28: Start off the animation by copying the idle
pose and pasting it on frame 500. At frame 510,
have the left hand completely leave the screen
and raise the right hand up in anticipation for
the shake. Create the right hand’s lowest point
in the shake at frame 515, and have it rise just a
little to settle into the main pose at frame 526.
Use gunClip_Locator to translate the magazine
out of the gun from frames 512 to 522. Select
gunClip_Locator, set a key on frame 500 and 512,
and ensure that Blend Parent 1 is 0 on those two
keys. Change Blend Parent 1 to 1 on frame 529 so
that it will be attached to the left hand.

On frame 538, rotate the right hand
towards the camera. Bring the left hand
back up into view with the magazine resting
against the bottom of the gun grip. You can
also rotate the fingers so that they have a
better grip on the magazine (Figure 11.24).

Step 29: Let’s continue the second half of the reload
animation. On frame 545, move the left hand
up and to our right so that the magazine can
be reloaded into the gun. The right hand should
also slightly move in reaction to the left hand’s
movement. The magazine will need to switch
parents from the left hand to the gun control.
Make sure that gunClip_Locator’s Blend Parent
1 is set to 1 on frame 538. Change Blend Parent 1
to 0 on frame 541. If the magazine rotates oddly
on frames 539 and 540, go ahead and fix it by
rotating the magazine to align with the grip.
Paste the idle pose on frame 564.

439

FPS Animation in Maya

FIGURE 11.24 Pose before the gun is reloaded.

Step 30: Add final touches to the animation. Track
each hand’s motion trails and see if you can
round out any arcs. Use ease-in’s and ease-
out’s to create a moving hold for the key poses
on frames 526 and 538. Finally, have the gun
come to natural settle at the end with a gradual
ease-in to the last pose.

Considerations and Conclusion

Once you have created your first animation set, animating

the grenade launcher and pipe will both be a familiar and

new process. While the other weapons’ movement will

not be the same as the handgun, most of the main poses

should remain the same. There are some differences in

the story that is told through each weapon. The grenade

launcher and pipe might have slower timing since they

are heavier than a handgun. The pipe will not have its

own reload animation because it is a melee weapon. The

grenade launcher will only be able to hold one grenade at

a time, so you will not need to animate Ellen shaking away

an empty cartridge.

Animation can be easy to pick up, but there are still

obstacles to consider from both a technical and artistic

standpoint. Have fun and challenge yourself to create

believable, responsive movement.

440

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 12

Auto Rigging

In the previous two chapters, we have looked at rigging

and the basics of animation. These are some technical

art forms that the industry always has need of. Be an

expert at either of these, and there will always be work

waiting for you. However, they are also areas that not

everyone needs to be an expert at. In fact, the two areas

are not necessarily inter-inclusive. Most expert riggers

are not fantastic animators (some can’t animate very

well at all), and there are some expert animators who

are not great riggers. However, a compelling argument

can be made (and we do to our students) that knowing

441

something about both of these areas is in an animator
or rigger’s interest. The best analogy for this is a racecar
driver. Does the driver (say, an animator) need to be an
expert mechanic (rigger)? Of course not. But if the driver
doesn’t know enough about the mechanics of their car to
communicate to the mechanics and engineers, they won’t
be able to tweak the engine to full efficacy for the driver.
And so it is with riggers and animators. An animator who
has done a bit of rigging will be able to more effectively
communicate problems with the rig as they animate. Such
knowledge will make the process better for all involved in
the rigging/animation pipeline.

Having said all of that, not everyone will be an animator
(or a rigger). Many folks are reading this book because
they are far more interested in the development side of
games and never plan to be involved in the animation
process. Fair enough. At most studios, the coder will never
animate a character and the animator will run far from
code. This chapter is for the prototyper who doesn’t have
the time or money to hire an animator and rigger. This
chapter is for the coder who wants some good looking
animation in their scene but doesn’t want to purchase a
fully animated character from the asset store. And finally,
any aspiring animators out there need to realize that
motion capture (MoCap) is central to the game industry.
And while they might not have their own MoCap rig, there
are MoCap libraries out there that they can get into and
get started with.

Tips and Tricks
If you’d rather work with traditionally animated clips, the
support files for this chapter include some animations for
our bad buys animated by Matthew Tovar – an animator
formerly with Naughty Dog, Infinity Ward, and other
studios. When we get to Chapter 17: AI, if you’d prefer to
use Tovar’s animations, the process there will be the same.
However, at the end of this chapter, we will also have
some output files that can be used (and will be used) in
that chapter.

442

Creating Games with Unity, Substance Painter, & Maya

Mixamo

Our goals then in this chapter is to use some external tools

to auto-rig a character and plug some motion-captured

animations into those rigs. Finally we will export those

animations and use them later in the production process

(Chapter 17 to be exact). This chapter will be short and the

process quick thanks for a free-to-use online tool called

Mixamo.

A spin-off of Stanford University, Mixamo was acquired by

Adobe in 2015. Although it once contained quite a bit of

other tools that included facial animation tools, the core

remaining tools include an Auto-Rigger and an incredible

collection of cleaned-up motion capture clips.

According to Adobe’s website, “Mixamo is available free

for anyone with an Adobe ID and does not require a

subscription to Creative Cloud.” Although, “Mixamo is

not available for Enterprise and Federated IDs. Mixamo

is not available for users who have a country code from

China. The current release of Creative Cloud in China does

not include web services.” So before we get going, go to

Mixamo.com and be sure to sign up for an Adobe ID. It’s

free, doesn’t take long and will provide a great collection

of free tools to use.

Tutorial 12.1: Mixamo-Based
Auto Rigging and MoCap

Step 1: Open UVed character in Maya. If you have
been following the tutorials in this book, this
will be your results at the end of Chapter 8 (after
the character has been UVed). If not, the results
of Chapter 8 are included in the support files for
this chapter (EllenUVed.mb). Figure 12.1 shows
the file from the support files opened and its
organization.

Why?

Since the textures were constructed in Substance Painter –

the textures will be exported from there and reassembled

in Unity. So, we don’t need or want a version of Ellen

443

Auto Rigging

http://Mixamo.com

textured in Maya. However, it will be important that those

textures are mapped correctly on the mesh once they are

united in Unity. So, it is important that the mesh we are

exporting to be rigged has already been UV mapped.

Step 2: Export as FBX 2013. Quickly make sure there
is no History (Edit>Delete All by Type>History).
Then export using File>Export All. Make sure
Files of Type: FBX Export. In Geometry, make
sure Smooth Mesh and Triangulate are checked.
Turn off Animation, Cameras, Lights, Audio, and
Embed Media. Under Advanced Options, expand
FBX File Format. There, change Version: FBX 2013.
Export to some neutral location (Desktop is a
good place) as “EllenEnemy” (Figure 12.2).

Why?

We haven’t changed the FBX format before; why now?

Well, for reasons only known to Adobe at this point,

Mixamo requires FBX 2013 or earlier. If you export using

FBX 2020 (which is what we’ve used up to now), Mixamo

will complain.

444

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.1 UVed version of Ellen – the results Chapter 8.

In earlier chapters, we have exported directly to the Unity

project Assets folder. But in this case, we need to do some

work in Mixamo before its ready for Unity consumption.

Thus, saving it to the Desktop keeps it out of Unity’s

clutches until its ready.

Step 3: Export just the gun. In the Outliner, select
Ellen_gun_geo. Use File>Export Selection. Again
export as an FBX (FBX 2020 or FBX 2013 will both
work) and save to your desktop as “Ellen_Gun”.

Why?

There is already a gun on the mesh we’re exporting; why

do we need another. It’s a little tricky to explain at this

point, but the gun is about to become part of a rig, which

means the gun will be controlled by a joint. Later in this

tutorial, we will need the gun in her hand (not on her

thigh), and so having a separate gun not tied to a joint

chain will make things much easier.

Step 4: Begin the import process in Mixamo. In a web
browser, go to Mixamo.com and login. At the
top left corner of Mixamo’s interface, click on the
Characters button (Figure 12.3).

Step 5: Use Upload Character to import the mesh.
Look to the far right of the interface and click on
the Upload Character button (Figure 12.4). Either
drag EllenEnemy into the Upload A Character
window, or use the Select Character File link
to upload it. Click Next when it displays the
character (Figure 12.5).

445

Auto Rigging

FIGURE 12.2 When exporting for Mixamo, be sure to use FBX 2013.

http://Mixamo.com

446

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.4 Sending the EllenEnemy fbx to Mixamo for processing. Mixamo will process for a second before showing Figure 12.5.

FIGURE 12.3 To begin importing EllenEnemy to Mixamo, log in and use the

Characters link.

FIGURE 12.5 The imported version of the character. Don’t worry about the materials showing up black. We will be reimporting

textures later.

Step 6: Move the Chin, Wrists, Elbows, Knees, and
Groin identifiers onto the character. It can be a
little tricky as much of the body is completely
black. But with a bit of adjustment you can
usually estimate the right spot (Figure 12.6).
Click Next. And then click Next again after the
Review window shows your character looking
around (Figure 12.7). Continue to click Next until
EllenEnemy appears in the main interface.

447

Auto Rigging

FIGURE 12.6 Placing markers to help the Auto-Rigger determine the anatomy of the character.

FIGURE 12.7 Select the Pistol/Handgun Locomotion pack.

Tips and Tricks

It will be important that when placing things like the

Chin and Groin that the placement is indeed on the mesh

(don’t get so exact that you miss the bottom of either).

Step 7: Click on the Animations link at the top left of
the interface.

Step 8: Play. Click on any of the animations included
there to see EllenEnemy animated. Quickly she
can belly dance, throw a football pass, idle like
an old man, or drunk walk. We’re not going to
use any of those, but it’d be a shame to pass up
the fun.

Step 9: Search for “Pistol Pack”. In the search field
at the top left of Mixamo’s interface, type
“Pistol Pack” and then select Pistol/Handgun
Locomotion from the results (Figure 12.7).

Why?

EllenEnemy will likely quickly leave her preview space.

And her movements might not make a lot of sense at first.

You can follow her by clicking the little camera icon in

the bottom left of her preview space. What is happening

is that EllenEnemy is running through a whole lot of

animations one right after another with little break in

between. In reality, she’s doing a lot more than we will use

in the scene, but bringing in this whole pack will provide a

lot of different things for this character to do.

Step 10: Download the animations and rig. On
the far right of the interface is the Download
button, click it. In Download Settings, leave all
the settings at default except for Format: FBX for
Unity (.fbx). Click Download (Figure 12.8). This will
download to your system’s Downloads folder.

Step 11: In Downloads, find Pistol_Handgun
Locomotion Pack. Unzip it.

Step 12: Import the Mixamo-output files into Unity.
In Unity, create a new folder called “NPC”. Right
click the NPC folder and choose Import New
Assets. Find the Downloads folder and the
Pistol_Handgun Locomotion Pack folder (not
the .zip file). Shift select all the assets and click
Import (Figure 12.9).

448

Creating Games with Unity, Substance Painter, & Maya

Step 13: Extract the materials for EllenEnemy. Select
the newly imported EllenEnemy fbx in the
NPC folder. Click the Extract Materials button.
Because our Materials folder is getting pretty
large, extract them into a new Materials folder in
the NPC folder.

Step 14: Create another folder inside of NPC called
“Textures”. We will export the Textures from
Substance Painter into this directory.

449

Auto Rigging

FIGURE 12.8 Mixamo’s download settings for Unity.

FIGURE 12.9 Be sure to grab all the different FBX files that Mixamo includes as part of the Pistol_Handgun Locomotion Pack.

Substance Painter Output

While we’re preparing files for Unity, let’s go ahead and

get the textures out of Substance Painter. The Substance

Painter files used to texture the character and her

weapons are huge (and available on the support website

in the “Substance Painter Assets” folder). If you don’t want

to mess with downloading the files just to export them,

the exported textures are also available under “Painter

Texture Outputs.”

Step 15: Export the textures for the character. Use
your own Substance Painter files, or the ones on
the support website. Be sure to make the Output
Directory the Textures folder in the NPC folder
within Assets of the Unity project (TheEscaper/
Assets/NPC/Textures). Also remember to change
Output Template: Unity HD Render Pipeline
(Metallic Standard) with a File Type:targa
(Figure 12.10).

Step 16: Back to Unity. Mark the Normal maps as
Normal in the Inspector.

450

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.10 Reminder of Substance Painter Export Textures settings.

Putting it All Together

Time to put the textures into the extracted materials. In

order to get a good idea of how this should look, be sure

and find a reasonably well-lit corner of the level to work

with. If you need to cheat a little and temporarily put

another light in the scene (Real time), go ahead and so

that to get setup (Figure 12.11).

Step 17: Drag EllenEnemy out into the Scene
(Figure 12.11).

Step 18: Rebuild the Materials using the Substance
Output textures. This is a review, and shouldn’t
take long. Plug the BasemMaps, MaskMaps,
and NormalMaps into their respective
channel for the new materials for EllenEnemy
(Figure 12.12).

Step 19: Make the skin a Subsurface Scattering
material. Select Body_mtl (in NPC/Materials).
Scroll down and change Material Type:
Subsurface Scattering. Don’t worry about the
scary green for a minute.

Step 20: Scroll down the Surface Inputs and click
on the Target icon for Diffusion Profile. Pick Skin
from the presets available (Figure 12.13).

451

Auto Rigging

FIGURE 12.11 EllenEnemy placed in the scene with a cheater light to see and

understand the shaders.

452

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.13 Setting up Subsurface Scattering for the skin shader.

FIGURE 12.12 Plugged in textures to create materials.

Why?

Subsurface Scattering is the ability of some surfaces to

scatter light that penetrates their surface. Think of the

difference between a glass full of white paint and a glass

full of milk. The milk allows light to penetrate the surface

and then diffuses it through its volume. Human skin is

a good example of subsurface scattering and is a great

place to use this material type. The results are subtle

(Figure 12.14 left is Standard and right is Subsurface

Scattering), but important.

Step 21: Adjust the Base Maps of all the new
materials so that the Color swatch is white. It will
bring the eyes back up to alive (Figure 12.15).

453

Auto Rigging

FIGURE 12.14 The effects of subsurface scattering.

FIGURE 12.15 Adjusting the Base Map color tints from the default gray tint to white.

Setting Up the Animator

There’s a lot of files that came in just now. EllenEnemy is

there, but there is also a big collection of FBX files there

that all start with “pistol” (pistol idle, pistol jump, etc.).

Let’s take a moment now to set up a simple animation

scheme to see at least the idle in action. We will leave this

unsatisfyingly unfinished after that because the rest of

the animations are those that we’ll want to tie into the AI

system in Chapter 17; but if we can get the basic setup

structured here, it will allow us to focus on AI then.

The process here will be to assign a Humanoid rig to

EllenEnemy, and then copy that rig to all the other

animation fbx files that came in with her. What this will do

is apply the animations to EllenEnemy’s rig.

Step 22: Create a Humanoid rig. Select EllenEnemy
in the Project window. In the Inspector, click the
Rig tab and change Animation Type: Humanoid.
Importantly, leave Avatar Definition: Create From
This Model (Figure 12.16). Click Apply.

Step 23: Create Humanoid Rig and copy Avatar
for the remainder of the fbx animations. In the
Project window, select pistol idle and shift select
down to pistol walk (basically all the fbx files that
start with pistol – but not EllenEnemy). In the

454

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.16 Import settings for the Rig of EllenEnemy.

Inspector, change Animation Type: Humanoid
and Avatar Definition: Copy From Other Avatar
(Figure 12.17).

Step 24: Assign EllenEnemyAvatar as the Source
Avatar. In the Project window, expand
EllenEnemy and look for something called
EllenEnemyAvatar (towards the bottom of the
list). Drag that over to the Source input field of
the Inspector (Figure 12.18). Click Apply.

455

Auto Rigging

FIGURE 12.18 Assigning EllenEnemyAvatar as the Source avatar for all the animation files.

FIGURE 12.17 Import settings for all the pistol xxx animations. Don’t click Apply yet.

Why?

This process is a little goofy to set up but has tremendous

power. Now, select any of the pistol animations (pistol

run arc or instance), and in the Inspector, click the

Animation tab. At the bottom of the Inspector, you’ll see

the EllenEnemy character animated to that animation clip

(Figure 12.19). Let’s start a simple situation where Ellen

stands at idle.

Step 25: Create an Animator Controller. Select
the NPC folder and use the + button to
create an Animator Controller. Rename it
“EllenEnemyController”.

Step 26: In the Hierarchy, select EllenEnemy and drag
EllenEnemyController from the Project into the
Controller input field of the Animator component
(Figure 12.20).

Step 27: Double click EllenEnemyController to open
the Animator. This can be done in the Project
window or the Inspector.

Step 28: Make some adjustments to pistol idle
and import it into the Animator. In the Project
window, select pistol idle. In the Inspector, click
on the Animation tab. Rename the animation
to “idle_anim” and click on the Loop Time check
box. Finally, under Root Transform Rotation, click
Bake Into Pose and change Based Upon: Original
(Figure 12.21). Scroll down until you can see the
Apply button and click it.

Why?

Lots happening here. All the Mixamo animations come in

named “mixamo.com.” Useless. Renaming them as we go

will make them easier to work with. The idle needs to loop

(thus clicking the Loop Time). Baking the Root Transform

Rotation using the Original rotation will make sure that

the animations are indeed facing forward. We will do

similar things to this for every animation before we’re

done.

Step 29: Drag pistol idle into the Animator. Grab
pistol idle from the Project and drag it out into
the Base Layer area of the Animator. Unity will

456

Creating Games with Unity, Substance Painter, & Maya

http://$$$�mixamo.com

457

Auto Rigging

FIGURE 12.19 By having the animations inherit the avatar from EllenEnemy, all the

animations now have a rig and geometry to be animated.

automatically connect this new State to the Entry
state (Figure 12.22).

Step 30: Go back to the Scene window and play the
Game. Watch the Scene window and EllenEnemy
will shift into her idle (Figure 12.23).

Step 31: Unpack the EllenEnemy prefab in the scene.
Select EllenEnemy in the Hierarchy. Right click
and chose Unpack Prefab.

458

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.21 Preparing pistol idle for use in scene with renaming and looping.

FIGURE 12.20 Assigning the new Animator Controller EllenEnemyController to control EllenEnemy.

Why?

We need to get that gun off her thigh and into her hand.

To do this, we’ll actually bring in another copy of the gun

and hide the one in the holster. The reason for this is that

459

Auto Rigging

FIGURE 12.22 Importing an animation into the Animator.

FIGURE 12.23 EllenEnemy shifting to her idle animation. Obviously, we need to fix

that gun.

the gun in the holster has a special kind of component

called a Skinned Mesh Renderer, which means that the

position of the geometry is tied to the position of joints.

This means we can’t easily just move the gun.

The process will be a quick three steps: hide the gun in the

holster, export/import the gun from Maya, and position it

as a child of the joints in her hand.

Step 32: Hide the holster gun. In the Hierarchy,
expand EllenEnemy and select Ellen_gun_geo.
In the Inspector, turn it off by clicking the top
left-most checkmark (right next to the name
Ellen_gun_geo). It will disappear in the Scene
window and be grayed out in the Hierarchy.

Step 33: Import Ellen_Gun (from Step 3). Select the
NPC folder, right click and choose Import New
Asset. The Ellen_Gun is likely on your Desktop.
Find it and click Import.

Step 34: Apply the existing Gun_mtl to Ellen_Gun.
In the Project window, select the newly imported
Ellen_Gun. In the Inspector, click the Materials
tab. Drag Gun_mtl from NPC/Materials into the
Gun_mtl input field and hit Apply.

Step 35: Position the gun in EllenEnemy’s right hand.
Drag Ellen_Gun into the Scene view. Maneuver
it so that it is sitting roughly in her palm
(Figure 12.24).

460

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.24 Positioning Ellen_Gun in EllenEnemy’s right hand. Exact placement

is not important; give it a rough shot.

Step 36: Make Ellen_Gun a child of the right hand
joint. In the Hierarchy, expand EllenEnemy.
Look for the mixamorig:Hips object (this
is the rig mixamo created). Expand it and
keep expanding until mixamorig:RightHand
becomes visible. Drag Ellen_Gun onto
mixamorig:Right hand to make it a child of the
hand (Figure 12.25).

Step 37: Play the game and observe the gun in
hand (Figure 12.26). If you find it needs to be
adjusted, stop the game, adjust, and play
again.

Step 38: Create a prefab out of this gun-tottin’ Ellen.
Drag EllenEnemy from the Hierarchy into the
Prefabs folder. Then delete EllenEnemy from
the Scene view panel. Not to worry, whenever
we need her (and her gun and idle animation)
we can just drag her out from the Prefab folder
again.

Step 39: Grab a few more animations and
get them into Unity. Go back to Mixamo.
Search for “Shooting” in the animations.
Click on the Shooting clip shown in
Figure 12.27.

461

Auto Rigging

FIGURE 12.25 Making Ellen_Gun a child of the right hand joint so where the hand

goes, the gun goes.

462

Creating Games with Unity, Substance Painter, & Maya

FIGURE 12.26 Gun in hand.

FIGURE 12.27 The Shooting animation.

Why?

The pack we downloaded in the earlier step has a huge

collection of movement animations but does not include

one of the character actually shooting the gun. For our

design, the character is going to stop when they shoot

their weapon; so we need to track down an animation that

will show this.

Step 40: Download Shooting but don’t bring the
Skin. To do this, click the Download button
on the right side of Mixamo’s interface. Make
sure that Format: FBX for Unity (.fbx) and Skin:
Without Skin (Figure 12.28).

Step 41: Repeat for “Hit Reaction” and “Death from
the Back”. Find the animations and download
them using the settings in Figure 12.28.

Step 42: Shop out any other pistol animations while
you’re here. Do a search of “pistol” and you’ll
find a nice alternative Pistol Idle. If you find
something you like, click it, and download it.
Again, without skin.

Step 43: Import the new individual animations into
Unity. Back in Unity, right click on the NPC folder
and choose Import New Asset. In the Downloads
folder of your machine should be EllenEnemy@
Shooting, EllenEnemy@Hit Reaction,
EllenEnemy@Death from the Back, and any other
animation you picked up. Import them.

Step 44: Set the Rig settings to Animation Type:
Humanoid, Avatar Definition: Copy From Other
Avatar, and Source: EllenEnemyAvatar. A repeat
of Steps 23 and 24. Click Apply.

Step 45: Not necessary if you only brought in the
Shoot animation, but if you downloaded

463

Auto Rigging

FIGURE 12.28 Exporting just the animation. No need for skin this time (we’ve

already imported that).

an alternate idle, prepare that clip (rename
it, set it to Loop Time, and Root Transform
Rotation>Bake Into Pose). Then in the
EllenEnemyController, delete idle_anim
and bring your version in. The Animator will
automatically connect it as the default state.

Conclusion

Unfortunately, here is where we need to leave EllenEnemy.

No worries though. Later, we’ll spend plenty of time

teaching her to patrol the level, chase the player, and

attack them when they are close enough. But to do that,

we first need to learn more about the Animator and how

to write some code to control it. We’ll start on that in

Chapter 14 and then again spend a lot of time on AI in

Chapter 17.

For now, let’s quickly review what this chapter has

covered. Using Mixamo, a model can be auto-rigged, and

MoCap animations exported associated with that rig.

Inside of Unity, the Mixamo-produced rig can be used to

create an Avatar that can then be controlled by Mixamo-

produced motion-capture clips. While this might not be

the solution for every game, it is a very quick way to get

your characters in game and ready to be taught where to

go.

If you’re an animator you may be yelling, “blasphemy!”

And that’s OK too; if you’d prefer to animate yourself,

be sure you do. Take a look at the upcoming chapters

controlling the FPSController and we’ll look at how to use

keyframed animation there.

For now, it’s onto the basics of C#. The fun is just

beginning!

464

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 13

Introduction to C#

Finally! We’re onto interaction. While creating the art for

games is a challenging and fulfilling exercise, until the

interaction is scripted, it’s simply an environment to walk

through, or characters animating in a vacuum. Coding will

finally allow us to actually build a game.

In this chapter, we will look at how to make a machine

that is blindingly fast and yet blindingly stupid do

amazing things. The computing power of your computer –

regardless of its specs – is faster than many ever imagined.

The number of calculations being made each second

on a user’s behalf are stunning, even if the user is only

browsing the web. The math alone required to draw

465

the geometry we have been working with in the past

chapters is calculated at a rate many times faster than the

computers that sent men to the moon. And yet, all those

calculations are done by a machine that can’t figure out

the difference between the words “Update” and “update”!

The point here is that coding requires exact syntax.

Capital letters (or not), punctuation, and placement of

scripts are all critically important to computers. They will

always follow your instructions exactly, and if one letter is

off, they can’t figure out how to get around the roadblock.

With this in mind, we will start out by looking at a few

general rules to writing code in Unity. Most of these rules

and ideas are general to all coding, but we will focus on a

Unity-centric approach.

C#

Ironically, Unity is built in C++ (not C#). However, C++ is

a pain to learn and, for most coders, higher level coding

languages are a much more approachable way to train

a computer to do tasks. C# is the undisputed preferred

language of coding for Unity, and it has generally

deprecated (abandoned) all other previously used

languages, including a variant of JavaScript and a variation

of Python called Boo.

C# has some rules and some conventions that will help a

script be easier to read, write, and work with. Let’s look at

a piece of example code (Figure 13.1).

There are several parts called out in the illustration:

Libraries – This is included at the top of the script
as it lets Unity know which libraries of terms and
commands we are going to use in the script. If
Unity knows which libraries we plan to use, it
can then check those libraries for details on how
to do the things we write in the code below. By
default, Unity includes these libraries; although
they aren’t the only ones Unity has access to.
Later, we will look at adding other libraries to the
beginning of scripts so that Unity can go look
new terms up when we use them.

466

Creating Games with Unity, Substance Painter, & Maya

Class Declaration – A class, in this case, is a
script. It’s a collection of instructions that
will be represented in Unity as a component
that is attached to an object (referred to as
GameObjects in Unity). In Figure 13.1, we are
declaring a script named “ExampleScript” that
is public (meaning other scripts can see and
talk to it). Further the new script (class) is of type
MonoBehaviour. Don’t worry about this last part;
for us, all of the scripts we will create will be of
type MonoBehaviour. Notice that the name of
the class, ExampleScript, is capitalized, camel-
cased, and has no spaces.

Comments – Anytime a line starts with “//” it
signals to Unity: Don’t worry about this; ignore it.
Comments are things coders leave for themselves
or other coders. Unity ignores it, but documenting
code is considered good practice and can indeed
help a coder keep track of what they’re doing
even if no one else ever reads the code.

Methods/Functions – These are events. Basically,
a method is a block of code that can be called
at various times in the game. For instance, the
method highlighted in Figure 13.1 is called Start,
which is a special term for Unity. Unity knows to
fire the instructions in this method at the start
of the game. Sometimes methods are called
functions, which is also a good descriptive term as
this chunk of code adds functionality to the game.

There are some very special names of functions that are

built into the Unity libraries: Awake, Start, and Update

467

Introduction to C#

FIGURE 13.1 Example empty script created in Unity and viewed in Visual Studio.

are a few. Update is a function that fires every frame. This

means that in every frame, the instructions within the

Update function are completed. Other important built-in

functions in Unity include things like OnCollisionEnter

(do this work when something collides with whatever this

script is attached to). However, a function can be named

anything you want: MyCoolMethod is a valid name of a

function. But such a method will need other instructions

on when to fire that method. More on this later.

Before the name of the function will be a word that

defines the kind of content the function produces

(often called “returning”). So “void Start()” means that

this function (called Start) returns nothing (void). Method

declarations could also take the form “int Start()” which

means, this method, called Start, is going to spit out an

integer when the instructions are completed.

After the name of a function are ()’s. In these a code can

include arguments or chunks of data that the function

will need to complete its work. If the function does not

require any information to complete its work, the () will

be empty.

Importantly, notice that the name of methods/functions

are also capitalized and there are never any spaces within

the name. “MyCoolFunction” is ok, “My Cool Function” is

not.

{} – Curly brackets, braces, squiggly brackets, whatever

you call them, they are important. That signify the

beginning and ending of a block of code. So, notice

that immediately beneath the declaration of the

ExampleScript class is an open curly bracket that has a

matching close curly bracket at the end of the code. This

means that all the code within ExampleScript is contained

with these curly brackets. This is the same for functions.

Immediately beneath the line “void Start()” is both an

open and closed curly bracket indicating the start and end

of the function.

Although not required, most coding software assists by

creating dashed lines to help the coder see that curly

brackets are opened and closed. Further, they are usually

468

Creating Games with Unity, Substance Painter, & Maya

stacked vertically (Figure 13.2). Note that code that is

within the two curly brackets is tab-indented one level.

Finally, two more important syntax note:

; – The “;” in code is like the “.” in English. It marks the
end of a sentence of a thought. Usually within a
function will be several lines of code, and each
will end with a “;”. Forgetting this is the most
common mistake for beginning coders.

Dot Syntax – When C# is referring to something,
it can drill down to components of that thing
(or drill up) by using a “.”. So, earth.unitedStates.
texas.sanAntonio would be an example of how
I could use dot syntax to indicate where I’m at.
Notice there are no spaces anywhere within a
dot syntax string of characters and camel-casing
is used to signify different words within. So, for
instance if we wanted to get the location of a
badguy, a dot syntax statement might look like:

badguy.transform.position.x;

This is referencing the gameObject “badGuy” and then

drilling down to the Transform component (the same

Transform seen in the Inspector) and then looking at the

Position X attribute.

And with that, let’s get busy building code. There are

lots more important things to talk about (variables

for starters); but let’s explore them as we need them.

469

Introduction to C#

FIGURE 13.2 Brackets indicate the start and end of a function or class. Usually they

are vertically aligned, and code contained in the function or class is tabbed one more

level in than the curly bracket.

Much of successful early coding skills come from

recognizing patterns. So, watch for the syntax in the

examples and be careful to include spaces where the

example includes it and leave them out when it does not.

C# in Unity and Visual Studio

As we’ve discussed earlier, Unity is a form of middle-ware. It

assembles assets, including code, that were built elsewhere.

Unity will compile code, it will read code, and it will act on

code, but it won’t allow you to write code. To do this, we

need to use some Integrated Development Environment

(IDE). IDEs make the work of a programmer easier by

combining lots of different aspect of code-building into

one package. An IDE will understand the libraries of the

code that is being written and provide helpful hints and

auto-formatting that greatly speed the rate of authoring

code and help the user see when code is correct (or not).

The IDE that most folks use is Visual Studio (presently 2017

or 2019 – either will work). When Unity was first installed

on your machine, it should have automatically installed a

version of Visual Studio on your machine. By default, Unity

installs Visual Studio 2017, although upgrading to 2019 is

free (using the free version of Visual Studio (Visual Studio

Community) that Unity uses). For the screenshots in this

chapter, we will be using Visual Studio 2017 since that’s

what’s installed by default. But if you’re running 2019, no

worries. Some of the colors might be a little different, but

the functionality is the same.

Before we get busy writing code, let’s make sure that the

installation is complete and that Unity knows where the

installation is.

Step 1: Ensure that Visual Studio is installed. Click
the Windows start menu (the little window
icon in the bottom left corner of your screen)
and begin typing “Visual Studio”. Among the
options this pops up will be an app called
Visual Studio Installer. Launch this. If a Visual
Studio Installer does not pop up among your
installed apps, you’ll need to install Visual Studio
Community (https://visualstudio.microsoft.com/

470

Creating Games with Unity, Substance Painter, & Maya

https://visualstudio.microsoft.com

vs/community/). However, it should have been
installed so you can move onto the next step.

Step 2: In the resulting interface (Figure 13.3), click
the Modify button.

Step 3: There scroll down to the Mobile & Gaming
section and look for the “Game development
with Unity” module. It should be checked. If it is
not, do so, and then click the Modify button at
the bottom right (Figure 13.4).

471

Introduction to C#

FIGURE 13.3 The Visual Studio Installer interface.

FIGURE 13.4 Ensuring Visual Studio has the Unity libraries installed.

Step 4: Make sure Unity knows to use Visual Studio.
Launch your project via the Unity Hub and then
within Unity choose, Edit>Preferences. In the
Preferences window (Figure 13.5), on the left
choose External Tools. On the right make sure
that External Script Editor: Visual Studio 2017 (or
Visual Studio 2017 (Community), or Visual Studio
2019) is selected. The only setting not acceptable
is “Open by file extension”. If it says that, choose
Browse from the drop down menu and map
where the Visual Studio is installed (usually C:\
Program Files (x86)\Microsoft Visual Studio 14.0\
Common7\IDE\devenv).

Alright, now to move onto actually
writing some code!

Tutorial 13.1: Hello World!
Step 1: Create a new Scene. File>New Scene.

Why?

We’re going to be a doing a lot of testing. This means

a lot of playing the game. Currently, MainLevel is a big

472

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.5 Ensuring that Unity knows to use Visual Studio for code creation and editing.

level and takes a while to start up and play. While we’re

roughing out code, we don’t want to lose all of that time.

So a new scene will be lean and mean and let us iterate

more quickly.

Step 2: Expose the Console. At the very bottom of
either the default interface, or the two by three
interface we’re currently using is a little tiny line
that is the Console. The Console is a text tool
that Unity can use to provide feedback to the
developer. When we’re ready to write code, this
is really the single most important part of the
interface. Select Window>General>Console.
This will expose a floating Console. Nest it into
the interface by dragging the Console tab to the
location you want to pin it to. I prefer pinning it to
the bottom of the interface where I can expand it
to read all the details it provides (Figure 13.6).

Step 3: Create a folder to contain scripts. If there
isn’t already a folder called Scripts in the Project
window, click the + button and choose Folder.
Rename the folder Scripts.

Step 4: Create a new script called HelloWorldScript.
In the Project window, with the Scripts folder
selected, again click the + button and choose
C# Script. The new script will be created with
an invitation to immediately rename it. Enter
HelloWorldScript (no spaces) as the name of
the script.

473

Introduction to C#

FIGURE 13.6 Pinned Console.

Step 5: Open the script in Visual Studio. Do this by
double clicking on the HelloWorldScript. After a
brief pause, Visual Studio will open and the script
will show up looking like Figure 13.7.

Tips and Tricks

Notice that after the libraries, the name of this class is the

same name as the script (HelloWorldScript). This is not

only convenient, but necessary. If a script is renamed in

Unity, the name of the class must be renamed to match.

Within Visual Studio, the color scheme can be changed

using Tools>Options. There, change the Color scheme:

Dark. It’s much easier on the eyes.

Also within Visual Studio, holding the Ctrl-key down and

scrolling up and down on the mouse will make the font

appear larger and smaller.

Step 6: Make the script say hello. Within the Start()
function build in a line that prints to the Console.
The line should read:

print(“Hello World”);

The total code should look like Figure 13.8. Use File>Save

(Ctrl-S) in Visual Studio and return to Unity.

474

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.7 Newly created HelloWorldScript opened in Visual Studio.

Why?

When returning to Unity, the bottom right of the interface

might show a little spinning circle. This means that Unity

is compiling the code. What’s happening here is that Unity

is reading the code and trying to see if it understands

the instructions. If there are syntax errors, they will pop

up on the Console in red. Double clicking that error will

open the code again in Visual Studio to point out where

the problem might be. If there are no syntax errors and

Unity understands all the new instructions not much will

happen – and that’s a good thing.

What this script does is when the game starts (in the

Start() function, see?), the Console will print the string

(just a collection of characters) “Hello World!”.

Step 7: Put the code in the game. Create a new
empty GameObject (GameObject>Create
Empty). Drag the HelloWorldScript onto
the empty GameObject in either the Hierarchy
or the Inspector. Importantly, the Inspector for
the selected empty GameObject should appear
like Figure 13.9; a GameObject with a new
component.

475

Introduction to C#

FIGURE 13.8 Code that allows for a simple message (Hello World) to be written to the Console.

Why?

Most scripts do nothing if they just live in the Project

window. They need to be in the game to be active. Unity

hangs scripts off of GameObject to indicate that they

are actually to be executed when the game is played.

It’s a common mistake for beginning coders to write a

script and forget to apply it to their game.

Step 8: Play the game. Hit Ctrl-P and look at the
Console (Figure 13.10). Hit Ctrl-P to stop playing
the game.

Why?

Alright, so not terribly exciting so far. But this is an

important (and traditional) step to setting up code. The

Console writing this string out shows us that the script has

476

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.10 Hello World!

FIGURE 13.9 After properly compiling, a script is added to the scene by dragging it

onto the object in the Hierarchy or the Inspector.

been seen by Unity, Unity understands the script, and it

indeed fires it at the start of the game.

Step 9: Have game write to the console very frame.
Double click the HelloWorldScript in the Project
window and back in Visual Studio, cut the print
line of code from the Start() function and instead
paste it into the Update() function (Figure 13.11).
Save and return to Unity.

Step 10: Play the game and check the Console
(Figure 13.12). Stop playing the game at any time.

477

Introduction to C#

FIGURE 13.11 Moving the print line of code to be fired every frame.

FIGURE 13.12 Moving the print command to Update() means “Hello World!” is

printed every frame of the game.

Why?

It’s important to understand that functions not only

include instructions but have specific times to fire. In

Start(), the instructions are carried out when the game

starts. In Update(), they fire every frame. Sometimes we

need things to fire every frame (like listening for player

input), but usually Unity shouldn’t be tying up processor

cycles every frame.

Tutorial 13.2: Opening Doors

Now that we’ve looked at how to make a script and

attach it, it’s time to look at making a script do real work

in the game. To do this, we’ll start with a script that

opens our doors. This script will be constructed in this

new empty scene but will be applied to the door prefab

and so will work back in the MainLevel too. Before we

get started, delete the old GameObject that contained

the HelloWorldScript so it is no longer used in the game.

Step 1: Create a floor. GameObject>3D Object>Plane.
In the Inspector, change its Positions X, Y, and Z to
0 to stick it in the middle of the world.

Step 2: Place the door prefab into the scene on the
floor. Remember to grab the prefab door from
the Prefabs folder so that the changes we make
here will transfer over to the MainLevel. Exact
placement is not important (Figure 13.13).

Step 3: Place the FPSController into the scene.
The exact placement is unimportant but grab
FPSController from the Project folder (Standard
Assets>Characters>FirstPersonCharacter>Pre
fabs) and place it into the scene. Move it up so
that it is standing just above the floor. Be sure to
delete Main Camera from the scene so that there
is only one camera (the one on FPSController)
(Figure 13.14).

Why?

The point of this tutorial is to make the doors slide open

as we walk up to them. In order to make this work, there

needs to be a way to actually move up to the doors – thus

478

Creating Games with Unity, Substance Painter, & Maya

the FPSController. Note that if the FPSController is

selected in the Inspector, there are a lot of components

there. Notably, it contains a Character Controller and a

Rigidbody component.

Step 4: Add a Box Collider to the door. In Hierarchy,
select door (the parent most object of the
door prefab). Then, in the Inspector, click the
Add Component button. In the input field that
pops up there, start typing “Box Collider” and

479

Introduction to C#

FIGURE 13.13 Placed door prefab.

FIGURE 13.14 Placed FPSController. Note that for this screenshot, the Intensity of

Directional LIght was reduced considerably to be easier to see.

then select Box Collider from the filtered list
(Figure 13.15). When done, Box Collider will
show up as a component in the Inspector, and
there will be a little green box in the Scene
(Figure 13.16).

Step 5: Resize and place the Box Collider. Figure 13.17
shows the Box Collider component in the
Inspector. There is a little button that allows the
user to Edit Collider. Click that and in the Scene
window use the little green dots that appear on
each plane of the Box Collider to the adjust the
box so that it roughly matches Figure 13.18.

Why?

This collider will become a trigger. It will trigger the doors

opening for us. So it needs to be about the size of the

doors, but have enough of it in front of the doors so they

open before we smack into them, and close behind us

once we’re through them.

480

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.15 Adding a Box Collider component.

481

Introduction to C#

FIGURE 13.16 Poorly placed Box Collider. In Unity, colliders are always color coded

in green.

FIGURE 13.17 The Edit Collider button will allow the size and shape of the collider

to be adjusted.

FIGURE 13.18 The adjusted collider. This will act as the trigger to open the doors

when we walk up to the door and close them behind us when we move away from it.

Tips and Tricks

The handles to edit the collider are maddeningly small. It’s

easy to miss them. If you do, just click on door again, and

again activate the Edit Collider button. Grab with care.

Step 6: Play the game and get stuck. Ctrl-P will allow
the player to try and walk up to the doors, but
because of the Box Collider we’ll be stopped
before we ever get to the doors.

Step 7: Convert the Box Collider to a Trigger. In
the Inspector, the Box Collider has a check box
for “Is Trigger”. Check this. Play the game and
you should be able to walk through the doors
again.

Why?

A Trigger is a sort of box collider that registers when

something has intersected with it, but it still allows

whatever hit it to pass through. The Trigger will trigger

some event that we’ll write into script.

Step 8: Turn on the Mesh Colliders for door_l
and door_r. These were turned off in earlier
chapters to allow the player to move through
the scene. Now they need to be active again. In
the Hierarchy, select door_l and in the Inspector
check Mesh Collider on again. Repeat for
door_r.

Step 9: Create a SlidingDoorScript. In the Project
window, select the Scripts folder, and use
the + button to create a new C# Script.
Immediately rename it to SlidingDoorScript.
Double click it to open in Visual Studio.

Step 10: Clean up SlidingDoorScript. Select the
Start() and Update() functions (including their
curly brackets) and delete them (Figure 13.19).

Why?

This script is going to have a single purpose: open and

close the door. There is no work we need it to do every

frame or when the game starts. Therefore, there is no

need for Start() or Update(). Notice that the curly brackets

482

Creating Games with Unity, Substance Painter, & Maya

for those two functions are deleted, but the open

curly bracket and closed curly bracket that define the

beginning and end of the class have remained.

Step 11: Create a new OnTriggerEnter() function.
Within the existing brackets, start typing
“OnTriggerEnter” (without the quotes). As this
happens, Visual Studio will start suggesting
built-in functions that are part of the libraries it
is using (Figure 13.20). Either click on, or arrow
down to the OnTriggerEnter and hit Enter. Visual
Studio will fill out the format for OnTriggerEnter()
for you (Figure 13.21).

Step 12: Have the console indicate when the trigger
has been tripped. In the OnTriggerEnter()
function, add the line:

print(“I’ve been triggered”);

The code should look like Figure 13.22. Save and return

to Unity.

483

Introduction to C#

FIGURE 13.19 Deleting unneeded functions.

FIGURE 13.20 Because Visual Studio and Unity are tied, as a built-in function’s name begins to be typed, Visual Studio will

suggest some solutions.

Why?

This is a typical coding method. Create the trigger, check

to see if it actually gets activated. In the movies, its

common to see a coder laying down hundreds of lines of

code with a triumphant flourish. In reality, coders write a

line, see if it works, come back and write the next line, see

if it works, etc. Here it’s important to make sure that the

Trigger is working before adding any other code.

Step 13: Apply SlidingDoorScript to the door prefab.
After compiling and checking for syntax errors
in the Console, drag SlidingDoorScript from
the Project window onto door in the Hierarchy.
When selected, the door’s Inspector should
appear like Figure 13.23.

Step 14: Play the game and watch the Console.
Every time the player gets close to the door
and enters the trigger, “I’ve been triggered”
will appear in the Console.

Step 15: Add another function to the script
that registers when the player exits the
trigger (Figure 13.24). Save and return to
Unity to test.

484

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.21 When one of the hints is clicked, Visual Studio will automatically

format the function. Notice it has filled in arguments ((Collider other)) and placed the

starting and ending brackets.

FIGURE 13.22 Code that will let the developer know that the trigger is working.

485

Introduction to C#

FIGURE 13.23 Applied SlidingDoorScript. Note that the script is applied to the same

object that has the Trigger (Box Collider).

FIGURE 13.24 Adding script to register when the player leaves the trigger. Upon

test playing the game, both print commands should be actuated (and show up in the

Console) as the player gets close and then moves away from the doors.

DOTween

So now comes the part where the doors actually move.

There are many ways to do this: we could animate the

doors in Maya and then play that animation in Unity when

the player enters the trigger, we could animate the doors

in Unity using Unity’s animation system and play those

animation clips when triggered, we could code it old

school by setting a target location and moving a certain

amount every frame until we reached the target amount.

All of these have their benefits, but we aren’t going to any

of them here. The animation paths are covered in other

chapters in this book, or can easily be found in plenty of

YouTube videos. The old school programming is just more

than we want to do at this point.

What we will do is leverage other code that can be easily

and freely implemented. We’ve already looked at functions

that are built into Unity’s libraries. For the next steps,

additional libraries will be imported and implemented that

we can leverage to do advanced things easily.

There are several “tweening” tools on available for free.

DOTween and iTween are two of our favorites. For these

chapters, the tool of choice will be DOTween, mostly

because it continues to be developed (iTween seems to have

stagnated as of late). DOTween has a little trickier setup, but

performs quickly and will do all the things needed.

Step 16: Download and install DOTween. In the Asset
Store (Window>Asset Store), search for “dotween”.
DOTween (HOTween v2) is free and should pop as
one of the search results. Download and Import.
When it is done importing, a window similar
to Figure 13.25 will appear. Click on the Open
DOTween Utility Panel.

Step 17: Set up DOTween. The DOTween Utility
Panel will appear (Figure 13.26 left). Click
the Setup DOTween… button. This can take
a second as Unity compiles the new scripts
DOTween is installing. Finally, it will present
an Add/Remove Modules window similar to
the right side of Figure 13.26. Click Apply. After
that, close the DOTween Utility Panel. There
should be a new folder called Demigiant in the
Project window.

486

Creating Games with Unity, Substance Painter, & Maya

487

Introduction to C#

FIGURE 13.25 Starting the setup of DOTween.

FIGURE 13.26 Setting up DOTween.

Why?

DOTween is just code that someone else has built that,

once imported into a project, allows the developer to

leverage the thousands of lines of DOTween code into

single commands. This is the power of expanding libraries

or bringing in other classes. The bounds of the game

engine can be nearly infinitely expanded in all directions.

But with great power comes great responsibility. In this

case, don’t move the Demigiant folder. The location of

classes like this matter. So treat Demigiant as sacred for

now and it will save you hassle later.

Step 18: Tell SlidingDoorScript to use DOTween. To
do this, we’ll adjust the library settings at the top
(Figure 13.27). It’s important to remember that
every script that uses DOTween functionality has
this added to the libraries.

Tips and Tricks

For now, the documentation might be all Greek to you.

But as time goes on, the documentation of any plugin

or chunk of code will become very valuable literature.

The documentation for DOTween is at: http://dotween.

demigiant.com/.

488

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.27 Adding DOTween to the list of libraries (and thus the list of commands that this script knows).

http://dotween.demigiant.com
http://dotween.demigiant.com

Variables

In C#, variables are buckets of information. A variable

can hold gameObjects, integers, numbers with decimals

(floats), strings of letters, and/or even things like booleans

(true or false). Variables are important for code as they

become the easiest way for a script to keep track of

any particular object, number, or text string. When the

developer populates a variable (puts something in the

bucket), the script is able to easily reach out and grab that

bucket and access whatever is inside of it without having

to do the hard work of going out and finding the object/

number/text/whatever each time it needs it.

In C#, variables are defined by first defining if it is public or

private. Public variables can be accessed by other scripts;

private variables cannot. Next, the declaration defines what

type of information the variable will contain (GameObject,

int, float, bool, and Transform are a few). Finally, the

declaration will list the name of the variable. Variable names

are always lowercase, no spaces, and camel-cased. So:

public GameObject player;

private float playerSpeed;

private int playerAmmoCount;

defines a bucket named “player” to hold a GameObject

that every script can access. A bucket that holds numbers

with decimal points (float) is named playerSpeed, and

this number can only be accessed by this script (since its

private). And finally, a who number (integer) will be stored

in a private bucket named playerAmmoCount.

Most of programming boils down to putting information

in buckets, accessing that information, manipulating

it, and then storing it in other buckets. Understanding

variables is key to all coding.

Step 19: Teach SlidingDoorScript which objects to
slide open. Create two variables to hold both
doors. We want the variables to be accessible
for all the code so they will be declared outside
any of the functions (Figure 13.28). Save in Visual
Studio and return to Unity.

489

Introduction to C#

Why?

When Unity finishes compiling the code, the Sliding Door

Script component will look different in the Inspector.

Since we’ve added to public variables, the variables will

now be visible inviting the developer to populate them

(Figure 13.29).

Step 20: To populate these public variables, drag
the gameObjects from the Hierarchy (door_l to
L Door and door_r to R Door) into the Inspector.
The Sliding Door Script now knows who the left
and right doors are.

Step 21: Find the desired positions of the open
and closed doors. Ideally, the axis of each of
these doors matches that of the parent so that
when selected, the Positions X, Y, and Z are
all 0. However, as often happens in production,
sometimes the modelers don’t prepare the
files quite like the coder would like. No sweat

490

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.28 Declaring two variables for lDoor and rDoor. These are public for now.

FIGURE 13.29 Public variables show up in the Inspector.

though. Just select door_l and door_r and record
what their Position X value is. On ours it is −1.29
(we’ll round to −1.3). This is the value the door
has when it is closed.

Next, take each door and slide it in one direction to

an open position (Figure 13.30). Note the value of the

Position X for each. If using the prepared project files from

the support site, these are about −0.15 for door_l and −2.4

for door_r. After the values are recorded, move the doors

back to closed.

Step 22: Create the DOTweens to move the doors. In
SlidingDoorScript, replace the print commands
with lines of code to match Figure 13.31.

Why?

The line:

lDoor.transform.DOLocalMoveX(-.15f,

.5f);

…says, “go to the object contained in the variable

lDoor. Go to its Transform component and use the

DOLocalMoveX function to move it. Move it to -.15 in

491

Introduction to C#

FIGURE 13.30 Moving the doors to an open position and taking note of their

Position X values.

local X (meaning in relation to its parent) and do it over .5

seconds” Notice that 0.15 and 0.5 have an “f” behind them

to help Unity know that these are floats (as opposed to

integers or doubles).

The specifics of DOLocalMoveX comes from the

documentation website (Figure 13.32). There it lists the

DOLocalMoveX under the Transform category (thus

the lDoor.transform.DOLocalMove). Further it reveals

the arguments the function DOLocalMoveX expects to

see: the value of “to” (as a float), the value of “duration”

as a float, and whether or not to snap the movement

(as a Boolean). Notice that sometimes, as is the case here,

an argument can be left off if it’s the last one (here the

Boolean of whether to snap or not was left off).

492

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.31 Using DOTween to animate the doors opening and closing.

FIGURE 13.32 A quick shot of the documentation for DOTween that help us

understand what arguments the DOLocalMoveX expects to see.

Step 23: Populate the doors via script. Change the
two variables lDoor and rDoor to private, and
then when the game very first starts (Awake()),
have the script find among its children the
objects door_l and door_r and put them into
the lDoor and rDoor variables (Figure 13.33).
Save and return to Unity. Test to make sure it
still works.

Why?

In this case, we want to make sure this code will work

for every instance of the door we have in the scene.

This method means that when the game very first starts,

before it does anything else (that’s what happens in

Awake()), it populates the variables itself by finding

objects among its children. When this is all done, all

the doors will open automatically as the player walks

up to them.

Notice though, that this is finding objects by name. If your

doors are named something besides door_l and door_r,

be sure to use that in the code. Also, it will be important

not to change the name of those objects in the future or it

will break the code.

Step 24: Tweak and update. If the doors are opening
too late, make the Trigger bigger. If the doors
are opening too slow or too fast, adjust them in
the code (remember it’s the second argument

493

Introduction to C#

FIGURE 13.33 Populating the lDoor and rDoor variables via script. In this case only

looking for objects that are children of whatever this script is attached to.

in the DOLocalMoveX(−0.15f,0.5f) line of code).
Keep testing until the movement and timing
feels right. When it’s all good, make sure all
this work is propagated to all the doors by
selecting door and using the Overrides pull-
down menu (on the Prefabs line) and Apply All
(Figure 13.34).

Step 25: Make the floor a bit larger and place a
bunch of door prefabs. Test. Each of the doors
should automatically open as the player
approaches them.

Step 26: Find a sound for the doors opening and
closing. Lots of great resources out there to
choose from. FreeSound.org is one of our
favorites. Although it requires registration,
it’s a great community of sound clips shared
for free or with some variation of a Creative
Common License. When a good sound is found.
Download it.

Step 27: In Unity, create a new folder called Audio
and import the sound file. Import it by either
dragging it from the finder into Unity, or right

494

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.34 Making sure all the instances of this door will open as we approach

them.

clicking on the Audio folder and choosing Import
New Asset…Unity is pretty tolerant of sound
file formats: aiff, wav, and ogg are all good.
However, it doesn’t like .flac sounds.

Step 28: Add the sound to the door prefab. Select
the door in the Hierarchy. In the Inspector, click
on Add Component and add an Audio Source
component. Expand this new component, and
drag the newly imported clip into the AudioClip
input field. Still in the Audio Source component,
turn off Play on Awake and slide the Spatial
Blend slider to 1 (Figure 13.35).

495

Introduction to C#

FIGURE 13.35 Audio Source settings. This Audio Source component is attached to

the parent door.

Why?

An Audio Source indicates a location that an audio clip

will emanate from. The Audio Source component always

needs a clip (the actual sound file) to be defined. Turning

off Play on Awake makes sure that the sound only plays

when the player walks through it (which the script will

do in a minute). And finally, adjust the Spatial Blend to 3D

means that the player will hear the sound in their left and

right headphones when playing the game.

There’s lots more cool stuff (reverb zones, fall off, Doppler

effects) that can be done with Unity’s Audio system. We

won’t get to most of it here, but if you are interested, take

a deeper dive.

Step 29: Create a variable to store the Audio Source
in SlidingDoorScript. Do this by creating a private
variable that holds an AudioSource. Add the line
shown in Figure 13.36.

Step 30: Allow SlidingDoorScript to find the Audio
Source component on its own. In the Awake()
function, tell this script to go find the component
of type Audio Source that is attached to the
same gameobject this script is attached to
(Figure 13.37).

496

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.36 Adding a variable to hold the Audio Source just created.

FIGURE 13.37 Allowing the script to populate the doorSound variable with the

Audio Source component.

Why?

GetComponent<Type of Component>() is a powerful tool.

Any component can be accessed with any script in this

way. In the line of code shown in Figure 13.37, we are saying

“into the bucket (variable) doorSound, put the AudioSource

component that is also attached to this gameObject.”

Step 31: Play the sound on opening and closing.
Now that the script knows where the sound
is, it just needs to be told when to play it.
In OnTriggerEnter and OnTriggerExit, add the
line of code shown in Figure 13.38. Save in Visual
Studio and return to Unity.

Step 32: Test. Play the game.
Step 33: If all’s well, process the prefab’s override.

Select door in the Hierarchy, and in the Inspector
use Overrides>Apply All.

Step 34: Open MainLevel.
Step 35: Make the door instances not Static. Search

for all instances of door. At the top of the
Hierarchy, use the Search input field and search
for “door”. Shift select all of them (door, door(1),
door(2), etc.) and in the Inspector check off the
Static checkbox in the top right corner.

Why?

Static objects can’t move. The doors are probably marked

as Static as they were set that way for light baking. But

now, we need them to move.

497

Introduction to C#

FIGURE 13.38 Playing the doorSound.

Step 36: Save and test. All the doors in the level should
open as the player approaches them, and close as
they move away. Further, the sound should play
as the player enters and leaves the trigger.

A Final Note: Unity’s API

When reading a tutorial like this, or watching a YouTube

video, it’s sometimes hard to envision where the

authors got the information. How does he know how

Unity declares a variable? How does he know that

SetActive(false) turns something off? The answer is Unity’s

API. API stands for Application Programming Interface.

It’s an interface that defines how different software can

interact, what commands can be used, etc. Unity doesn’t

want to keep this secret; on the contrary, it’s in their

interest that as many people as possible know it and

understand it. Unity’s API is actually one of the reasons

why developers are drawn to Unity over their competitors

– the API is better written and easier to decipher.

To get to the API, in Unity, select Help>Scripting

Reference. This will fire up the web browser on your

machine and welcome you to the “Unity Scripting

Reference!”. There is a search in the top right corner where

an intrepid seeker can enter specific commands or things

like “activate object”. At first, the API can be daunting and

be tough to understand. But there are two main things to

get into the habit of looking at and understanding.

The first is the very first few lines of any page (Figure 13.39).

This shows the format that a tool actually has. So, in

Figure 13.39, we are looking at Instantiate (it means to

make an instance in the scene). There are many ways listed

there to use this. Instantiate (in bold) is the actual class

that we can use in script. In each of the lines shown there,

the various arguments it expects are listed.

So for instance. The fourth line down reads:

public static Object

Instantiate(Object original, Vector3

position, Quaternion rotation);

498

Creating Games with Unity, Substance Painter, & Maya

The important part is:

Instantiate(Object original, Vector3

position, Quaternion rotation);

This means that if using Instantiate in this way it expects

three things, the original, the position, and the rotation

(see them in there separated by commas?). And that

the original thing needs to be an Object, the position a

Vector3 (a type of information usually representing the

Position in X, Y, and Z), and the rotation is represented by

a Quaternion (a cool imaginary number you might not

remember from high school math). Don’t worry about

the types right now (Vector3, Quaternion, etc.), but do

focus on understanding that the API tells us to use three

arguments and that these arguments need to be of a

specific type.

Also important in the API (and honestly the way I learned

to code in Unity) are the examples (Figure 13.40).

Sometimes the authors of the API show off too much

and have a bit of “let me show you what I can do!”

in the examples. But often they are the best way of

understanding the class in action. Usually, these code

snippets are well commented to help understand what

is happening in the code. Often, copying and pasting

from the example into your own code is a good start to

reaching functionality.

499

Introduction to C#

FIGURE 13.39 The Unity API for Instantiate. Learning to read the API is key to success beyond any tutorial.

Every command we look at in this and the following

chapters can be found in the API. Don’t ever close it down;

always have it open and let it be your guide to not just

copying code out of a book, but moving towards real

understanding.

Conclusion

And with that we’ll leave this chapter. Through the course

of this chapter, we have created new scripts, attached

those scripts to gameObjects (which means they are

used in the game). Within those scripts, we’ve looked at

creating and populating variables. Using the variables we

have fired code-driven animation and played sounds.

But we’re just beginning. There is so very much more to

coding. In the next chapter, we’ll begin to look at how to

use coding to control animations that were completed in

Maya and how to start firing weapons.

500

Creating Games with Unity, Substance Painter, & Maya

FIGURE 13.40 An example in the API for Instantiate. These examples are a great way to see something in action.

CHAPTER 14

FPS Animations

In the last chapter, we laid out the basics of coding in

C#. We looked at how to create a new script, how to edit

the script, and how to apply that script to the game.

But opening doors automatically is just the start. In this

chapter, we will look at using code along with Unity’s

Animator system to allow the player to have arms and

importantly have those arms play animations.

Before we get started, let’s lay out the overall process

covered in this chapter. The process is one not dissimilar

to one that would take place in a studio where the

modelers, texture artists, animators, and coders might all

501

be different people. We will be preparing and cleaning

files before they are taken into Unity for final assembly.

 1. In Maya, delete unused geometry from the animated

scene.

 2. In Maya, bake the animation so that constraints and

other animation-centric tools are removed from the file.

 3. Export the animated (and baked) files from Maya as

FBXs.

 4. In Substance, export the textures (if you haven’t

already done so in Chapter 12).

 5. In Unity, assemble the animated FBXs, the exported

texture files.

 6. In Unity, separate the animations in the FBX into

Animation Clips.

 7. In Unity, using Animator, define what clips to use when

using Booleans and triggers.

 8. Create the code that flips the boolean and triggers the

triggers to make the animation clips play according

the user input.

Tutorial 14.1: First Person
Animation in Unity

The animations have been prepared (and written about)

by Kassandra Arevalo in Chapter 11. If you followed along

with that chapter and have your own animations to use,

great! Use those. If not, and you are interested in writing

code without being an animator, the files that Kassandra

animated are on the support website in the support files

for this chapter. For the tutorials included here, we will be

using Kassandra’s animated files.

It’s worthwhile to point out that this is different than the

process we used (and will use) for the Mixamo-exported

MoCap animations. In Chapter 12, we used Mixamo and

auto-rigged the NPC and assigned motion-captured

animations to it. We will use those in Chapter 17 when

we assemble the AI. For now, we are using animations

keyframed by an animator. The preparation of the files

in Maya and its implementation in Unity will be different

from the process we will use in Chapter 17.

502

Creating Games with Unity, Substance Painter, & Maya

Maya Animation Preparation
Step 1: From the Support Files for this chapter, open

Ellen_gun_animations.

Why?

No need to set a project for now. The texture files will be

separate and assembled in Unity later. All that is needed

is the geometry and animation for now. However, it is

important to note that the file being animated here

already has the UVs complete and the materials applied

before the rigging and animation began.

Step 2: Swap to the default persp camera. In the
main View Panel, use Panels>Perspective>persp.

Step 3: Ensure that the Outliner is showing by
activating it through the UI buttons on the far
left (Figure 14.1).

Step 4: Delete unseen geometry. Figure 14.2 shows
the geometry included in the rig that the first
person will never see. Select it and delete it.

Baking Keys

When animating, there are lots of tools to help the rig be

easy to work with. IK, constraints, etc. all help make the

process of animating easier. However, these constraints

and other rig-centric tools don’t always transition well

into game engines. Unless an animator/rigger is using

something like stretchy IK (where joints are allowed

to stretch), most all animation really is the process of

rotating joints. Baking Keys for a rig is the process of

setting Rotation Keys (as well as unneeded Translate and

Scale keys) every frame. This locks the animation down

and makes it harder to edit, but importantly it makes the

animation so that it will transition well into a game engine.

Step 5: Bake the keys for Ellen_Rig. Change to
Animation mode from the pull-down at the top
left of the Maya interface (Figure 14.3). In the
Outliner, select Ellen_Rig. Choose Key>Bake
Simulation□. In the resulting Bake Simulation

503

FPS Animations

FIGURE 14.1 Activating the Outliner.

The Outliner will be one of the easiest

ways to select objects, especially if they

are hidden.

504

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.2 The geometry that the FPSController will never see. Removing it from

the file will keep it streamlined and keep it from showing up in Unity.

FIGURE 14.3 Swapping to Animation mode. This produces new pull-down menus

to choose from.

Options window, change Hierarchy: Below, Time
Range: Start/End, Start time: 0, End time: 560
(Figure 14.4). Hit Bake.

Why?

Changing Hierarchy to Below means that Maya will bake

the keyframe for all the objects below the selected object.

For us, this means all the joints for the rig will have their

keys baked in. Sliding the Current Time Marker in the time

slider would reveal that the first animation begins at frame

0 and ends at frame 560, thus the setting for Start/End

and setting the Start Time at 0 and End Time at 560.

The process of Baking the keys can take a while. It’s setting

an awful lot of keyframes as it goes. The progress can

be seen in the time slider at the bottom. Give it time to

complete.

Step 6: Bake the keys for the Gun_grp and gunClip_
CTRL_group. Same process as Step 5.

Why?

Gun_grp and gunClip_CTRL_group both have keys on

them. Further, Gun_grp’s position is being defined by a

Parent Constraint. By baking the keys, the constraints are no

longer need to define the position of the gun and the clip.

505

FPS Animations

FIGURE 14.4 Bake Simulation Options.

Step 7: Delete the now unnecessary Parent
Constraints. Gun_grp and gunClip_CTRL_group
both have unnecessary constraints (Figure 14.5).
Find them, select them, and delete them.

Why?

These constraints would likely make no real difference

in Unity. But cleaning up assets not needed helps keep

the files lean and the game engine running smoothly for

longer.

Step 8: Delete aim, gun_CTRL, leftHand_locator,
rightHand_locator, and gunClip_CTRL_group
(Figure 14.6). Again, all great tools while
animating, just in the way in the engine.

Why?

Strictly speaking, there are loads of other things we

could actually clean from the file. This rig is powerful

and complex, and actually has two joint chains and

only one deforms the mesh. However, once this asset is

inside Unity, all of that will be buried anyway, and while

unnecessary, the developer would never have to mess

with it. So it’ll stay.

506

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.5 Now that keys are baked, these constraints are no longer needed.

Step 9: Make sure that everything still plays as it
should. Do this by dragging the Current Time
Marker, or just hitting the play button down in
the Timeline. If all is well, the arms, hands, and
weapon will still move as they should.

Step 10: Save as a new file name. Save as something
like “Ellen_gun_animations_BAKED”.

Why?

It is important that the old non-baked version of the

animations is not saved over. This baked version is great

for the game engine – but nearly impossible to edit. Keep

the old unbaked version in case animations need to be

adjusted.

Step 11: Export as fbx. Choose File>Export All. In the
Export All window, make sure File of Type: FBX
Export. In the Options…section, under Geometry
make sure Smooth Mesh and Triangulate is
checked and also make sure Animation is
checked this time. Export the file to the Unity
project file in the Assets folder and specifically in
the Models folder (TheEscaper\Assets\Models).

Tips and Tricks

There may be some Warnings and Errors that pop up.

Most of these might be associated with Constraints

507

FPS Animations

FIGURE 14.6 Deleting a few other things that helped in the animation process but

get in the way in the engine.

(constraints that don’t matter anymore), Animation Curve

Tangents (which Unity will take care of), or Unsupported

Transform nodes. All of these, in this case, should be fine.

Just click the Close button.

Step 12: Repeat for the baking and culling process
for Ellen_grenadeLauncher_animations. Open
the file. Bake the keys (Keys>Bake Simulation)
from Start Time: 0 to End Time: 567 for Ellen_Rig
and Grenade_launcher_grp. Delete aim,
leftHand_locator, grenade_group, and the
grenade_launcher_grenade_parentConstraint
(under Grenade_launcher_grp). Under
Ellen_Rig>model:Ellen_geo, delete everything
except sweater, watch_body, watch, hands,
glove, and glove_belt. Double-check that
nothing has been deleted that’s still needed
by dragging through the timeline. Save as
Ellen_grenadeLauncher_animations_BAKED.

Step 13: Export as fbx as Ellen_GrenadeLauncher.
Remember to export into the Unity project file
(TheEscapers/Assets/Models). Be sure to include
Animations in the export options. Again, don’t
worry about the errors on this one (there will still
be some constraints floating around).

Tips and Tricks

These last few steps are pretty technical. And they are very

specific to the file. If you’re struggling with which assets

to delete, just focus on getting rid of the unnecessary

geometry (the things under Ellen_geo). As long as that is

gone, the exported file will be fine.

If you’re still struggling, the support files for this chapter

include both the pre-bake and post-baked versions of the

animations.

Substance Painter Output

While we’re preparing files for Unity, let’s go ahead and

get the textures out of Substance Painter. You may have

already done this in Chapter 12 for the NPCs; if so, skip

these Substance Painter steps (jump down to Putting

it Together in Unity) as the Unity project will already

508

Creating Games with Unity, Substance Painter, & Maya

have the necessary textures. The Substance Painter files

used to texture the character and her weapons are huge

(and available on the support website in the “Substance

Painter Assets” folder). If you don’t want to mess with

downloading the files just to export them, the exported

textures are also available under “Painter Texture Outputs.”

Step 14: Export the textures for the character.
Use your own Substance Painter files, or the
ones on the support website. Be sure to make
the Output Directory you’re the Textures
folder in the Assets folder of the Unity project
(TheEscaper/Assets/Textures). Also remember
to change Output Template: Unity HD Render
Pipeline (Metallic Standard) with a File
Type:targa (Figure 14.7).

Step 15: Repeat for the grenade launcher that is
included in the props_texturing Substance
Painter asset. This includes the textures for
the grenade launcher and the grenade. These
may already be in your Unity project (check
the Assets/Textures folder for props_Grenade_
launcher assets). If they are not there from our
earlier exports, open props_texturing from the
support files. Export just the grenade launcher
assets (Figure 14.8).

509

FPS Animations

FIGURE 14.7 Reminder of Substance Painter Export Textures settings.

Putting It Together in Unity

Now that all the assets have been exported, and exist in

the Unity project, it’s time to tie them all together. Open

the Unity project and we’ll get to it.

Step 16: Extract the materials for Ellen_Gun and
Ellen_GrenadeLauncher. In the Project window,
select Ellen_Gun (the fbx). In the Inpector, select
the Materials tab and click the Extract Materials
button. Naviagate to the Materials folder in the
Unity project file. The materials should show
up both in the Inspector (Figure 14.9) and in
the Materials folder of the project. Repeat for
Ellen_GrenadeLauncher.

Step 17: Bring Ellen_Gun and Ellen_
GrenadeLauncher out into the scene for
inspection (Figure 14.10). Just drag them from the
Project window into the Scene window.

Step 18: Rebuild the materials. In the Materials folder
should be Grenade Launcher_1k, Grenade_
launcher1k1, and some mode_Body materials.
These are the materials for the newly imported
assets. Plug the Textures (Base Map, Mask Map,

510

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.8 Exporting the grenade launcher textures from Substance Painter.

and Normal Map (that you’ve marked as Normal))
into their respective channels. This can take just a
little time as some of the Texture files have some
long names as output by Substance Painter.

Why?

It is likely that some of these shaders will need to be

adjusted once the game is going. If desired, play with the

Materials a bit as they are being built. Don’t be afraid to

experiment (try turning the Metallic slider up for the guns

for instance) to get the look more like you’d like. In general

though, for now, the output from Substance Painter will

be a great baseline.

511

FPS Animations

FIGURE 14.9 Extracting the materials for Ellen_Gun.

FIGURE 14.10 In order to see adjustments to materials, bring the two files out into

the scene.

Step 19: Delete Ellen_Gun and Ellen_GrenadeLauncher
from the Hierarchy (importantly: don’t delete them
from the Project window).

Why?

It was important to see these in the scene with the current

lighting scheme; however, as we start building in the

mechanics of the coding, this will most effectively happen

in a new scene.

Step 20: Create a new scene. Create a floor from a
plane. Adjust the Directional Light intensity to
around 500 Lux (or to taste).

Step 21: Place FPSController into the scene. Also be
sure to delete Main Camera.

Step 22: Drag Ellen_Gun from the Project into
the Scene window and make it a child of
FirstPersonCharacter (the camera and child of
FPSController). Select Ellen_Gun in the Hierarchy
and move it around so that the gun is about
where it should be for a first-person-shooter
game. We settled at X: 0.15 and Y: −1.5 (the
Transform Position values in the Inspector). It
will still look a bit odd in the Game window
(Figure 14.11).

Why?

Exactly where this should appear is up to preference. But

we prefer the gun to not take up too much space in the

512

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.11 Even with an adjusted positioning, there’s still something

disconcerting about those weird hands.

game view. Thus we’ve got it not only slid down, but off to

the side.

The weirdness in the hands is because of the Near

Clipping Plane of the camera. Figure 14.12 shows the

camera (FirstPersonCharacter) selected. Notice the

highlighted plane. This represents the Near Clipping

Plane. This means Unity will not draw any polygons nearer

than that plane.

Step 23: Reduce the Near Clipping Plane to
allow the player to see the hands. Select
FirstPersonCharacter in Hierarchy (this is the
camera), and in the Inspector expand the
General section and change the Clipping Planes
Near: 0.1. Things should look much better in the
Game window now.

Importing and Adjusting
Animation Rigs

As covered before, a “rig” is a collection of joints or

handles that allows the animator to deform a mesh. In

Unity, this will be an important thing to define as it also

allows the developer a tool with which to control what

513

FPS Animations

FIGURE 14.12 The Near Clipping Plane (highlighted) indicates the distance that the

Unity camera begins drawing geometry. Any geometry (like the arms) that are close

than this are “culled” or left out and not drawn.

animations play when. The setup is not hard, but also

not intuitive. A few times through, and it will become like

second nature.

Step 24: Create an Avatar for Ellen_Gun. In the
Project window, select the imported fbx of
Ellen_Gun. In the Inspector window, click the Rig
tab. Change Avatar Definition: Create From This
Model. Hit Apply (Figure 14.13).

Why?

Just by way of explanation, in the Project window,

expand Ellen_Gun. There, among the children will be

something similar to Figure 14.14. This is the newly

created Avatar. There’s much more to be done with this

as we go.

Animations in Unity

There are several ways to work with Animations in Unity.

Each animation can be brought in as a separate asset

(which we will do later for the AI), or they can all come

in as one file – which is what is happening here. The fbx

Ellen_Gun actually has several animations that we need to

break up into Animation Clips. Currently, there is just one

(“Take 001”) that can be seen in Figure 14.14. But with a bit

of work in the Import settings, this can be broken down

into its constituent animation parts.

514

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.13 Creating an Avatar for the imported rig. This avatar will allow us to

control the animations.

Step 25: Create the idle animation clip. Select Ellen_
Gun in the Project window and in the Inspector,
click the Animation tab. Rename Take 001 to
“idle_anim”. Scroll a little ways down and enter
Start: 0 and End: 120. Finally, click on the Loop
Time check box (Figure 14.15).

515

FPS Animations

FIGURE 14.14 The newly created Avatar.

FIGURE 14.15 Defining and Animation Clip. This one is the idle loop. The exact

frames came from the animator.

Step 26: Add a new attack animation clip. Still in the
Inspector, under the Clips area, click the + button
to add a new Animation Clip. Rename it “attack_
anim”, change the range from 200 to 212 (Start:
200, End: 212). Leave Loop Time off on this one
as the player will click the mouse each time they
plan to fire (Figure 14.16).

Step 27: Add walk, gotCaught, and reload
animation clips. “walk_anim” should have a
range of frames 300–331 and should be looped.
“gotCaught_anim” should have a range of 400–
426 and not loop. “reload_anim” should have
range of 500–564 and not loop (Figure 14.17).
Finally hit Apply.

Controlling Animations

Unity’s Animator mechanism is a combination of visual

graph-making and coding. The core idea is that we will

create an Animator Controller (to control the animations,

you see), and then within this controller the developer

can establish states (which are really animations) and

transitions that define when to move between the states.

516

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.16 Creating attack_anim Animation Clip.

FIGURE 14.17 Imported Animation Clips.

A little bit of coding allows the player to trigger the

transitions between states.

Step 28: Create an Animator Controller. In the Project
window, click the + button and choose Animator
Controller. Rename it “EllenGunController”.

Step 29: Plug the Animator Controller into
Ellen_Gun’s Animator. Then in the Hierarchy,
select Ellen_Gun (should be a child of
FirstPersonCharacter). From the Project
window, drag EllenGunController into the
Inspector window into the Controller input field
(Figure 14.18).

Step 30: Double click to open the EllenGunController.
This can be done by double clicking it in the
Project window or in the Inspector. The Animator
window will appear (Figure 14.19).

517

FPS Animations

FIGURE 14.18 Plugging in the EllenGunController into the Ellen_Gun Animator.

FIGURE 14.19 Placing an animation clip into the Animator by dragging it from the Inspector.

Step 31: Set idle_anim to be the default animation
state. First find the animation clips in the Project
window. They will be inside the Ellen_Gun fbx
(just expand it to expose it). Drag it from the
Project window into the Animator to place it.

Why?

A lot happens here all of the sudden. “idle_anim” is

represented as a state within the Animator, and since

it is the first state a transition (orange arrow) is created

between the Entry node and this new idle_anim state.

This means, “upon entry (when we first see the thing this

Animator is attached to), transition directly to idle_anim

(play that animation).” Since idle_anim was marked with

Loop Time (back in the Import settings of the Inpector),

and since there is no transition out of idle_anim, it will

keep looping idle_anim.

Play the game and give it a look.

Step 32: Create an attack_anim state and a Trigger
to tell it when to fire. First drag attack_anim from
the Project window into the Animator window.
Then in the far left panel of the Animator, click
the Parameters tab. Finally, click the + button
in the Parameters window and choose Trigger.
Rename the trigger “attack” (Figure 14.20).

Step 33: Create a transition from Any State to
attack_anim. Right click on Any State and
choose Make Transition. Move the mouse down
and click on attack_anim to complete the
transition (Figure 14.21).

518

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.20 Bringing in the attack_anim from the Inspector, and then building a trigger named attack.

Why?

Here we are setting up a pathway so that the animator,

from any place in the chart we’re building, can move into

attack_anim. We need to make sure the pathway only

happens when the “attack” trigger has been triggered

though.

Step 34: Establish the parameters that allow the
animation to move into attack_anim. Click on
the transition arrow between Any State and
attack_anim. This transition will appear in the
inspector. First, expand Settings and change
Transition Duration: 0. Then in Conditions, click
the + button (Figure 14.22).

Why?

Change the Transition Duration to 0 means don’t build in

any transition from whatever animation its playing and

the attack_anim. When the player presses the fire button,

the fire animation should play right away.

By clicking the + button in the Conditions area, we

are defining what needs to happen to move into this

transition. Currently, there is only one parameter (the

trigger “attack”) so it appears there. When attack is

triggered, Animator will move from whatever state it is in

to attack_anim (and we’ll see it fire the gun).

519

FPS Animations

FIGURE 14.21 Creating a transition from Any State to attack_anim.

Step 35: Create a transition out of attack_anim
back into idle_anim. Right click on attack_anim
(Make Transition) and drag to idle_anim.

Why?

We’ll adjust this later, but for now, it means “when attack_

anim is done, move on over to idle_anim”.

Controlling Animator with Code

The Animator is a component like Transform, and any

other script. The way to access the component is with

GetComponent<NameOfComponent>(). Once a script is

knows who the Animator is, it can swap Booleans or fire

triggers. Now we need to start building the script that

listens for input from the player, and based on that input

changes parameters within the Animator.

Step 36: Create a new script called
“PlayerControlsScript”. Do this in the Scripts
folder and then open the script in Visual Studio.

520

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.22 Defining the transition between Any State and attack_anim.

Step 37: Have the script listen for input. In the
Update() function, enter the code shown in
Figure 14.23. Save and return to Unity.

Why?

In C#, if statements take a particular form. In pseudocode:

if(this is true)

{

 Do This Work;

}

In this case, the things Unity is check is true is whether or

not someone is pushing the button Fire1 down. If this is

true, Unity will print “pew pew” to the console.

Input has a few different ways of working.

GetButtonDown means that “on the frame that this

button is pressed” (as opposed to GetButton (which

keeps firing every frame the button is held down), or

GetButtonUp (which fires when the button is released)).

The name of these buttons (i.e. Fire1) can be found in

Edit>Project Settings in the Input Manager (Figure 14.24).

Using button names like this means we can write the code

once and Fire1 will mean left-mouse button if someone

is playing on a PC, but could be right-trigger if they were

playing on a console. It’s one of the powers of Unity’s

develop-once-deploy-everywhere strategy. It is important

to note that we are listening for buttons by name, so Fire1

needs to appear exactly as it does in the Input Manager

(capital F, no space, number 1).

521

FPS Animations

FIGURE 14.23 Having Unity listen (every frame) to see if the player presses the Fire1

button.

Step 38: Test to see if Unity is hearing the input. Drag
PlayerControlScript from the project and drop
it onto FPSController. Play the game and press
the left-mouse button to fire. The Console should
show “pew pew” each time you press the left-
mouse button (Fire1).

Step 39: Make the PlayerControlScript aware of
Ellen_Gun and its Animator. Create a private
variable to store ellenGun and another private
variable to store the Animator component
on ellenGun. Using the Awake() function,
populate ellenGun by finding the object named
“Ellen_Gun”. Then, populate the variable
ellenGunAnimator by finding the component on
ellenGun that is of type “Animator” (Figure 14.25).

Why?

What this does is create two buckets and fills those

buckets with the GameObject Ellen_Gun and its

Animator component. From here on out, when we need

522

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.24 Input Manager where the button named Fire1 is defined.

to talk to Ellen_Gun’s animator component, we just use

ellenGunAnimator and the script knows where it is.

Step 40: Fire the attack trigger. Replace the print line
with that seen in Figure 14.26. Save and return
to Unity.

Why?

Triggers fire once and then reset (at least that’s what

they’re supposed to do). So, SetTrigger(“attack”) will fire

the attack trigger in the Animator, which will transition

from Any State into the attack_anim state. The Animator

is then set so that when the attack_anim is done, it

automatically goes back to idle_anim.

Step 41: Compile and test. Back in Unity, play the
game. When the left-mouse button is pressed,
the attack animation will play.

Step 42: Create a Boolean for isWalking. Go
back into the EllenGunAnimator (either
click on the Animator tab at the top
left of the interface or double click the

523

FPS Animations

FIGURE 14.25 Creating and populating variables so that PlayerControlScript knows who Ellen_Gun is and where its Animator

component is.

FIGURE 14.26 Triggering the attack trigger in the Animator attached to Ellen_Gun.

EllenGunController in the Project or Hierarchy).
In the Parameters area, click the + and add
a boolean. Name it “isWalking” repeat for
“isIdling” (Figure 14.27).

Why?

Booleans will work a bit different than Triggers in

the Animator. While Triggers do just that – they

trigger something to happen – a boolean is keeping

track of a state of being. For instance, when the player

fires their weapon, the Animator can then check to

see if the character is idling or moving. If moving, play

the walk animations, if idling, play the idle animation.

In the Animator, these Booleans will be used when to

shift between states. Later, in script, these Booleans

will be turned on and off depending on the player’s

inputs.

Step 43: Bring in walk_anim (from Project window
into Animator) and create a transition from both
idle_anim and attack_anim to it (Figure 14.28).

Step 44: Define the transition between idle_anim
and walk_anim. Select the transition arrow and
in the inspector turn off Has Exit Time. Add a
Condition so that isWalking: true (Figure 14.29).

Why?

Has Exit Time means the animation must complete before

transitioning. When moving from idle to walk, we don’t

want to wait until the idle completes – when the user

starts moving, we should immediately start playing the

524

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.27 Creating an isWalking and isIdling boolean within the Animator.

walking animation. Turning Has Exit Time off makes the

transition immediate.

Adding the isWalking Boolean to the Conditions means

that when isWalking is marked as true then we will

activate this transition.

525

FPS Animations

FIGURE 14.28 Creating pathways from attack_anim and idle_anim to get to

walk_anim.

FIGURE 14.29 Transition settings from idle_anim to walk_anim. Notice no Exit

time and new isWalking condition.

Step 45: Define transition between attack_anim and
walk_anim. Similar to the last, but Has Exit Time
needs to remain checked (Figure 14.30).

Why?

In this case, it will be important for the attack animation

to complete; thus, Has Exit Time remains checked. It is

important to remember to set up the isWalking Boolean

set to true as the condition that must be met to move

from attack_anim to walk_anim.

Step 46: Define transition between attack_anim
and idle anim. Identical to the last step except
the condition that must be met is the Boolean
isIdling must be true (Figure 14.31).

526

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.30 Settings for the transition between attack_anim and walk_anim.

Step 47: Create and define how to get from walk_
anim, back to idle_anim. Right click on walk_
anim (Make Transition) and drag to idle_anim.
Edit the transition to not have an exit time and
Conditions have isIdling to true (Figure 14.32).

Step 48: Listen for input in the code, and switch
the Booleans accordingly. Within the Update()
function, add the lines highlighted in
Figure 14.33. Save and return to Unity.

Why?

The “||” means “or”. Alternatively “&&” means “and”. This

code means: “if the player presses (and holds) the buttons

Vertical or Horizontal, then go to the ellenGunAnimator

527

FPS Animations

FIGURE 14.31 Defining the situation in which to move from attack_anim to idle_anim.

528

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.32 Transition between walk_anim and idle_anim. No Exit Time and isIdling being true as the Condition that must

be met.

FIGURE 14.33 Turning Booleans on and off by listening for the buttons “Vertical” and “Horizontal”.

and set the isWalking Boolean to true, and set the isIdling

to false. Otherwise (else), if the player is not pressing

Vertical or Horizontal, then set isWalking to false and

isIdling to true.”

Step 49: Play and test in Unity.
Step 50: Apply the prefab overrides to FPSController.

Select it in the Hierarchy and in the Inspector
apply the overrides (Figure 14.34).

Step 51: Hide Ellen_Gun.
Step 52: Repeat for Ellen_GrenadeLauncher. Yes,

that’s a lot for one step. Figure 14.35 shows the
animation ranges for Ellen_GrenadeLauncher
(don’t forget to set up the rig). Figure 14.36
shows the script with the added variables and
adjustments to include the Grenade Launcher
content.

Step 53: Before testing, create a weapon swap
control. On Start(), hide Ellen_GrenadeLauncher
(Figure 14.37). Then in the Update(), let the user
swap between weapons by hitting the 1 or 2
key on their keyboard (Figure 14.38). Be sure to

529

FPS Animations

FIGURE 14.34 Applying the changes to FPSController so they will be active

everywhere FPSController is used.

FIGURE 14.35 Animation ranges for Ellen_GrenadeLauncher.

530

Creating Games with Unity, Substance Painter, & Maya

FIGURE 14.37 Turning off the Ellen_GrenadeLauncher when the game starts.

FIGURE 14.36 Updated script.

reactivate Ellen_Gun in the Hierarchy/Inspector
before testing.

Step 53: Don’t forget to apply the changes to the
prefab

Tutorial Conclusion

And with that we’ve used code to control different

animation clips by listening for user input. There’s loads

more that can be done with these techniques, and in fact,

there are multiple animation still unused. But once the

core idea of the Animator and firing triggers or flipping

Booleans in the Animator with script is understood, any

animation can be played when the developer wants it.

We’ll be back to work with these weapons much, much

more. They still need to actually fire. But for now, we’ll

leave them along and start to build some hazards in the

game. Namely, in the next chapter, we will look at an idea

called Raycasting and use it to create cameras that will be

on the lookout for the player. If the player is spotted, the

game will be over!

531

FPS Animations

FIGURE 14.38 Swapping between the weapons.

https://taylorandfrancis.com

CHAPTER 15

Raycasting and
Render Textures

In this chapter, we will be covering two areas that are

disparate and seemingly unrelated. And, indeed, in coding

terms there is not much that ties these two together.

However, both will be used in a core mechanic of our

game: the security cameras.

As the player attempts to escape the facility, dodging

or taking out AI (artificial intelligence) along the way

to the boss, she will also need to avoid cameras placed

throughout the hallways and rooms. Although the

cameras can be shot and taken offline, if they see the

player, the game is over. The process of Raytracing is how

we will determine if a camera can see a player or not.

533

To aid the player, the view of the security camera will

be visible on several monitors throughout the facility.

This will allow the player to plan their path and try to

identify where the cameras might be placed. In order for

the player to see what the camera sees, we will be using

Render Textures to render a camera’s view to a texture.

Along the way, we’ll go back and visit some other shader

types that we skipped up to now. So, this chapter will have

a bit of something for coders and technical artists.

The process will go like this: first we’ll organize the

hierarchy for the geometry to aid in movement. Second,

we’ll get acquainted with Unity’s animation system. Then

we’ll build a Raycasting mechanism into the camera so

that it can tell us what it “sees.” We’ll add a spotlight so the

player has a hint as to where the camera is looking. And

finally, we’ll make sure that monitors in the facility render

what these security cameras see.

Tutorial 15.1: Animating
the Camera

There are actually several ways to tackle this part. In earlier

chapters, we made the doors move using DOTween, and

we could do that here as well. However, using Unity’s

animation tools we can have much more control over

the animation, its timing, how it eases in and out of

keyframes, and a host of other animation-centric areas.

Since we haven’t done any animation in Unity yet, we’ll

tackle this challenge this way.

Step 1: Organize the hierarchy for the security_cam.
In the Project window, track down the security_
cam prefab (probably Prefabs>Props). Double
click the prefab to open it in the prefab editor.
Organize the hierarchy to match Figure 15.1.

Why?

You may have already organized the geometry when

modeling it way back in Chapter 1. But the focus back

then was on form and topology, not on organizing

534

Creating Games with Unity, Substance Painter, & Maya

for animation. Since we are animating in Unity, organizing

is a simple thing to do. The organization shown in

Figure 15.1 shows one in which when the security_cam_

yaw_handle_geo is rotated along the Y-Axis it rotates

everything except the base. And then security_cam_

outer_shell_geo will allow us to control how the camera

looks up and down (along its X-axis).

Step 2: Create a new level and place the security_
cam anywhere in it. The security_cam can also
be placed in any of the previous test scenes made
for other levels. We just need it in a scene that
isn’t the MainLevel for quick testing.

Step 3: Start creating animation clips. Do this by
selecting security_cam in the Hierarchy and
choosing Window>Animation>Animation.

Step 4: Create an Animator and Animation
Clip. In the middle of the Animation window
is a hint that says, “To begin animating
security_cam, create an Animator and an
Animation Clip” with a Create button. Click it
(Figure 15.2).

Step 5: Save an Animation clip named
securityCam180_anim. After hitting the Create
button in the Animation window, Unity will
ask you where to save the anim file. Create
a new folder called “Animations” (which will
be in the Assets folder of the Unity project),
then name the anim file securityCam_anim
and save.

535

Raycasting and Render Textures

FIGURE 15.1 security_cam organized for animation.

Why?

Organization is important. Always. Taking a moment to

save animations in an Animations folder makes sure there

are no assets just floating around the Assets folder.

An anim file is really an animation clip that is generated

by Unity. We’ve brought in animation clips from Maya

in the last chapter, and we looked at how to fire them in

the Animator. We will do that here as well, but instead of

doing the animation in Maya and importing the clip, we’ll

create the clip within Unity.

Finally, what’s up with the name? There will be places

in the level where the camera will need to sweep

180 degrees (which is what we’re animating here) where

a camera is posted on a wall in a hall. However, if a camera

were stuck in the corner of a room, it should only rotate

90 degrees. The idea here is that we will create animation

clips for both situations, and then attach the one needed

for each situation.

Step 6: Add an animation Property to rotate the
security_cam_yaw_handle_geo. On the left
part of the Animation window is a button
called Add Property. Click it and then start
expanding security_cam_base_geo and then
security_cam_yaw_handle_geo. Finally, expand
the Transform (that is a child of security_cam_
yaw_handle_geo) and click the + button next
to Rotation (Figure 15.3). The result is shown in
Figure 15.4.

536

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.2 Animation window with limited functionality. However, after creating an Animator and Animation Clip, much

will become possible.

Why?

When Unity creates a property, it creates two keyframe

(gray diamonds) as well. Arbitrarily, Unity creates them

at 0 seconds and 1 second. Notice that the time unit in

Unity is 60fps. So 0:40 is 0 seconds and 40 frames into

the animation. 60 frames is 1 second. To make this work,

we’ll edit the keyframes Unity creates by default and add

some more.

Step 7: Enable Recording mode to edit keyframes.
In the top left corner of the Animation window
(Figure 15.5) is the Enable Recording Mode
button. When clicking the top of the Animation
window, it turns red. The current time marker in
Unity is the long white line.

537

Raycasting and Render Textures

FIGURE 15.3 Adding a Rotation property for security_cam_yaw_handle_geo.

FIGURE 15.4 Results show the Property in the Animation window and a keyframe

(little gray diamond) at frames 0:00 and 1:00.

Step 8: Record over the first keyframe with a Rotation
Y: −90 value. Leave the current time marker at
0:00 (where there already is a keyframe) and, in
the Hierarchy, select security_cam_yaw_handle_
geo. In the Inspector, the Rotations X, Y, and Z
should all be highlighted red (the areas we’re
recording). Enter −90 in the Rotation Y. This will
automatically overwrite the keyframe at 0:00.

Step 9: Record over the keyframe at 1:00 with a
Rotation Y: 90 value. At the top of the Animation
window, click on the Go To Next Keyframe button
(Figure 15.6). The current time marker will jump
to 1:00. In the Inspector (with security_cam_
yaw_handle_geo still selected), enter Rotation Y:
90. This will overwrite the key at 1:00.

Why?

In the Animation window, hit the Play button at the top

left. Unity will play a much-too-fast animation of the

camera swinging from −90 to 90 in Y. We’re not worried

about timing quite yet, just getting the values in.

Step 10: Adjust the timing. In the Animation window,
Alt-Right-Click and drag to zoom out in time.
This will show more seconds/frames. Click on the
keyframe at 1:00 and move it to 8:00. Adjust if
you feel it’s too fast or slow.

Step 11: Add a keyframe at 9:00 to keep the camera
still for a second. Move the current time marker

538

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.6 Using the Go To Next Keyframe button is a quick way to get to the

next spot in the timeline that we need to overwrite.

FIGURE 15.5 Enabling recording mode.

to 9:00 and click the Add Keyframe button
(Figure 15.7). This will create another keyframe
a second after the last so that the camera
pauses.

Step 12: Add another Rotation Y: −90 keyframe at
17:00. Zoom out to make sure you can see 17:00.
Move the current time marker to 17:00 and then
(making sure security_cam_yaw_handle_geo is
selected in the Hierarchy), in the Inspector enter
Rotation Y: −90.

Step 13: Add another keyframe at 18:00. Move the
current time marker to 18:00 and click the Add
Keyframe button.

Why?

The last two steps are making sure that (1) the animation

loops because the first and last keyframe are the same

(Rotation Y: −90) and making sure that there is a second’s

pause as the camera reaches its widest part.

The general pacing can be seen in Figure 15.8. If the

movement is too slow or fast, it is easy to grab hold of the

keyframes and move them closer together (to make things

faster) or further apart from each other (to slow things

down). Adjust if desired.

539

Raycasting and Render Textures

FIGURE 15.7 Add a Keyframe Button. Adding a keyframe this way later than an

extant keyframe will pause the animation.

FIGURE 15.8 Final animation for securityCam180_anim.

Step 14: Create a new clip: securityCam90_anim. In
the Animation window, the top left corner will
display the name of the current animation clip.
Click on that and from the drop-down menu
select Create New Clip… (Figure 15.9). Navigate
to your Animations folder and save this new clip
as “securityCam90_anim”.

Why?

This will be the animation clip that rotates only 90 degrees

(for when a camera is placed in a corner). Although we

could come back and make this animation clip anytime

we needed to, doing it now while we’re already in the tool

will save time.

Step 15: Repeat Steps 6–13. Remember: Add Property
to security_cam_yaw_handle_geo for Rotation.
Make sure keyframe recoding is on. With security_
cam_yaw_handle_geo selected in the Hierarchy,
use −45 as the first Rotation Y keyframe. Use 45
for the second. Adjust timing (we used 4:00 since
it rotates half the distance) and add the extra
keyframe to pause the movement. The Animation
window should look fairly similar to the previous
animation clip, only with slightly different timing.
The animation that plays should show the
camera moving 90 degrees (from −45 to 45 and
back again) (Figure 15.10).

540

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.10 Finished Animation for securityCam180_anim.

FIGURE 15.9 Creating a new clip within the Animation window.

Step 16: Close the Animation window.
Step 17: Apply the Prefabs Overrides to security_cam.
Step 18: Set up the security_cam Animator

Controller. In Hierarchy, select security_cam, and
then in the Inspector in the Animator section
under Controller double-click security_cam (I
know the naming is awkward here by Unity’s
default). This will open the Animator window
(Figure 15.11).

Step 19: Create a new empty default state. In the
Base Layer part of the Animator window, right
click on any empty space and choose Create
State>Empty. Right click on this new New State
icon and choose Set As Layer Default State
(Figure 15.12).

Why?

Setting up this empty state and then making it the

default eans that there is no default animation that plays.

The camera is still by default. This will allow us to place a

camera without animation if it helps the game play.

541

Raycasting and Render Textures

FIGURE 15.11 The current state of security_cam Animator Controller.

FIGURE 15.12 Setting a new default empty state.

Step 20: Create two Booleans and create transitions
that use them for a rotate180 and rotate90
(Figure 15.13). Not shown in the screenshot
(but covered in the last chapter) are the
steps of selecting each of the transitions and
making sure to add Conditions (rotate180 to
Tru for the New State>securityCam180_anim
transition and rotate90 to True for the New
State>securityCam90 transition).

Step 21: Create a CameraAnimationChooserScript.
Remember to create this script in the Scripts
folder. The script is shown in Figure 15.14. Save
and return to Unity.

542

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.14 CameraAnimationChooserScript.

FIGURE 15.13 Setting up transitions from the default (still) New State to the two animation states.

Why?

Much of this script should look pretty familiar. It creates

a variable (called myAnimator) that stores the Animator

component. In the Awake(), we populate that variable.

And then in the Start(), we set the Booleans created in

earlier steps.

The new thing is this “enum.” Enumerators and enums are

more than we want to cover at any great extent here, but

for our purposes, that way it is set up will allow for a drop-

down menu in the Inspector with Still, Hallway, and Corner

as the choices. Then, depending on what is chosen, on

Start(), this script will go and flip the appropriate Booleans

in the Animator Controller.

Step 22: Add this script to security_cam. Do this
by dragging the script from the Inspector to
the security_cam in the Scene window or
(if its selected) in the Inspector. When applied,
it should look like Figure 15.15.

543

Raycasting and Render Textures

FIGURE 15.15 Applied CameraAnimationChooserScript.

Step 23: Apply the Prefab Overrides. We want
every camera we place to have this script,
the Animator, and the Animator Controller
attached to it.

Tutorial Conclusion

And with that we have a customizable animated camera.

It still can’t “see” the player, doesn’t have a spotlight, and

doesn’t render to a monitor, but we’ll solve that soon.

Tutorial 15.2: Raycasting

Raycasting can be an abstract concept for beginning

coders, but it is of immense use. Unity’s API describes

Physics.Raycast as “Casts a ray, from point origin, in

direction direction, of length maxDistance, against all

colliders in the Scene.” In our vernacular, this means,

“Unity shoots an invisible line (ray) out from some point

you define. It shoots this ray in a direction you define

and for the distance you define.” The other thing that is

important about Raycasting is that it can store information

about what it hits in a thing called a RaycastHit.

This can become useful for supersonic weapons (weapons

where the bullet moves faster than the player would see).

When the player fires, raycasting would send a ray out of

the front of the gun and tell the engine, “I’ve shot forward

until I hit the wall/bad guy/floor/whatever.” Then, Unity,

depending on what was hit, could make some decisions

and put a bullet hole decal on the wall, or take health

away from the bad guy. These “smart lines” that are rays

can be used to build all sorts of interaction.

In this case, Raycasting will be used to determine if the

camera “sees” the player. We will raycast out of the front of

the camera and store whatever the ray hits into a RaycastHit

variable. The script will check to see if the thing inside of

RaycastHit is the player, and if it is, the player loses.

Step 1: Create a scene to test. This can just be an
extension of the current test scene, and the
specifics are unimportant. Just give the space

544

Creating Games with Unity, Substance Painter, & Maya

some walls (mine are built from cubes) and a few
other 3D shapes scattered through the space. Be
sure to also put FPSController in there and delete
Main Camera (Figure 15.16).

Step 2: Create a Raycast source point. Create a
new empty GameObject (GameObject>Create
Empty). Make it a child of security_cam_outer_
shell_geo and in the Inspector make Positions X,
Y, and Z and Rotations X, Y, and Z all 0. Rename it
“RaycastSource”. In Scene window, move it only
along the Z axis so that it sits just in front of the
lens (Figure 15.17).

545

Raycasting and Render Textures

FIGURE 15.16 A playground in which to build the Raycasting mechanism.

FIGURE 15.17 RaycastSource is a child of the security_cam_outer_shell_geo. Note that in 3D space, RaycastSource is moved

just in front of the lens.

Why?

By making this empty GameObject a child of the shell,

when the camera rotates, this will rotate with it. By

putting it in front of the lens, we ensure that the ray that

will be cast from this object doesn’t get stopped by the

camera itself.

Step 3: Create a new script called
CameraRaycastingScript. Attach the script
to the security_cam in the Hierarchy.

Why?

This script could be attached to a lot of things and,

in fact, would make the code a little easier if it were

attached to RaycastSource. However, the idea here to

not hide scripts in places that are tough to remember

where they are attached. Since security_cam already has

the CameraAnimationChooseScript, putting this script

on the same object keeps the camera-centric scripts

consolidated.

Step 4: Create a public variable called “scSrc” that
stores a GameObject. Add the code shown in
Figure 15.18. For now, also delete the empty
Start() and Update() functions. Save and return
to Unity.

Why?

Up to now, we’ve generally been working with private

variables and populating them via script. In this case,

we’ll make the variable public and define its content

in the Unity editor. rcSrc will store the RaycastSource

GameObject just created.

546

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.18 Creating a public variable named rcSrc to store a GameObject.

Step 5: Populate the new rcSrc variable. In Hierarchy,
select security_cam. In the Inspector, the
CameraRaycastingScript should have a new
public variable called “Rc Src” with an input field
next to it. From the Hierarchy, drag the newly
created RaycastSource GameObject into the
Rc Src input field in the Inspector. From now
on, in the code whenever we reference “rcSrc,”
Unity will know we mean the RaycastSource
GameObject.

Step 6: Create the basic Raycasting mechanism.
Figure 15.19 shows the core mechanics of the
Raycasting mechanism within the Update()
function. Include this in the code. Save and
return to Unity.

Why?

In this case, every frame needs to be reporting what the

camera sees. Therefore, we put it in an Update() function.

The first line:

RaycastHit thingHit;

…creates a variable (a bucket) called thingHit that stores

things of type RaycastHit. This is where the Raycast will

report the things it has struck.

The next line:

Physics.Raycast(rcSrc.transform.

position, rcSrc.

TransformDirection(Vector3.forward),

out thingHit);

…says, “Cast a ray. Have it start from RaycastSource’s

position (rcSrc.transform.position), in the direction

RaycastSource is pointing (rcSrc.TransformDirection(Vector3.

547

Raycasting and Render Textures

FIGURE 15.19 The basic mechanics of a Raycast (plus a little pizzazz with the DrawLine so we can see the ray).

forward)), and store what it hits in the thingHit bucket

(out thingHit).”

Finally, the last line draws a yellow line (only visible in the

Scene view) that starts where the RaycastSource is and

ends when the ray hits something.

Step 7: Play the game. Tada! A yellow line which just
shows the path the ray is following (Figure 15.20).

Step 8: Have the RaycastHit report back on what it’s
hit. Add the line shown in Figure 15.21. This will
output to the Console the GameObjects that the
Raycast hits.

Step 9: Play the game and watch the Console
(Figure 15.22).

Step 10: Customize the camera. Select the security_
cam_outer_shell_geo object in the Hierarchy.
Rotate it down so that it looks down into the
scene (this will rotate all its children as well –
including the RaycastSource). Select security_
cam, and in the CameraAnimationChooserScript,
use the Cam Anim to change to Hallway.

548

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.21 Adding code that reports back on what the ray casts against.

FIGURE 15.20 The LineDraw allows the developer to see the path the Raycast takes.

Notice that this line is not visible in the Game window – only the Scene. It is meant

only for the developer.

Step 11: Play the game and watch the Console. As
the camera pans across the room, the Console
will change to show the GameObjects the
Raycast is casting against (Figure 15.23).

Step 12: Tag FPSController as Player. Select
FPSController in the Hierarchy. In the Inspector,
look for the Tag pulldown menu. Use it to tag
FPSController as Player (Figure 15.24).

Why?

Anything can be assigned a tag. Tags can be used to

classify a group of types of objects. So, we could label

all the bad guys as “Enemies” so that we don’t have to

compare names in code but rather tags (or groups of

types of objects). “Player” is a built-in tag, but custom tags

can be created using Tag>Add Tag…

For now, we’ll be telling the script to report back only

when it has cast its ray against something tagged as

Player (the player).

Step 13: Streamline the script to only call out when
the ray casts against the player. Figure 15.25
shows the altered script that has gotten rid
of the original Debug.DrawLine and Debug.

549

Raycasting and Render Textures

FIGURE 15.22 The console showing (every frame) what object the RaycastSource is

raycasting against.

550

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.23 The animated camera in action with the Console reporting back on the various objects the ray casts against.

FIGURE 15.24 Assigning a Player tag to FPSController.

Log lines and replaced it with a Debug.Log
that calls out only if thingHit includes an
object tagged as “Player” and added a line
that changes the line to red. Save and return
to Unity.

Step 14: Play the game and watch the Scene and
Console. The line will change to red and the
Console will yell every time the camera hits the
player (Figure 15.26).

Step 15: Return the camera to a still camera
(not animated). Remember do this by
selecting security_cam and changing the
CameraAnimationChooserScript’s Cam Aim
to Still.

Step 16: Apply All the Overrides for security_cam
(Figure 15.27).

Step 17: Apply Overrides to FPSController. At this
point, it just tags FPSController as Player. But this
needs to be remembered in all levels.

Tutorial Conclusion

“Now wait a minute!” I hear you saying, “This is hardly a

functioning game mechanic.” You’re right. Currently a

script that writes to the Console means little to the player.

551

Raycasting and Render Textures

FIGURE 15.25 Altered script to only holler if the camera has “seen” the player.

FIGURE 15.26 A smart camera that knows when its hit the player. The line renders

red and the Console calls out when the thingHit contains an object tagged as “Player”.

We have not yet created anything that closely resembles

game play. However, the scaffolding for real game play

is in place. Later, after we have covered UI and loading

levels, plugging in some code where currently we just

have Debug.Logs will be a trivial matter. There is an

animation for when the character gets caught, a sound

could play, UI could show up telling the player, “You’ve

been caught! The adventure is over!,” or whatever.

Although we won’t be creating these mechanisms in this

book, the basics are in place. We will be doing a lot more

with Raycasting later (when we work with weapons), so

this is an introduction to those ideas. However, as you

build your version of the game, consider how to leverage

552

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.27 Applying all the changes to security_cam so everywhere it is used in

scene will share the functionality. Notice that Cam Anim has been returned to Still.

the Raycasting happening by the cameras to create new

and interesting game play.

The core issue here is that Raycasting is in place and

working. What we do with that later, well, that’s yet to

be seen…

Tutorial 15.3: Camera Extras

In this last tutorial for this chapter, we will add a few bells

and whistles to the camera. We’ll quickly add a light to the

camera so the player knows where the camera’s range is.

And then we will look at how this “camera” (that currently

is only geometry – not a Unity camera that actually “sees”

anything) and raycasting can be used as a closed-circuit

camera that will render what it sees to another object’s

texture.

To build these mechanics, stay within the test level

created earlier. Later, this finished camera will be

placed in the MainLevel, but for now this test level

will continue to provide a lightweight sandbox to get

things working.

Step 1: Create a Spotlight. GameObject>Light>Spot
Light will create the light. Make it a child of
RaycastSource (in the Hierarchy, just drag it onto
RaycastSource). Once a child, in the Inspector
change Positions X, Y, and Z and Rotations X, Y,
and Z all to 0. Add a Cookie (we used Flashlight_
Cookie). Finally, adjust the Intensity and Range
(we used 20 Ev100 for Intensity and 20 for Range).
The results can be seen in Figure 15.28.

Step 2: Add a camera to the security_cam. Create
the camera using GameObject>Camera. Make
it a child of RaycastSource and again set its
Positions X, Y, and Z and Rotations X, Y, and Z to 0.

Step 3: Adjust the settings to streamline. Change the
Clipping Planes Far: 15. Turn off Audio Listener.

Why?

Adding a lot of cameras to the scene can be expensive.

After all, suddenly with extra cameras Unity is drawing

things more than once. To help minimize the expense,

553

Raycasting and Render Textures

making the Far Clipping plan quite small (15 meters in

this case) will make sure that the camera isn’t drawing too

much of the level and is only drawing the walls and props

that are within 15 units of it.

This camera shouldn’t be listening for anything in game.

That should all be happening from the player’s viewpoint

(the FirstPersonCharacter object is a camera and has an

Audio Listener). So, turning off the Audio Listener for this

camera will avoid errors.

Step 4: Create a Render Texture. In the Project
window, create a new folder called
“RenderTextures”. With that folder selected,
choose the + button again and create a Render
Texture. Rename it to “DefaultRenderTexture”.

Why?

Render Textures are textures that show what some

camera is rendering. The process here will be to make the

camera render to this new DefaultRenderTexture, and

then apply this DefaultRenderTexture to some material in

the scene.

Step 5: Bring a monitor prefab into the scene.
Monitor_02 is a nice shape, so this is the one we
will use.

554

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.28 Adding a Spotlight to give the player a hint about where the camera

can see.

Step 6: Import the screens (fbx) in the support
files for this chapter. They are called
MonitorScreens. The process will be a little bit
of a review. Download the fbx from the website
and drag it into the Models folder of the Unity
project.

Step 7: Create prefabs of the screens. In the Project
window, select MonitorScreens and in the
Inspector’s Material tab Extract the Materials
into the Materials folder. Drag MonitorScreens
into the scene. Right click it (in Hierarchy) and
Unpack Prefab. Drag each of the screens from
the Hierarchy to the Prefabs folder to make
prefabs out of each screen. Make a new folder in
Prefabs called “MonitorScreens” and put these
new prefabs in it (Figure 15.29). Finally, delete
MonitorScreens from the Hierarchy.

Why?

So we’re cheating a little bit here. There are ways to use

the current versions of the monitors and have different

parts of the shader show different materials (using HDRP

Layered Lit shaders). And that is a more efficient way

of handling this. However, extracting the geometry

of the screens in Maya (which is what the fbx in Step 6

represents) is an easier solution with what we’ve covered.

We’ve included the Maya files with the screens extracted

in the support files if you want to take a closer look.

The basic process in Maya was as follows: 1) select the

polygons of the screens, (2) edit Mesh>Extract to split

the polygons off, 3) remap each screen to its own UV

space so it completely filled the UV quadrants, 4) assign

555

Raycasting and Render Textures

FIGURE 15.29 Extracted monitor screens made into their own prefabs.

a separate default material to each of the screens, and 5)

export the fbx.

Now that the scene has the screens as separate prefabs

with their own materials, it will be easy to assign a Render

Texture to them.

Step 8: Place a screen into place on the monitor
chassis. Figure 15.30 shows Monitor_02_Screen_
BigSquare brought in and placed on top of
Monitor_02. Remember, vertex snapping is a
great way to get it started, although you might
need to bring it forward just a little bit.

Step 9: Tie the security_cam camera to the
DefaultRenderTexture. Find the Camera object
that is the child of RaycastSource (under
security_cam). In the Inspector, scroll all the
way down to the Output area and expand
it. In the Target Texture input field, insert the
DefaultRenderTexture from the Project window
(Figure 15.31).

Step 10: Use DefaultRenderTexture to define
Monitor_02_Screen_BigSquare_Mat. Select
the Monitor_02_Screen_BigSquare object in the
Hierarchy. In the Inspector, scroll down to the
Monitor_02_Screen_BigSquare_Mat section
and expand it. Change the shader to HDRP/
Unlit. Finally, drag DefaultRenderTexture from
the Project window into the Color slot (of Surface
Inputs) for the material. To get really fancy, do
the same for Emissive Color. The results should
look like Figure 15.32.

556

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.30 Placing the screen object in place on the monitor.

Why?

The Unlit shader means that this surface won’t be affected

by the lights in the scene (as a screen should).

Step 11: Change the security_cam to rotate (using
the CameraAnimationChooserScript attached
to it) and Play the game. In the Scene window,
you should see displayed on the monitor the
animated version of what the security_cam is
seeing. Cool, no?

Step 12: Create a script to avoid unnecessary
overhead. Create a new C# script and name it
“CameraRTSwitchScript”. Build the code shown
in Figure 15.33. Save and return to Unity.

557

Raycasting and Render Textures

FIGURE 15.31 Making the Camera that is a child of the security_cam geometry so

that it renders to the DefaultRenderTexture.

FIGURE 15.32 Using a Render Texture to define the Color attribute of the Unlit

material. The screen shows what the camera sees.

Why?

This is an important step. If the game has ten cameras (an

arbitrary number at this point), but only three monitors,

we want to make sure that only three cameras are doing

the work of rendering to a textures. Further, if a camera

isn’t rendering to a texture, it shouldn’t be on at all. What

this script does is create a public Boolean (think of this as

a switch) that we can choose to turn on or off in the editor.

When the game starts, each security_cam (that has this

script) will check to see if the renderToTexture Boolean is

true; if it is not (!= means “is not equal to”), it clears out the

Target Texture attribute of the Camera and shuts it off.

Step 13: Drag this new CameraRTSwitchScript
onto the security_cam in the Hierarchy.
Populate the Render To Texture Camera
input by dragging the Camera (child of the
RaycastSource) into it.

Step 14: Apply all the Prefab Overrides for security_
cam. The final Hierarchy and Inspector should
look like Figure 15.34.

Step 15: Return to MainLevel, place cameras
throughout. Be sure to tie some of them
(via new Render Textures) to monitors in
the scene. Remember to change them to
Still, Hallway, or Corner as indicated by their
position (Figure 15.35).

558

Creating Games with Unity, Substance Painter, & Maya

FIGURE 15.33 Code to turn a camera off if it is not being rendered to a monitor in the scene.

Step 16: Play test. Play the game and make sure
that the new camera have not smashed the
frame rate on the game. Depending on the
power of your machine and video card, you
could be bumping up against how much can
be drawn.

559

Raycasting and Render Textures

FIGURE 15.34 Final completed security_cam. This prefab is ready to be placed and configured in the scene.

FIGURE 15.35 Some placed cameras in the scene. Place as you’d like, but make sure there is at least one in the armory and

none in the first room the game starts at.

Tips and Tricks

As of this writing, there is a known bug with Render

Textures. Hopefully this will be fixed by the time you’re

using them, but sometimes all will look fine in the Scene

view, and when playing the game, the surfaces using the

Render Textures suddenly go black. While writing this

chapter, sometimes all was well, and sometimes, suddenly

poof!, they’d be gone. Such is the nature of bugs.

Luckily, Render Textures is not core to the game play.

If it doesn’t work, no worries. The game will still work

fine. In fact, in the support files there are two versions

of the Unity project file: one with Render Textures and

one without. The overhead of the second extra cameras

rendering take a toll on the frame count. If you’ve got a

beastly machine, you’ll be good with the one that includes

the Render Textures. If your machine is a mere mortal, use

the one without moving forward.

Conclusion

Raycasting is the key concept of this chapter. Render

Textures are fun, but if Unity is being persnickety about

them, no worries. As you place the cameras throughout

the level, you’ll likely find the Console firing that you’ve

been caught as you wander through the level to test.

This means much of the baseline mechanics are working!

In the next chapter, we will start working with weapons.

We’ll make the grenade launcher work and the pistol

fire. We’ll use techniques already covered (Raycasting

will make another appearance) and cover new ideas

(Instantiate will make its debut).

560

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 16

Weapons

Welcome to Weapons soldier! In this chapter, you will

build, test, and fire some of the most intrepid and

powerful devices of destruction known to escaping clones

trying to escape an orange factory!!

OK, well, actually there are probably more powerful

weapons out there. And in fact, creating weapons that are

too powerful makes the game too easy and therefore not

fun. So while we aren’t going to focus on the all-powerful-

BFG or any derivative of such a weapons, we will look at

how to build the mechanism for the small pistol and the

grenade launcher.

561

Along the way, we will look very carefully at Instantiate

and how to use it along with Raycasting so that we can fire

a grenade or bullet at the spot that the on-screen reticle

identifies. This will require just a bit of UI (don’t worry, in

the next chapter we’ll spend quite a bit more time on it),

and a lot of fun new coding. Let’s get to it.

Tutorial 16.1: Grenade Launcher

This chapter will focus on the larger of the two weapons.

It will largely have much the same mechanics (codewise)

as the pistol, but there are a few visual effects that we

will introduce with the pistol; so for now, the grenade

launcher is easier.

If you want to have real fun, create a new empty Standard

Rendering Pipeline project. Go to the Asset Store and

search for Unity Particles Pack. Download and import

that project and take a look at the cool things that can

be done with Unity’s particle system…as long as you’re

using SRP or URP. Unfortunately, we are working in HDRP.

While HDRP has some amazing visual fidelity options,

much of the visual effects we are enjoying (volumetric

light, etc.) are only available in HDRP; unfortunately, some

things are not quite ready for HDRP as of this writing. The

particle pack is one of them. The shaders in Unity’s pre-

built particle pack are not HDRP compatible. It is possible

to reverse-engineer those shaders using Unity’s HDRP

shader graph (and that’s actually what we’ve done for

you), but doing so is well beyond the scope of this book.

Hopefully, by the time you are reading this, Unity will

have created some HDRP-compatible prefabs that show

off their particle system natively. If they do (check out the

Asset Store), go ahead and use those. They’ll be free and

distributed by Unity. We are confident that they will be

produced, but currently the content team hasn’t quite

caught up with the engineering team.

For now, we have created a collection of particle effect

prefabs that work in HDRP. They’ll be fine for our purposes

here. At the support website for this book, you’ll find

a Unity Package called HDRPParticleEffects in the

562

Creating Games with Unity, Substance Painter, & Maya

Chapter 16 assets. Download this and use Assets>Import

Package>Custom Package… to bring the assets into your

Unity project.

This HDRP_ParticleEffects folder will include all the things

needed to use these particle systems. The particle systems

are prefabs that can be dragged into the scene. There are

a few there to play with. We won’t use them in a tutorial,

but look at where things like the GroundFog (Figure 16.1),

PressurizedSteam (Figure 16.2), and Steam (Figure 16.3)

might be used. There is little performance overhead to

these, and they can add some nice movement to the scene.

563

Weapons

FIGURE 16.1 Using participle effects to add ground fog.

FIGURE 16.2 Continuing with particle effects to create pressurized steam effects.

After these particle systems have been explored, played

with, and placed in the scene, let’s get started on

exploring weapons in a separate test scene…

Step 1: Reopen or create a new Scene with a simple
setup. This setup should include a few walls
and some random objects. The specifics aren’t
important; we just need a simple space in which
to fire some weapons and see what happens
when the projectiles hit things (Figure 16.4).

Step 2: Find, open, and review PlayerControlScript.
This script should be on the FPSController. Open
it by double clicking on it. The area we are most
interested in right now is shown in Figure 16.5 (it
should already be in your code).

564

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.3 And finally using particle effects for rising steam.

FIGURE 16.4 A simple scene. Make sure the FPSController is in the scene and that

any other Main Camera has been deleted.

Step 3: Create a string that will keep track of
which gun is active. Up at the top of the script,
create a string variable called “activeWeapon”
(Figure 16.6).

Why?

A string is a collection of characters. These can be

numbers or letters. It’s easiest to think of a string as a

word. The word means nothing to Unity, but can be very

easy for a user to understand. In this case, we will store

which weapon is active by putting in this string variable

the words “Gun” or “Grenade”.

Step 4: Start populating the activeWeapon
string when 1 or 2 is pressed on the keyboard
(Figure 16.7).

Why?

Notice that these two lines are just added to code already

in the script. This just makes sure that the script provides

an easy way to check if the weapon is active later. Notice

that strings are always in quotes.

565

Weapons

FIGURE 16.5 Code that listens for the player pressing the Fire1 button. Currently,

this just plays an animation through the Animator Controller by turning on the

Boolean “attack”.

FIGURE 16.6 Creating a string variable to store activeWeapon.

Step 5: Make sure that when the game starts, the
appropriate value is placed in the activeWeapon
string (Figure 16.8).

Step 6: Build a mechanism in so that Unity does
different work depending on which is the
activeWeapon when the Fire1 button is pressed
(Figure 16.9).

566

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.7 Make sure the script knows which is the activeWeapon.

FIGURE 16.8 An added line at the Start() when the grenade launcher is put away.

FIGURE 16.9 Reworking the Fire1 area of the code so that different work is done

depending on which weapon is active. At this point, the comments just leave us a

note of what needs to be done.

Step 7: Extract a grenade to launch. Zoom into the
FPSController and select the grenade_launcher_
grenade object (Figure 16.10) – this can be done
in the Hierarchy or the Scene window. Hit Ctrl-D
to duplicate the grenade. Move it out of the
FPSController group in the Hierarchy, but drag
it down to an empty space in the Hierarchy.
Rename it “Grenade” and move it a little ways
away from the character. Finally, set its Rotations
X, Y, and Z to 0 (Figure 16.11).

Why?

Eventually, we’ll engage in a bit of sleight-of-hand. The

grenade (grenade_launcher_grenade) is used in things

like the reload animation, and so it needs to stay a child

of the FPSController. However, when the player presses

the Fire1 button, they need to see a grenade go flying out.

This new Grenade is going to be the actual thing that is

launched, and we’ll quickly turn off the one that’s still on

the end of the gun.

567

Weapons

FIGURE 16.10 Tracking down the grenade already in the scene.

FIGURE 16.11 After duplicating, separating the Grenade from the structure of the FPSController.

Step 8: Add a capsule collider to Grenade. Select
Grenade and, in the Inspector, click Add
Component. Start typing “Capsule Collider.”
Once created, change the Direction: Z-Axis. Then
use the Edit Collider button and adjust the Radius
and Height so that it roughly fits the Grenade
(Figure 16.12).

Step 9: Add a Rigidbody (Add Component) to the
Grenade and configure it to match Figure 16.13.

Why?

Eventually it will be important for this Grenade to know

when it has actually hit something – when it will explode.

We have already used the built in class OnTriggerEnter

(remember the doors?). In the coming steps, we’ll use

a sister class called OnCollisionEnter that fires when

568

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.12 Adding the Capsule Collider to the Grenade.

FIGURE 16.13 Added Rigidbody component configured for our uses.

something strikes something with a collider. In order for

this to work with the Grenade, it needs to have both a

Collider (Capsule Collider) and a Rigidbody.

The Rigidbody has a few specific things that need to be

adjusted though. First, it shouldn’t come out of the gun

and just fall to the ground. We will assume the grenade

has enough rocket fuel to fly anywhere in the scene;

so turning of Use Gravity means it will continue to fly

straight. Changing Collision Detection to Continuous

Dynamic reduces something called “frame-miss”. Frame-

miss happens when a collision happens between frames

of a game and so the engine doesn’t register that the

collision has happened.

Step 10: Create a GrenadeLaunchPoint to define
where this Grenade will be launched from. Create
an empty GameObject (GameObject>Create
Empty). Rename it “GrenadeLaunchPoint” and
make it a child of grenade_launcher_grenade.
In the Inspector, set Positions X, Y, and Z and
Rotations X, Y, and Z all to 0 (Figure 16.14).

Why?

The GrenadeLaunchPoint is going to be the location

where we create the new Grenade each time the player

fires. By making the launch point be at the same place as

the grenade in the gun, we can be sure that the Grenade

matches the position of grenade_launcher_grenade.

Step 11: Make Grenade a prefab. Do this by dragging
Grenade from the Hierarchy to the Project
window (probably the Prefabs folder). Then
delete the Grenade from the Hierarchy window.

569

Weapons

FIGURE 16.14 Creating and positioning the GrenadeLaunchPoint.

Why?

We are going to instantiate many of these Grenades, and

when the Grenade hits something it will destroy itself. By

making Grenade a prefab, we can instantiate it again and

again as needed.

Step 12: Make sure PlayerControlScript knows
who the GrenadeLaunchPoint and the
Grenade prefab are. Add the two lines shown
in Figure 16.15 to the top where the variables
are being declared. Make sure both are public
variables. Save and return to Unity.

Step 13: Populate the two new public variables. Back
in Unity, after compiling, drag Grenade from the
Project window into the Grenade input field in
the Inspector. Then, drag GrenadeLaunchPoint
from the Hierarchy into the Grenade Launch
Point input field in the Inspector (Figure 16.16).

Step 14: Create code so that when the player
presses Fire1, it instantiates Grenade at
GrenadeLaunchPoint’s location (Figure 16.17).
Save and return to Unity.

570

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.15 Adding a variable to track the location of the GrenadeLaunchPoint

(its Transform), and the Grenade (specifically that it has a Rigidbody).

FIGURE 16.16 Populated Grenade and Grenade Launch Point variables.

FIGURE 16.17 Instantiating the Grenade at the GrenadeLaunchPoint when the player hits Fire1.

Why?

The details for Instantiate can be found in the API

(Help>Scripting Reference). Among the things the API

will provide is that instantiate basically uses the format

Instantiate (thing to instantiate, where to instantiate

it, rotation to instantiate it at). So we are instantiating

whatever is in the grenade variable, the position

of grenadeLaunchPoint, and using the rotation of

grenadeLaunchPoint.

Step 15: Play the game and drop some grenades.
When the game is started, hit 2 to swap to the
GrenadeLauncher and then start pressing the
Fire1 (left-mouse button). Grenades will be left
floating in the air – right where we instantiated
them (Figure 16.18).

Step 16: Give velocity to Grenades as soon as they
are created. Figure 16.19 shows a modification
of the Instantiate section of previous steps. Save
and return to Unity.

571

Weapons

FIGURE 16.18 Creating Grenades is alright, but not quite what we had in mind.

FIGURE 16.19 Adjusting the Instantiate section of the code to give velocity to the grenades after they are instantiated.

Why?

What really is happening here is that we are creating

a temporary variable (clonedGrenade) into which we

instantiate the grenade. Because we instantiate it into this

bucket, we can then talk to it and tell it to have velocity

(since it’s a Rigidbody). Velocity (as per the API) needs

a vector, which means we need to give it a direction

(grenadeLaunchPoint.TransformDirection(Vector3.

forward)), which is the +Z direction of the launch point),

and a magnitude (in this case 10).

Step 17: Test and fire some fairly slow moving
grenades (Figure 16.20).

Step 18: Make the magnitude a changeable variable
to allow for easier game tweaking. At the top
of the PlayerControlScript, create a variable
grenadeSpeed that will store a number that can
have decimals (a float (Figure 16.21)). Then plug
this variable into the velocity line (Figure 16.22).
Save and return to Unity.

572

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.20 Firing some grenades that fly away and stop when they hit a surface.

FIGURE 16.21 Creating a float variable that will allow changing the speed to

happen in the Unity editor.

Step 19: Change the Grenade Speed to a non-zero
value. In the Inspector, a new variable “Grenade
Speed” will show up. Change that to something
like 15. Test the game to make sure Grenades
still fire.

Making a “Smart” Grenade

So, “smart” might not be exactly the right word. Sentient

might be better. The idea here is that the grenade needs

to know when it hits something (collides with a collider).

When it does, it needs to instantiate an explosion, and

then destroy itself.

Step 20: Create a new script called GrenadeScript.
Step 21: Create the code as shown in Figure 16.23.

Save and return to Unity.

Tips and Tricks

In Visual Studio, begin typing “OnCollisionEnter” and

Visual Studio will fill in the rest. The arguments for built-in

classes (the (Collision collision) part) are all built into the

libraries that Visual Studio has access to.

573

Weapons

FIGURE 16.22 Using that variable to define the velocity magnitude.

FIGURE 16.23 Creating code for the Grenade so that it instantiates an explosion and then destroys itself when it hits

something.

Why?

With what we’ve covered, this should be pretty clear.

The new OnCollisionEnter simply defines when the code

should fire (when the thing this script is attached to enters

a collider). The new thing is the Destroy() command.

Destroy can be used to destroy all sorts of things including

components, scripts, and, in this case, the GameObject

that this script is attached to.

Step 22: Apply and tie up the new script. Edit the
Grenade prefab by double clicking it to open the
Prefab Editor. There, drag the new GrenadeScript
onto the Grenade. Then drag TinyExplosion
from the HDRP_ParticleEffects folder into the
Explosion input field. Click back on Scene at the
top left of the Prefab Editor.

Step 23: Test and witness the never-ending
explosion.

Step 24: Edit TinyExplosion to not loop and
self-destroy. In the Project window, select
TinyExplosion. In the Inspector, turn off Looping
and set Stop Action: Destroy (Figure 16.24).

Step 25: Test and save.
Step 26: Add an AudioSource to the TinyExplosion.

Find a short sound of an explosion (likely 2

574

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.24 Setting the TinyExplosion so that it only plays once and then destroys

itself when complete.

seconds or less) on some free sounds site (like
FreeSound.org). Import it into the Audio folder.
Double click TinyExplosion in the Project
window. Add an Audio Source component. Drag
the downloaded explosion sound into the Audio
Clip input field. As a review, still in the Audio
Source component, slide Spatial Blend to 1. Make
sure Play On Awake is checked this time.

Step 27: Back in Scenes, test and listen for the boom.
Step 28: Add a sound when firing the grenade

launcher. Find, download, and import a
“rocket launcher” sound. Add an AudioSource
component to GrenadeLaunchPoint and
populate the AudioClip with this new sound.
Turn off Play on Awake and make sure Spatial
Blend is set to 1.

Step 29: Add code to play this sound on Fire1.
Since PlayerControlScript already knows who
GrenadeLaunchPoint is, we just need to tell it to
get the AudioSource component on that object
and play it (Figure 16.25).

Dummy Grenades and Reloads
Now it’s time for some trickier work.

Currently, when the player clicks Fire1, a grenade
goes shooting off, but there clearly is still a
grenade in the front of the launcher. What
should happen is that when the player presses
Fire1, visually the grenade at the front of the
launcher should shoot off, and then the reload
sequence should begin.

We’ll do this in two steps. First, we’ll make
sure the dummy grenade (the one sitting on the
launcher) turns itself off when we instantiate the
new one with velocity. Then we’ll build in a timer
so the player can’t launch another grenade until
the animation for reload plays.

Step 30: Make PlayerControlScript keep track
of the dummy grenade. Add a variable to
store a gameObject called “dummyGrenade”
(Figure 16.26).

575

Weapons

FIGURE 16.25 Playing another sound when the layer presses Fire1.

Step 31: When the grenade is fired, turn the
dummyGrenade’s renderer off (so it disappears).
Add the line shown in Figure 16.27 to the
area of PlayerControlScript where we’ve been
handling the Grenade launching. Save and
return to Unity.

Why?

This new line is another illustration of how to get a

particular component of a GameObject, and then how

to disable the renderer. In this case, we wouldn’t want to

use dummyGrenade.SetActive(false) as it would turn itself

off completely and the GrenadeLaunchPoint beneath it,

but we need that GrenadeLaunchPoint to define where

to instantiate the new Grenade. So, instead, we’ll just

turn the renderer off for the dummy grenade and make

it invisible.

Step 32: Plug grenade_launcher_grenade into the
Dummy Grenade input field. Test and see if it
disappears when firing.

Step 33: Prevent the player from firing again
until the grenade is reloaded. Create a new
boolean called “canFireGrenade” at the
beginning of the script. Set it to true on Awake()
(Figure 16.28).

576

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.26 Creating variable for dummyGrenade in PlayerControlScript.

FIGURE 16.27 Turning off the dummyGrenade on the frame that we instantiate the Grenade with velocity.

Why?

No need for this variable to be public. We’ll be controlling

it all within script. Sometimes you want a Boolean public

to debug; but until then, there’s no need for this to be

cluttering up the Unity Editor.

Step 34: Check to see if canFireGrenade is true before
firing, and then turn it to false as soon as it’s been
fired (Figure 16.29). Save and return to Unity.

Why?

We’ve alluded to && before; but as a review it means “and”.

So if the active weapon is “Grenade” AND canFireGrenade

is true, then do the work in the brackets.

577

Weapons

FIGURE 16.28 Setting up a boolean that will let us turn the ability to fire the Grenade off and on.

FIGURE 16.29 Checking to see if we can fire the grenade and then turning off the ability to do so.

Step 35: Test and witness that the player can only fire
one grenade.

Step 36: Create a new Ienumerator called
ReloadGrenade() that shows the dummyGrenade
again and sets canFIreGrenade back to true with
some wait times in between. Figure 16.30 the
complete IEnumerator.

Why?

Two important things here: what is an IEnumerator and

why do we need it. The IEnumerator cannot be inside

another function; so, for instance, it needs to be outside

of the Update() function where we have been doing all

the work lately. The screenshot shows the end of the

Update() function (the last closing bracket) and that’s

where the new ReloadGrenade() IEnumerator should

be built. But notice, that it still needs to be inside the

PlayerControlScript class, so it is still before the last

bracket for the class.

IEnumerators work much like a regular function, except

that they must contain a “yield” statement. Yield in this

case means “wait.” What this IEnumerator does is wait for

1.25 seconds before turning the dummyGrenade back on,

and then waits another 0.5 seconds before allowing the

user to fire again. These wait durations might seem a little

arbitrary right now, and they were, but with a little testing

these were the timings that became apparent once all the

animations were tied in together (in a few steps).

578

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.30 Creating a new IEnumerator, ReloadGrenade(), that turns dummyGrenade back on and flips the

canFireGrenade switch back on.

Step 37: Tell when to start the ReloadGrenade()
IEnumerator. Figure 16.31 shows this line of code.
Save and return to Unity.

Why?

This work inside the IEnumerator is meant to be firing as

the script goes on doing its other work. It’s why we are

starting it as a “coroutine”. In this situation, its actually the

only way to fire an IEnumerator.

Step 38: Insert reload_anim into
EllenGrenadeController. To do this, find
EllenGrenadeController in the Project window
(should be in the Animator Controllers folder)
and double click it to open the Animator. Track
down the reload_anim animation clip that is
under the Ellen_GrenadeLauncher model in the
Project window as well (should be in the Models
folder). Drag reload_anim into the Animator
window. Select and delete the Transitions from
attack_anim to idle_anim and walk_anim.
Create a new Transition from attack_anim to
reload_anim (Figure 16.32).

Step 39: Adjust the Transition settings to match that
seen in Figure 16.33.

Why?

It will be important that the attack_anim plays all the way

through before moving onto the reload_anim. Therefore,

Has Exit Time is checked and Exit Time is set to 1.

579

Weapons

FIGURE 16.31 Creating the command start the work of the IEnumerator as a coroutine.

Further, notice that there are no Conditions for this

Transition. It plays automatically.

Step 40: Create Transitions from reload_anim to
idle_anim and walk_anim. Be sure that they
are using the conditions isIdling and isWalking,
respectively, to determine which state to
transition to (Figure 16.34). The Transition
for reload_anim->idle_anim is shown in
Figure 16.35. The Transition for reload_anim-
>walk_anim would be just the same but with a
different condition.

580

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.32 Rebuilding the EllenGrenadeController to allow for the reload

animation to play.

FIGURE 16.33 Transition settings to move from attack_anim to reload_anim.

Step 41: Test. The animations should play, the
dummyGrenade should pop up at a good time,
and the player oughtn’t be able to fire while the
launcher is still being reloaded.

Tutorial Conclusion

That’s all for the Grenade Launcher for now. Later, it will

be important that the sentient Grenade is a little smarter.

We’ll need it to know when it hits a camera to destroy

581

Weapons

FIGURE 16.34 Final Animator layout. Any State->attack_anim->reload_anim

(Transitions automatically) and then Transition from either idle_anim or walk_anim

depending on the Booleans.

FIGURE 16.35 reload_anim->idle_anim transition settings.

the camera, but not to destroy a wall if it hits one. We’ll

need it to do damage by talking to the health of the bad

guy’s AI later, but not try and talk to the health system of

a box (since it won’t have one). We will want to create a

reticle (via UI) so the player has a better idea of where they

are firing. And, of course, currently the player is carrying

around an unlimited amount of grenades – there is no

ammo count.

But, this is a good start. At this point, the player has one

active weapon that convincingly fires a projectile and

that projectile explodes when it hits something. The next

tutorial will be much faster as it will redo much of what

we’ve talked about here for the small pistol.

Tutorial 16.2: Firing the Gun
and Introduction to Ammo

Much of this part will be a review. Most of the mechanics

of this gun will be similar to the grenade launcher, so we

will move through those steps quickly. However, in this

part, we will introduce the idea of a Trail Renderer for a

bit of visual pizzazz and give the weapon an arbitrary ten

shots before reloading.

Step 1: Create a GunLaunchPoint. Again, this will
be an empty GameObject, although this time
placement will be a bit more manual. Make it a
child of Gun_grp, but you will need to manually
maneuver it so that it is at the tip of the gun
(Figure 16.36).

Tips and Tricks

To see the gun easily, hide the Ellen_GrenadeLauncher by

selecting it in the Hierarchy and turning off the top check

box in the Inspector. Don’t forget to turn it back on later.

Step 2: Create a little GunBullet from a sphere. Create
a sphere (GameObject>3D Object>Sphere),
name it GunBullet, and make it small enough
so it makes sense coming out of the gun.

582

Creating Games with Unity, Substance Painter, & Maya

Figure 16.37 shows a sphere with its Scales
X, Y, and Z at 0.008 (although this number is
arbitrary).

Step 3: Add necessary Rigidbody. GunBullet will
already have a Sphere Collider on it, but add a
Rigidbody. Be sure to turn off Use Gravity and set
Collision Detection: Continuous Dynamic.

583

Weapons

FIGURE 16.36 Creating the GunLaunchPoint, maneuvering it to the correct location manually, and placing it in the appropriate

place in the Hierarchy.

FIGURE 16.37 Creating, naming, and sizing GunBullet.

Why?

Don’t worry too much what this will look like. It will be so

small and move so fast the player won’t even be able to

see it. We will be adding the Trail Renderer to make it a bit

more visible in the game. However, getting the Colliders

and Rigidbody set up correctly will be important to make

this bullet actually do work once it’s in the scene.

Step 4: Add a Trail Renderer component to
GunBullet. Again, with GunBullet selected in the
Inspector click the Add Component and start
typing “Trail Renderer”.

Why?

Trail Renders are lines that are drawn behind an object as

it moves through space. You’ve likely seen this effect in

hack-n-slash games with a fast moving sword. Here, we’ll

make a small line trail behind the bullet at its fired.

The tricky thing is that Trail Renderers can be a little goofy

to set up because they only draw when something moves.

Further, the default settings for the Trail Renderer is

useless (it’s 1 meter wide by default). Try reaching out and

moving GunBullet forward a little in the Scene window

and you’ll see the craziness.

Step 5: Tweak the Trail Renderer settings to match
that shown in Figure 16.38.

Why?

Notice that in the Width section the first Key is very, very

small (0.015). The second Key was added by right clicking

on the red line and choosing Add Key. This second key is

moved down to 0 on the Y. These values were found by

moving the GunBullet, turning the values down, moving

GunBullet again, turning the values down again, and so on.

Step 6: Drag GunBullet to a new place and see the
bright pink Trail Renderer appear. Tweak the
width settings if desired (Figure 16.39).

584

Creating Games with Unity, Substance Painter, & Maya

Why?

That bright pink in Unity actually always indicates that

a material or texture is missing. At this point, the Trail

Renderer doesn’t have a material yet, so it defaults to that

585

Weapons

FIGURE 16.38 Adjusting the width and length of the trail renderer, and making sure

it doesn’t cast shadows.

FIGURE 16.39 Dragging GunBullet will show the trail renderer.

pink to let the user know that one needs to be built and

assigned.

Step 7: Create a new material called
BulletTrailRendererMat. Do this in the Project
window by clicking on the + button and choosing
Material. Select the Material and, in the Editor,
set it to Shader: HDRP/Unlit. Change the Color
and Emissive Color to something you like
(Figure 16.40).

Step 8: Apply the new BulletTrailRendererMat to
the Trail Renderer. Select GunBullet and drag
BulletTrailRenderer to the Material input field in
the Trail Renderer.

Step 9: Make GunBullet a prefab, and delete it from
the Hierarchy.

Step 10: In PlayerControlScript, create the
variables we’ll need for the bullet mechanism
(Figure 16.41). Save and return to Unity.

Step 11: Fill in the variables (Figure 16.42).

586

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.40 Creating and setting up the Trail Renderer Material for the bullet.

Why?

It’s fun to just write a lot of code, but it’s often helpful

to take a second to fill them up in Unity before writing

a bunch of new code. It’s very common for beginning

coders to write a bunch of code and then not be able to

run the game as Unity throws an error that the variables

are populated.

Step 12: Turn canFireBullet on in Awake()
(Figure 16.43) and build (what should look
like) very familiar code down in the section of
the script where “Gun” is the active weapon
(Figure 16.44). Save and return to Unity.

Step 13: Test. The game should shoot a very small
projectile with a delicate Trail Renderer behind it.
Strangely, it will bounce off the walls. If the Trail

587

Weapons

FIGURE 16.41 Creating familiar variables for the gun.

FIGURE 16.42 Filling in the variables to get started on the gun mechanism.

FIGURE 16.43 Turning on the canFireBullet Boolean.

Renderer is too small for your tastes, or the bullet
too slow, make changes to the Trail Renderer
settings or the bulletSpeed variable.

Step 14: Make the GunBullet destroy itself when it
hits something (Figure 16.45).

Step 15: Prevent Fire1 spamming. Add the code
shown in Figure 16.46 where we press Fire1.
Then create a new IEnumerator that waits
for the 12 frames of the attack_anim (the
shooting and recoil animation) before switching
the canFireBullet Boolean back on again
(Figure 16.47).

Step 16: Start keeping track of ammo. Add the line
shown in Figure 16.48. Save and return to Unity.

588

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.44 Constructing the bullet weapon to work very similar to the grenade.

FIGURE 16.45 A simple BulletScript to destroy the bullet when it hits a collider.

FIGURE 16.46 Temporarily turning off the ability to fire the gun when its fired; but starting the Coroutine that will turn it back

on again.

Why?

ammouCount--; is actually short for

ammoCount = ammoCount − 1; In other words,

“ammoCount is now equal to whatever ammoCount was

minus 1”.

Step 17: Select FPSController in the Hierarchy (so that
PlayerControlScript is visible in the Inspector).
Play the game, fire the gun, and watch the Bullet
Ammo variable in the Inspector. It should be
dropping by one each time the Fire1 button is
pressed, dropping even into negative numbers.

Step 18: Stop the player from firing when out of
ammo so that there is time to reload the weapon
(Figure 16.49).

Step 19: Build BulletReload IEnumerator (Figure 16.50).

Why?

So this IEnumerator triggers some Booleans in the

ellenGunAnimator that haven’t been created yet. But we

should still be able to see what the code is doing: it sets

589

Weapons

FIGURE 16.47 Waiting for the 12 frames (0.2 seconds) before allowing canFireBullet

to be true again.

FIGURE 16.48 Deducting 1 from ammoCount each time Fire1 is pressed when activeWeapon is Gun.

needReload to true, waits for 1.3 seconds (the time it takes

to roughly play the attack_anim and the reload_anim),

then turns needReload off in the ellenGunAnimator and

allows the user to fire the gun again. Finally, because the

Animator has played the reload animation, the script

resets the ammoCount back to 10.

Step 20: Adjust ellenGunController to allow for
reloads. In the Inspector, double click on
EllenGunController to open the Animator. Find
the model Ellen_Gun and drag reload_anim into
the Animator. Finally, create a Transition from
attack_anim to reload_anim and transitions
from reload_anim to idle_anim and walk_anim
(Figure 16.51).

590

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.49 Checking to see if there are still bullets. If not, canFireBullet becomes false and BulletReload (an IEnumerator we

haven’t built yet) will start. Notice that the PauseGun() mechanism is moved down into the else statement.

FIGURE 16.50 BulletReload IEnumerator.

Step 21: Create a new Parameter boolean called
“needReload” (Figure 16.52).

Step 22: Build the Transition attack_anim->reload_
anim with a Condition of needReload: true
(Figure 16.53).

Why?

So when the player hits the Fire1 button, the code

checks to see if ammo is more than 0. If not, it sets the

needReload parameter to true in the Animator. So,

the Animator, when it finishes attack_anim, sees that

needReload is true and moves onto reload_Anim. Or at

least that’s what it should do. We need to make sure it

doesn’t first attempt to head to idle_anim or walk_anim

because isWalking or isIdling will also be true.

591

Weapons

FIGURE 16.51 Setting up the Transitions for reload_anim.

FIGURE 16.52 A new Boolean parameter called needReload that is expected back

in code.

Step 23: Add a conditions for the Transitions attack_
anim->idle_anim and attack_anim->walk_
anim to only move to those states if needReload
is false (Figure 16.54).

592

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.54 Ensuring that attack_anim only moves to idle_anim or walk_anim if needReload is false.

FIGURE 16.53 The settings for the Transition between attack_anim and reload_anim.

Step 24: Add conditions to the Transitions
reload_anim->idle_anim and reload_anim-
>walk_anim that check to see if isWalking is true
or isIdling is true (Figure 16.55).

Step 25: Apply All for the Prefab overrides for
FPSController to lock in the changes.

Tutorial Conclusion

We’ll leave the gun here. There is still work to be done.

Some you know how to do (and should), like adding a

sound when the pistol is fired. Other things like making

sure the bullet actually does damage to something will be

covered in later chapters.

For now, relish the testing that both weapons work. Tweak

the settings that are needed to give the game the feel you

find pleasing and then move onto the last tutorial to make

sure the weapons are accurate.

Tutorial 16.3: Raycasting
for Accuracy

I know, I know. Reticles are for wusses. And yet, so many

games have them! If you don’t know, reticles are the little

crosshairs that most first-person games have that show

593

Weapons

FIGURE 16.55 Providing a way out of reload_anim by checking what other

Booleans (isWalking or isIdling) are true.

the player where they are actually aiming. The problem

is that if a reticle is provided for a user, they expect their

bullet/grenade to actually fly towards that space. In this

tutorial, we will place a reticle in the scene, and then

make sure that our projectiles hit the spot the player is

aiming at.

Step 1: Create a UI Image. Go to
GameObject>UI>Image. This will create three
things in the scene: 1) Canvas, 2) Child Image,
and 3) EventSystem. Select the Canvas and
change the settings as per Figure 16.56.

Step 2: Rename the Image (UI) to “ReticleUI” and
center it. Select Image and rename it. Then
in the Inspector look for the Anchor Presets
button (at the top left of the Rect Transform
area (Figure 16.57)). Hold down the Shift and Alt
buttons and click the icon right in the middle.
There should now be a pretty ugly white box in
the middle of the Game Window (Figure 16.58).

Why?

We will talk much more about his later as understanding

UI is important to a cohesive game play experience. For

now, suffice it to say, by holding the Shift and Alt buttons

594

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.56 Changing the Canvas so that if the player’s screen gets bigger or

smaller, the UI will stay the same size on screen.

down, we are setting the Anchor (the pivot) of the Reticle

in the middle of the image and setting the image in the

middle of the screen.

Step 3: Bring in the Reticle texture from the support
website. In the Project window, create a new
folder called “UIElements”. Go to the support
website and in the support documents for this
chapter is a file Reticle.psd. Import Reticle.psd
into the UIElements folder.

Step 4: Adjust the settings for UI. With Reticle
selected in the Project change Texture Type:
Sprite (2D and UI). Hit the Apply button.

595

Weapons

FIGURE 16.57 Placing the ReticleUI in the middle of the screen.

FIGURE 16.58 ReticleUI placed in the middle of the screen. Well, it’s not a reticle

quite yet…

Why?

This Reticle.psd file has an alpha channel build in to

allow parts of the image to be transparent. By setting the

import settings to recognize the file as a Sprite, Unity will

automatically find the alpha channel and prepare the file

for low-overhead, high-fidelity, UI display.

Step 5: Apply the Reticle texture to the Reticle. In the
Hierarchy, select ReticleUI. In the Inspector, look
for the Source Image input field. Drag Reticle
(the imported texture/Sprite) into that input field
(Figure 16.58). The Game window will now show
a visible reticle (Figure 16.59).

Step 6: Adjust settings for ReticleUI to not be so big
and obtrusive. In the Inspector, look for the Rect
Transform section and change Width and Height
to 50. If desired, go down to the Image section
and double click on the Color swatch where the
color (including the Alpha/Transparency) can be
shifted (Figure 16.60).

Step 7: Play the game and shoot at a wall (it’s easier
to see the problem with the Grenade Launcher).
Notice that the spot the grenade actually
strikes is not where the reticle is pointing at
(Figure 16.61).

596

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.59 Results in the Game window.

Problem and Solution

Figure 16.62 illustrates the problem. The camera (in white)

has a centered reticle (small red circle on the diagram).

The sight line of the camera passes through the middle of

597

Weapons

FIGURE 16.60 Adjusted ReticleUI.

FIGURE 16.61 The current problem with our weapons system: the weapons don’t

shoot at the reticle’s location.

the reticle on its way to a spot on the green wall. However,

the weapon (in blue) is pointing straight and its path is

different than that of the camera’s line of sight.

Rotating the weapon (or launch point) slightly doesn’t

solve the problem either. At the sweet spot distance

(Figure 16.63), the impact point for the weapon would

indeed line up with the reticles indicated point; but as

soon as the wall is closer (Figure 16.64), the impact point

and reticle would be offset again.

598

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.62 A diagram of the problem of UI with a centered reticle and a

projectile-based weapon.

FIGURE 16.63 Rotating the weapon would work at one distance only…

The solution to this is going to be to Raycast from the

player camera and store the point at which the ray hits a

collider. Then, each of the launch points can be pointing

towards that point. Since the launch points define the

direction of the velocity of the projectiles (bullet and

grenade), this will send the projectiles to the place the

reticle is pointed at.

Let’s make this happen.

Step 8: Make PlayerControlScript aware of where the
player camera is. We’re really only interested in
where the camera actually is (as the origin of the
Raycast), so the variable declaration should store
a Tranform that we’ll call “playerCamera”. Then,
populate the variable on Awake() (Figure 16.65).

599

Weapons

FIGURE 16.64 As soon as the wall was closer (or further), the impact and reticle

would no longer line up.

FIGURE 16.65 Creating a variable to store the Transform of the FirstPersonCharacter (actually the camera for the FPSController)

and then filling it with code on Awake().

Step 9: Create the Raycasting mechanism and then
make sure the launch points are pointing in the
correct direction. Figure 16.66 shows code placed
just inside the Fire1 input area (before it worries
about which is the active weapon). Save and
Return to Unity.

Why?

The only real new idea here is the LookAt() command.

Look at takes the positive Z axis of an object and points

it towards a location. In this case, it’s the thingHit.point.

Remember that thingHit is the Raycast hit created a

couple of lines earlier.

This work is done inside the Fire1 area. Why not earlier in

the Update() function? The way this is working is that on

the single frame that the player presses Fire1, a single ray

is shot out, where it strikes is stored, and the launch points

point at it. Then, later in the same frames a projectile is

sent in that direction. If this were outside the if (Input.

GetButtonDown(“Fire1”)) section, it would be doing all

that work every frame. That’s a lot of work to do 60 times a

second when it could be done once the player pushes the

button.

Step 10: Test, and both weapons should be shooting
projectiles that hit right where the reticle shows
they should (Figure 16.67).

Step 11: Apply Prefab Overrides to FPSController and
save the Scene. We’ll be back here later for more
adventures.

600

Creating Games with Unity, Substance Painter, & Maya

FIGURE 16.66 Raycasting and then pointing the launch points at the place the ray is casting against.

Conclusion

For now we’ll leave weapons behind…but not for long!

Still to come are UI elements that help the player know

how much ammo they actually have. Still to come is

the ability for the grenades and bullets to actually do

something in the game (destroy a camera, or shoot a bad

guy, etc.). There’s much to still do, so keep reading to find

out more!

601

Weapons

FIGURE 16.67 Raycasting and projectile weapons working together for good.

https://taylorandfrancis.com

CHAPTER 17

AI

AI. This is a term that in recent years is uttered with

reverence. The power of a computer to make its own

decisions, to grow, and to learn has made great strides.

It is at the cutting edge of computer science today. And

luckily for us, it has very little to do with what “AI” refers to

in game engines!

This actually takes a lot of the weight off of us as coders.

We aren’t building constructs of high-end computing

here but rather simple decision trees that non-playable

characters (NPCs) are able to use to decide how to behave

603

in game. In this chapter, we will be building such a tree

and specifically looking at how to allow an AI character

to idle at their post, detect the player in the simplest way

(by measuring distance), chase the player, and eventually

attack the player.

Along the way, we will explore a lot of the tools Unity

has in place to facilitate such efforts: Navigation Mesh,

Navigation Mesh Agents, Vector3.Distance(), Animator,

and Animation Events. When this chapter is complete,

ol’ multiple versions of EllenEnemy will be guarding the

facility on high alert to take the player out.

To do this, we will need to start and stop the game often.

So while building this section, work off of a test scene

(the one in the support files is called AITest). It should be a

fairly simple setup that has a few walls and other barriers

to work with (Figure 17.1). Notice that it has FPSController

(from the Standard Assets folder) placed in the scene and

Main Camera has been deleted. A few adjustments to the

Exposure on the Sky and Fog Volume and the Intensity on

Direction Light have been made. The blue material on the

walls is arbitrary and made just to make the screenshots

easier to see.

604

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.1 A sample AITest scene. No specific rules here, just a simple scene to

develop code in.

Tutorial 17.1: Creating an
AI-Based “Tic-Tac”

To get started, we will do a mini-tutorial that creates a

simple form (in this case, a capsule) that will guard the

scene and then eventually chase us. Once we understand

the specifics of how Unity decides where and AI can move,

we can begin layering on details like the animations we

brought in from Mixamo.

Before we do that, there are a couple of ideas that are

important to touch on. First, Unity’s AI mechanism

works on the idea of a Navigation Mesh (NavMesh). A

NavMesh is literally a polygonal form that Unity creates

on top of existing geometry that is visible to no one but

objects that have a component called a NavMeshAgent.

Technically, NavMeshAgents don’t “see” walls, but rather

see that there is no NavMesh where the wall is at, and

therefore they can’t walk through there. The effect is

that NavMeshAgents walk around walls and avoid gaps,

furniture, and other obstacles. NavMeshes can be complex

devices. They can go up and down ramps and stairs. They

can even indicate areas where there is a leap possible,

where the NavMeshAgent can jump across a gap.

However, we’ll avoid that for these exercises. What we will

do is create a NavMesh, and then create an object with a

NavMeshAgent on it that will be able to wander around

upon the NavMesh.

Step 1: Decide which objects are to be part of the
NavMesh. Select all the geometry in the scene
(not the FPSController, Directional Light, or Sky
and Fog Volume). In the Inspector, check the
Static button (top right corner).

Why?

“Wait, I thought we weren’t doing lighting here,” you may

be seeing. And you’re right. The Static checkbox actually is

a drop-down menu that if clicked will show there are a lot

of flavors of “Static.” We used this to mark things that were

to be baked in the lighting scheme. However, by using the

605

AI

generic Static checkbox, objects are also marked as being

eligible to be included in other sorts of baking, like baking

NavMeshes.

Step 2: Create a NavMesh. Select
Window>AI>Navigation. Where the Inspector is
will now have a new tab: Navigation. Click on the
Bake tab within it and click the Bake button (you
may need to save the scene if you have not done
so already). Very quickly, the NavMesh will be
computed and visible in the Scene (Figure 17.2).

Tips and Tricks

This NavMesh is only visible when the Navigation window

is visible. If Inspector is clicked, the NavMesh will go away.

Usually it’s in the developers interest to not have it visible,

but sometimes it’s critical to see it.

Why?

So what are we seeing here? The cyan-colored NavMesh

will leave holes for walls and pillars. This NavMesh is

where a NavMeshAgent can move. If the NavMeshAgent

needs to move closer to the walls, this can be adjusted in

606

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.2 Baked NavMesh.

the Navigation window under the Bake tab by adjusting

the Agent Radius. Smaller radius means that an agent will

have less clearance around obstacles.

Notice that in the Bake tab there are settings for Max

Slope and Step Height. The Max Slope determines how

steep an incline needs to be for the NavMesh to decide

if the NavMeshAgent can walk up it, and when it ceases

to be a slope and becomes a cliff. Similarly, Step Height

determines how tall a step can be before it’s no longer a

step and a ledge that the NavMeshAgent can’t walk up. In

most cases, the default settings work just fine for Agent

Radius, Max Slope, and Step Height; but if the model

has very steep stairs, or really narrow doorways, these

sometimes need to be adjusted.

Step 3: Create a capsule for AI and give it a
NavMeshAgent component. The capsule shown
in Figure 17.3 was created using GameObject>3D
Object>Capsule and renamed “AI”. It has a
simple red material created and dropped in it for
clarity. NavMeshAgent is a component, so select
the capsule and, in the Inspector, click the Add
Component and search for “NavMeshAgent”
and add it.

607

AI

FIGURE 17.3 Our cinnamon Tic-Tac. Notice that it has a Capsule Collider, but the

green cylinder around it is the visual representation of the NavMeshAgent component

(that can be seen in the Inspector too).

Step 4: Create a new script called
“EllenEnemyAIScript” (even though this isn’t
EllenEnemy, it will be eventually). Open it.

Step 5: Make EllenEnemyAIScript aware of who the
player is. Create a variable called “player” that
will store a GameObject. On Awake(), go out
and find a GameObject with the tag “Player”
(Figure 17.4).

Why?

There are lots of ways to make sure the script knows

who the player is. The variable could have been public,

and then we could have dropped FPSController into

the variable. But that would have meant that this script

would have only worked in this scene with this instance

of FPSController. But we want to build so that the script

is reusable; so having the script self-populate the player

is a better long-term strategy. We could have also used

GameObject.Find(“FPSController”) instead, which finds

an object by name. But this can be a little brittle as well

if we end up with a different controller sometime. Since

we have a Player tag set up for the doors already, we’ll

leverage that mechanism here.

Step 6: Add UnityEngine.AI to the inherited libraries
(Figure 17.5).

Step 7: Define the NavMeshAgent and tell it to move
to the position of the player (Figure 17.6). Save
and return to Unity.

608

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.4 Laying the groundwork to chase the player by making sure the script

knows who the player is.

Why?

So notice that there are three steps here. First, creating a

variable (called myAgent) to hold a NavMeshAgent. Then

in the Awake() function, this myAgent variable is filled by

getting the NavMeshAgent component that is attached

to whatever GameObject this script is attached to. And

finally, every frame (by using the Update() funtion), we use

the SetDestination class (that is part of NavMeshAgent

component) to define where the AI is supposed to go; in

this case, wherever the position of the player is.

Step 8: Apply the EllenEnemyAIScript to the capsule
and play/test. The capsule should doggedly
chase the player wherever they run. Notice that
the capsule “knows” where walls and other
barriers are in the scene.

Step 9: Have the EllenEnemyAIScript measure how
far it is from the player and only chase the
player if the capsule is less than ten units from
it (Figure 17.7).

609

AI

FIGURE 17.5 Adding UnityEngine. AI will allow this script to understand when we

start talking about NavMesh and NavMeshAgents.

FIGURE 17.6 Defining the NavMeshAgent, and telling it to set its destination to

wherever the player is.

Why?

The API reports that distance can be measured

using Vector3.Distance(object a’s position, object b’s

position). So, the code here first creates a variable called

distanceToPlayer to store a number. Then, every frame,

that variable is filled by the measurement between object

a (the GameObject this script is attached to (transform.

position)) and object b (player’s position).

Once the script has that number, it can see if it is less than

10. If it is, then it sets the NavMeshAgent’s destination to

that of the player’s. If not, it gives up (ResetPath()).

Step 10: Change the 10f value to a variable so it can
be changed without reediting code (Figure 17.8).
Save and return to Unity. There, in the Inspector,
change Chase Distance to 10.

Step 11: Visualize that distance using
OnDrawGizmosSelected(). Add the script shown
in Figure 17.9 to the end of the script (outside
of Update(), but still inside the class). Save and
return to Unity.

610

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.7 Making a variable to store the distance to the player. Then, every frame, measuring the distance and chasing the

player if that distance is less than 10.

Why?

OnDrawGizmosSelected() means “draw some gizmos

when this GameObject is selected.” Within that function

we’re defining the color, and then using Gizmos.

DrawWireSphere(center of sphere, radius of sphere),

we draw a wire sphere. The sphere is centered on

the GameObject this script is attached to (transform.

position) and the radius is the chaseDistance. Back in

Unity, when the capsule is selected it should look like

Figure 17.10.

Step 12: Build a new distance to check for:
attackDistance. This is done by adding a new
variable called attackDistance and then adding
mechanics in the Update() function to only chase
if distanceToPlayer is smaller than chaseDistance
and greater than attackDistance. But, if
distanceToPlayer is less than or equal to (<=)
attack distance, stop (and later fire) (Figure 17.11).

Step 13: If the player gets beyond the chaseDistance
again, give up (Figure 17.12).

611

AI

FIGURE 17.8 Speeding up development time by making the chase distance an editable variable.

FIGURE 17.9 Using OnDrawGizmosSelected() and Gizmos.DrawWireSphere().

612

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.11 Making the player stop when they are close enough so attack. Later here, the AI will actually attack and fire their

pistol.

FIGURE 17.10 Results of OnDrawGizmosSelected. Notice this only draws when the

capsule is selected.

Step 14: Visualize the attackDistance by adjusting
OnDrawGIzmosSelected(). Change the color, and
draw another DrawWireSphere (Figure 17.13).
Save and return to Unity.

Step 15: Select the capsule and in the Inspector make
sure that Chase Distance is 10, Attack Distance
is 5. The Scene will show the two wire spheres
(Figure 17.14).

Step 16: Test and play. The AI should sit still until the
player gets within the green sphere. Then, it will
chase the player until it reaches a point where
the player is within the red sphere, where the AI
will stop.

Step 17: Adjust to refine game play. This is the
simplest of player detection (distance), but is
a great way to start AI. However, our arbitrary
values of 10 for Chase and 5 for Attack may not
be the best. Remember that EllenEnemy has
animations for shooting her pistol, and would
likely shoot her pistol before she was only 5
meters from the player. So play with the values,

613

AI

FIGURE 17.12 Allowing the AI to give up if the player gets away.

FIGURE 17.13 Changing the color and drawing another wire sphere to show the

attackDistance.

and find what makes the most sense. Just
remember that Chase Distance needs to be larger
than Attack Distance. Remember also that the
NavMeshAgent has a Speed setting; so, tweaking
that can radically change the overall gameplay
as well.

Tutorial Conclusion

Roughing out basic mechanics with a simple capsule

is a great way to begin to understand how the game

would play. There are lots of other things that could be

done here. Could you make the capsule patrol between

developer-defined waypoints? Could you make the

waypoints random? Could you change the speed from a

walk during waypoint patrol to run when chasing? These

are all possibilities, and things you may consider as you

look at advancing what you know.

For now, we will move on to swap the cinnamon Tic-Tac

out for EllenEnemy and her built-in animations. This will

change how some of the game works as we will allow

her animations to define things like how fast she moves

when chasing the player. But the overall effect will be

powerful.

614

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.14 Wire spheres showing both the chase and attack distances.

Tutorial 17.2: Using Animations
(Animator) with NavMesh

Being chased by a red capsule is frightening, but not

as interesting as a pistol wielding clone. Later, it will be

even more exciting when there is an mob of clones in

the space all on the lookout for you, the player. In this

tutorial, we will look at leveraging the AI we have already

built, and expanding it so that it uses the Mixamo-created

animations that we imported in Chapter 12.

Before we get started then with this tutorial, it is

important that the work in Chapter 12 has been

completed. Your project should have an EllenEnemy

prefab. She needs to have an Animator component that

has an Animator Controller (EllenEnemyController) and

an Avatar (EllenEnemyAvatar). If you do not have these,

be sure to download the Unity project from the support

website, or go back and hit Chapter 12 so that you’re ready

to plug her into the mechanics here.

Step 1: Bring EllenEnemy into the scene. This should
be the prefab version of Ellen that includes
her Controller and Avatar. She can be placed
anywhere as long as she’s on the ground.

Step 2: Add a NavMeshAgent to EllenEnemy. By
default, this NavMeshAgent will likely be too big
(Figure 17.15).

Step 3: In her NavMeshAgent, adjust the Radius and
Height of her Obstacle Avoidance to more closely
resemble her frame. Radius: 0.25 and Height 1.6
seem to work well (Figure 17.16).

Why?

These particular measurements will most assuredly

be wrong in the long run. These measurements aren’t

really the size of the character, but rather the size of the

calculation that allows the AI to avoid things (Obstacle

Avoidance). Later, as the game takes shape, it’s likely that

this will need to get a little bigger or smaller as we see

how EllenEnemy actually works around obstacles, but

615

AI

616

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.15 Default NavMeshAgent on EllenEnemy. Too big!

FIGURE 17.16 Adjusting NavMeshAgent to more closely resemble character.

roughly approximating the character’s physical frame is a

good place to start.

Step 4: Play the game and watch her float. She
won’t chase you now (the AI script we’ve written
hasn’t been applied to her yet); but play the
game and look closely at her feet. She levitates
(Figure 17.17).

Why?

What’s actually happening here is that the NavMesh is

not right on top of the meshes it is representing. In other

words, in this case, the NavMesh is not on the floor. This

can be seen if the Navigation tab is activated (over by

the Inspector, remember). To compensate for this, we

will move the character a bit lower in relationship to the

NavMeshAgent.

Step 5: Adjust the Base Offset to adjust EllenEnemy
downward within the NavMeshAgent. Base
Offset is an attribute of the NavMeshAgent,
change it there. −0.095 is a good value to get
those feet closer to the floor (Figure 17.18).

617

AI

FIGURE 17.17 Magically floating EllenEnemy.

Tips and Tricks

Remember seeing how the NavMeshAgent interacts with

the NavMesh can only happen when the game is playing.

To find the best value for things like the Base Offset, you

must first play the game. Adjustments can be made to

most settings in Components while the game is played;

however, remember that most changes will revert once the

game has stopped. So in this case, play the game, adjust

the Base Offset value to get the character positioned

correctly, then jot down that value. Then stop the game,

and enter the value into the relevant input field again.

Step 6: Get EllenEnemy to chase the player (sort of).
Add EllenEnemyAIScript to EllenEnemy. Adjust
her Chase Distance: 10 and Attack Distance: 5
(or whatever you settled on earlier). Play the
game and try it out.

618

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.18 Adjusting the Base Offset to get the character closer to the floor.

Why?

Yes, yes, it’s not right now. She does indeed chase the

player, but she chases stuck in the idle pose we set

up in Chapter 12. Luckily, we have a plethora of other

animations to choose from, including runs and attacks. We

just need to get them plugged into the Animator, and fire

those animations via the script.

Step 7: Set up Parameters in EllenEnemyController.
Double click EllenEnemyController in the
Inspector (it might be in your NPC folder or
organized elsewhere). When the Animator
opens, create a boolean called “isChasing”
and three triggers: “attack”, “gotHit”, and “die”
(Figure 17.19).

Why?

In this case, the character is going to be idling, chasing,

attacking, getting hit, or dying. The triggers for attack,

gotHit, and die should be able to be fired at any time –

therefore, they will be triggers. But when the AI is not being

triggered by one of those events, it will either be chasing

(isChasing) or it won’t (isIdling). So we only need one

Boolean to keep track of these two animation states.

Preparing FBX Animation Files

There are quite a few animations that will be needed in

the next few steps. Let’s take a minute to prepare all of

619

AI

FIGURE 17.19 Creating a boolean to keep track of whether the character is chasing

or idling, and triggers to set off attack, got hit, and dying animations.

them, and then we can start tying them together in the

Animator.

Step 8: Prepare the EllenEnemy@Shooting and pistol
run. These fbx files should be in your NPC folder.
They will need to be adjusted in the Inspector,
under the Animation tab individually, but will
share the same settings. Select one and, in the
Inspector, go to the Animation tab. There, click
on Loop Time. In Root Transform Rotation, click
Bake Into Pose and Based Upon: Original. For
pistol run, be sure to rename the animation (not
the FBX) from “mixamo.com” to run_anim. There
is no need to rename Shooting (it’s descriptive
enough). Click Apply (Figure 17.20).

Why?

The looping should be pretty obvious; we want this

animation to continue to loop until we move onto

something else. The Root Transform Rotation is a little

trickier. Without it checked, if the animation is played

(down at the bottom of the Inspector window is a little

preview window with a play button), the animation runs

(or shoots) slightly to the side. By baking the rotation

based upon the Original, the animation will be reoriented

so that it runs/shoots right along the positive Z axis.

This will be important because the character’s orientation

is being defined by the NavMeshAgent, so the animation

should always be facing straight forward.

620

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.20 Import settings for pistol run and EllenEnemy@Shooting.

http://$$$�mixamo.com�

Step 9: Prepare EllenEnemy@HitReaction and
EllenEnemy@Death From The Back. These will
need to be adjusted one at a time, but will have
the same settings in the Inspector under the
Animation tab. Do not check Loop Time. But
under Root Transform Rotation, click Bake Into
Pose and Based Upon: Original. Click Apply
(Figure 17.21).

Placing Animations
in the Animator

Now that the animation clips have been prepared, they

can be imported into the Animator as states. As we did in

earlier chapters, just grab the FBX files from the Project

window and drag them into the Animator.

Step 10: Place pistol run, EllenEnemy@Death
From the Back, EllenEnemy@Hit Reaction, and
EllenEnemy@Shooting into the Animator. Their
absolute positions aren’t terribly important,
but the Animator should look something like
Figure 17.22.

Step 11: Create Transitions from Any State to Death
From the Back, Hit Reaction, and Shooting
(Figure 17.23).

Step 12: Adjust the Transition settings for each.
Remember to do this, select the transition arrow
in the Animator, and then in the Inspector the
Transition can be edited. For Any State->Death
From The Back and Any State->Hit Reaction,
make sure that Has Exit Time is not checked.

621

AI

FIGURE 17.21 Import Settings for non-looped animations for getting hit and dying.

Alternatively, be sure that it is checked for Any
State->Shooting. Scroll down to the Conditions
area and hit the + button. For Any State->Death
From the Back, add a Condition for “die”. For Any
State->Hit Reaction, add a Condition for “gotHit”.
And for Any State->Shooting, add a Condition for
“attack” (Figure 17.24).

Step 13: Create a Transition from pistol_idle_anim to
run_anim (Figure 17.25).

Step 14: Edit the pistol_idle_anim->run_anim
to match Figure 17.26. This means turning
off Has Exit Time and setting Conditions of
isChasing:true.

Step 15: Create a transition from run_anim to
pistol_idle_anim and set its transition to match
Figure 17.27. Again, turn off Has Exit Time, but
this time set the Condition of isChasing:false.

622

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.22 Animation FBXs placed into the Animator as states.

FIGURE 17.23 Transitions from Any State to out three triggered states.

623

AI

FIGURE 17.24 Transition setting for Any State->Shooting using the trigger attack.

FIGURE 17.25 Providing a way to move from idling to running.

FIGURE 17.26 The transition from idling to running.

Why?

In moving between idle and running, this uses a single

Boolean: isChasing. If it’s true, we’re running, if it’s not,

we’re idling.

Step 16: Create Transitions from Hit Reaction, and
Shooting to pistol_idle_anim (Figure 17.28).

Step 17: Adjust the Transition for both of these to
match Figure 17.29. The key idea here to make
sure Has Exit Time is checked. The Condition
should be isChasing:false.

Step 18: Create Transitions from Hit Reaction and
Shooting to run_anim (Figure 17.30).

624

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.27 Transition moving from run_anim to pistol_idle_anim.

FIGURE 17.28 Providing a way out of getting hit and shooting back into idling.

Step 19: Adjust both transitions to match
Figure 17.31. Again, make sure the Has Exit
Time is checked and isChasing:true.

Tips and Tricks

While editing any of the Transitions in the Inspector, the

transition can be viewed by clicking the play button down

in the Preview window. Notice that for simplicity’s sake

the character stops her run when she gets hit, or shoots.

However, you may choose later to come in and build a

more complex mechanism that allows here to shoot on

the run, or find an animation where she takes a hit while

she’s running.

625

AI

FIGURE 17.29 Transitioning from being hit or shooting back to idle.

FIGURE 17.30 Creating transitions out of shooting and getting hit back to running.

Changing the Triggers and
Booleans Via Script

Step 20: Open EllenEnemyAIScript.
Step 21: Make sure the script knows who the

Animator component is. Do this by creating a
variable called myAnimator and then populating
it on Awake (Figure 17.32).

Why?

Just as a quick review, from now on in this script when

we need to manipulate the Animator component that is

attached to EllenEnemy we just use myAnimator.

626

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.31 Setting the conditions for moving from getting hit and shooting back

into running.

FIGURE 17.32 Creating a variable to store the Animator component in the script.

Step 22: Allow the animations to determine the
speed of movement. Add the important line
shown in Figure 17.33.

Why?

Remember in earlier tests, EllenEnemy would glide

along the ground in idle pose? This was because the

NavMeshAgent was defining the speed at which she

moved. However, now we have plugged in animations

that have their own displacement. In order to get

the feet to stay still when they plant for each step,

the animations need to determine the speed. This

line, myAgent.updatePosition = false; means that the

NavMeshAgent isn’t in charge of moving the character

any longer.

This is an important line that young coders often forget

when using Animator and NavMeshAgent. Be sure it’s part

of your toolbox.

Step 23: Make sure that the NavMeshAgent doesn’t
leave the character behind. Copy the lines shown
in Figure 17.34 into the bottom of the Update()
function.

627

AI

FIGURE 17.33 Making the animations be the determining factor in how quickly the

character moves (not the Move Speed in the NavMeshAgent).

FIGURE 17.34 Keeping the NavMeshAgent and animated character close together.

Why?

The new lines shown in Figure 17.34 come from Unity’s API

(“Coupling Animation and Navigation”). It’s mostly beyond

what we want to cover in this volume, but what it does is

make sure that if the NavMeshAgent (which is striving to

get to the Player when chasing) gets further away from

the character than the character radius, to then snap back

towards the character. Remember this weird little chunk

of code when we see this all in action. The NavMeshAgent

(when selected) will look weird, but the functionality will

be solid.

Step 24: Ensure the NavMeshAgent and Animator
don’t separate while in movement. Add a new
function as indicated in Figure 17.35. Remember
this is a new function, so it can’t be inside any
other functions, but still needs to be inside the
curly brackets for the class.

Step 25: Decide when the isChasing Boolean should
be flipped. It should be true when the AI is
chasing the player, and off when the player is
beyond the chaseDistance (Figure 17.36).

Step 26: Trigger the attack when player is within
attack range. Figure 17.37 deletes our comments
and adds the actual work of playing the attack
animation. Note that it also makes sure that
when attacking the NavMeshAgent (which
controls the rotation) is focused on the player.
Save and return to Unity.

Step 27: Test and play. EllenEnemy should stand
there idling until the player gets within her chase
range. She’ll then speed after the player until she
gets close enough for a good shot and then she’ll
shoot (Figure 17.38).

Step 28: Adjust the rotation of the Shooting
animation to be more on target. Do this by
selecting EllenEnemy@Shooting in the NPC folder

628

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.35 Aligning the NavMeshAgent and Animator in Y while in motion.

(this is the Shooting state in the Animator). In the
Inspector, scroll down to the Preview area and
rotate the view by right-dragging until on top
of the Ellen avatar. Figure 17.39 (left) shows how
she is currently offset and pointing to her right
(the player’s left). In the Root Transform Rotation
area, adjust the Offset to around 11. Scroll down
and hit Apply. Figure 17.39 (right) shows her
adjusted baked rotation.

Step 29: Test and adjust. Take a look to see if she’s
more on target when shooting. If need be, adjust
the gun in her hand, or rotate her a little further
(Figure 17.40).

629

AI

FIGURE 17.36 Flipping the isChasing Boolean on and off in the animator depending on the player’s distance from the AI.

FIGURE 17.37 Triggering the attack animation.

630

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.39 Using the Root Transform Rotation to offset the character so she is

facing forward.

FIGURE 17.40 Adjusted and on-target shooting.

FIGURE 17.38 Things should be working great now…except, she appears to be a

terrible shot (always firing a little to the player’s left).

Tutorial Conclusion

This is a good place to pause, save the scene, and apply

the prefab Overrides to EllenEnemy. The core of her AI is

now complete; but she currently isn’t firing anything out

of that gun. She also isn’t taking damage and her gun

won’t deliver damage, but those are issues for another

upcoming chapter.

Tutorial 17.3: Animation Events
and a Working Weapon

In this tutorial, we will make the gun a functioning

weapon. Well, a functioning weapon that doesn’t do

any damage, but one that shoots anyway. To do this,

we will leverage concepts covered in past chapters like

instantiating bullets. And we will introduce some new

ideas, specifically the idea of an Animation Event.

An Animation Event is a marker that is placed within an

animation. When that animation is played, the Animation

Event can trigger a chunk of code. So, in our case, the

idea will be to make an Animation Event in the shooting

animation when the bullet would actually exit the gun.

That event will trigger the code that instantiates a bullet

flying towards the player.

So, the plan for this tutorial will be to first, set up the

basic mechanics needed for firing the gun (duplicating

and editing a bullet and creating a launch point for

EllenEnemy’s gun). Then, we’ll set up a script to control

EllenEnemy’s weapon, and then create an AnimationEvent

that tells that script when to fire.

Step 1: Duplicate GunBullet. This should be in
the Prefabs folder. Select GunBullet and
hit Ctrl-D. Rename the new GunBullet 1 to
“GunBullet_EllenEnemy”.

Step 2: Adjust the trail renderer of GunBullet_
EllenEnemy with a new material. In the demo
files, the material for the original bullet is
called BulletTrailRendererMat. A quick shortcut
would be to duplicate this material, rename
to BulletTrailRendererMat_EllenEnemy, and

631

AI

then change the Color and Emissive Color to
something else (just so the bullets flying around
have a different visual style (Figure 17.41)).
Alternatively, create a new HDRP/Unlit material
and adjust as desired.

Step 3: Assign the new BulletTrailRendererMat_
EllenEnemy to the Trail Renderer component
of GunBullet_EllenEnemy. Quick review: select
GunBullet_EllenEnemy in the Hierarchy and then
in the Inspector scroll down to the Trail Renderer
component. Drag the new material into its
material input field.

Step 4: Create a gunLaunchPoint and make
it a child of EllenEnemy’s gun. Create a
new empty GameObject and rename it
“EllenEnemyGunLaunchPoint”. Maneuver it so
that it is sitting out at the end of EllenEnemy’s
pistol. Finally, in the Hierarchy drag it onto
Ellen_Gun (the one that is the child of the
mixamorig:RightHand joint) to make it a child
(Figure 17.42).

Creating the Function to Fire

We now have all the elements we need to fire the gun. We

now need to create the mechanics to do so with script. We

could put this inside the EnemyEnemyAIScript, but that

632

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.41 New material settings for the trail renderer that will follow EllenEnemy’s bullet.

script is getting fairly long. So instead we’ll create it in a

separate script to keep all the weapon stuff in one place.

Step 5: Create a new C# script and call it
“EllenEnemyWeaponScript”.

Step 6: Open it and create the same code we did
when building the mechanics of the player’s
pistol (Figure 17.43). The difference is that this
time, instead of putting the instructions to fire
inside Update() (where we were previously
waiting for player input), this time, put it in a
public function called “ShootPistol()”.

Step 7: Make EllenEnemy a better shot. Add the lines
to have the code point the launchPoint at the
player’s position…and then fire (Figure 17.44).
Save and return to Unity.

Step 8: Apply this new script to EllenEnemy. Drag it
from the Inspector onto the EllenEnemy instance
in the Scene.

633

AI

FIGURE 17.42 The exact rotation doesn’t matter (we’ll control that with script), but

the launch point out at the end of the gun will give us a good place to instantiate the

bullet from.

FIGURE 17.43 Creating the function that will fire the gun. Now we just need to decide when to fire this function.

Why?

Why put it there? Why not on the gun? In actuality, it

doesn’t matter where it’s put as all the things it controls

are stored in variables. In this case, we’re putting it on the

EllenEnemy because that’s where the EllenEnemyAiScript

is at. This keeps all the scripts involved in the AI control in

one place, and puts the script on the same gameObject

that the Animator is on.

This is critical. The Animation Event we are about to create

will be trying to find the function ShootPistol() on the

same GameObject as the Animator. So that’s where we’ll

put the script.

Step 9: Populate the public variables Launch Point
and Bullet. Remember Launch Point will be the
EllenEnemyGunLaunchPoint empty gameObject
in the scene. Bullet will be GunBullet_EllenEnemy
in the Project window.

Animation Events

It is finally time for the star of the tutorial: Animation

Events. These are useful tools that allow a marker to

634

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.44 Making the launchPoint look at the player when it comes time to launch a bullet. EllenEnemy’s a deadeye!

be set within the timeline of an animation. When the

animation is played and this marker is hit, it can play a

public function that is attached to the same object. Some

potential uses of this is a grunt sound that is played when

a character throws a punch, or a visual effect that plays as

a character strikes the ground, or (in our case) firing the

gun at the frame right before the animation recoils.

While Animation Events are powerful and fairly intuitive

to use, when used with the Animator, they can be a little

hard to find (and then remember where to find them).

Follow along in the next few steps and we’ll dive down

to track them down.

Step 10: In the Inspector, find EllenEnemy@Shooting
(the fbx of the animation we are using to have
EllenEnemy shoot).

Step 11: Open the Events section in the Inspector
under the Animation tab. This is way down
at the bottom, so keep on scrolling down
(Figure 17.45).

Awkward Implementation

While Animation Events are easy to understand, the

implementation down here is a little tricky. Figure 17.45

shows the Events timeline, you can’t actually drag the

635

AI

FIGURE 17.45 The Events section of the Animation tab for an animation fbx.

current-time marker contained there. Instead, you must

click-drag the current time marker below that in the

preview area (Figure 17.46). Strange, but that’s how it works.

Step 12: In the Preview area for the animation,
scrub the current time marker to the point
in the animation, just before she recoils
from the shot (Figure 17.47). This is at about
frame 0:06.

636

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.46 You can only scrub through the animation in the preview area (not in

the events area).

Step 13: Add an Animation Event. Up the
Events section, click the Add Events button
(Figure 17.48).

Step 14: Tell the event to fire the ShootPistol()
function. In the Function input field, enter
“ShootPistol” the name of the function
in EllenEnemyWeaponScript. Hit Apply
(Figure 17.49).

Why?

Notice that there are some other input fields there: Float,

Int, String, Object. Those are all there in case the function

fired needs an input value. Our ShootPistol() requires

none, so these can all be left as is.

637

AI

FIGURE 17.47 Scrubbing to fine the frame just before the recoil.

FIGURE 17.48 Add Events button.

Step 15: Test and play. EllenEnemy should run up to
the player and start firing. The bullet should fly
out right on cue (Figure 17.50).

Step 16: Save the scene and apply the Prefab
Overrides to EllenEnemy.

Tutorial Conclusion

And that’s it for Animation Events. There’s still lots of

refinement that we could add to this script that you

already know how to do…play a sound when she fires,

cause her to reload after she’s fired a certain amount of

bullets, even add a muzzle flash. But we’ll leave that up to

you. For now, let’s start to put everything together in the

MainLevel.

638

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.50 The bullet firing at the right time.

FIGURE 17.49 Telling this event to fire a function called ShootPistol.

Tutorial 17.4: Assembling
it all in MainLevel

We’ve done the test work and now we can put things

together in the MainLevel to see how it feels in game.

In this mini-tutorial, we will repeat some simple steps

to make sure the level will work with our AI (it needs a

NavMesh to start with), and then we can use our Prefabs

to quickly populate the level with multiple EllenEnemies.

Step 1: Open MainLevel.
Step 2: Ensure that everything is marked as Static,

except the doors. A quick way to do this would be
to select each of the groups and check that Static
is checked. Then, in the Hierarchy, in the search
input field, type “door”. All the object with “door”
in the name will appear. Select door, door (1), door
(2), and so on. Then in the Inspector turn off Static.

Why?

The doors can be marked as Static for baking lighting, but

they need to be checked off as static elements when 1) we

want them to move with script and 2) when we want the

AI to be able to walk through them. If the doors were to

remain marked as Static, the NavMesh would be built with

them as barriers, and the NavMeshAgents would never be

able to cross their threshold.

Step 3: Bake the NavMesh. Click the Navigation tab
(over near the Inspector). Click the Bake tab within,
and click the Bake button. Fairly quickly the
NavMesh should show up (Figure 17.51).

Step 4: Inspect the NavMesh throughout. While
the Navigation tab is still active, in the Scene
view move through the level and make sure
that the cyan NavMesh is where it should be.
So, for instance in Figure 17.51, the NavMesh
definitely goes through the door (as it should).
And in Figure 17.52, the NavMesh is shown
to even go up the stairs (so EllenEnemy can
chase the player across vertical spaces).
However, Figure 17.53 shows a narrow hallway,
and there are spaces where the NavMesh is
dangerously thin.

639

AI

Why?

So as long as the NavMesh doesn’t disappear completely

in a hallway, it will probably be alright. However, if it

ever disappears completely, that needs to be adjusted.

Otherwise, it will create a strange invisible forcefield for the

EllenEnemys NavMeshAgent that won’t be able to overcome.

640

Creating Games with Unity, Substance Painter, & Maya

FIGURE 17.52 The NavMesh working nicely up the stairs.

FIGURE 17.51 Baked NavMesh.

The roughest way to do this is to go to the Navigation

window, the Bake Tab, and adjust Agent Radius to

something smaller and Bake again. This will also make

the NavMesh get closer to all the walls and barriers

though, and sometimes this can cause problems with the

NavMeshAgent clipping corners as it navigates around

them; so it’s usually best to leave a bit of space between

the NavMesh and walls. The other way to fix this problem

is to move or delete some of the obstacles in a narrow hall

like that and rebake.

Ultimately, it’s pretty tough to know exactly how a

NavMeshAgent will work within a space until you see it in

action, so….

Step 5: Place EllenEnemy throughout the level. Near
doors, at stairs, everywhere there might be a
guard. Generally for our planned game play, she
won’t be in the room we start out in, and you
may choose to not put her in the CameraRoom
or Armory; but for now it doesn’t matter. She can
be placed anywhere. Be sure you place her near
the ground though.

641

AI

FIGURE 17.53 Potential problems as the NavMesh gets very narrow in a narrow

hallway with lots of obstacles.

Tips and Tricks

If you place EllenEnemy and she is entirely black,

even when she should be in light, you likely have a

baked lighting setting not quite right. Go back to

Windows>Rendering>Lighting Settings. Make sure that

in Mixed Lighting that Lighting Mode: Baked Indirect.

You make need to rebake (click the Generate Lighting

button).

Step 6: Play the game and test. She ought to be able
to chase you all over the map. Up the stairs, in
and out of rooms, etc. And she should shoot at
you when she gets close.

Conclusion

And there it is. She walks or runs, and tries to kill you when

she sees you. This is made possible by the AI methods of a

NavMesh and a NavMeshAgent that is able to move about

upon it. We’ve looked at how to allow the animation to

define the speed of the NavMeshAgent and how to place

Animation Events within the animations. Finally, we’ve

looked at how to trigger different animation states for the

AI character so that she knows when to do what.

However, with all of this great AI, we still don’t have

a game. The player can fire weapons, the AI can fire

weapons, but none of the weapons do any damage. In

the next chapter, we will look at how to control health

systems and inventory. When there are real stakes (we

could get shot), the game suddenly begins to get closer to

having win and lose states.

642

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 18

Health and Inventory

At the end of the day, health and ammo (or any inventory)

is simply a number; usually, it’s a whole number, an

integer, and usually, it’s a positive integer. Keeping track of

health and ammo then, is simply a matter of counting—

moving up and down in whole numbers.

Scripts to keep track of health usually are fairly

simple. They keep track of an integer (called health or

healthValue), and then when a bullet hits a character, it

calls out to the health script and says, “Hey! Take 10 from

whatever your health value is.” The health script does it,

643

and then checks if its new health value is at or below 0. If it

is, it registers “yer dead!”

In this chapter, we will be creating a health script for both

the player and EllenEnemy. After that, we’ll expand the

ideas of health to ammo (which is also just a matter of

counting). Building health is actually one of the easier

things to do in coding once the basic mechanics are

established.

To build this, we’ll start with one of our test scenes to

allow for quick starting and stopping. If you saved the

test scene from the last chapter that includes EllenEnemy,

we can continue on with that (TestAI is the name if you

are using the downloaded project files from the support

site). If not, then go ahead and make a simple scene with a

floor. Make sure that FPSController is in the scene and that

Main Camera has been deleted.

Tutorial 18.1: Player Health Script
Step 1: Create a new script called

“PlayerHealthScript”. Attach it to FPSController
(where we’re string PlayerControlScript).

Step 2: Build the basic structure of the
PlayerHealthScript. This includes a public
variable called “health” to store a variable, and
then a function to actually subtract health when
the player hits or is hit by something that should
do damage (Figure 18.1). Save and return to
Unity.

644

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.1 Basic Health Script.

Why?

This script does a few things we haven’t done before. The

first is that after creating a variable to hold the health

value (called health), this script gives it an initial value of

100. After this code is compiled, it won’t default to 0; it will

default to 100. Notice that this method only works if the

code has never been compiled before.

Additionally, this is the first time that we are creating a

custom function (DoDamage()) that requires an input:

an integer called damageAmount. What this means

is that every time any script in the game wants to call

out to this DoDamage() function, it must take the

form DoDamage(some number); So DoDamage(10),

would mean that the script should fire the function

DoDamage, and will use 10 any place the function uses

the damageAmount variable. So, the line health = health −

damageAmount means “the new value of health is equal

to 100 minus 10.” So, the bullet prefab might carry a value

of doing 10 damage, but the grenade launcher might do

30 damage. Using this method, we can vary how much

damage is done depending on the situation.

Step 3: Create a damage box. This will just be a
simple object that will do damage to the player
when they walk over it. Do this by creating a cube
(you can give it a new material (or not)), and in
the Box Collider component, check the Is Trigger
check box (Figure 18.2).

Step 4: Create a DamageBoxScript and have it
match Figure 18.3. Save and return to Unity.

Why?

This is a pretty simple script, but it’s worth breaking some

of it down. By default, OnTriggerEnter() requires an input.

The input is of type collider and named “other”; basically,

this means this function will store the collider of the thing

that triggered it in a bucket called “other”.

Because the script knows who triggered it, it can check

if that thing’s gameObject has a tag of “Player”. And

if it does, go to the thing that triggered it and get a

645

Health and Inventory

component on it called PlayerHealthScript. Then, in that

script, fire a function called DoDamage() and pass a value

of 5 to it.

We want to make sure that we check the tag of everything

that enters so we don’t break the game. Pretend, for

instance, that this is set where steam is coming out of the

ground (so the player takes damage if they run through

the steam). Without checking for the tag, the steam

would be trying to do damage to every bullet that passed

through it, or every EllenEnemy. Further if the bullet or

EllenEnemy didn’t have a script called “PlayerHealthScript”

(which they won’t), the game would break as Unity would

be unable to fulfill that command.

Step 5: Apply this script to the red cube.

646

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.3 DamageBoxScript that does damage to whatever runs into its trigger.

FIGURE 18.2 The “damage box” for testing purposes.

Step 6: Test. Select FPSController so that you can see
the PlayerHealthScript in the Inspector. You’ll
want to watch this during game play. Play the
game and have the player walk in and out of the
red damage cube. Each time the player enters the
cube, the Health variable (on PlayerHealthScript)
should drop by 5 (Figure 18.4).

Step 7: Expand this idea to the bullets. In the Project
window, find and select GunBullet. It should have
on it a script we wrote earlier called “BulletScript”
that destroys itself when it hits something.
Edit BulletScript to use the idea just created.
The script, when complete, should look like
Figure 18.5. Save and return to Unity.

647

Health and Inventory

FIGURE 18.4 Entering the damage box should be calling out to the

PlayerHealthScript and doing five points worth of damage every time the player

enters the box.

FIGURE 18.5 Adjusted BulletScript.

Why?

There are a few subtle differences between how we

did this in the DamageBoxScript, but they are worth

pointing out. Most importantly is that this script is using

OnCollisionEnter(). OnCollisionEnter() requires a different

input (a variable of type Collision called “collision”) than we

saw in OnTriggerEnter() (which required a variable of type

Collider). But the basic concept is still the same…When

whatever this script is attached to collides with something,

it will check if that something (stored in the collision bucket)

has a tag of “Player”. If it does, it will talk to PlayerHealthScript

and DoDamage(), passing a value of 10 to that function.

Finally, notice that the Destroy(gameObject) line was there

before. It’s important that that line is the last as once that

line fires, this gameObject is gone (as is the script attached

to it); so, no commands will come from this script after that.

Step 8: Test. Since this script is already attached to
GunBullet and GunBullet_EllenEnemy, no need
to reattach. But when the game is played, make
sure the FPSController is selected so you can see
the Inspector and the PlayerHealthScript’s Health
value. Get close enough to EllenEnemy that she
starts shooting. As she does, the player’s health
will decrease by 10 every time a bullet hits them.

Step 9: Adjust the PlayerHealthScript to allow
for healing. This should look very familiar to
code we’ve written before. What it does is add
to the health value instead of taking it away
(Figure 18.6).

Step 10: Import the HealthPack Unity package
from the support files. This is a Unity package
with some simple code-defined animation and
a hologram shader. Once downloaded, use
Asset>Import Package>Custom Package…
to import it. This will bring in all the textures,
shaders, materials, and geometry needed.

648

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.6 Adding a DoHealing() function to the PlayerHealthScript.

Tips and Tricks

If you are building using URP or the SRP, this package

won’t work for you (at least the shaders). No big deal

though, just assign some other shader to it. The rest of the

functionality should be fine.

If you are using HDRP, the shaders here were originally

designed by Brackeys (take a look on YouTube for his

excellent tutorials). These in particular came from: https://

www.youtube.com/watch?v=KGGB5LFEejg.

Step 11: Place the HealthPack prefab into the scene
(Figure 18.7). This should be in the Prefabs folder.

Step 12: Create a HealthPackScript. It should look
like Figure 18.8, which should again be strikingly
familiar by this point. Save and return to Unity.

Step 13: Apply the Script to the HealthPack prefab
and test. Make sure you can see FPSController
and the PlayerHealthScript’s Health value.

649

Health and Inventory

FIGURE 18.7 HealthPack prefab placed in the scene. Notice that it has an animation script (HealthPackAnimationScript) and a

Box Collider. Note that the Box Collider has Is Trigger checked.

https://www.youtube.com
https://www.youtube.com

Take some damage and then run over the
HealthPack and see that Health value jump
back up.

Step 14: Clamp the value of Health so that it can’t go
over 100. This is done in the PlayerHealthScript by
adding the line seen in Figure 18.9.

Why?

This step isn’t purely necessary if the designed game play

allows the player to supercharge their health. But in most

cases you can’t get more than 100% healthy. So, clamping

the value between 0 and 100 will ensure that the player

never gets over 100 health if they’ve taken just a little

damage and pick up a health pack.

Step 15: Apply the Prefab Overrides for HealthPack
and FPSController. This will make the scripts just
written usable in MainLevel as well.

Tutorial Conclusion

So there ‘tis. A complete health system built for the player.

Anything that needs to do damage to the player can now

just talk to the PlayerHealthScript and fire its DoDamage()

function. And health packs or health zones, or however

you wish to heal the character, is now in place as well.

650

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.8 HealthPackScript.

FIGURE 18.9 Clamping the health value so that it doesn’t go over 100.

It’s still a little goofy though. For one thing, we always

have to have the FPSController visible to actually see the

health as it drops or raises. In the next chapter, UI will be

covered and there we can provide the player some visual

feedback on what their health really is.

Tutorial 18.2: Building
the AI Health System

This will not be a far leap. The EllenEnemy health system

will very similar. However, there are a few things that need

to be set up before this can work. Specifically, EllenEnemy

has a NavMeshAgent, but no collider. Without a collider,

we can’t use OnCollisionEnter() or OnTrigggerEnter(). So a

bit of component adding first, and then we’ll quickly build

the health system.

Step 1: Make sure the prefab EllenEnemy is in the
scene. If she isn’t already, drag her from the
Prefabs folder into the scene.

Step 2: Add a capsule collider and scale to fit.
Select EllenEnemy in the Scene window. In the
Inspector, Add Component>Capsule Collider.
Change the Capsule Collider settings to match
Figure 18.10.

Why?

We happen to know that Ellen is 1.6 units tall. So while we

could use the Edit Collider button to eyeball the collider in,

a Height: 1.6 and Center Y: 0.8 are pretty easy to get exact.

The Radius: 0.2 is preference. Too small, and she gets pretty

hard to hit, too big and the game gets too easy.

Step 3: Tag EllenEnemy as Enemy. With EllenEnemy
selected, in the Inspector click on the Tag drop-
down menu and select Add Tag… (Figure 18.11).

Step 4: In the Tags & Layers window, under the Tags
section click the + button and enter “Enemy” as
the name of the new tag (Figure 18.12).

Step 5: Select EllenEnemy in the Hierarchy again,
and again go to the Inspector. There change
Tag:Enemy.

651

Health and Inventory

652

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.11 Creating a new tag.

FIGURE 18.10 Capsule Collider in place and sized to fit.

Why?

I know, it seems like we’ve been here before. The problem

is that when we use the Add Tag… method, it creates the

tag, but doesn’t add it to the object we started on. So

after creating the tag, you must come back and still add it

to the desired object.

Step 6: Create a new script called
EllenEnemyHealthScript and attach it to
EllenEnemy.

Step 7: Build the basics of the health script for
EllenEnemy. She won’t heal and will only take
damage. So we only need a DoDamage()
function. Notice that we’re giving her half the
health to start with (Figure 18.13).

Step 8: Edit BulletScript to also do damage to
EllenEnemy (or more specifically to the object
tagged as “Enemy”). This script already exists,
and the edited version should appear like
Figure 18.14. Save and return to Unity.

Step 9: Test. This time, when playing the game,
be sure that EllenEnemy is selected so that her

653

Health and Inventory

FIGURE 18.12 Creating a new Tag named “Enemy”. Note that creating it doesn’t

automatically apply it to EllenEnemy.

FIGURE 18.13 Basics of the EllenEnemyHealthScript. Been here before…

EllenEnemyHealthScript is visible and the Health
value can be seen. Even without a reticle (if you
don’t have one), the player should be able to
shoot at EllenEnemy and, in the Inspector, the
Health value should drop.

Step 10: Allow the EllenEnemyHealthScript to trigger
the Animator to play the Hit Reaction state. Do
this by making sure this script knows who the
Animator is, and then firing the gotHit trigger
each time it takes damage (Figure 18.15). Save
and return to Unity.

654

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.15 Allowing the EllenEnemyHealthScript to fire the Hit Reaction

animation state in the Animator.

FIGURE 18.14 Edited BulletScript to also damage Enemy-tagged objects.

Why?

We’re leveraging a bunch of work we did last chapter.

As a review, in the last chapter we edited the Animator

to include the Hit Reaction animation and the Death

from the Back animation. In addition, gotHit and die

were created as Trigger Parameters. Finally, transitions

were built from Any State into both Hit Reaction and

Death From The Back. Because all those animation states

are already in place, with transitions built that can be

triggered, we just need to tie into them with the code. For

a quick review, the EllenEnemyController should look like

Figure 18.16.

Step 11: Test. Run up to EllenEnemy and shoot with
the pistol. Each time she’s hit, she should play the
Hit Reaction animation.

Step 12: Play the dramatic death animation. Do
this in the EllenEnemyHealthScript by checking
to see the value of health each time we fire
DoDamage(). If it gets below 0, fire the die trigger
in the Animator (Figure 18.17). Note that the
gotHit trigger is fired only if it does not fire the die
trigger. Save and return to Unity.

Step 13: Play and notice some strange happenings.
She likely lifts off the ground as she dies, and

655

Health and Inventory

FIGURE 18.16 Just a review of the hard work completed in the last chapter.

then suddenly jumps back up and keeps
shooting (Figure 18.18).

Step 14: Find EllenEnemy@Death From The Back
in the NPC folder and bake its Root Transform
Position (Y). Do this by selecting EllenEnemy@
Death From The Back, and then in the Inspector,
click on the Animation tab and scroll down to
Root Transform Position (Y). Click on Bake Into
Pose and then click Apply (Figure 18.19).

Step 15: Test. EllenEnemy should at least fall to the
ground, although she also hops right back up.

Step 16: Delete some components so that EllenEnemy
knows she’s done. The things that are keeping
her alive and moving are the NavMeshAgent and
EllenEnemyAIScript. When her health is below 0,
delete the unused Components (Figure 18.20).
Save and return to Unity.

656

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.18 Strange happenings in our animator.

FIGURE 18.17 Checking health and playing the death animation if it gets below 0.

657

Health and Inventory

FIGURE 18.19 Baking the Root Transform Position (Y) into the animation. This will cause the animation to control where it sits

in Y when it falls (and not the NavMeshAgent).

FIGURE 18.20 Deleting components and resetting triggers that are no longer needed once she plays her death animation. This

gets rid of more than needed, but it will keep unnecessary work from being done by components that aren’t needed any longer.

Step 17: Test. Once EllenEnemy is out of health,
she’ll collapse properly and will remain there
(Figure 18.21).

Tips and Tricks

Remember that to be able to talk to (including Destroy)

NavMeshAgent, we need to add:

using UnityEngine.AI;

to the top list of libraries.

Step 18: Finally, make sure that the grenade is a one-
shot-one-kill weapon. Open GrenadeScript and
edit it to mimic Figure 18.22.

Step 19: Apply the Prefab Overrides for EllenEnemy.
Save the scene.

658

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.21 EllenEnemy, when out of health stays down.

FIGURE 18.22 Using what we know to make the grenade to 50 damage.

Step 20: Just for fun, go back to MainLevel and give
it a try. All the instances of EllenEnemy that were
placed in the last chapter should now come after
the player. And importantly, the player should be
able to shoot at and frag EllenEnemy.

Tutorial Conclusion

Health systems really are not terribly difficult. Remember

that health is a number, and create mechanics to change

it (DoDamage() or DoHealing()), and then decide who can

talk to those functions and you’re done.

Since the player’s interface currently doesn’t show that

they are hit, it’s a little unfulfilling. But in the next chapter

we’ll provide UI the clue about the player as to whether

they’re in trouble or not.

Tutorial 18.3: Ammo

Ammo is like a health script for bullets. As long as we can

track the number of bullets, we can then subtract when

the player fires or add when they pick up an ammo pack.

The trickiest part of this tutorial is just making sure

to place the new code in places that makes sense.

EllenEnemy will have unlimited ammo, so no need to

worry about her. But the player needs to have an ammo

count. Currently, the game is tracking the mechanics

of the player’s weapons in PlayerControlScript. This is

really the best place to keep track of ammo. And in fact,

if you have been following the tutorials, the variables

for grenadeAmmo and bulletAmmo are already created

(Figure 18.23).

The task then is making sure we know how to subtract

from these ammo counts (when the player pressed Fire1)

and how to add to them (when the player runs over an

Ammo Pack in the game).

Before we get into that, we can decide how the game is

going to play. For simplicity’s sake, let us assume that the

player will begin the game with both the pistol and the

659

Health and Inventory

grenade launcher and that both have their ammo clips

full. Let us also arbitrarily decide that the player can hold

three grenades at a time and can fire 12 bullets before

having to reload. However, the player can carry up to 36

bullets at a time.

Step 1: Create a new variable of type int called
“bulletsInClip”. Although it doesn’t need to be in
this exact place, Figure 18.24 shows it declared
right after the bulletAmmo variable.

Step 2: Load the character up when the game starts.
Assume that the character has started with
weapons that are fully loaded. So they have

660

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.23 The variables bulletAmmo and grenadeAmmo have already been

created in PlayerControlScript (or they should have anyway). If they aren’t in yours, be

sure to create them.

FIGURE 18.24 Creating a new variable to keep track of how many bullets are left

in the clip. This will allow us to track how many bullets can be fired before reload is

needed.

3 grenades, 12 bullets in their clip, and another
24 rounds (36 bullets). In Start(), assign values
(Figure 18.25).

Why?

This will overwrite some values we’ve entered for Grenade

Ammo and Bullet Ammo out in the Unity Editor, but that’s

alright. Eventually, these variables will be made private

anyway (once we have UI).

Step 3: Subtract one from the grenadeAmmo count
each time the player presses Fire1 and the
activeWeapon = “Grenade” (Figure 18.26).

Step 4: Prohibit the player from actually firing a
grenade if they are out of ammo. Do this by
placing another if statement that checks for the

661

Health and Inventory

FIGURE 18.25 Creating via script the ammo counts.

FIGURE 18.26 Subtracting one from grenadeAmmo each time the player presses Fire1 and the grenade launcher is active.

ammo count (Figure 18.27) and putting all the
script that fires the grenade within that group
(Figure 18.27).

Step 5: Rearrange the Gun section to work the
same way (Figure 18.28). However, we need to
keep track of both our total ammo count and
the rounds in the clip. Notice that there is an
adjustment before the reloading section that is
checking for bulletsInClip (instead of what used
to be bulletAmmo).

662

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.27 Checking to see if there are still grenades available before firing.

FIGURE 18.28 Adjustments to the script to reduce both bulletAmmo and bulletsInClip when pressing Fire1.

Step 6: Adjust the IEnumerator BulletReload()
to utilize our new bulletsInClip paradigm
(Figure 18.29). Note that this replaces the line
that used to be there that reset the bulletAmmo.
Save and return to Unity.

Step 7: Test. The pistol should work very well,
reloading every 12 bullets until all 36 are
expended. Then when Fire1 is clicked, nothing
happens. However, the grenade launcher
won’t work quite as well. Likely, when the
player finished firing three grenades, even
though they won’t be able to fire a fourth, the
animation that reloads the grenade launcher
will still play. This give us a chance to review
the Animator.

Step 8: Open the EllenGrenadeController.
Hopefully this is easily found in the Animator
Controllers folder of the Inspector. But if
not expand FPSController>FirstPersonChar
acter>Ellen_GrenadeLauncher and double
click it from the Animator component there
(Figure 18.30).

Step 9: Create a new Boolean parameter called
“needsReload”.

Step 10: Adjust the attack_anim->reload_anim
Transition so that it only occurs when
needReload is true (Figure 18.31).

663

Health and Inventory

FIGURE 18.29 Making the BulletReload() work reset the bullets in the clip (but not the players overall bullet count).

Why?

It’s important to notice that this Transition had not

conditions before. This meant that every time attack_

anim was done playing, it automatically shifted to reload_

anim. This was why, even though the player couldn’t fire

another grenade, the animation was still playing showing

664

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.30 The EllenGrenadeController from our earlier efforts. Hint: the problem is in the transition highlighted with the

red arrow.

FIGURE 18.31 After creating a needReload parameter, the transition from attack_

anim to reload_anim can have a new Condition created.

the reload anim. By placing this condition there (which the

pistol has, by the way), we can make sure and check to see

if the Boolean is true before playing the animation.

Step 11: Check to see if there are still grenades
available before turning the needReload boolean
on for the EllenGrenadeController. This has two
parts. First adjust the code to match Figure 18.32
so that it only fires the ReloadGrenade()
IEnumberator if grenadeAmmo > 0. Otherwise,
turn needReload off (because there are no
grenades available).

Step 12: Add the line of code shown in Figure 18.33
to the ReloadGrenade() IEnumerator. Save and
return to Unity.

Step 13: Test. The grenade launcher should now fire
three grenades, but not reload a fourth because
it hasn’t one.

665

Health and Inventory

FIGURE 18.32 Checking to see if there are still grenades left before deciding what animations to play.

FIGURE 18.33 Flipping on the needReload Boolean.

Reloading Ammo

Believe it or not, we’ve just completed the hardest part.

Reloading the ammo will be piece of cake. The basic idea

is we will create two new scripts (one for a bulletPack and

one for a grenadePack) that, when the player runs over

them, will reach out to this PlayerControlScript and reset

the numbers for the respective ammo count.

Step 14: Bring in AmmoPacks from the support files
on the website. After downloading them from
the website, use Asset>Import Package>Custom
Package…and go grab it. This will place two
prefabs into the Prefabs folder: BulletsPack and
GrenadePack. Drag them out into the scene
(Figure 18.34).

Why?

There is nothing particularly special about these assets.

They have a custom shader on them with a Fresnel

effect for visual pizzazz. However it is important to

notice that both of the prefabs have a Box Collider that

has Is Trigger checked. I bet you can see where we’re

going with this…

666

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.34 Two prepared ammo packs.

Step 15: Inside of PlayerControlScript, create a couple
of functions that do the work of resetting the
guns back to full ammo, turning the appropriate
Booleans on, and making the dummyGrenade
visible again (Figure 18.35).

Why?

This script already knows all the variables for the ammo

numbers. It knows who the dummyGrenade is. And it

knows the Booleans necessary to allow the guns to be

fired again. Therefore, it’s best to do all the resetting in

functions in this script.

However, just because the functions are in this script

doesn’t mean other things can fire these functions…

Step 16: Create a new script called BulletReloadScript
(Figure 18.36). Save.

667

Health and Inventory

FIGURE 18.36 BulletReloadScript.

FIGURE 18.35 Creating public functions that reset the weaponry.

Why?

So this is doing things we’ve seen before with one new

addition. We know what OnTriggerEnter does, and we’ve

seen the process of checking if the thing that entered the

trigger is tagged “Player”. We’ve even seen the process of

getting a script on the thing that entered the trigger. This

is very similar to our DoDamage() methods of earlier. Only

here, we’re firing a public function that resets everything

needed for the bullet ammos.

Step 17: Create a new script called
GrenadeReloadScript (Figure 18.37). Save and
return to Unity.

Step 18: Apply BulletReloadScript to the BulletsPack
and the GrenadeReloadScript to the
GrenadePack.

Step 19: Test. Fire all the ammo for the grenade
launcher, and then run over the GrenadePack.
The dummyGrenade should appear on the end
and the player should be able to fire again.

Step 20: Apply the Prefab Overrides to BulletsPack,
GrenadePack, and HealthPack (if not done
already).

Step 21: Save the test level.
Step 22: Open MainLevel and populate it with

strategic ammo and health packs throughout
(Figure 18.38).

668

Creating Games with Unity, Substance Painter, & Maya

FIGURE 18.37 GrenadeReloadScript.

Conclusion

Only one chapter to go. At this point, we have most of the

mechanics in place. But even though the player’s health

is counting down, there’s currently nothing telling the

player that they’ve lost if their health reaches 0. This is also

the case for their ammo count. To solve these problems,

we need to provide a User Interface (UI) for the player to

provide visual feedback.

We’ve touched on it briefly for the reticle, but in the next

chapter we will dive into more robust uses of Unity’s UI

system to inform the player of how to play the game, how

they’re doing in the game, and whether they’ve won or

lost.

669

Health and Inventory

FIGURE 18.38 Placed health and ammo packs. Particularly look at getting them in

the armory, and just before you enter to meet the boss.

https://taylorandfrancis.com

CHAPTER 19

UI

Untill now, we have been doing a lot of work behind the

scenes. There are hundreds of lines of code that are doing

all sorts of work, but from the player’s perspective, the

current game consists of walking around a darkly lit space

with AI coming out of the shadows to shoot, but not do

any damage.

It’s time now to start to build feedback for the player so

that they know what the game is about, what their goal

is, how to win, and what their health and ammo is. This

is usually done through some form of User Interface (UI),

sometimes called Graphical User Interface (GUI).

671

Unity’s approach to this has been a shifting one. The

approach they have settled on most recently is graphically

based; the developer can actually lay things out visually.

But there is still a perspective shift that needs to happen.

Up to now, working in Unity has been largely in a 3D

space. The user views this 3D space through a virtual

camera that draws the objects, textures, lightings, and

animations the developer has placed there. For UI, we

need to start adjusting to thinking in “screen space.”

Screen Space

Consider the two screenshots show in Figures 19.1 and

19.2. Both of these are the same scene. In both, a Canvas

has been created for the UI. In Figure 19.1, there are three

things to note. First, the little red circle is actually the

entire 3D scene (itty, bitty, tiny). The big white square in

that scene represents the Canvas in which the UI will be

built. Notice that the shape of the big white square in the

Scene window is the same shape as the Game window.

This can be seen in Figure 19.2. As the Game window is

resized so that it’s wide and short, the Canvas in the Scene

view does the same thing.

This is similar to how games work. The game a developer

builds could end up being played on a wide variety of

different screens of varying sizes, shapes, and resolutions.

672

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.1 A UI Canvas. Note the entire 3D scene inside the red circle, and the shape of the Canvas matches the Game window.

The goal then in UI is to create a system that is flexible

in a variety of screen situations. Roughly, each pixel of

the screen is translated into the 3D space as a unit. That

is why the Canvas appears so huge in relationship to the

3D space.

So the goal is to make sure that interface experience is

relatively consistent for players on a variety of machines.

Unity does this in two ways:

 1. The Canvas includes a component called Canvas

Scaler. What this will do is rescale the canvas – and

importantly, all the elements within it – to match

the resolution of the player’s screen. By default,

this is set to a Constant Pixel Size, which is useless

and should almost always be changed to Scale with

Screen Size.

 2. Unity allows for two important ideas: a pivot and

an anchor. The pivot is similar to the pivot in 3D. If

the pivot of an element is in the center, it will rotate

around that center; but if the pivot is on the bottom

left corner (for instance) of the element, it will rotate

the entire object around that corner. The anchor is

where Unity pins the element to within the Canvas.

So an image with its pivot on the bottom left, that

is anchored to the bottom left of the Canvas, will

always show on the bottom left of every user’s screen.

673

UI

FIGURE 19.2 Notice that the Game window is resized, and the Canvas is resized as well.

An element with a pivot in the middle that is anchored

to the middle of the canvas will always appear in

the middle of the screen. However, if a developer is

working with a screen that is 1920 × 1080 and has a

UI element that is 200 × 200 and sets the pivot to the

center and the anchor to the center, and then moves

the element to the bottom left (which means she

moved it 760 pixels to the left, and then 340 pixels

down), Unity will record its location as X = −760 and

Y = −340 from its anchor. The problem is that if a player

then opens this file on a screen that is 800 × 600, Unity

would move it 760 pixels to the left from the middle –

and since there are only 400 pixels to the left of center

on that screen, the UI element is completely missing

from this player’s experience. If something is meant to

be on the bottom left, top right, bottom middle, etc.

Be sure to be thinking of setting both the Pivot and

the Anchor to that location.

We will be doing this in action in the course of these

tutorials, but talking through the ideas ahead of time will

help make the process reasons make more sense.

Tutorial 19.1: Reticle,
Ammo, and Health UI

In this tutorial, we will import and assemble the UI

elements for game play. This will include the reticle so the

player knows where they are firing, ammo indicators for

the gun and grenade, and a health indictor to show what

the player’s health is.

We’ll build this right within MainLevel as these sorts of

changes don’t transfer between levels quite as easily as

prefabs.

Step 1: Open MainLevel.
Step 2: Create a Canvas for UI. Select

GameObject>UI>Canvas. Two objects
will appear in the Hierarchy: Canvas and
EventSystem (Figure 19.3).

674

Creating Games with Unity, Substance Painter, & Maya

Why?

Don’t delete either of these objects. The EventSystem

contains the mechanics that allow things like buttons to

work. With students, it’s very common to have them ask

about a non-working UI system and, after a long time

looking at code, the instructor finally asks, “Did you delete

the EventSystem?” “Yeah,” they respond, “I didn’t put it

there and didn’t know what it was for so I got rid of it.”

Remember, you need this object. Don’t delete it.

The Canvas will hold the UI elements that are tied to

Screen Space. There are other ways to work with Canvas

(and we will in a bit); but for the main UI (reticle, health,

and ammo indicators), these will all be tied to this Canvas.

Step 3: Configure the Canvas. Select Canvas in the
Hierarchy, then in the Inspector set UI Scale
Mode: Scale With Screen Size and in Reference
Resolution X: 1920 Y: 1080 (Figure 19.4).

Why?

As discussed in the introduction, this will make sure that

the elements within this canvas get bigger or smaller

in accordance with the resolution of the player’s screen

resolution. 1920 × 1080 is 1080p and the resolution of

most folks’ monitors these days, and so it is a good place

675

UI

FIGURE 19.3 Establishing a UI system in Unity always consists of at least a Canvas

and an EventSystem.

FIGURE 19.4 Canvas Scaler settings.

to start with. The value could be other things, 800 × 600

for instance; just as long as it’s not changed after its set

and UI elements are built.

Step 4: Import the UI texture files. On the support
website is a folder called “UI Elements”. In this
folder, are several PSD and PNG files that we’ll use
for the rest of this tutorial. You may have already
imported Recticle into the UIElements folder in
the Unity project (check the Project window); if
you have, don’t import that, but bring in the rest
of the images by dragging them from the finder
into the UIElements folder in Unity, or right click
on UIElements and choose Import New Assets…

Step 5: Set Ammo_BG, Ammo_Bullet_FG, Ammo_
Grenade_FG, Ammo_Magazine_FG, and
Health_FG to be imported as Sprites. Select all
the new assets just imported in the UIElements
folder, and in the Inspector change Texture Type:
Sprite (2D and UI). Hit Apply.

Why?

This will see the alpha channels for all the textures and

prepare them for a lightweight implementation into Unity.

Note that they are all a very boring gray. This is by design.

In Unity, 50% gray means that we can change the color

however we desire. Pure white or pure black images are

tough to get just right, and moving an image that is (for

example) blue to red is even worse. A 50% gray image will

let us change the color to anything we want.

Step 6: Create the Reticle. Select Canvas and then
select GameObject>UI>Image. Rename it Reticle.
In the Inspector, look for the Rect Transform and
click the button in the top left (Figure 19.5) to set
the Pivot and Anchor. As a review, hold the Alt
and the Shift buttons down and click the Center/
Middle button.

Step 7: Resize Reticle to 70 × 70. Still in the Inspector,
change the Width/Height to both read 50.

Step 8: Plug the Recticle Sprite into the Reticle UI
Element. Drag Reticle from the UIElements folder
into the Image>Source Image input field in the
Inspector. Adjust the Color/Opacity as desired.

676

Creating Games with Unity, Substance Painter, & Maya

Step 9: Create the Ammo backgrounds. Create a new
UI Image (GameObject>UI>Image) and rename it
“BulletAmmo_BG”. Then set its pivot and anchor
to the bottom left (Figure 19.6); remember do this
in the Rect Transform using the Anchor Presets
button and holding down the Alt and Shift
buttons when clicking the bottom left button.

Step 10: Set BulletAmmo_BG so that its Width and
Height are 150.

Step 11: Assign the sprite Ammo_BG from the
UIElements in the Project window to the Source
Image input field in the Inspector. Adjust the
color as desired (Figure 19.7).

Step 12: Create GrenadeAmmo_BG. Do this quickly
by duplicating BulletAmmo_BG (this will also

677

UI

FIGURE 19.5 Setting the Pivot of the Reticle to the center of the image and

anchoring it to the center of the Canvas.

678

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.6 Locking the BulletAmmo_BG to the bottom left corner of the UI.

FIGURE 19.7 BulletAmmo_BG placed in scene with assigned sprite and color

adjustments.

duplicate its Pivot and Anchor) and rename it to
“GrenadeAmmo_BG”.

Step 13: Position GrenadeAmmo_BG to be a little to
the right of BulletAmmo_BG. This can be done
numerically or visually. Let’s do it visually by
selecting GrenadeAmmo_BG in the Hierarchy
and hitting F to frame it in the Scene window.
Swap to the Move tool (W) and slide it in X (red
handle) so that it’s offset from BulletAmmo_BG
(Figure 19.8).

Why?

It’s important to see that both of these backgrounds have

the same pivot and anchor. Because of this, the screen

size could change and these two elements would remain

at the same distance from each other. However, their

distance from the Reticle (which has a different Pivot/

Anchor) would change.

Step 14: Create Health_FG. Do this by duplicating
GrenadeAmmo_BG and renaming it “Health_
FG”. Then move it to approximate Figure 19.9.
Finally, plug Health_FG from the UIElements
folder into the Source Image input field.

Step 15: Create the grenade indicators. Start with
a fresh UI Image (GameObject>UI>Image).
Rename it “GrenadeIndicator1”. Make it a child
of GrenadeAmmo_BG. Use the Anchor Presets
to set the Anchor and Pivot to the Center/Middle.

679

UI

FIGURE 19.8 Offsetting GrenadeAmmo_BG.

Set the Width/Height settings to 50. Finally, use
the sprite Ammo_Grenade_FG to define the
source image (Figure 19.10).

Why?

Wait a minute…didn’t we just say it was important

for the UI elements down here in the left corner to all

share the same Anchor/Pivot? We did, but by making

this GrenadeIndicator1 a child of GrenadeAmmo_BG,

the Anchor/Pivot will set a relationship to the parent

680

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.10 Creating and placing the GrenadeIndicator1.

FIGURE 19.9 Creating the Health_FG UI element.

(not the Canvas). Centering this indicator and the two

indicators to come at Center/Middle will make sure that

they maintain their relative position and size to the BG.

Step 16: Duplicate and position two more
GrenadeIndicator2 and GrenadeIndicator3 to
roughly match Figure 19.11. All that needs to
happen is to duplicate, rename, and position.

Step 17: Create 12 BulletIndicators. These were done
in the same way as Step 16 except (of course)
these indicators are children of BulletAmmo_BG
and use Ammo_Bullet_FG as the sprite. The
exact placement isn’t important; however, we
will need space below them for a number to
indicate how many clips remain (Figure 19.12).

Step 18: Create two BulletClipIndicators. Again,
these should be children (and centered on)
BulletAmmo_BG. The look should roughly
approximate Figure 19.13.

Health Indicator

The UI plan here is to make a bar that sits behind the

Health_FG that will get smaller as the player’s health

decreases. There are some coding tricks we’re going to do

later that will scale that UI element. But to make the math

easier, we’re going to create a UI Panel and give it some

681

UI

FIGURE 19.11 Duplicating, renaming, and positioning the other GrenadeIndicators. Adjust color if desired.

682

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.12 Bullet Indicators.

FIGURE 19.13 Creating clip indicators. These are also children of BulletAmmoBG.

specific measurements that will be easier to adjust later.

This also mean that the setup is a little strange, but the

benefits will become more clear later.

Step 19: Create a UI Panel. GameObject>UI>Panel.
Rename to “HealthIndicator”.

Step 20: Use the Anchor Presets button and set
HealthIndicator’s Anchor and Pivot (hold Shift
and Alt down) to the bottom left (Figure 19.14).

Why?

This is not going to be a child of the Health_FG…if it

was, it would be in front (and we need it to be behind).

683

UI

FIGURE 19.14 Setting pivot and anchor for HealthIndicator to bottom left.

As a result, its anchor needs to coordinate with the

Health_FG so they stay locked together if the screen is

resized by a player.
Step 21: Change Width: 50, Height: 100.

Why?

This seems arbitrary, but that Height: 100 is carefully

planned. Height = 100, Health = 100…see the idea? Later

when the health goes down, we’ll adjust the Height value

to match.

Step 22: Use the Move Tool to move HealthIndicator
so the bottom of the panel is at the bottom of
the character outline’s feet (Figure 19.15). Don’t
worry for now if it’s as tall at her head.

Step 23: Use the Scale Tool to scale HealthIndicator
to cover the outline. Hit R to activate scale and
scale HealthIndicator so that it completely covers
the outline (Figure 19.16).

684

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.15 Aligning (by moving) the HealthIndicator so the bottom aligns with the bottom of the feet of the character

outline.

Why?

Notice that when scaling, the Width and Height settings

remain at 50 and 100, respectively. This means that our

Height = 100 is still intact and we can use it later to tie it

easily to the Health value.

Step 24: Put the HealthIndicator behind the
Health_FG by changing the order it appears in
the Canvas. It should appear before Health_FG
(and thus be drawn first) and can be moved by
selecting it in the Hierarchy and moving it above
Health_FG (Figure 19.17).

Step 25: Adjust HealthIndicator color to taste
(Figure 19.18).

Tutorial Conclusion

And with that, the UI elements are in place. The don’t do

anything yet, that is still to come in code. But the pieces

are ready to take instructions. Feel free to adjust colors as

desired, even change the overall size.

685

UI

FIGURE 19.16 Using Scale to make HealthIndicator the desired size without

changing Width and Height settings.

Tutorial 19.2: Using Code
to Effect UI Elements

In this tutorial, we will write code that changes the UI. In

some cases, we’ll just turn elements on and off and, in

others, we will change the size. In all cases, we will use

code we’ve already started to effect the UI elements we

built in the last tutorial.

Step 1: Open PlayerControlScript.
Step 2: Make sure PlayerControlScript knows the

library UnityEngine. Add the line shown in
Figure 19.19 to the top with the other Libraries.

Step 3: Create public variables of type Image for all
of the bullet indicators (Figure 19.20) so that the
script will know these UI Images.

Step 4: Repeat for the bullet clip indicators and
grenade indicators (Figure 19.21). Save and
return to Unity.

686

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.18 Adjusted color on HealthIndicator.

FIGURE 19.17 Changing the order in the Hierarchy changes which UI element is drawn first and which are drawn later (and

thus on top of earlier ones).

Step 5: Back in Unity, populate all the new public
variables. This can take a while, but make sure
they are all filled in with the actual objects from
the Hierarchy (Figure 19.22).

Tips and Tricks

If this were not in a book, this would usually be

done with script (i.e. bulletIndicator1 = GameObject.

Find(“BulletIndicator1”).GetComponent<Image>();). But

the script is getting too long to indicate easily in the

screenshots, so we will be using a public variable method

like this for now.

687

UI

FIGURE 19.19 Making sure this script will know how to talk to UI objects.

FIGURE 19.20 Creating variables to store all of the indicators for the bullets. The

names are arbitrary.

FIGURE 19.21 Creating variables to store the bullet clip indicators and grenade

indicators. The names are arbitrary.

Additionally, there are some great ways to organize a list

of variables that are a bit beyond the scope of this book

(Headers, etc.), but take a look at the API as your code gets

larger and more complex.

Case Switches or Switch
Statements

These can be thought of as variants of if statements.

The general form of these is to create a switch, and

then depending on what is in the switch to change the

action. So, in the case the ammo is equal to 11, turn off

bulletIndicator1. In case the ammo is equal to 10, turn off

bulletIndicator2, and so on.”

Step 6: Create a new function to handle the UI for the
bullet indicators. It should look something like
Figure 19.23.

688

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.22 Filled in variables.

Why?

Notice that the last chunk of code there is:

default:

 break;

That’s actually pretty important and required to make

sure the game doesn’t crash if something goes wrong. It’s

an easy part of a Switch statement to forget…but don’t.

Step 7: Tell PlayerControlScript when to fire this
new function. When the bulletsInClip count is
changed (up where the player hits Fire1 and
it checks for the active weapon), the script
needs to fire the new UpdateBulletUI() function
(Figure 19.24). Save and return to Unity.

Step 8: Test. Play the game and fire the pistol. As the
player fires, the UI should update with individual
shell icons switching off (Figure 19.25).

689

UI

FIGURE 19.23 Function using a Switch Statement to turn UI off depending on how

many bullets are left in the clip. Notice the break part way down (it’s a long function),

but the pattern should be clear.

Step 9: Turn the bullet indicators back on after
reload. The script already contains an
IEnumerator BulletReload() that resets the
bulletsInClip to 12. Here is the natural place to
flip all the indicators back on. Save and return to
Unity (Figure 19.26).

Step 10: Test. Back in Unity, fire until the pistol needs
to reload. After it has done so, the UI elements
should turn back on.

690

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.24 Telling the script to fire the UpdateBulletUI() function when the

bulletsInClip amount changes.

FIGURE 19.25 Changing UI as the pistol is fired.

Step 11: Expand BulletReload so that when the
player reloads from a clip, it turns off one of the
clipIndicators. The code shown in Figure 19.27 is
at the bottom of BulletReload().

Step 12: Turn the clip indicators back on when
the character picks up an ammopack.
ResetBulletAmmo() is the function where the
bulletAmmo is reset, so this is a natural place to
turn the clip indicators back on (Figure 19.28).
Save, return to Unity, and test.

Step 13: Create function with Switch statement to
turn off grenade indicators (Figure 19.29).

691

UI

FIGURE 19.26 Turning the bullet indicators back on after reload.

FIGURE 19.27 Checking to see how many bullets are left, and based on that

number, turning off the resulting clip UI.

692

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.28 Turning the clip indicators back on when the character has loaded

up on ammo.

FIGURE 19.29 Updating the grenade indicators.

Step 14: Fire the UpdateGrenadeUI() function
whenever the number of grenades change
(Figure 19.30). Just find where grenade--; is, and
that’s the place to update the code.

Step 15: Turn the grenade indicators back
on when the player picks up new ammo.
This is done currently in the script in the
ResetGrenadeAmmo() function (Figure 19.31).
Save and return to Unity.

Step 16: Test. At this point, all of the ammo UI should
be working.

Health UI

Thus far in this tutorial, the process has been switching

UI images on and off by enabling/disabling the Image

component. But UI can be manipulated in many more

ways. Although we won’t deal with it here, UI can have

its material adjusted, it can be animated, and it can have

animated masks (just to name a few of the things it

can do).

693

UI

FIGURE 19.30 Updating the grenade indicator UI whenever the number of grenades

change.

FIGURE 19.31 When new grenades are picked up, the UI indicates it.

For now, we’ll look at adjusting the size of an element –

the HealthIndicator as the layer’s health value changes.

To do this, we will work with something called

RectTransform.sizeDelta. RectTransform = Rectangle

Transform, and it is the 2D paradigm that the sprites of

UI work within.

Step 17: Open PlayerHealthScript.
Step 18: Add UnityEngine.UI; to its libraries.
Step 19: Create a new variable called healthIndicator

that will store a RectTransform (Figure 19.32).
Save and return to Unity.

Why?

Yes, we could be storing healthIndicator as a GameObject,

or as an Image, or as a host of other things. But by storing

it as a RectTransform, we can save quite a few keystrokes

later when using RectTransform.sizeDelta.

Step 20: Plug in the HealthIndicator object into the
Health Indicator input field in Player Health Script.

Step 21: Make health equal the sizeDelta (Height) of
healthIndicator. Do this back in PlayerHealthScript.
Add the line shown in Figure 19.33.

Step 22: Add the same line to the DoHealing()
function since the health value changes there
as well and the UI should change to show it
(Figure 19.34). Save and return to Unity.

Step 23: Test and pick a fight with an EllenEnemy.
As her bullet hits the player, the UI for the Health
indicator should decrease (Figure 19.35).

694

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.32 Storing the RectTransform that will be adjusted when the health

changes.

Tutorial Conclusion

That’s it. Once the UI has been set up, tying things

together so that numbers actually affect the UI is not

difficult, if the developer can just track down when the

numbers change. Once that’s understood, the UI can be

695

UI

FIGURE 19.33 Using RectTransform.sizeDelta to tie the Height of the HealthIndicator

to the actual value of health. Remember that the size of the health indicator was

50 wide and 100 tall.

FIGURE 19.34 Updating the Height of the HealthIndicator when health goes back

up as well.

FIGURE 19.35 On the losing side of a fight with EllenEnemy. As health goes down in

the script, the UI changes to alert the player.

changed (in our case) by turning things on and off and

changing the size.

But that’s not all. Coming up, we’ll start to use UI to create

buttons and move between levels.

Tutorial 19.3: Buttons and
Moving between Scenes

This tutorial will focus on interactivity of UI elements. We

will also use it to show how to move between scenes so

we can have an intro scene, the game scene (our current

MainLevel), and a Game Over scene.

Step 1: Create a new scene (File>New Scene).
Immediately save the Scenes folder as
“IntroScene”.

Step 2: Populate for beauty. Figure 19.36 is one
solution. Just some quick notes: after creating
the new level, to get the scene completely black
we changed the Main Camera’s Volume Layer
Mask: Nothing, Probe Layer Mask: Nothing. Then
the Directional Light and Sky and Fog Volume
were deleted. Assets from the prefab folder
were assembled and some new lights put into
position. Build as you’d like. However, buttons
will run down the left side of the screen in this
example, so an offset composition can be useful.

Step 3: Import button UI elements. In the support
files for this chapter are four button images in
a folder called ButtonAssets. Import all those
assets (or the entire folder) into the UIElement
folder of the Project.

696

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.36 IntroLevel using prefabs already in the project.

Step 4: Change the Texture Type (import settings) to
Sprite (2D and UI) for all four.

Step 5: Create a UI Canvas
(GameObject>UI>Canvas). In the Inspector,
change its Canvas Scaler to UI Scale Mode: Scale
with Screen Size and Reference Resolution X:
1920, Y: 1080.

Step 6: Create a UI Button (GameObject>UI>Button).
Rename it “StartButton”.

Step 7: Set the Anchor and Pivot to the Center/
Middle. This will stick the button right in the
middle of the screen.

Step 8: Use button_normal as the Source Image.
With StartButton selected in the Hierarchy,
drag button_normal from the UIElements/
ButtonAssets folder into the Image>Source
Image input field. Still in the Image section, click
the Set Native Size button (Figure 19.37).

Step 9: Use Sprite Swap. Still in the Inspector,
scroll down to the Button component. Change
Transition: Sprite Swap.

Why?

The default mode for Transition is Color Tint. This can

work fine as it will change the color of the button as the

mouse moves over the button, or the player clicks it. But

we have prepared other versions of the button to control

these states. These will allow for a more sophisticated

visual effect.

Step 10: Test. Play the game and click that button to
see how the sprite states work.

697

UI

FIGURE 19.37 Using an imported image to define the regular state of a button.

Step 11: Download and import a custom font. Unity
works well with TrueTypeFonts (.ttf). There are
thousands of free.ttfs online (1001freefonts.com,
and others). Just Google “free ttf,” and loads of
options will present themselves. When the font
it downloaded, it will likely be in a.zip archive.
Unzip before import. Import is easiest here by
dragging the fonts from the Finder into the
Project window. And of course, fonts are small,
so grab multiple fonts while looking for the
right one.

Step 12: Change the text to “Start” and use a new
font. Expand the StartButton and see that there
is a child UI Text object there. The text can be
changed in the Inspector. There, the font, the
font size, the alignment, and color can easily be
changed (Figure 19.38).

Tips and Tricks

The Text UI can be a little tricky. There is a temptation to

put text in and then just scale the text up using the Scale

tool, but this always results in crummy looking fonts.

The correct thing to do is increase the Font Size setting

in the Inspector. In fact, sometimes the best thing to fix

crummy fonts is making the Font Size much, much bigger,

698

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.38 Changed UI Text using a new font.

http://1001freefonts.com

and then scaling the object down. This will provide

sharp fonts.

The other things that’s tricky about the UI Text is

that sometimes as the font size gets big, the text just

disappears. The reason for this is that the text has

grown larger than the Rect built to hold it (the text box).

Figure 19.39 shows the Rect Tool active, and the little blue

dots (highlighted in red) show the bounds of the Rect.

Dragging those blue handles will increase the size of the

Rect (text box), and it can become big enough to show

the text again.

Step 13: Move StartButton over to the left. Do this
with the Move Tool (Figure 19.40).

Step 14: Duplicate StartButton, rename it
QuitButton, and adjust font and position to
match Figure 19.41.

Step 15: Create a new UI Text. GameObject>UI>Text.
It might be hard to see (small and dark gray),
but for now rename it “Title” and use the Anchor
Presets to set it to Middle/Center.

Step 16: Change Title’s Font and Color. Use a white
color for now.

Step 17: Use the Rect Tool to move the Title up to a
location above the buttons. Change the font to
something much bigger (Figure 19.42 is using a
Font Size: 180). Remember the Rect Tool may be

699

UI

FIGURE 19.39 Rect Tool and the handles created to adjust the text box.

needed to scale the Rect (text box) big enough to
contain the larger text.

Step 18: Use InstructionAssets to create instructions
for the player. This is all review: import
InstructionAssets from the support website.
Set all to Sprite (2D and UI). Use UI Images

700

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.40 Moving the StartButton over to allow for other text.

FIGURE 19.41 Duplicated button to create QuitButton.

FIGURE 19.42 Title in place.

(Pivot/Anchor on Middle/Center). Arrange and
label with UI Text (Figure 19.43).

Step 19: Save, and let’s make some script!

Interactive Buttons

Up to now, we have been leveraging the built-in

components of the UI Button. There are two parts to each

by default: the graphical element, and the Text overlaid on

that button. The text can be deleted altogether if desired.

The graphical part of the button has several components

built in. We’ve already looked at the Image section, and

have interacted a bit the Button part (Figure 19.44) – this

is where we defined the various states of the Sprite Swap.

However, the important thing now is at the bottom of the

Button component: On Click().

OnClick() does what you would guess: when the player

clicks on this button, what should happen? This can be a

rich environment full of complex interactions, but for this

book the focus will be on firing a particular function on a

particular object. In this situation, the particular functions

the buttons will fire will either move us onto the game or

quit it altogether.

Step 20: Create a new empty GameObject and call
it “ScriptHolder”. It’s location is unimportant in
the scene.

Step 21: Create a new C# script called
“MenuInteractionScript” and apply it to
ScriptHolder. Open MenuInteractionScript.

701

UI

FIGURE 19.43 Providing instructions on how to play for the player. Adjust to taste.

Step 22: Add a new library to allow for the
management of scenes in Unity (Figure 19.44).

Step 23: Create a new function: LoadMainLevel()
and match Figure 19.45.

Step 24: Create another function that quits the game
(Figure 19.46). Save and return to Unity.

Step 25: Tie the buttons to these new functions.
First, select StartButton in the Hierarchy. In the
Inspector, scroll down to the Button component
and click the + button. Drag ScriptHolder from
the Hierarchy into the input field that reads None
(Object). Finally, click on the No Function pulldown
menu and choose MenuInteractionScript>Load
MainLevel() (Figure 19.47).

Step 26: Repeat for QuitButton; only make sure it
uses MenuInteractionScript>QuitGame().

Why?

In both of these situations, this only works if the functions

are public (which both LoadMainLevel() and QuitGame() are).

702

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.44 In order to load different levels/scenes in Unity, we must use the

SceneManagement library.

FIGURE 19.45 Creating the mechanism to load the MainLevel scene.

FIGURE 19.46 Function to quit the game.

Step 27: Set up Build Settings so the SceneManager
can do its work. Select File>Build Settings. In the
Build Settings window, drag (from the Inspector)
IntroLevel and MainLevel into the Scenes In Build
Section (Figure 19.48). Close the Build Settings
window.

Why?

In Unity’s vernacular, a “Build” is the actual game that a

player would play. It will contain the executable and all

other needed files to run the game. The Build Settings

window allows developers to decide which platform

to build to (bottom left) and which Scenes to actually

include. If this isn’t filled out to include MainLevel, then

the LoadMainLevel() function would not work.

Step 28: Test the Start button. Save IntroLevel
(File>Save) and then play the game. When the
Start button is clicked, after a brief pause, the
MainLevel should show and the game is on!

703

UI

FIGURE 19.47 Making the StartButton fire the LoadMainLevel function in the

MenuInteractionScript when it is clicked.

Step 29: Make a build to test the Quit button. Again,
open File>Build Settings. Click on the Build
button. Unity will then ask where to place the
build. DO NOT build this in the Project folder.
Instead, go to the Desktop; create a new Folder
(give it a name) and click Select Folder. Unity
will then start the process of assembling all the
necessary assets (Figure 19.49).

704

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.48 Assigning the levels created that should be included in the build.

FIGURE 19.49 Creating a build. This can take a little while, so take a break.

Why?

Application.Quit() can only be tested on a build. So in

order to make sure that Quit button works, a build has to

be output.

Even though Unity suggests that the build be put in the

Unity Project folder; it’s usually best to build elsewhere.

Builds are only distributed to players, and it will be

important to just have the important stuff included.

Building to a new folder on the desktop is an easy way to

make sure all the necessary assets (and nothing else) are in

one location.

Step 30: When the build is done, launch it (The
Escaper), and try the Quit button.

Tying Up Some Loose Ends

We now know some things that will be important for

other aspects of the game. We need a You Lose screen

and a You Win screen. We can quickly create those by

duplicating and adjusting this IntroLevel. But we also need

to start making sure that the game knows when to show

these levels. In the following steps, we’ll tie up all those

issues to make sure that when the players health <= 0, the

LooseLevel will launch and when the player hits Escape,

the game will quit.

One thing that we’ll leave undone is the WinLevel. In the

next and last chapter, we will create the final boss battle,

and the WinLevel will be brought up then when the boss

has been defeated.

Step 31: Duplicate IntroLevel twice. Name one
“LoseLevel” and the other “WinLevel”.

Step 32: Open each and adjust (Figures 19.50 and
19.51). Delete things not needed, rearrange
buttons, etc. Notice that the StartButton remains
the same, but the text has been changed to
“Try Again?”. But since trying again just means
launching MainLevel, no code needs to be
changed.

705

UI

Step 33: Add both to the Build Settings. File>Build
Settings. It doesn’t matter which order
they are in, but IntroLevel needs to be first
(Figure 19.52).

Step 34: Open MainLevel. And open
PlayerHealthScript.

Step 35: Adjust PlayerHealthScript to include the
SceneManagement library, and the command
to load the LoseLevel when health is less than 0
(Figure 19.53). Save and return to Unity.

Step 36: Test and get shot. Pick a fight with
EllenEnemy and lose it. When health is 0,
LoseLevel should pop up, and importantly, the
Play Again? Button will start the game again.

706

Creating Games with Unity, Substance Painter, & Maya

FIGURE 19.50 The LoseLevel. No new coding needed here, just a rearrangement of

UI pieces.

FIGURE 19.51 The WinLevel. No new coding need here, just a rearrangement of UI

pieces.

707

UI

FIGURE 19.52 Make sure that IntroLevel is first. But after that, just ensure that all the levels are part of the Build Settings.

FIGURE 19.53 Adjustments to make sure the game is over when health drops below 0.

Conclusion

And suddenly we have a game! Almost. Currently, there is

a lose state, but no way to win. In the next chapter, we will

build the final boss battle and make sure that the security

cameras work so the player has a way to win.

In this chapter, a new UI was built that clued the player

into their health and ammo levels. New levels to start the

game, replay when the player loses, and replay when the

player wins have been established. UI layout has been

covered, and the ability to make buttons actually do work

has been illustrated.

UI can do a lot more than this; in fact, in the next chapter

we will look at one more way to use it other than

overlaying it on the screen. But with the current tools

covered here, UI is now in your toolbox.

708

Creating Games with Unity, Substance Painter, & Maya

CHAPTER 20

Boss Battle

It’s time for the *rumbling timpani’s, lightning, lens flares*

FINAL BATTLE!! In this chapter, we’ll quickly build the basis

of the boss battle and see how to win the game. Now this

brings up an important issue of game play that we haven’t

touched: balance.

Balance is the idea that the game is fun to pick up and

difficult to master. This is an idea in the early days of Pong

and later Atari that Nolan Bushnell put forward. It was the

reason why everyone wanted to lay their quarters at the

altar of a video game cabinet.

Today, balance is as important as ever. An overpowered

player, or weapon, or mechanic, or boss can take all the

709

fun out of a game. AAA developers spend a long time

working through the details of how balanced a game is. Is

it too hard? Is it too easy? Where is the balance?

Unfortunately, in the confines of a book, it is difficult to

effectively analyze, let alone build and test balance. This

will be up to you. Instead, we will focus on the mechanics

of the weapon and the boss. That means this final battle

might turn out to be too easy (or too hard), and it will be

up to you so adjust the speed, etc. to make it fun.

But enough with the caveats. Let’s get to building game

play.

Tutorial 20.1: Final Boss

In this tutorial, we will look at using a multitude of skills

we’ve built up over this book. There will be a sort of

simplistic AI of the boss looking at the player (with a bit

of a delay). We will use IEnumerators to build in a sort of

timer so that the boss fires a rocket every 3 seconds. We

will use Instantiate to create new clones to come after the

player, new health and new ammo packs to revitalize the

player. We will expand what we know about UI to create

a health bar that is locked in 3D space to the boss. And

finally, when it’s all done and the player has triumphed,

the game will be over and the player congratulated on

their win.

Step 1: Open MainLevel and maneuver to the
FinalBoss Room.

Step 2: Adjust the hierarchy of the hero prefab. In
the Project window, find the hero prefab (not
the imported fbx). It will likely be in the Prefabs/
Modular Pieces folder. Double-click it to open it
in the Prefab Editor (Figure 20.1).

Why?

Ideally, all the geometry comes from the modeler all set

up for animation, or coding. But usually the modeler

doesn’t know the final use of the model, and it’s really

beyond their concern. So, it is not unusual to receive

710

Creating Games with Unity, Substance Painter, & Maya

an asset similar to this where all the parts are separate

meshes, but not organized in a way to allow for the

movement we would want. But by editing the prefab, we

can organize the geometry in its hierarchy so that we can

animate the boss as needed.

The play is to make the boss’ upper sphere part rotate

within the base. The base, of course, should remain still.

Step 3: In the Hierarchy, make hero_middle_sphere,
hero_outer_shell, and hero_cable_front_cable
children of hero_cable_sphere. Do this by
dragging each onto hero_cable_sphere
(Figure 20.2).

Why?

Why the hero_cable_sphere? At the top of the Unity

interface is the ability to change whether Unity is showing

the axis of a selected object at its Pivot or Geometric

Center (Figure 20.3). We have looked at this briefly before,

but here it is especially important. This needs to read Pivot

(click it if it reads Center). Regardless of where Unity shows

the pivot (in the case of showing the handle at the Center),

711

Boss Battle

FIGURE 20.1 Prefab editor for hero.

the actual pivot of the object (and the point around which

Unity rotates an object) does not change. If the gizmo is

displayed at the actual pivot, you can see where script

would actually rotate the object.

With the gizmo showing the actual pivot of objects,

move through the different parts of the hero. Most of the

objects have their pivot in a spot that isn’t centered at the

middle of the bigger sphere shape. The one that does is

hero_cable_sphere. So, quickly making everything a child

of that object makes sure that all of the top part of hero

rotates around an appropriate pivot.

By the way, if there isn’t an object with a good pivot,

another option here would be to create a new empty

gameObject, place it at the desired pivot of rotation, and

make the desired objects a child of this gameObject.

Then, in code, we would rotate the gameObject and all

would rotate around the axis desired.

Step 4: Return to MainLevel. Click the Scenes button
at the top left of the Prefab Editor window.

712

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.3 There are times when

showing the gizmo at the geometric

center is useful, but when trying to find

its actual rotation point, make sure the

gizmos are set to show the actual Pivot.

FIGURE 20.2 Creating a simple rig by making objects a child of an object with the axis in the right place.

Step 5: Move the FPSController into the
FinalBossRoom. This will allow for testing the
final boss battle without having to play all the
way through the game to get there. Save and
return to Unity.

Step 6: Create a new C# called “FinalBossScript”.
Create the code shown in Figure 20.4.

Why?

The first part of the script should look familiar. It creates

three variables, the first to store who the player is (that we

populate in the Awake() function), the second to store a

number (a float) called followSpeed that we give an initial

value of 3 to (although this could be changed later), and

the last to store where the rotation should happen from.

Then in the Awake, we populate the player variable and

the rotationPoint.

After that, lots of new things happen. First, notice that

we have a function called FixedUpdate(). FixedUpdate()

happens every frame, but happens after Unity has

calculated all the commands that are part of Update() in

this or other scripts. By using a FixedUpdate() method,

we can be sure that this code is being sure to know

where the player is before starting to calculate where

to work.

713

Boss Battle

FIGURE 20.4 The start of FinalBossScript.

The first two lines in this function are some vector

math that we don’t want to get into in this volume, but

the line

Vector3 relativePos = player.position –
transform.position;

is defining a new Vector3 (position) by subtracting the

boss’ vector3 from the player’s.

The line after that

Quaternion toRotation = Quaternion.
LookRotation(relativePos);

is calculating a new rotation value (as a Quaternion) that

is derived using LookRotation to define where the object

should rotate towards (where it should “look at”).

And then, finally, a crazy line that uses something

called “Lerp.” Lerp is actually a contraction for “linear

interpolation.” In this case, it means that it will change

the rotation over time (linearly interpolate between two

values) from its current position (rotationPoint.transform.

rotation) to a new rotation value (toRotation). It gets its

speed from followSpeed, and Time.deltaTime makes

sure the speed is the same on a supercomputer and your

grandma’s computer as it measures the speed by time

(not by frames). Notice that this line is actually one line

of code (check out where the “;” is), but for screenshot

purposes it is broken into two lines (which will still work).

We’ve already used LookAt(), and that could work here as

well. But LookAt() updates every frame, and this would

mean that the boss was locked onto the player every

frame (and it would be difficult for the boss to miss).

By creating a Lerp function, there is a little delay that

will visually make the boss move like a bigger piece of

machinery and give the player a fighting chance.

Step 7: Apply FinalBossScript to hero. And test
(Figure 20.5).

Step 8: Add a GrenadeLaunchPoint to hero. Open
the hero prefab in the Prefab Editor by double-
clicking hero in the Project window. Create a new

714

Creating Games with Unity, Substance Painter, & Maya

empty GameObject and place it just in front of
the front barrel of the hero (Figure 20.6). Rename
it “GrenadeLaunchPoint” and make it a child of
hero_cable_sphere. Return to Scenes.

Why?

Although we could make the grenade script ignore the

collider of the hero, it’s easier to reuse the same script, and

simply make sure that the grenade (that we’re about to

instantiate) is created outside the sphere to begin with.

Step 9: Edit FinalBossScript. Create the variables
to store the grenade, grenade speed, and the
launch point. Populate the launch point with
script for now (Figure 20.7).

Step 10: Create an IEnumerator called
“FireWithDelay()” (Figure 20.8).

715

Boss Battle

FIGURE 20.5 With the new FinalBossScript, hero should rotate to follow the player.

FIGURE 20.6 Creating a new grenade launch point and ensuring it is appropriate in

the Hierarchy.

Why?

While loops perform work as long as a condition is

met. In this case, while(gameObject) means: “While this

gameObject exists, keep doing the work in my curly

brackets.” The work contained in those curly brackets

should look familiar as it was copied/pasted from the

player’s grenade launcher mechanism. Then, the line to

wait 3 seconds is added as the last part of the work to do.

Step 11: For now, tell this coroutine to get going
when the game starts (Figure 20.9). Save and
return to Unity.

Step 12: Test and play. Be sure to plug in the Grenade
prefab, but then the boss should be following the
player and firing a grenade every 3 seconds.

716

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.9 Temporarily allowing the Boss to fire grenades right way.

FIGURE 20.7 Creating necessary variables for the grenade launching process.

FIGURE 20.8 Creating a loop that fires a grenade every 3 seconds.

Tips and Tricks

Depending on the lighting scheme you are currently

working with, that grenade could be a little tough to see.

Consider opening the Grenade prefab and adding a light

(or two) on the back of the grenade. Generally, make sure

these are cheap (don’t turn on shadows, etc.). Small things

like this can help make the visual effect more interesting

and let the player know when the grenade is on its way.

Step 13: Rework FinalBossScript so that the
FireWithDelay() IEnumerator only gets started
when a new function (StartFiring()) is triggered
(Figure 20.10). This is easily done by changing
Start to StartFiring and making the new function
public.

Why?

For testing, having the boss firing grenades at the start

of the game works fine. However, when this game really

starts, the boss shouldn’t be firing rockets every 3 seconds

at the player when they are on the other side of the

facility. This should only happen when the player walks

into the FinalBossRoom.

Step 14: Create a new Box Collider (trigger) that
makes the boss start firing only when the player
enters the FinalBossRoom. Do this by creating
a new empty GameObject, placing it just inside
the door to the FinalBossRoom, and adding a
Box Collider component to it. Be sure to mark Is
Trigger to on (Figure 20.11).

Step 15: Create a new script “FinalBossRoomTrigger”.
Figure 20.12 shows what this script should do.
Save and return to Unity.

Step 16: Add FinalBossRoomTrigger to the
BossTrigger object. Plug in the Boss variable
with hero.

717

Boss Battle

FIGURE 20.10 Creating a public function that will actually start the boss firing rockets.

Step 17: Test by starting with FPSController out in the
hallway (the boss should not be firing grenades),
and then walking into the room (when the boss
should start firing every 3 seconds).

Why?

Probably you’ve noticed by now that even if the boss is

firing grenades at the player, the player currently takes no

damage. This is because up to now, only the player could

fire a grenade, and the grenade doesn’t know how to do

damage to the player yet. This will be fixed in a second,

but first let’s build a health script for the boss.

718

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.11 Trigger at the entrance to the FinalBossRoom that will start the boss

firing.

FIGURE 20.12 Creating a trigger script so that when the player enters the room, the

boss gets busy and starts firing.

Step 18: Add a Sphere Collider to hero (Figure 20.13).
Notice this is the parent-most object (hero)
that doesn’t have any collider. Also notice that
this will likely break the boss for a bit as the
GrenadeLaunchPoint is likely inside of this
collider (and thus would cause any grenades to
explode).

Why?

Without a collider, this boss won’t know when it’s been hit

by the player’s grenades or bullets.

Step 19: Create a new C# script called
“FinalBossHealthScript”. Have it mimic the other
health scripts we have previously constructed
(Figure 20.14). Save and return to Unity.

Step 20: Apply FinalBossHealthScript to hero.
Step 21: Create a new tag of Boss and apply it to the

hero. Remember that this is actually a two-step
process. First, using the Tag pull down menu (on
hero), use Add Tag…to create the new tag, and
then come back to assign this new tag to hero
(Figure 20.15).

Step 22: Make the grenade to damage to both
the boss and player. This is done by editing
the GrenadeScript (creating in past tutorials).

719

Boss Battle

FIGURE 20.13 Added Sphere Collider to the hero.

Just add the two sections to check for Boss and
Player (Figure 20.16).

Step 23: Repeat for BulletScript (although this will
only need the lines to affect objects tagged as
Boss) (Figure 20.17).

Why?

Couldn’t this be done more elegantly? Heck yes. If the

enemy, boss, and player shared the same healthscript, it

wouldn’t take quite so many lines of code here. However,

in a learning situation where we are layering one idea

on top of another, this sort of clumsy approach here is

necessary. Later, as you build your own games, you will

find efficiencies we have not taken advantage of here.

720

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.14 Creating the start of FinalBossHealthScript. Notice that the comments

are leaving notes on what this will do in the future.

FIGURE 20.15 Creating and then assigning a tag of Boss to hero.

Tips and Tricks

In the process of creating a new collider around hero,

you may discover that suddenly the grenades explode

in the face of the boss. This is because the grenades are

721

Boss Battle

FIGURE 20.16 Adding the ability to do damage to both the Boss and Player.

FIGURE 20.17 Adjusting BulletScript to do damage to the boss.

instantiating inside the new sphere collider, and when

they hit the collider, they explode. Coincidentally, they are

also doing damage to the boss. If this is happening in your

game, be sure and move GrenadeLaunchPoint outside the

Sphere Collider of hero.

Step 24: Test and see if the player can lose and
the boss take damage. At this point, the
grenades launched from the boss should
explode when they hit the player and do
damage. Pretty quickly, the player should lose
the game. Similarly, select the hero so that
the FinalBossHealthScript can be seen in the
Inspector. As the player hits the boss with bullets
or grenades, the health value should go down.

Boss Health Bar

A health bar isn’t a new idea; we created one for the player

earlier. However, that health bar is in screen space. In this

part, we will look at a different way to work with UI that

locks a piece of UI to geometry in the scene. Specifically,

we’ll put the health bar on the boss so that the player can

see how healthy the boss is.

Step 25: Create a new UI Canvas
(GameObject>UI>Canvas). Rename it
“FinalBossUI_Canvas”.

Step 26: Configure the Canvas to Render Mode:
World Space with the FirstPersonCharacter as the
Event Camera. Remember FirstPersonCharacter
is a child of FPSController (in the Hierarchy) and is
actually the camera (Figure 20.18).

Why?

A Render Mode of World Space means that this UI isn’t

locked into the screen space but rather exists in the 3D

space of the game. This means it can (and needs to be)

moved and scaled into place as it will remain locked to a

location in 3D space.

Step 27: Add a Panel UI to the FinalBossUI_Canvas.
Select FinalBossUI_Canvas and choose
GameObject>UI>Panel. Change the new panel

722

Creating Games with Unity, Substance Painter, & Maya

to be green and probably no alpha (opaque). Hit
F to frame it (it’ll be huge).

Step 28: Resize FinalBossUI_Canvas so that Width:
300 and Height: 30. Select FinalBossUI_Canvas
and then make these adjustments in the
Inspector (Figure 20.19).

Why?

You can probably guess why we’re doing this, but the

idea here is to make sure that the Width value is the same

as the health value of the boss. This will make resizing

the bar a simple matter. Notice that we are leaving the

Anchor/Pivot at middle. This will make the progress bar

scale from the middle (not an end).
Step 29: Move and scale FinalBossUI_Canvas into

place in from of the boss. Remember, this time
use the Move (W), Scale (R), and Rotate (E) tools

723

Boss Battle

FIGURE 20.18 Setting the new Canvas to exist in World Space (not screen space).

to get it where it needs to be (Figure 20.20).
Do not change the Width and Height settings.

Tips and Tricks

Remember that, by default, the Canvas is HUGE. It will

need to be scaled, way, way down to get it small enough

to fit the scene again. A helpful tip is to make FinalBossUI_

Canvas a child of hero. Then select it and in the Inspector

change Left, Top, Pos Z all to 0. Hit F to frame it and then

scale and it should scale down centered on the hero. Be

sure to move it so it is not the child of hero when it is set

up as it should be.

Step 30: Create a new material and call it
HeroHealthBar_Mat. Assign this material to the
Material input field of the Panel (that is a child of

724

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.19 Setting up some easy-to-manipulate Width and Height settings for

the FinalBossUI_Canvas.

FIGURE 20.20 Moving the FinalBossUI_Canvas into place.

the FinalBossUI_Canvas). Play with the material
(try HDRP/Unlit with some emissions) until
satisfied (Figure 20.21).

Step 31: Tie the boss’ health to the FinalBossUI_
Canvas. Reopen FinalBossHealthScript and make
the changes highlighted in Figure 20.22. Save
and return to Unity.

Step 32: Test. As the player shoots anything and hits
the boss, the health bar should shrink.

Final Theatrics

At this point, the game knows what to do when the

player’s health is 0 or less (it shows LoseLevel). Now we

need to build in the ability to win the game – which will

happen when the boss’ health is 0 or less. To add some

excitement to this, we’ll make the boss break up with

some explosive force.

There are some fantastic shatter plugins available on the

Unity Asset Store. However, they can be a little expensive.

725

Boss Battle

FIGURE 20.21 Adjustments to the UI Panel to give a bit o’ glow to the Panel.

FIGURE 20.22 Tying the Width of FinalBossUI_Canvas to the health of the boss.

So to work around this, Figure 20.23 shows some work

done back in Maya. Although we won’t do it here

as a tutorial, the file is included in the support files

(BossHeroDecontructed.mb). The inner-most sphere was

split apart using Maya’s Shatter (FX|Effects>Shatter) to

split it into a few different parts. Shatter in Maya is pretty

old and notorious for crashing (pretty tough to work with

actually); so, if shattering forms is important to your game,

it would be worthwhile looking at some of the many other

shatter scripts available online for Maya, or buying one of

the solutions on the Unity Asset Store.

Other than the inner sphere, the hero asset has been

separated into its separate shapes and moved so that they

aren’t overlapping. This will keep errors from happening

when we apply physics to all these shapes. Feel free to

take a look at the file from the support files if interested.

The plan is that when the hero’s health is 0 (or less), we

will swap out this version of the hero with all its separated

parts. We’ll give a bit of explosive force and watch all the

parts fly off.

Step 33: Download and import DestructedHero.
fbx from the support website. Alternatively, you
could download the Maya file and export it
manually; but the export is the FBX. Import it into
the Models folder of the project.

726

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.23 The deconstructed version of the hero in Maya.

Step 34: Use current materials for the model. In
Unity, select the imported FBX DestructedHero.
In the Inspector, click the Materials Tab. Now use
the same materials used on the non-destructed
hero for this version of hero. These materials
will likely be in the Materials folder. If you’re in
a fancy mood, create a new material for the
shatterInterior (maybe with some red glow)
and use that for the shatterInteriorSI material
(Figure 20.24). Click Apply.

Step 35: Add colliders and rigidbodies to all the
parts. Drag DestructedHero out into the Scene
(doesn’t really matter where). In Hierarchy,
expand DestructedHero and select all of the
parts beneath it. In the Inspector, add a Mesh
Collider and a Rigidbody component to all of
them at the same time. Make sure Mesh Collider
has Convex checked (Figure 20.25).

Step 36: Make a prefab out of DestructedHero.
Remember do this by dragging the edited version
from the Hierarchy into the Prefabs folder of the
Project. Delete DestructedHero from the scene.

Step 37: Adjust FinalBossScript to make the switch
(Figure 20.26).

Step 38: Test (Figure 20.27). Play the game and win…
hit the boss so that it’s health drops below 0 and
see it fall apart as the destructed version (with its
colliders and rigidbodies) comes into existence.

727

Boss Battle

FIGURE 20.24 Mapping existing materials on the newly imported FBX.

Step 39: Create a “ScriptHolder” gameObject (an
empty GameObject).

Step 40: Create a new script called GameOverScript
(Figure 20.28).

728

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.25 Setting up the parts of DestructedHero to all have Mesh Colliders and

Rigidbodies.

FIGURE 20.26 Swapping out the destructed version of the hero when its health is

0 or less.

FIGURE 20.27 Destructed version falling apart.

Step 41: Let FinalBossScript fire the GameOverScripts’
GameOver() function (Figure 20.29).

Why?

We haven’t used GameObject.Find(“Name of Object”)

very often. It can be expensive to have the game search

the entire level for an object by name. So we’d never (for

instance) have this in an Update() function. But in this

case, since it’s only going to happen once, it makes things

pretty speedy to write this sort of code.

However, it will be important that the name of the script

holder is exactly “ScriptHolder”.

We’ve made this separate ScriptHolder gameObject

because the FinalBossHealthScript destroys itself

(actually destroys the gameObject that the script is

attached to) and so wouldn’t be around to let the player

see the destruction they have wrought. But having

the FinalBossHealthScript call out to another object

729

Boss Battle

FIGURE 20.28 GameOverScript.

FIGURE 20.29 Allowing the BossHealthScript to fire the GameOver function in GameOverScript.

(that won’t be destroyed) means that script (GameOver)

can take care of business after FinalBossHealthScript is

gone.

Step 42: Test.
Step 43: Create a Build. See if the WinLevel and

LoseLevels work. You should notice a problem
that when WinLevel or LoseLevels launch, there is
no mouse/cursor.

Step 44: Adjust MouseInteractScript to include the
Start() function shown in Figure 20.30.

Why?

The FPSController hides and locks the mouse. Without

unlocking and showing it when the Game Over screens

appear, it remains hidden and the player is unable to click

any of the buttons.

Step 45: Move FPSController back to the beginning
point of the game, and play through it, making
notes of needed balance adjustments.

730

Creating Games with Unity, Substance Painter, & Maya

FIGURE 20.30 Some adjustments to the GameOver script (just as an example of

how it could be expanded).

Conclusion

Of course, there are lots of other things that can be done

to help make this final scene more climatic. Figure 20.31

shows an adjusted version of the GameOver script that

includes shaking the camera, and a whiteout.

There are lots of other things that could be done with

what you know now. There should be a sound cue of

an explosion when the boss falls apart. Maybe the boss

spawns new EllenEnemy’s every 5 seconds. Maybe boss

only takes damage if it is hit right in the red eye. Could

there be spawn points around boss that provide health

and ammo for the player if the battle becomes longer?

Could parts of the floor fall away through battle that

would lead to death if the player stepped on them? Maybe

the boss’ version of the grenades does splash damage if it

lands near the player. The list goes on and on.

At this point, all of the above suggestions are possible

with your current knowledge level. It now boils down to

your ambition, and how the game should be balanced.

The game is now complete. It can be adjusted (and

should), but it has health systems all around, a win state,

and a lose state. Take what you know and build on to

make a sophisticated experience for the player.

A version of the game with a few adjustments is included

on the support website. Grab hold of that and pick apart

things that you want to include in your version. Reverse-

engineering is a powerful way to learn new coding tricks,

and breaking apart someone else code can yield treasures

you wouldn’t have stumbled upon otherwise.

731

Boss Battle

FIGURE 20.31 Unlocking and showing the cursor for the GameOver scenes.

https://taylorandfrancis.com

Index

Note: Italic page numbers refer to figures.

Advanced Skeleton and Rapid Rigs 410

AI

animation events and working weapon

631–638

assembling MainLevel 639–642, 639, 640

creating AI-based “tic-tac” 605–614

game engines 603

tools 604

using animations (animator) with NavMesh

615–631

AI-based wayfinding

adding UnityEngine 608, 609

allowing AI 613

awake() function 609

baked NavMesh 606, 606

capsule 607, 607

changing color and drawing 613, 613

defining NavMeshAgent 608, 609

laying groundwork 608, 608

long-term strategy 608

making a variable 609, 611

NavMeshAgent 605

results of OnDrawGizmosSelected 611,

611, 612

speeding up development time 610, 611

using OnDrawGizmosSelected() and

Gizmos.DrawWireSphere() 611, 611

wire spheres shown 613, 613

AI health system

allowing EllenEnemyHealthScript 653, 654

baking root transform position (Y) 656, 657

capsule collider settings 651, 652

checking health and playing, death

animation 655, 656

creating new tag 651, 652, 653

damage Enemy-tagged objects 653, 654

deleting components and resetting

triggers 656, 657

edited BulletScript 653, 654

health stays down 658, 658

review of hard work completed 655, 655

strange happenings our animator 655, 656

trigger parameters 655

AITest 604, 604

alphas usage 108, 110

Ambient Occlusion 98

ammo; see also trail renderer

adjustments 662, 662

after creating needReload parameter

663, 664

checking grenades, before firing 662, 662

creating script, counts 661, 661

EllenGrenadeController 663, 664

flipping needReload boolean 665, 665

health script, bullets 659

making BulletReload() 663, 663

mechanics 659

reloading 666–668, 666–668

subtracting one from grenadeAmmo

661, 661

variables 659, 660, 660

anchor points 104, 105, 105

animating camera

adding rotation property 536, 537

CameraAnimationChooserScript 542, 542,

543, 543

creating new clip 540, 540

current state 541, 541

enabling recording mode 537, 538

enumerators 543

final animation 539, 539

finished animation 540, 540

keyframes 537, 537, 538, 538, 539

limited functionality 535, 536

organization 534, 535, 535

pacing 539

setting new default empty state 541, 542

setting up transitions 542, 542

animation 420–421

pipeline 442

animation events/working weapon

awkward implementation 635–638,

636–638

concepts 631

733

animation events/working weapon (cont.)

creating function to fire 633, 634, 632–634

launch point 632, 633

new material settings 632, 632

tools 634

application programming interface (API)

defined 498

instantiation 498–499, 499, 500

scripting reference 498

area light 215, 215, 229, 229

arm controls set up

rigging 400–402, 400–402

arm joints creation 376, 376, 377, 378

asset movement process 148

atlas 74

attack animation 431–433, 432, 433

Autodesk Maya 1

automatic UV 89

auto rigging

adjusting base map color tints 453, 453

Mixamo 443–449

placed scene with cheater light 451, 451

plugged textures to create materials

451, 452

setting up animator 454–464

setting up subsurface scattering, skin

shader 451, 452

substance painter output 449–450, 450

subsurface scattering effects 452, 453, 453

baked mesh data 101

Bake pivot 366

baking 93, 97–98

camera adjustments and postprocessing

236–241, 236–240

character texturing 322, 322, 323

error 322

expensive calculations 233

hallway prebaked and postbaked 235, 236

lightmap information 233

quick settings 234, 235

setting lights in each prefab 233, 234

baking animation keys

constraints 505, 506, 506

culling process 508

deletion 506, 507

game engine 507

rig-centric tools 503

setting rotation keys 503

simulation options 505, 505

swapping to animation mode 503, 504

warnings and errors 507

balance 709

balance skin variation 327, 328

base color, PBR 99

base floor creation 44–54, 45–47, 49–54

belt, character modeling 287, 288

belts, straps, pockets, holster, and boots

353–354, 353, 354

bevel command 288, 289

bevel tool 9, 10

binary system 43

binding joints 400

bind skin 391, 392

blending mode, definition 101

blendshape 296

body, character modeling 268–273, 268–273

body adjustment, character modeling 292, 293

Boo 466

boots, character modeling 287, 288, 289

boss battle

added sphere collider 719, 719

adjusting BulletScript 720, 721

assigning and creating tag 719, 720

creating loop 715, 716

creating simple rig 711, 712

creating variables 715, 716

final boss 710–722

FinalBossScript 713, 713, 714, 715, 719, 720

final theatrics 725–730

FixedUpdate() 713

grenade launch point 715–716, 715

health bar 722–725

multitude skills 710

pivot/geometric center 712, 712

prefab editor 710, 711

public function 717, 717

temporarily allowing boss 716, 716

trigger 717, 718

unlocking and showing cursor 731, 731

box modeling 7, 245

bridge tool 25

brush, short cuts to tweak 103–104

built-in functions 467–468, 483, 483

C#

addding script to scene, after compiling

475, 476

API 498–500

class declaration 467

734

comments 467

DOTween 486–488

empty script example 466, 466

HelloWorldScript creation 474, 474

libraries 466

methods/functions 467–468, 469

pinned console 473, 473

print command to Update() 477, 477

print line of code, fired every frame 477, 477

syntax 469–470

undisputed preferred language 466

Unity and visual studio 470–472

variables 489–498

cables base material 121, 121, 123

camera configuration 418–421, 418–419

camera extras

adding spotlight 553, 554

build the code 557, 558

closed-circuit 553

color attribute 556, 557

DefaultRenderTexture 556, 557

extracted monitor screens 554–555, 555

mechanics 553

placed cameras 558, 559

placing screen object 556, 556

prefab, placed and configured 558, 559

process, Maya 555–556

rendering 554

Canvas Scaler 673, 675

carbon fiber 124, 125

Center Pivot 40

Change Pivot 40–41

Channel Box 8, 8, 9, 27, 389

input stack of 15, 17

Channel Box editor 424, 434

character, gaming 243

character modeling 243, 297, 297

belt 287, 288

body 268–273, 268–273

body adjustment 292, 293

boots 287, 288, 288, 289, 289, 290

clean up 295, 295, 296, 296

concept art 244, 244

ear 264–265, 264–265

eyeball 247–249, 247–249

eyelids creation 249–253, 250–252, 253

eye socket creation 253, 254, 254, 255

forehead 257, 257

gloves 289, 290, 291

hairs 281–284, 281–284

hands 274–281, 274–281

head 262–264, 262–264

image plane setup in Maya 245–247, 246

internal structures 267, 267

mouth 261, 261

neck 265, 266

nose 256, 256, 257, 258, 258–259, 260, 260

outer garment base 285, 286

polycount 245

preview materials 286, 287

style sheet 244

sweater 284, 285, 285, 286

watch 290, 292

watchband 292, 293

weapon 292–294, 293, 294

workflow 245

character rig 414–415

characters making 243

character texturing 321–323

baking 322, 322

error 322

belts, straps, pockets, holster, and boots

353–354, 353, 354

chest logo 363, 364

export 322–323

Export Textures 365–367, 366, 367

eye 333–340, 335–341

gloves 354–360, 355–360

gun 363, 364

hair 331–333, 331–333

import the model 322

leather material 353, 353, 354

metal bolts 365, 365

pants 348–352, 349–352

skin texturing 323–329, 324–329

upper body 340–347, 342–348

watch 361–362, 362

character UV mapping 300

body 302–308, 303–308

cleanup process 302

eye 308–309, 309

garment 312–319, 313–317

hair 309–311, 310, 311

mesh inspection 300–302, 301, 302

Checker Map 318

checker texture 58, 59, 60

chest logo, character texturing 363, 362

chest weighting 394, 395

Circularize Components 21

class declaration 467

735

clavicle and body controls 406–409, 406–409

clavicle and shoulder joint 377, 377

cleaning up odd jitters 428

cleanup process

character modeling 295, 295, 296, 296

character UV mapping 302

click-dragging 422

clipping planes 553

color distribution 323, 324–325, 325–326

color setting 117

color variation 327, 328

Combine and Separate 33–34, 33

Combine command 33–34

comments 467

Component Editor 395, 397

concept art 244, 244

constrains 402

controlling animations

creating transition 518, 519

defining transition 520, 519

placing an animation clip 517, 518

plugging Animator Controller 517, 517

visual graph-making and coding 516

controlling animator with code

animation ranges 529, 529

applying changes to FPSController 529, 529

creating and populating variables 522, 523

creating boolean 524, 524

creating pathways 524, 525

defining situation 526, 527

Input Manager 521, 522

pseudocode 521

script listen (every frame) 520, 521

swapping 529, 531

transition settings 524, 525, 525, 526

triggering 523, 523

turning booleans on and off 526, 527, 528

updated script 529, 530

Control Vertices (CV) 34, 34

cookies

adjusted emissive color 230–231, 232

applying changes, instances of prefab

227, 228

directional light 232, 232

emissive shaders 231, 232

first pass at area lights 229, 229

IES 224

images 224

import settings 225–226, 226

increasing Texture Atlas 224–225, 225

overrides 228, 228

placed area light 229, 229

prefab editor 231, 231

shadow casting effect 223

spot light 227, 227

copying, skin weighting 397–400

Create Cables or Pipes 34–36, 34–36

curvature generator 120, 120

curve tool 51–52

cutting process

UV mapping

hide the seams 316

stretching 316

texel density 316

cut UV 62, 62

CV see Control Vertices (CV)

dark metal material 97, 100, 102

decimal system 43

default blending mode 101

Delete Edge command 27, 30

deployment strategies 135

directional light 183, 212–213, 213, 232, 232

Display Layer Editor 415

display layers 415–418, 416–417

dot syntax 469

DOTween

adding libraries 488, 488

documentation 488

setting up 486, 487

starting setup 486, 487

tweening tools 486

driver joint chain 400

Duplicate Faces command 16

Duplicate Special 39, 39

Duplicate with Transform 38–39, 38–39

ease-in’s and ease-out’s 429, 431, 432, 434

edge 4

flow 257

ring 10

variation 344, 345, 346

edgewear effect 108, 112, 112

Ellen_full_body_ref 392, 397–398

Ellen_sweater_geo 398

emission intensity 183–184

emissive channel 129, 131

exhale moment

idle animation 427, 428

Export Textures 365–367

736

move the gun to origin 366–367, 367

testing 366–367, 366

Extract Faces 33

extrude along a curve 37, 37, 38, 52

extrude tool 11, 11, 13, 13, 14, 15

eye, UV mapping 308–309, 309

eyeball, character modeling 247–249, 247–249

eye-catching visual 1

eyelids creation, character modeling 249–253,

250–252, 253

eye socket creation, character modeling 253,

254, 254, 255

face 4–5

facial expression rig 296

fill layer 103

final theatrics

adjustments to GameOver script 730, 730

allowing BossHealthScript 729, 729

deconstructed version 726, 726

destructed version falling apart 727, 728

explosive force 725

FPSController 730

GameOverScript 728, 729

mapping existing materials, imported FBX

726, 727

setting up parts 727, 728

shatter plugins 725

swapping out destructed version 727, 728

finger controls 405, 406

finger joints 379, 380, 380, 381, 382

fingers duplication 380, 381, 381

first-person shooter (FPS) animation 413–414

attack animation 431–433, 432

camera configuration 418–421, 418–420

character rig 414–415

cleaning and preparing files 502

cleaning up odd jitters 428

display layers 415–418, 416–417

ease-in’s and ease-out’s 429, 431

frame rate 427, 427

game animations 420–421

“Got Caught” animation 434–438, 436, 437

Graph Editor 429–431, 430

idle animation 427, 427–428

Kassandra's animated files 502

pose creation 421–422

preparation (see Maya animation

preparation)

reload animation 438–439, 439

save files 415

two-handed weapon setup 424–427, 426

walk animation 433–434, 436

weapon movement 422–424, 423, 425

FK see forward kinematics (FK)

FK arm setup 402

flipped faces 300

floor scratches 100, 101

foot controller 390

foot hierarchy setup 390–391

foot roll rig 387–390, 389, 390

forehead, character modeling 257, 257

forward kinematics (FK) 424

4096 × 4096 (4k) textures 96

4k (4096 × 4096) texture 74

FPS animation see first-person shooter (FPS)

animation

FPS_Cam viewport 418, 419, 419, 424

Fragment Shader 2

frame-miss 569

frame rate 427, 427

Freeze Transformation 30

full-body joint skin weighting 396, 398

game animations 420–421

game engines 128, 133–134

garment, UV mapping 312–319, 313–315, 317

generators 100, 101–123, 102, 104, 105–121

geometry errors 42–43

gizmos 3

glass materials 126, 126, 127, 128

gloves

character modeling 289, 290, 291

character texturing 354–360, 355–361

“gobo” 223

“Got Caught” animation 434–438, 436, 437

Grab and Smooth sculpting 263

grab tool 281

Graph Editor 429–431, 430, 438

graphical user interface (GUI) see user

interface (UI)

Graphic API 2

grenade launcher

activeWeapon 565, 566

adding Capsule Collider 567–568, 568

adding variable 570, 570

Animator Controller 564, 565

creating and positioning,

GrenadeLaunchPoint 569, 569

creating string variable 565, 565

737

grenade launcher (cont.)

float variable 571, 571

FPSController 564, 564

HDRP 562

instantiation 570, 570, 571, 571

line at Start() 566, 566

populated variables 570, 570

pressurized steam effects 563, 563

reworking 566, 566

Rigidbody component 568, 568

rising steam 563, 564

separating, structure of FPSController

567, 567

smart 573–581

tracking down 567, 567

using participle effects 563, 563

velocity magnitude 571, 573

grenade launcher and pipe 440

grid 44, 44

Grow Selection 32–33

Grunge Leak Dirty 99

gun

character texturing 363, 364

joint 410

hairs

character modeling 281–284, 281–284

character texturing 331–333, 332–333

UV mapping 309–310, 310–312

hands, character modeling 274–281, 274–281

HDRP see High-Definition Render

Pipeline (HDRP)

head, character modeling 262–264,

262–264

head skin weighting 393, 393, 394, 395

health bar 722–725, 723–725

health indicator

adjusted color 685, 686

aligning/moving 684, 684

changing the order 685, 686

desired size, using scale 684, 685

measurements 683

setting pivot and anchor 683, 683

healthValue 643

heel controller 390

height map, PBR 99, 111

hero assets 54

Hide Model 41

hide the seams, UV mapping 316

high-definition render pipeline (HDRP) 92–93,

135–136

high dynamic range images (HDRI) 217

IDE see integrated development

environment (IDE)

idle animation 420, 427–428, 428

IK see inverse kinematics (IK)

IK arm setup 403–406, 403, 404, 405

IK handle 385, 386, 387, 388, 403

Illuminating Engineering Society (IES) 224

image plane setup in Maya 245–247, 246

inhale moment, idle animation 427, 428, 429

instance 39

integrated development

environment (IDE) 470

internal structures, character modeling

267, 267

inverse kinematics (IK) 383, 385, 386, 424

joint behavior 370, 370–371

joint chain creation

rigging 371–374

neck 373, 374

root and spine joints 372, 373

joint orient 376, 380

joint placement 371

left arm 374–382, 375–382

joint setup

legs 383–387, 384–387

right arm 382–383, 383

kitbashing

building out extended floor 188, 189

building up walls 186, 186

built platform with stairs 192, 192

catwalks and stairs 196, 197

combinations of modules 194, 195

complicated module collection 193, 193

creating roof 196, 196

creating small armory 194, 194

dressed hallways 188, 188

dressed out CameraRoom 193, 193

dressedStorageHangar 197, 198

duplicating hall module 187, 187

filling in ceiling with floor prefabs 186, 187

finishing out room 191, 191

hallway module 185, 186

leveraging effective grouping 190, 190

738

placed monitor 192, 193

pre-built curved wall modules 188, 189

process 185

putting ceilings 188, 189

roughed out CameraRoom 191, 191

StorageHangarEntry 194, 195

StorageHangar floor mapped out 194, 195

utilization 193, 194

variations 190, 190

labor-filled process 135

Lamina faces 43

layers, Substance Painter UI 97

layout

adding extra visual interest 176, 177

adding trim 176, 178

creating ceiling 182, 182

defined 171

door frames 181, 181

dressed set 184, 184

duplicated and snapped prefabs 175, 175

ensuring glass prefabs 182, 182

filling in corners 179, 180

geometric center of objects 178

kitbashing 185–198

level flow 172

light streaming 183, 183

project settings 173, 174

roughing out door and windows 180, 180

snapping 176, 177

volumes 174

wall placement 179, 179

leather material, character texturing 353, 353

left arm joint structure 374–382, 375–382,

405, 405

left clavicle skin weighting 396, 399

left foot controller setup 390, 390

left foot rig setup hierarchy 390, 391

leftHand_locator 435

left leg joint structure 385

legs joint setup 383–387, 384–387, 388

lerp 714

levels, texturing 122–129, 123–129

libraries 466

light direction 97–98

lighting

area 215, 215

artistic functions 205

baked 210–211

camera exposure 218, 219

challenge 241, 242

cookies 223–232

cubemap asset 217, 218

description 209

directional 212–213, 213

dirty volumetric and big rings 221

hardware-driven 210

HDRI-based skies 217, 217

high-end software rendering solutions 210

mixed 211

physical-based rendering techniques 136

point 213–214, 214

postprocessing effects 216

power of prefabs 219–223, 220–224

real time 210

rendering calculations 210

spot 214, 214–215, 221, 221, 223, 224

lighting probes 241–242

light intensities 165

linear interpolation 714

Locatorleftparent 1 435

locators 419

manipulation tools, translation 3–4

Map Size section 72

Mari 61

marking menu 4, 8, 26

Mask Editor 101

material adjustment

adding finished lights to hallway 168, 169

adjusted shader 168, 169

adjusting camera 159, 160

adjusting intensity of point light 165, 165

auto exposure 159

changing transparent shader 166, 167

duplicating floor to make ceiling 162, 164

emissive surfaces 159

hallway created by duplicating section

164, 165

measuring light intensities 166

move/translate tool and snapping 162, 163

moving duplicated floor 161, 161

rotating placed wall module 162, 163

tracking down glass material 166, 166

transparency inputs 166, 167

unconvincing light 168, 168

vertex snap method 161, 162

virtual environments 159

739

material assignments, UV mapping 318, 320

material distribution, UV mapping 319, 319

Maya animation preparation

activating outliner 503, 503

adjusted positioning 512, 512

baking keys 503–508

controlling animations 516–520

controlling animator with code 520–531

creating attack_anim animation clip

516, 516

delete unseen geometry 503, 504

extracting materials 510, 511

idle animation clip, defining 515, 515

imported clips 516, 516

importing and adjusting rigs 514, 514

materials adjustment 510, 511

near clipping plane 513, 513

newly created Avatar 514, 515

substance painter output 508–510,

509, 510

Maya modeling

anatomy

edge 4

face 4

normal 5

object mode 5

vertex 4

assignments 41–42, 42

base floor creation 44–54, 45–47, 49–54

commands

Center Pivot 40

Change Pivot 40–41

Combine and Separate 33–34, 33

Create Cables or Pipes 34–37, 34–36

Duplicate, Duplicate with Transform

38–39, 38–39

Duplicate Special 39, 40

Extract Faces 33

Extrude Along a Curve 37–38, 37–38

Grow and Shrink Selection 32–33

Hide Model 41

mirror 39, 40

Snapping 41

View Control 41

geometry errors 42–43

grid 44, 44

modular set pieces 43

navigation 1–2, 2

normal 5, 6

rendering 2–3

rules

polycount 6

size and proportion 7

topology 6, 6

security camera modelling 7–32, 8–13,

15–29, 31

3D model 3

translation 3–4

user interface 2, 2

maya/substance painter, exporting asset

asset movement process 148

extracting materials 150, 151

geometry imported 146, 146

marquee select geometry freeze

transformations 145, 145

normal maps 149, 150

NormalTexture 149

shaders 147

static meshes 144

templates 148

textures 147, 148

mesh inspection, character UV mapping

300–302, 301, 302

metal bolts, character texturing 364, 365, 365

metallic, PBR 99

Metallic Grate Wide 99

metallic roughness 92

methods/functions 467–468, 467

middle line problem 302, 302

mirror 39, 40

mirroring, skin weighting 397, 399

mirror joints 382–383, 383

mirror plane, position 108

Mixamo

defined 443

download settings for Unity 448, 449

extract materials 449

facial animation tools 443

FBX 2013 444, 445

grab FBX files 448, 449

gun exporting 445

imported version of character 445, 446

login and use Characters link 445, 446

motion-capture clips 464

pistol/handgun locomotion pack 447, 447

placing markers 447, 447

sending EllenEnemyfbx 445, 446

UVed version of Ellen 443, 444

Mixamo-exported MoCap animations 502

Modeling Toolkit 21, 22

740

models arrangement 94, 95

modular pieces, texturing 94

export models 94, 95

import to Substance Painter 95–96

models arrangement 94, 95

modular set pieces 43, 52, 53, 53, 54

motion capture (MoCap) 442, 443–449,

444–447, 449; see also auto rigging

motion trail 436, 437, 437, 440

mouth, character modeling 261, 261, 267, 267

move tool 13, 14, 15

Multi-Cut tool 21, 22, 260, 268, 269, 274, 278,

279, 290, 301

multiple texturing files 95

multiply blending mode 101, 102

navigation 1–2, 2, 97

navigation mesh (NavMesh)

adjusting base offset 617, 618

adjustingNavMeshAgent 615, 616

AI mechanism 605

Animator Controller 615

changing triggers and Booleans 626–630,

626, 627–630

creating boolean 619, 619

default NavMeshAgent 615, 616

magically floating 617, 617

measurements 615, 617

mechanics 614

placing animations in animator 621–626,

622–626

preparing FBX animation files 619–620,

620, 621

NavMeshAgent 605

neck

character modeling 265, 266

joint chain 373, 374, 375

neck skin weighting 393, 394, 394

N-gon 20, 20, 21, 43

mesh inspection 300–301, 301

non-manifold geometry 42

non-playable characters (NPCs) 603

normal detailing 109, 111

normal map, PBR 99, 111–112, 112

nose, character modeling 256, 256, 257, 258,

258–259, 260, 260

nostrils internals, character modeling 267, 267

NURBS 34, 35, 35, 36, 37, 388, 416, 417, 425

Object Mode 5, 31

one-man-army approach 108

opacity channel 126, 127, 127

opening doors

adding Box Collider component

479–480, 480

adjusted collider 480, 481

creating a floor 478

deleting unneeded functions 482, 483

placed Box Collider 480, 481

placed door prefab 478, 479

placed FPSController 478, 479

size and shape of collider 480, 481

trigger 480

Optimize command, body UV 305, 306

orange panels 118

orient constraint 402

orient UV 64, 65, 65

origin 2

outer garment base, character modeling

285, 286

outer shell 16, 17

Outliner 31, 418, 423, 426

overlapping faces 301, 301

overshoot pose 436

painted approach 115–116, 114

painter texture outputs 450, 509

painting skin weights 391–396, 393–396

panel, Substance Painter UI 97

pants, character texturing 348–352, 349–352

parenting 31, 32

perspective view, image planes 246

Per Vertex Algorithm 356, 356

photogrammetry 207, 207

physically based camera systems 136

Physically-Based Rendering (PBR) 92–93

material channels 98–100, 100, 101

pipe material 125, 126

pivot positioning 45

pixels 65

planar projection 63

player health script

adjusted BulletScript 647, 647

basic structure 644, 644

clamping health value 650, 650

collision 648

damage box, testing purposes 645, 646

DamageBoxScript 645, 646, 648

DoDamage() function 645, 646

DoHealing() function 648, 648

741

player health script (cont.)

HealthPack prefab 649, 649

HealthPackScript 649, 650

pod model, UV 74–89, 75–89

point light 164, 165, 203, 203, 213–214, 214

pole 247

polycount 6, 27, 245

reduction methods 27, 28, 29, 29

polygon 2 334

Polygon Fill tool 116, 117

post script

daytime lighting 206, 206

lighting schemes 205

photogrammetry 206, 207

terrain 206, 207

power of prefabs 219–223, 220–224

Prevent Negative Scale setting 25

preview materials, character modeling 286, 287

primitive polygons 14

procedural texturing 102, 334

proportion, 3D modeling 7

quad 3, 6

Quad Draw Tool 250

boots pattern and belt 287, 289

eyebrow 284

eyelids creation 249, 250

gun holster 294

hair 282

outer garment base 285

RaycastHit 544

raycasting 531, 571

accuracy 593–600

adjusted ReticleUI 596, 597

altered script 549, 551

animated camera in action 548, 550

applying changes 551, 552

assigning FPSController 549, 550

build, playground 545

concept 544–545

console (every frame) 548, 549

creating UI image 594, 594

creating variable 599, 599

diagram, centered reticle and projectile-

based weapon 596, 597

LineDraw 548, 548

mechanics 547, 547

placing ReticleUI in screen 594, 595

pointing launch points 600, 600

problem, weapons system 596, 597

projectile weapons 600, 601

public variable 546, 546

RaycastSource 545, 545

reports back 548, 548

results in game window 596, 596

rotating weapon 598, 598

smart camera 551, 551

supersonic weapons 544

raytracing

animating the camera 534–544

description 533–534

referencing character rigs 414–415

referencing process 372

refine hand topology 278, 279

refraction model 166, 167

reload animation 438–439, 439

Reload Reference 414

renderer 2

rendering process 2, 6, 20

reticle 419, 420, 420

assigned sprite and color adjustments

677, 678

bullet indicators 681, 682

Canvas Scaler settings 675, 675

creating and placing GrenadeIndicator 1

679, 680

creating clip indicators 681, 682

creating Health_FG UI element 679, 680

duplicating, renaming and positioning

681, 681

establishing, Canvas and EventSystem

674, 675

locking 677, 678

offsetting 679, 679

setting pivot 676, 677

re-topologizing tool 250, 251; see also Quad

Draw Tool

retopology 281, 285

returning 468

reverse-engineering 731

rigging 244, 369, 410, 411

arm controls set up 400–402, 400–402

clavicle and body controls 406–409,

407–409

constrains 402

final hierarchy 410, 411

finger controls 405–406

foot hierarchy setup 390

foot roll rig 387–390, 390

742

gun joint 410
IK arm setup 403–405, 403–405
joint behavior 370, 370–371
joint chain creation 371–374

neck 373, 374
root and spine joints 372, 373

joint placement 371
left arm 374–382, 375–382

joint setup
legs 383–387, 384–387
right arm 382–383, 383

skin weights 391, 392
copying 397–400
mirroring 397, 399
painting 392–396, 393–398

right arm joint setup 382–383, 383
root and spine joints 372, 373
root_motion joint 391
root transform rotation 620, 628, 630
rotate tool 18
roughness, PBR 99, 100

scale or snapping 48
scale tool 11, 13, 14, 15, 79
screen space 672–674, 672, 673
scriptable rendering pipelines 135
sculpting software 93
sculpting tool 268, 281, 282
seam artifact 66
security camera, UV 66, 68, 69, 70, 70
security cameras 533

modelling 7–29, 7–32, 31
Separate command 33–34
setting up animator

assigning animator controller
EllenEnemyController 456, 458

assigning EllenEnemyAvatar as Source
avatar 455, 455

exporting animation 463, 463
gun in hand 461, 462
importing animation into animator 458, 459
import settings for pistol animations

454–455, 455
import settings for rig 454, 454
inherit avatar from EllenEnemy 456, 457
making Ellen_Gun, child of right hand joint

460–461, 461
positioning 460, 460
preparing pistol idle, renaming and

looping 456, 458

shifting to idle animation 458, 459
shooting animation 461, 462

Shaded viewing mode 303
shader 92–93, 126, 128, 129, 130, 131
shape

Maya model 22, 24
shape evolving 292, 293, 293
Shift-click trick 346, 359
Shirk Selection 32–33
size, 3D modeling 7
skinned mesh renderer 460
skin texturing 323–330, 324–330
skin weighting

rigging 391, 392
copying 397–400
mirroring 397, 399
painting 392–396, 393–398

smart grenade
creating code 573, 573
creating variable 575, 576
Destroy() command 574
final animator layout 580, 581
IEnumerator 578, 578, 579, 579
playing sound 575, 575
rebuilding 579, 580
self-destroy 574, 574
setting TinyExplosion 574
setting up boolean 576, 577
transition settings 579, 580, 580, 581
turning off 576, 576

smart material 102–103
smoothness remapping 181
snapping 172–173
Snapping 41
“Snap to Projected Center” 379, 379
Soften Edge command 10, 11, 13, 14, 253
sourceimages folder 94
spacing 431
spot light 214, 214–215, 220, 221, 222, 223,

224, 227
Standard Assets 199, 200
status bar, Substance Painter UI 96
Steel Gun Painted 124–125, 126
Steel Painted Scraped Dirty 103, 104, 105,

112, 113
straight lines drawing method 106
straps layer 122–123, 123, 124
stretching, UV mapping 316
style sheet 244
Subdivision Axis 27

743

Substance Painter 92, 93, 118, 322, 356, 363

UI 96, 96–97

substance painter output 450, 450,

508–510, 509

sweater, character modeling 284, 285, 285, 286

symmetry 12, 12

syntax 469

Target Weld Tool 28

tessellated NURBS 35, 36

Tessellation section 35, 43

texel density 71–73, 80

for other models 81–86

UV mapping 316

Texture Set List 97

texturing 91–92, 132

Ambient Occlusion 98

baking 93

generators 100, 101–122, 102, 104–107,

109–121

levels 122–129, 123–129

light direction 97–98

modular pieces 94

export models 94, 95

import to Substance Painter 96–97

models arrangement 94, 95

navigation 97

PBR 92–93

material channels 98–100, 100, 101

with photoshop 316

rest of models 129, 130, 131, 131

result of 129, 130–131

in Substance Painter 316

Substance Painter UI 96, 96–97

texturing software 61

3D Cut and Sew UV Tool 303

arms and hands cutting 305

ear cutting 303

eyeball UV mapping 308

hair 309

sweater cutting 315

3D model 3

3D viewport, navigation 97

3D Cut and Sew UV tool 67

thumb and tip topology 274, 274, 275

Time Slider 422, 427, 428, 428

timing 431

toggle symmetry 105, 106

Toolbox 24

tools bar, Substance Painter UI 96

topology 6, 7, 260, 263, 282

error 302

trail renderer

adjusting width and length 584, 585

BulletReload IEnumerator 589, 590

construction 587, 588

creating, naming and sizing GunBullet

582, 583

creating and setting up material 586, 586

creating GunLaunchPoint 582, 583

creating variables 586, 587

deducting 1 from ammoCount 588, 589

destroy 588, 588

dragging 584, 585

ensuring 592, 592

filling variables 586, 587

hack-n-slash games 584

new boolean parameter 591, 591

providing way out 593, 593

setting up transitions 590, 591

temporarily turning off 588, 588

turning on canFireBullet boolean 587, 587

waiting for 12 frames 588, 589

transform, Maya model 22–24

translation 3–4

tri-planar projection 323

tube model 37

tweaked topology 269, 270

2D viewport, navigation 97

256 × 256 floor piece 57, 58

two-handed weapon setup 424–427, 426

UI elements

case switches/switch statements 688–693,

689–693

creating variables 686–687, 687

filled in variables 687, 688

health 693–695, 695

interactivity 696

UI panel 97

uneven UV distribution 310

Unity asset creation

bit about Unity UI 140–143

colliders 156–159, 157

creating empty HDRP project 139, 139

creating prefabs 155–159, 156

efficient layout 140, 140

exporting asset from Maya and substance

painter 144–155

game engines 133–134

744

levels of power 134

material adjustment 159–169

modules installation 137, 138

optimizing layout 140, 140

rebuilding materials 150–154, 152–154

rendering pipelines 135

Unity Hub 136–137, 138

Unity asset store 726

Unity-centric approach 466

Unity Hub 136–137, 138

Unity level creation

exit Prefab editor 205, 205

importing package 200, 201

layout 171–198

long view 173

organizing and prefab-manipulation

techniques 172

placed FPSController 200, 205

play button 204, 205

post script 206–207

settings for point light 203–204, 203

snapping 172–173

walking through 199–205

Unity UI

game 141

hierarchy 142

inspector 142

organized Unity project 143, 143

project 142

scene 141

streamlined project 143, 143

universal render pipeline (URP) 135

unparenting 32

upper body, character texturing 340–344,

341–348

upper shell hole 19, 19

user interface (UI)

buttons and moving between scenes

696–707

changed UI text 698, 698

defined 671

duplicated button 699, 700

elements effect 686–696

imported image 697, 697

interactive buttons 701–705, 702–704

Maya modeling 2, 2

moving StartButton 699, 700

providing instructions 701, 701

rect tool 699, 699

reticle, ammo and health 674–685

screen space 672–674, 672, 673

title in place 699, 700

tying up loose ends 705–707, 706–707

visual effect 697

UV

the floor 63–71, 63–71

for other models 81–89

pod model 74–89, 75–89

UV Editor 57, 58, 58, 59

UV mapping 57, 297, 299–300, 319–320

body UV 302–308, 303–308

character UV mapping 300

mesh inspection and cleanup 300–302,

301, 302

cutting process

hide the seams 316

stretching 316

texel density 316

eye UV 308–309, 309

garment UV 312–319, 313–315, 317–319

hair UV 309–311, 310–312

materials arrangement 318, 319, 319

UV points 59–60, 60

UV random color 123

UV shell 64, 75, 76

UV tiles 60–61, 60, 61

variables, C#

Audio Source component 496, 496

Audio Source settings 495, 495

declaration 489, 490

DOLocalMoveX function 491–492, 492

hold Audio Source 496, 496

information buckets 489

instances 494, 494

moving the doors to open position

490, 491

playing doorSound 497, 497

populating script 493, 493

private 489

public 489, 490, 490

tweak and update 493

using DOTween 491, 492

Vertex 4

vertex snap method 161, 162

video cards 210

View Control 41

viewport, Substance Painter UI 96

Viewport 2.0. 2

virtual environments 159

745

visual appearance 244

visual studio

adding script 484, 485

applied SlidingDoorScript 484, 485

built-in function's 483, 483

code creation and editing 472, 472

coding, trigger 483, 484

color scheme 474

format the function 483, 484

IDE 470

installation 470

interface 471, 471

libraries 471, 471

opening doors 478–485

simple message coding 474, 475

volumetric lighting artifacts 185

walk animation 433–434, 435

wall models 118

watch

character modeling 290, 292

character texturing 361, 362, 363

watchband, character modeling 292, 293

weapons

character modeling 292–294, 293, 294

firing gun and ammo 582–593

grenade launcher 562–582

movement 422–424, 423, 425

raycasting 593–600

workflow, character modeling 245

ZBrush 61, 93, 245, 251, 282, 297

zero length edge 43

746

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Acknowledgments
	Authors
	Introduction
	Chapter 1: Maya Modeling
	Basics of Navigation
	Rendering
	What is a 3D Model?
	Translation
	Anatomy of a Model
	Edge
	Vertex
	Face
	Object Mode
	Normal

	Modeling Rules
	Polycount
	Topology
	Size and Proportion

	Basics of Modeling
	Tutorial 1.1: Modeling a Security Camera
	Other Useful Commands
	Grow and Shrink Selection
	Extract Faces
	Combine and Separate
	Create Cables or Pipes
	Extrude Along a Curve
	Duplicate, Duplicate with Transform
	Duplicate Special
	Mirror
	Center Pivot
	Change Pivot
	Snapping
	Hide Model
	View Control
	Assignments
	Geometry Errors
	Tutorial 1.2: Modular Set Pieces
	Grid
	Create a Base Floor
	Conclusion

	Chapter 2: Maya Set UV
	The UV Editor
	UV Points
	UV Tiles
	Cut UV
	The Problem
	UV the Floor
	Texel Density
	Chose the Right Texel Density
	UV the Pod
	Conclusion

	Chapter 3: Set Texturing
	PBR
	Baking
	Tutorial 3.1: Texturing Modular Pieces
	The Substance Painter UI
	Navigation
	Light Direction
	Ambient Occlusion
	PBR Material Channels
	Generators
	Levels
	Assignment: Texturing the Rest of the Models
	Conclusion

	Chapter 4: Unity Asset Creation
	Game Engines
	Unity
	Tutorial 4.1: Installing Unity, Visual Studio, and Starting a Project
	A Bit About the Unity UI
	Tutorial 4.2: Exporting Asset from Maya and Substance Painter into Unity
	Rebuilding Materials
	Moving On…For Now
	Tutorial 4.3: Creating Prefabs
	A Bit About Colliders
	Tutorial 4.4: A Bit of Material Adjustment
	Conclusion

	Chapter 5: Unity Level Creation
	A Quick Review on Snapping
	The Long View
	Tutorial 5.1: Level Layout
	Kitbashing
	Tutorial Conclusion
	Tutorial 5.2: Walking Through
	Conclusion
	Postscript

	Chapter 6: Lighting and Baking
	What It Means for You?
	Unity Lights
	Tutorial 6.1: Lighting the Scene
	The Power of Prefabs
	Make Way for Cookies!
	Baking
	Camera Adjustments and Postprocessing
	Final Challenge
	Conclusion

	Chapter 7: Character Modeling
	Concept Art
	Style Sheets
	Workflow
	Polycount
	Setting Up Image Plane in Maya
	Eyeball
	Create the Eyelids
	Create the Eye Socket
	Forehead and Nose
	Mouth
	Rest of the Head
	Ear
	Neck
	Internal Structures
	Body
	Hands
	Hairs
	Weapon
	Final Clean Up
	Conclusion

	Chapter 8: UV Mapping
	UV Mapping
	Tutorial 8.1: Character UV Mapping
	Mesh Inspection and Cleanup
	Body UV
	Eye UV
	Hair UV
	Garment UV
	Conclusion

	Chapter 9: Character Texture Painting
	Skin Texturing
	Hair
	Eye
	Upper Body
	Pants
	Belts, Straps, Pockets, Holster, and Boots
	Gloves
	Watch
	Gun
	Other Details
	Export Textures
	Conclusion

	Chapter 10: Rigging
	Joint Behavior
	Joint Placement – Hip, Spine, Neck, and Head
	Tutorial 10.1: Create the Joint Chain for Our Character
	Joint Placement – Left Arm
	Joint Setup – Right Arm
	Joint Setup – Legs
	Foot Roll Rig
	Setting Up the Foot Hierarchy
	Tutorial 10.2: Bind and Paint Skin Weighting
	Painting Skin Weights
	Mirroring the Skin Weights
	Copying the Skin Weights
	Tutorial 10.3: Set Up Arm Controls
	Constrains
	IK Arm Setup
	Tutorial 10.4: Finger Controls
	Tutorial 10.5: Clavicle and Body Controls
	Gun Joint
	Final Hierarchy
	Conclusion

	Chapter 11: FPS Animation in Maya
	FPS Animation Overview
	Referencing the Character Rig
	Save Files
	Display Layers
	Camera Configuration
	Game Animations
	Creating a Pose
	Weapon Movement Simplified
	Two-Handed Weapon Setup
	Frame Rate
	Idle Animation
	Cleaning Up Odd Jitters
	Ease-In’s and Ease-Out’s
	Graph Editor
	Keywords Aside
	Attack Animation
	Walk Animation
	“Got Caught” Animation
	Keywords Aside
	Reload Animation
	Considerations and Conclusion

	Chapter 12: Auto Rigging
	Mixamo
	Tutorial 12.1: Mixamo-Based Auto Rigging and Mocap
	Substance Painter Output
	Putting it All Together
	Setting Up the Animator
	Conclusion

	Chapter 13: Introduction to C#
	C#
	C# in Unity and Visual Studio
	Tutorial 13.1: Hello World!
	Tutorial 13.2: Opening Doors
	DOTween
	Variables
	A Final Note: Unity’s API
	Conclusion

	Chapter 14: FPS Animations
	Tutorial 14.1: First Person Animation in Unity
	Maya Animation Preparation
	Baking Keys
	Substance Painter Output
	Putting It Together in Unity
	Importing and Adjusting Animation Rigs
	Animations in Unity
	Controlling Animations
	Controlling Animator with Code
	Tutorial Conclusion

	Chapter 15: Raycasting and Render Textures
	Tutorial 15.1: Animating the Camera
	Tutorial Conclusion
	Tutorial 15.2: Raycasting
	Tutorial Conclusion
	Tutorial 15.3: Camera Extras
	Conclusion

	Chapter 16: Weapons
	Tutorial 16.1: Grenade Launcher
	Making a “Smart” Grenade
	Tutorial Conclusion
	Tutorial 16.2: Firing the Gun and Introduction to Ammo
	Tutorial Conclusion
	Tutorial 16.3: Raycasting For Accuracy
	Problem and Solution
	Conclusion

	Chapter 17: AI
	Tutorial 17.1: Creating an AI-Based “Tic-Tac”
	Tutorial Conclusion
	Tutorial 17.2: Using Animations (Animator) With Navmesh
	Preparing FBX Animation Files
	Placing Animations in the Animator
	Changing the Triggers and Booleans Via Script
	Tutorial Conclusion
	Tutorial 17.3: Animation Events and a Working Weapon
	Creating the Function to Fire
	Animation Events
	Awkward Implementation
	Tutorial Conclusion
	Tutorial 17.4: Assembling it All in Mainlevel
	Conclusion

	Chapter 18: Health and Inventory
	Tutorial 18.1: Player Health Script
	Tutorial Conclusion
	Tutorial 18.2: Building the AI Health System
	Tutorial Conclusion
	Tutorial 18.3: Ammo
	Reloading Ammo
	Conclusion

	Chapter 19: UI
	Screen Space
	Tutorial 19.1: Reticle, Ammo, and Health UI
	Health Indicator
	Tutorial Conclusion
	Tutorial 19.2: Using Code to Effect UI Elements
	Case Switches or Switch Statements
	Health UI
	Tutorial Conclusion
	Tutorial 19.3: Buttons and Moving Between Scenes
	Interactive Buttons
	Tying Up Some Loose Ends
	Conclusion

	Chapter 20: Boss Battle
	Tutorial 20.1: Final Boss
	Boss Health Bar
	Final Theatrics
	Conclusion

	Index

