
        
            
                
            
        

    
 

 

 

 



OCAJP  Oracle© Certified Associate Java SE 8 Programmer
Practice Exams

(Exam Code 1Z0-808)


©Mitchell Glenn
www.enthuware.com





Preface

 


At Enthuware, we have been training Students for various Java certifications for the past ten years. Our highly advanced mock exam simulator is a well respected study tool in terms of quality, quantity, price, and features. While it is a full blown desktop application that offers unparalleled features, we realize that it may not be possible for everybody to study while being tied to a regular PC. We have received numerous requests to provide the same content in an eBook format. This book is an attempt to help people access the same mock exams on their mobile devices.




Table of Contents

	Introduction

	Exam Objectives

	Taking the Actual Exam

	Sample


	Sample Questions

	Sample Questions (Answered)



	Standard Tests


	Foundation Test

	Foundation Test (Answered)

	Test 1

	Test 1 (Answered)

	Test 2

	Test 2 (Answered)

	Test 3

	Test 3 (Answered)

	Test 4

	Test 4 (Answered)

	Test 5

	Test 5 (Answered)

	Test 6

	Test 6 (Answered)

	Last Day Test (Unique)

	Last Day Test (Unique) (Answered)



	Objective-wise Questions


	Java Basics


	Java Basics

	Java Basics (Answered)



	Java Basics - OO Concepts


	Java Basics - OO Concepts

	Java Basics - OO Concepts (Answered)



	Working with Java Data Types


	Working with Java Data Types

	Working with Java Data Types (Answered)



	Working with Java Data Types - Garbage Collection


	Working with Java Data Types - Garbage Collection

	Working with Java Data Types - Garbage Collection (Answered)



	Using Operators and Decision Constructs


	Using Operators and Decision Constructs

	Using Operators and Decision Constructs (Answered)



	Creating and Using Arrays


	Creating and Using Arrays

	Creating and Using Arrays (Answered)



	Using Loop Constructs


	Using Loop Constructs

	Using Loop Constructs (Answered)



	Constructors


	Constructors

	Constructors (Answered)



	Working with Methods


	Working with Methods

	Working with Methods (Answered)



	Working with Methods - Overloading


	Working with Methods - Overloading

	Working with Methods - Overloading (Answered)



	Working with Inheritance


	Working with Inheritance

	Working with Inheritance (Answered)



	Working with Inheritance - instanceof


	Working with Inheritance - instanceof

	Working with Inheritance - instanceof (Answered)



	Handling Exceptions


	Handling Exceptions

	Handling Exceptions (Answered)



	Lambda Expressions


	Lambda Expressions

	Lambda Expressions (Answered)



	Working with Java API - ArrayList


	Working with Java API - ArrayList

	Working with Java API - ArrayList (Answered)



	Working with Java API - String, StringBuilder


	Working with Java API - String, StringBuilder

	Working with Java API - String, StringBuilder (Answered)



	Working with Java API - Time and Date


	Working with Java API - Time and Date

	Working with Java API - Time and Date (Answered)





	Exceptions Summary

	About the Author




Introduction

Oracle ® has significantly altered the Java Certification track since the release of Java SE 7. The entry level certification for Java Programmers is now broken up into two levels. The same is true for Java 8.

The first level is called Java Programmer - I, and confers an Associate Level certificate. The full name of this certification is Oracle Certified Associate, Java SE 8 Programmer (Exam Number: 1Z0-808). 

The second level is called, well, Java Programmer - II, and confers a Professional Level certificate. The full name of this certification is Oracle Certified Professional, Java SE 8 Programmer (Exam Number: 1Z0-809). One must first acquire the Associate Level certificate before going for the Professional Level. This book focuses on the Level 1 certification exam, i.e. OCA - Java SE 8 (1Z0-808) Programmer Certification.



Who should use this book


This book is for OCA-JP SE8 certification aspirants. If you are a Java programmer with a couple of years of experience and if you are confident about your basic Java programming skills, you should take the mock exams in this book before attempting the real exam. 
Unlike the previous version of this exam, OCAJP 8 is tougher, trickier, and lengthier. Even though the breadth of topics covered in this exam isn't much, you need to thoroughly understand basic Java programming. You need to study the exam objectives really well.



If you are an experienced Java programmer, you don't need any specific Certification Study Guide for this exam. The only caveat is that the exam is really lengthy. You have to answer 77 questions in 2 hours*. If you haven't taken a lot of online tests recently, you need to practice. This is exactly what this book is for. It will make you ready for the real exam in a few weeks. If you are short on time, you can use the Objective-wise section of this book to go through the questions on the topics that are new in Java 8, namely Lambda Expressions and the new Date-Time API.



If you are a Java beginner, you should use this book as a supplement to which ever regular Java programming book you are going through. This book is not a tutorial or a guide and it is not meant to replace a regular Java book. It is not meant to teach you the basics of Java programming. You should use this book to check how well you are learning the concepts by answering questions for any given exam objective. For example, if you are done studying the topic of Constructors from another book, you should attempt the questions given in this book on this topic and check how much you've learnt. If you have already gone through a book, you may attempt a complete mock exam and see how you score. If you pass the mock exam, you may proceed with the next mock exam otherwise, you need to go back to your regular Java programming book and read up on the topics on which you scored less.


How to prepare for OCA-JP


As mentioned before, if you are a Java programmer with a couple of years of experience, you don't need any specific Certification Study Guide. You can start with the mock exams in this book straight away. 



If you are a complete beginner, you should first go through any Java book for beginners. Write a lot of short and simple programs to understand the concepts. Check out the exam objectives and read up on these topics from any book or online tutorials. We recommend the official Oracle Java 8 tutorial.Once you are comfortable with all the topics, you may start with the first Standard Test. 






A note about OCAJP 7 Resources

Most of the exam objectives for OCAJP 8 are same as that of OCAJP 7. However, it is not a good idea to use those resources because there are a few fundamental changes in Java 8 such as static and default methods in interfaces, which affect correct answers and explanations. You may end up getting confused between the two versions of Java. It is better to go with a book that is meant for Java 8 even if it is not specifically meant for the certification exam.


 



How is this book organized?


This book contains full sized mock exams that mimic the style and toughness level of the real exam. All such mock exams are under 
Standard Tests. The first test is named Foundation Test because it is more theoretical in nature. You are not likely to get such questions in the exam but this test is important because it provides you a solid foundation that will allow you to answer the more exam like questions presented in rest of the tests. We have tried to provide exhaustive explanations to questions in this test and we suggest you to go through this test first. It will help fill any holes in your fundamental Java knowledge. You may ignore this test if you are confident of your Java knowledge and go straight to the first Standard Test.



Duplicate Questions

Standard Tests and Objective wise sets contain the same questions. So, depending on your mode of preparation, you should either attempt Standard Tests or Objective wise questions. If you have already attempted Objective wise questions, taking Standard Tests is of no use. You would have seen all the questions and your score will not be a real measure of your preparation.



Last Day Test, however, is an exception. We have made this test completely unique. Questions in this test are not included in Objective wise sets and so even if you have attempted all the objective wise questions, you may still attempt this test.



Taking the mock exams

You should start with the first Standard Test. Your score on this test will give you a fair idea of how well you are prepared for the exam. Ideally, you should score more than 65%* on this exam before moving on to the next exam. We have included a lot of  reading material with the questions and you should go through the detailed explanation for each question...even for questions that you've answered correctly. Your objective should be to improve your score on the topics on which you scored less in this test. 

If you fail in a standard test, you should not move on to the next test. Instead, first read up on the topics in which you failed from any book, write some sample programs to reinforce the concepts, and then attempt the next test.


*Oracle frequently changes the test parameters such as number of questions, passing percentage, and test duration. It is, therefore, a good idea to check these details at the time of your exam.


At the end of your preparation, you should attempt the "Last Day Test". If you pass this test, you are ready for the real exam. Most of our users have scored 10% higher on the real exam.



That is all there is to this book. Happy Learning!


-Mitchell Glenn and the rest of Enthuware Team.


 


P.S. If you have any doubt or feedback about any question, just click on the question id at the top of the question to see any discussion associated with that question on Enthuware discussion forum. If it hasn't been discussed before, feel free to post a message and we will try our best to help.



Exam Objectives

The following are the exam objectives as of this writing. Oracle may tweak the objectives at any time so please verify the current objectives published at OCA-JP Certification Page at Oracle.  


	Java Basics

	Define the scope of variables

	Define the structure of a Java class

	Create executable Java applications with a main method; run a Java program from the command line; including console output.

	Import other Java packages to make them accessible in your code

	Compare and contrast the features and components of Java such as: platform independence, object orientation, encapsulation, etc.


	Working With Java Data Types

	Declare and initialize variables (including casting of primitive data types)

	Differentiate between object reference variables and primitive variables

	Read or write to object fields

	Explain an Object's Lifecycle (creation, "dereference" and garbage collection)

	Develop code that uses wrapper classes such as Boolean, Double, and Integer.


	Using Operators and Decision Constructs 

	Use Java operators

	Use parentheses to override operator precedence

	Test equality between strings and other objects using == and equals ()

	Create if and if/else and ternary constructs

	Use a switch statement 


	Creating and Using Arrays

	Declare, instantiate, initialize and use a one-dimensional array

	Declare, instantiate, initialize and use multi-dimensional array


	Using Loop Constructs 

	Create and use while loops

	Create and use for loops including the enhanced for loop

	Create and use do/while loops

	Compare loop constructs

	Use break and continue


	Working with Methods and Encapsulation

	Create methods with arguments and return values; including overloaded methods

	Apply the static keyword to methods and fields

	Create and overload constructors; including impact on default constructors

	Apply access modifiers

	Apply encapsulation principles to a class

	Determine the effect upon object references and primitive values when they are passed into methods that change the values 


	Working with Inheritance

	Describe inheritance and its benefits

	Develop code that demonstrates the use of polymorphism; including overriding and object type versus reference type

	Determine when casting is necessary

	Use super and this to access objects and constructors

	Use abstract classes and interfaces


	Handling Exceptions 

	Differentiate among checked exceptions, RuntimeExceptions and Errors

	Create a try-catch block and determine how exceptions alter normal program flow

	Describe the advantages of Exception handling 

	Create and invoke a method that throws an exception

	Recognize common exception classes (such as NullPointerException, ArithmeticExcpetion, ArrayIndexOutOfBoundsException, ClassCastException)


	Working with Selected classes from the Java API 

	Manipulate data using the StringBuilder class and its methods

	Creating and manipulating Strings

	Create and manipulate calendar data using classes from java.time.LocalDateTime,  java.time.LocalDate, java.time.LocalTime, java.time.format.DateTimeFormatter, java.time.Period

	Declare and use an ArrayList of a given type 

	Write a simple Lambda expression that consumes a Lambda Predicate expression






 
Taking the Actual Exam


The exam is conducted by Pearson VUE. You may pay for and schedule the exam online through their website.



Type of Questions

All the questions in the exam are multiple choice questions and every question tells you the number of options you must select. There is no partial credit for answering a question partially correctly. You must pick all the correct options to get full credit for answering the question correctly. There are no drag and drop or fill in the blanks type questions.


Testing Software

The testing application is fairly straight forward. You can mark the questions, move forward and backward while answering the questions, change your answers, review questions, and finally submit the answers for evaluation. Before starting the test, it shows you a screen that lists how to navigate through the testing software. There is a Start Test button at the bottom. As soon as you click it, the real test starts. Each question tells you exactly how many correct options you need to select. It doesn't let you select more than those many. If you select less, the question shows up in the review screen as "incomplete".

Overall, it is not something that you need to lose your sleep over. However, if you have never taken a computer based test before, we advise you to use our Mock Exam Simulator and simulate the real test on a computer at home. The simulator is meant for learning purpose and has a lot more features than the actual testing software, so it does not look exactly the same as the real test, but it will give you a decent idea of what to expect. Solving questions in a book without anybody keeping the time and taking a test on a computer are two different things. This test is particularly lengthy and it is easy to lose track of time. Using the simulator will help you in determining how quick or slow you are in answering the questions.




Finally, don't worry too much about the test. Practice all the questions in this book and you will be fine :)




 

Sample
This section contains only a few questions for sampling the book.



01.     QID - 2.1355 
 

Given the following code, which of the constructors shown in the options can be added to class B without causing a compilation to fail?


class A{
   int i;
   public A(int x) { this.i = x; }
}
class B extends A{
   int j;
   public B(int x, int y) { super(x);  this.j = y; }
}

 

Select 2 options

A. B( ) { }
 


B. B(int y ) { j = y; }
 


C. B(int y ) { super(y*2 ); j = y; }
 


D. B(int y ) { i = y; j = y*2; }
 


E. B(int z ) { this(z, z); }
 


 
Check Answer
 



02.     QID - 2.1455 
 

What will the following code print?

        int x = 1;

        int y = 2;

        int z = x++;

        int a = --y;

        int b = z--;

        b += ++z;



        int answ = x>a?y>b?y:b:x>z?x:z;

        System.out.println(answ);
 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. -1
 


E. -2
 


F. 3
 


 
Check Answer
 



03.     QID - 2.1477 
 

Which statements about the following code are correct?



interface House{

  public default String getAddress(){

     return "101 Main Str";

  }

}



interface Bungalow extends House{

  public default String getAddress(){

     return "101 Smart Str";

  }

}



class MyHouse implements Bungalow, House{



}



public class TestClass {



  public static void main(String[] args) {

    House ci = new MyHouse();  //1

    System.out.println(ci.getAddress()); //2

  }

}


 

Select 1 option

A. Code for interface House will cause compilation to fail.
 


B. Code for interface Bungalow will cause compilation to fail.
 


C. Code for class MyHouse will cause compilation to fail.
 


D. Line at //1 will cause compilation to fail.
 


E. Line at //2 will cause compilation to fail.
 


F. The code will compile successfully.
 


 
Check Answer
 



04.     QID - 2.1258 
 

Consider the following code:



class Test{

  public static void main(String[] args){

    for (int i = 0; i < args.length; i++)   System.out.print(i == 0 ? args[i] : " " + args[i]);

  }

}



What will be the output when it is run using the following command:



java Test good bye friend!
 

Select 1 option

A. good bye friend!
 


B. good good good
 


C. goodgoodgood
 


D. good bye
 


E. None of the above.
 


 
Check Answer
 



05.     QID - 2.1414 
 

Which of the following statements will print true when executed?
 

Select 3 options

A. System.out.println(Boolean.parseBoolean("true"));
 


B. System.out.println(new Boolean(null));
 


C. System.out.println(new Boolean());
 


D. System.out.println(new Boolean("true"));
 


E. System.out.println(new Boolean("trUE"));
 


 
Check Answer
 



06.     QID - 2.1436 
 

You have written some Java code in MyFirstClass.java file. Which of the following commands will you use to compile and run it.

(Assume that the code has no package declaration.)
 

Select 1 option

A. javac MyFirstClass.java

javar MyFirstClass
 


B. javap MyFirstClass.java

javar MyFirstClass.java
 


C. java MyFirstClass.java

java MyFirstClass.class
 


D. javac MyFirstClass.java

javar MyFirstClass.java
 


E. javac MyFirstClass.java

java MyFirstClass
 


 
Check Answer
 



07.     QID - 2.1230 
 

What will the following code print when run?



public class TestClass{

  public static long main(String[] args){

     System.out.println("Hello");

     return 10L;

  }

}
 

Select 1 option

A. Hello
 


B. It will not print anything.
 


C. It will not compile
 


D. It will throw an Error at runtime.
 


E. None of the above.
 


 
Check Answer
 



08.     QID - 2.910 
 

Consider the following code:





interface Flyer{ String getName(); }



class Bird implements Flyer{

    public String name;

    public Bird(String name){

        this.name = name;

    }

    public String getName(){ return name; }

}



class Eagle extends Bird { 

    public Eagle(String name){

        super(name);

    }

}



public class TestClass {

    public static void main(String[] args) throws Exception {

        Flyer f = new Eagle("American Bald Eagle");

        //PRINT NAME HERE

   }

}



Which of the following lines of code will print the name of the Eagle object?
 

Select 3 options

A. System.out.println(f.name);
 


B. System.out.println(f.getName());
 


C. System.out.println(((Eagle)f).name);
 


D. System.out.println(((Bird)f).getName());
 


E. System.out.println(Eagle.name);
 


F. System.out.println(Eagle.getName(f));
 


 
Check Answer
 



09.     QID - 2.833 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showTwo(200);
        System.out.println(ct.myValue);
        ct.showOne(100);
        System.out.println(ct.myValue);
    }
}

 

Select 1 option

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


E. 200 followed by 200.
 


F. 200 followed by 100
 


 
Check Answer
 



10.     QID - 2.1077 
 

What will the following program print?

public class TestClass{
  static boolean b;
  static int[] ia = new int[1];
  static char ch;
  static boolean[] ba = new boolean[1];
  public static void main(String args[]) throws Exception{
    boolean x = false;
    if( b ){
      x = ( ch == ia[ch]);
    }
    else x = ( ba[ch] = b );
    System.out.println(x+" "+ba[ch]);
  }
}


 

Select 1 option

A. true true
 


B. true false
 


C. false true
 


D. false false
 


E. It will not compile.
 


 
Check Answer
 



11.     QID - 2.1154 
 

Consider the following code:


class A{
 public XXX m1(int a){
   return a*10/4-30;
 }
}
class A2 extends A{
 public YYY m1(int a){
   return a*10/4.0;
 }
}


What can be substituted for XXX and YYY so that it can compile without any problems?
 

Select 1 option

A. int, int
 


B. int, double
 


C. double, double
 


D. double, int
 


E. Nothing, they are simply not compatible.
 


 
Check Answer
 



12.     QID - 2.1473 
 

What can be inserted in the code below so that it will print true when run?



public class TestClass{



   public static boolean checkList(List list, Predicate<List> p){

      return p.test(list);

   }

  

   public static void main(String[] args) {

      boolean b = //WRITE CODE HERE

      System.out.println(b);

   }

}
 

Select 2 options

A. checkList(new ArrayList(), al -> al.isEmpty());
 


B. checkList(new ArrayList(), ArrayList al -> al.isEmpty());
 


C. checkList(new ArrayList(), al -> return al.size() == 0);
 


D. checkList(new ArrayList(), al -> al.add("hello"));
 


E.  checkList(new ArrayList(), (ArrayList al) -> al.isEmpty());
 


 
Check Answer
 



13.     QID - 2.1464 
 

Given:

public class LoopTest {

    int k = 5;

    public boolean checkIt(int k){

        return k-->0?true:false;

    }

    public void printThem(){

        while(checkIt(k)){

            System.out.print(k);

        }

    }

    public static void main(String[] args) {

        new LoopTest().printThem();

    }

}

What changes should be made so that the program will print 54321?
 

Select 1 option

A. No change is necessary.
 


B. Replace System.out.print(k); with System.out.print(k--);
 


C. Replace System.out.print(k); with System.out.print(--k);
 


D. Replace while(checkIt(k)) with while(checkIt(--k)).
 


E. Replace return k-->0?true:false; with return this.k-->0?true:false;
 


 
Check Answer
 



14.     QID - 2.1421 
 

What will the following code print when compiled and run?





public class Discounter {

    static double percent; //1

    int offset = 10, base= 50; //2

    public static double calc(double value) {

        int coupon, offset, base; //3

        if(percent <10){ //4

            coupon = 15;

            offset = 20;

            base = 10;

        }

        return coupon*offset*base*value/100; //5

    }

    public static void main(String[] args) {

        System.out.println(calc(100));

    }

}


 

Select 1 option

A. 3000
 


B. 3000.0
 


C. compilation error at //3
 


D. compilation error at //4
 


E. compilation error at //5
 


F. Exception at run time.
 


 
Check Answer
 



15.     QID - 2.1224 
 

Consider the following code for the main() method:


public static void main(String[] args) throws Exception{
   int i = 1, j = 10;
   do {
      if (i++ > --j) continue;
   } while (i < 5);
   System.out.println("i=" + i + " j=" + j);
}


What will be the output when the above code is executed?
 

Select 1 option

A. i=6 j=6
 


B. i=5 j=6
 


C. i=5 j=5
 


D. i=6 j=5
 


E. None of these.
 


 
Check Answer
 



16.     QID - 2.1005 
 

Consider the following code:


class A {
    public void doA(int k) throws Exception {  // 0
        for(int i=0; i< 10; i++) {
            if(i == k) throw new Exception("Index of k is "+i); // 1
        }
    }
    public void doB(boolean f) { // 2
        if(f) {
            doA(15); // 3
        }
        else return;
    }
    public static void main(String[] args) { // 4
        A a = new A();
        a.doB(args.length>0); // 5
    }
 }


Which of the following statements are correct?
 

Select 1 option

A. This will compile and run without any errors or exception.
 


B. This will compile if throws Exception is added at line //2
 


C. This will compile if throws Exception is added at line //4
 


D. This will compile if throws Exception is added at line //2 as well as //4
 


E. This will compile if  line marked // 1 is enclosed in a try - catch block.
 


 
Check Answer
 



17.     QID - 2.1424 
 

What will the following code print when compiled and run?



public class TestClass{

    

    public static void main(String[] args) {



        System.out.println(getMsg((char)10)); 



    }



    public static String getMsg(char x){

        String msg = "Input value must be ";

        msg = msg.concat("smaller than X");

        msg.replace('X', x);

        String rest = " and larger than 0";

        msg.concat(rest);

        return msg;

    }

}


 

Select 1 option

A. Input value must be smaller than X and larger than 0
 


B. Input value must be smaller than 10 and larger than 0
 


C. Input value must be smaller than X
 


D. Input value must be smaller than 10
 


 
Check Answer
 



18.     QID - 2.908 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        

         boolean flag  = true;

         switch (flag){

             case true : System.out.println("true");

                 default: System.out.println("false");

         }

              

    }

}
 

Select 1 option

A. It will not compile.
 


B. false
 


C. true

false
 


D. Exception at run time.
 


 
Check Answer
 



19.     QID - 2.1405 
 

How many objects have been created by the time the main method reaches its end in the following code?

public class Noobs {

    public Noobs(){

        try{

            throw new MyException();

        }catch(Exception e){

        }

    }

    public static void main(String[] args) {

        Noobs a = new Noobs();

        Noobs b = new Noobs();

        Noobs c = a;

    }

}

class MyException extends Exception{

    

}
 

Select 1 option

A. 2
 


B. 3
 


C. 4
 


D. 5
 


E. 6
 


 
Check Answer
 



20.     QID - 2.1428 
 

Which of the following are valid ways to create a LocalDateTime?
 

Select 1 option

A. java.time.LocalDate.parse("2015-01-02");
 


B. java.time.LocalDateTime.parse("2015-01-02");
 


C. java.time.LocalDateTime.of(2015, 10, 1, 10, 10);
 


D. java.time.LocalDateTime.of(2015, "January", 1, 10, 10);
 


 
Check Answer
 



21.     QID - 2.1409 
 

What will the following code print?



public class Test{

    public static void testInts(Integer obj, int var){

        obj = var++;

        obj++;

    }

    public static void main(String[] args) {

        Integer val1 = new Integer(5);

        int val2 = 9;

        testInts(val1++, ++val2);

        System.out.println(val1+" "+val2);

    }

}           


 

Select 1 option

A. 10 9
 


B. 10 10
 


C. 6 9
 


D. 6 10
 


E. 5 11
 


 
Check Answer
 



22.     QID - 1.926 
 

Consider the following class...


class TestClass{
    void probe(Object x) { System.out.println("In Object"); } //3 

    void probe(Number x) { System.out.println("In Number"); } //2

    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        double a = 10; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Select 1 option

A. In Number
 


B. In Object
 


C. In Long
 


D. In Integer
 


E. It will not compile.
 


 
Check Answer
 



23.     QID - 2.1482 
 

What will the following code print when compiled and run?

class Baap{

    public int h = 4;

    public int getH(){ 

        System.out.println("Baap "+h); return h;

    }

}





public class Beta extends Baap{

    public int h = 44;

    public int getH(){ 

        System.out.println("Beta "+h); return h;

    }    

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h+" "+b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h+" "+bb.getH());

    }

}
 

Select 1 option

A. Baap 44

4 44

Beta 44

44 44
 


B. Beta 44

4 44

Baap 44

44 44
 


C. Beta 44

4 44

Beta 44

44 44
 


D. 4 44

Beta 44

44 44

Beta 44
 


E. 44 44

Beta 44

4 44

Beta 44
 


F. 4 44

Beta 44

4 44

Beta 44
 


 
Check Answer
 



24.     QID - 2.1286 
 

Consider the following array definitions:

int[] array1, array2[];

int[][] array3;

int[] array4[], array5[];

Which of the following are valid statements?
 

Select 3 options

A. array2 = array3;
 


B. array2 = array4;
 


C. array1 = array2;
 


D. array4 = array1;
 


E. array5 = array3;
 


 
Check Answer
 



25.     QID - 2.1462 
 

What will the following code print?

List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

System.out.println(s1.remove("a")+" "+s1.remove("x"));
 

Select 1 option

A. 1 0
 


B. 2 -1
 


C. 2 0
 


D. 1 -1
 


E. true false
 


 
Check Answer
 



26.     QID - 2.1121 
 

What will the following code print?


void crazyLoop(){
  int c = 0;
  JACK: while (c < 8){
    JILL: System.out.println(c);
    if (c > 3) break JACK; else c++;
  }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


 
Check Answer
 



27.     QID - 2.901 
 

Given:

public class Triangle{
    public int base;
    public int height;
    public double area;
    
    public Triangle(int base, int height){
        this.base = base; this.height = height;
        updateArea();
    }

    void updateArea(){
        area = base*height/2;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


The above class needs to protect an invariant on the "area" field. Which three members must have the public access modifiers removed to ensure that the invariant is maintained?
 

Select 3 options

A. the base field
 


B. the height field
 


C. the area field
 


D. the Triangle constructor
 


E. the setBase method
 


F. the setHeight method
 


 
Check Answer
 



Sample Questions (Answered)



01.     QID - 2.1355 : Constructors 
 

Given the following code, which of the constructors shown in the options can be added to class B without causing a compilation to fail?


class A{
   int i;
   public A(int x) { this.i = x; }
}
class B extends A{
   int j;
   public B(int x, int y) { super(x);  this.j = y; }
}

 

Correct Options are :  C E 

A. B( ) { }
 


B. B(int y ) { j = y; }
 


C. B(int y ) { super(y*2 ); j = y; }
 


D. B(int y ) { i = y; j = y*2; }
 


E. B(int z ) { this(z, z); }
 


Explanation: 
1. Remember that an instance of a class is also an instance of its parent class. Therefore, as a part of constructing an instance of a subclass, the JVM has to initialize those parts of the instance that are inherited from the super class as well. Further, the parts inherited from the super class need to be initialized first because the subclass may depend on them. Since it is the job of a constructor to initialize an instance, a constructor of the super class has to be invoked before the constructor of the subclass can proceed. The compiler ensures that at least one constructor of the super class is invoked if you do not explicitly call a super class's constructor by adding super(); (i.e. a call to the no-args constructor) as the first line of the sub class constructor. It automatically adds this call IF and ONLY IF the subclass's constructor does not explicitly call any of the super class's constructor in the first line of its code.



Now, if the super class ( here, A ) does not have a no-args constructor, the call super(); will fail. Hence, choices B( ) { }, B(int y ) { j = y; } and B(int y ) { i = y; j = y*2; } are not valid and choice B(int y ) { super(y*2 ); j = y; } is valid because it explicitly calls super( int ), which is available in A.



2. Instead of calling a super class's constructor using super(<args>), you can also call another constructor of the sub class in the first line (as given in choice B(int z ) { this(z, z); } ). Here, this(int, int) is called in the first line, which, in turn, calls super(int). So the super class A is correctly instantiated before the sub class B begins initialization.

 
Back to Question without Answer
 



02.     QID - 2.1455 : Using Operators and Decision Constructs 
 

What will the following code print?

        int x = 1;

        int y = 2;

        int z = x++;

        int a = --y;

        int b = z--;

        b += ++z;



        int answ = x>a?y>b?y:b:x>z?x:z;

        System.out.println(answ);
 

Correct Option is :  C 

A. 0
 


B. 1
 


C. 2
 


D. -1
 


E. -2
 


F. 3
 


Explanation: 
This is a simple but frustratingly time consuming question. Expect such questions in the exam.

For such questions, it is best to keep track of each variable on the notepad after executing each line of code.



The final values of the variables are as follows - 

x=2 y=1 z=1 a=1 b=2



The expression x>a?y>b?y:b:x>z?x:z; should be grouped as - 

x > a  ? (y>b ? y : b)  :  (x>z ? x : z);



It will, therefore, assign 2 to answ.

 
Back to Question without Answer
 



03.     QID - 2.1477 : Working with Inheritance 
 

Which statements about the following code are correct?



interface House{

  public default String getAddress(){

     return "101 Main Str";

  }

}



interface Bungalow extends House{

  public default String getAddress(){

     return "101 Smart Str";

  }

}



class MyHouse implements Bungalow, House{



}



public class TestClass {



  public static void main(String[] args) {

    House ci = new MyHouse();  //1

    System.out.println(ci.getAddress()); //2

  }

}


 

Correct Option is :  F 

A. Code for interface House will cause compilation to fail.
 


B. Code for interface Bungalow will cause compilation to fail.
 


C. Code for class MyHouse will cause compilation to fail.
 


D. Line at //1 will cause compilation to fail.
 


E. Line at //2 will cause compilation to fail.
 


F. The code will compile successfully.
 


Explanation: 
There is no problem with the code. It is perfectly valid for a subinterface to override a default method of the base interface. A class that implements an interface can also override a default method.

It is valid for MyHouse to say that it implements Bungalow as well as House even though House is redundant because Bungalow is a House anyway.



It will actually print 101 Smart str.

 
Back to Question without Answer
 



04.     QID - 2.1258 : Using Operators and Decision Constructs 
 

Consider the following code:



class Test{

  public static void main(String[] args){

    for (int i = 0; i < args.length; i++)   System.out.print(i == 0 ? args[i] : " " + args[i]);

  }

}



What will be the output when it is run using the following command:



java Test good bye friend!
 

Correct Option is :  A 

A. good bye friend!
 


B. good good good
 


C. goodgoodgood
 


D. good bye
 


E. None of the above.
 


Explanation: 
The arguments passed on the command line can be accessed using the args array. The first argument (i.e. good) is stored in args[0], second argument (i.e. bye) is stored in args[1] and so on.



Here, we are passing 3 arguments. Therefore, args.length is 3 and the for loop will run 3 times. For the first iteration, i is 0 and so the first operand of the ternary operator (?) will be returned, which is args[i]. For the next two iterations, " "+args[i] will be returned. Hence, the program will print three strings: "good", " bye", and " friend!" on the same line. 



Note that unlike in C++, program name is not the first parameter in the argument list. Java does not need to know the program name because the .class file name and the java class name are always same (for a public class). So the java code always knows the program name it is running in. So there is no need to pass the program name as the first parameter of the argument list. In C/C++, the binary file name may be anything so the code does not know what binary file it is going to end up in. That's why the program name is also sent (automatically) in parameter list.

 
Back to Question without Answer
 



05.     QID - 2.1414 : Working with Java Data Types 
 

Which of the following statements will print true when executed?
 

Correct Options are :  A D E 

A. System.out.println(Boolean.parseBoolean("true"));
 


B. System.out.println(new Boolean(null));
This will print false.


C. System.out.println(new Boolean());
This will not compile because Boolean class does not have a no-args constructor. Remember that no other wrapper class has a no-args constructor either. So new Integer(), or new Long() will also not compile.


D. System.out.println(new Boolean("true"));
Case of the String parameter does not matter. As long as the String equals "true" after ignoring the case, it will be parsed as true.  However, if you have extra spaces, for example, " true" or "true ", it will be parsed as false.


E. System.out.println(new Boolean("trUE"));
Case of the String parameter does not matter. As long as the String equals "true" after ignoring the case, it will be parsed as true.  However, if you have extra spaces, for example, " true" or "true ", it will be parsed as false.


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



06.     QID - 2.1436 : Java Basics 
 

You have written some Java code in MyFirstClass.java file. Which of the following commands will you use to compile and run it.

(Assume that the code has no package declaration.)
 

Correct Option is :  E 

A. javac MyFirstClass.java

javar MyFirstClass
 


B. javap MyFirstClass.java

javar MyFirstClass.java
 


C. java MyFirstClass.java

java MyFirstClass.class
 


D. javac MyFirstClass.java

javar MyFirstClass.java
 


E. javac MyFirstClass.java

java MyFirstClass
 


Explanation: 
Remember that java code must be written in a file with .java extension. If you have a public class in the code, the name of the file must be same as the name of that public class. 



Compilation and execution of a Java program is two step process. You first need to compile a java file using a Java compiler. Oracle's JDK comes with a compiler. It is contained in the executable file named javac. You will find it in <jdk installation folder>/bin.



javac compiles the source code and generates bytecode in a new file with the same name as the source file but with extension .class. By default, the class file in generated in the same folder but javac is capable of placing it in a different folder if you use the -d flag. [This is just FYI and not required for the exam. -d is a very important and useful flag and we recommend that you read about it even if it is not required for the exam.]



In second step, the Java virtual machine (JVM), aka Java interpreter is invoked to execute the .class file. Oracle's JVM is contained in the executable file named java. It is also present in the same bin folder of JDK installation. It takes the fully qualified name (i.e. name including package) of the class file without extension as a argument.

 
Back to Question without Answer
 



07.     QID - 2.1230 : Java Basics 
 

What will the following code print when run?



public class TestClass{

  public static long main(String[] args){

     System.out.println("Hello");

     return 10L;

  }

}
 

Correct Option is :  D 

A. Hello
 


B. It will not print anything.
 


C. It will not compile
 


D. It will throw an Error at runtime.
 


E. None of the above.
 


Explanation: 
When the program is run, the JVM looks for a method named main() which takes an array of Strings as input and returns nothing (i.e. the return type is void).

But in this case, it doesn't find such a method ( the given main() method is returning long!) so it throws a java.lang.NoSuchMethodError.

Note that java.lang.Error does not extend Exception class. It  extends java.lang.Throwable and so it can be "thrown".

 
Back to Question without Answer
 



08.     QID - 2.910 : Working with Inheritance 
 

Consider the following code:





interface Flyer{ String getName(); }



class Bird implements Flyer{

    public String name;

    public Bird(String name){

        this.name = name;

    }

    public String getName(){ return name; }

}



class Eagle extends Bird { 

    public Eagle(String name){

        super(name);

    }

}



public class TestClass {

    public static void main(String[] args) throws Exception {

        Flyer f = new Eagle("American Bald Eagle");

        //PRINT NAME HERE

   }

}



Which of the following lines of code will print the name of the Eagle object?
 

Correct Options are :  B C D 

A. System.out.println(f.name);
 


B. System.out.println(f.getName());
 


C. System.out.println(((Eagle)f).name);
 


D. System.out.println(((Bird)f).getName());
 


E. System.out.println(Eagle.name);
name is not a static field in class Eagle.


F. System.out.println(Eagle.getName(f));
This option doesn't make any sense.


Explanation: 
While accessing a method or variable, the compiler will only allow you to access a method or variable that is visible through the class of the reference.



When you try to use f.name, the class of the reference f is Flyer and Flyer has no field named "name", thus, it will not compile. But when you cast f to Bird (or Eagle), the compiler sees that the class Bird (or Eagle, because Eagle inherits from Bird) does have a field named "name" so ((Eagle)f).name or ((Bird)f).name will work fine.



f.getName() will work because Flyer does have a getName() method.

 
Back to Question without Answer
 



09.     QID - 2.833 : Working with Methods 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showTwo(200);
        System.out.println(ct.myValue);
        ct.showOne(100);
        System.out.println(ct.myValue);
    }
}

 

Correct Option is :  E 

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


E. 200 followed by 200.
 


F. 200 followed by 100
 


Explanation: 
There are a couple of important concepts in this question:



1. Within an instance method, you can access the current object of the same class using 'this'. Therefore, when you access this.myValue, you are accessing the instance member myValue of the ChangeTest instance.



2. If you declare a local variable (or a method parameter) with the same name as the instance field name, the local variable "shadows" the member field. Ideally, you should be able to access the member field in the method directly by using the name of the member (in this example, myValue). However, because of shadowing, when you use myValue, it refers to the local variable instead of the instance field.



In showTwo method, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. Ideally, you should be able to access the member field in the method directly by using the name myValue but in this case, the method parameter shadows the member field because it has the same name.  So by doing this.myValue, you are changing the instance variable myValue by assigning it the value contained in local variable myValue, which is 200. So in the next line when you print ct.myValue, it prints 200.



Now, in the showOne method also, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. So when you use myValue, you are actually using the method parameter instead of the member field.



Therefore, when you do : myValue = myValue; you are actually assigning the value contained in method parameter myValue to itself. You are not changing the member field myValue. Hence, when you do System.out.println(ct.myValue); in the next line, it still prints 200.

 
Back to Question without Answer
 



10.     QID - 2.1077 : Working with Java Data Types 
 

What will the following program print?

public class TestClass{
  static boolean b;
  static int[] ia = new int[1];
  static char ch;
  static boolean[] ba = new boolean[1];
  public static void main(String args[]) throws Exception{
    boolean x = false;
    if( b ){
      x = ( ch == ia[ch]);
    }
    else x = ( ba[ch] = b );
    System.out.println(x+" "+ba[ch]);
  }
}


 

Correct Option is :  D 

A. true true
 


B. true false
 


C. false true
 


D. false false
 


E. It will not compile.
 


Explanation: 
This question tests your knowledge on the default values of uninitialized primitives and object references. booleans are initialized to false, numeric types to 0 and object references to null. Elements of arrays are initialized to the default values of their types. So, elements of a boolean array are initialized to false. int, char, float to 0 and Objects to null.



In this case, b is false. So the else part of if(b) is executed.

ch is a numeric type so its value is 0. ba[0] = false assigns false to ba[0] and returns false which is assigned to x.

Finally, x and ba[0] are printed as false false.

 
Back to Question without Answer
 



11.     QID - 2.1154 : Working with Inheritance 
 

Consider the following code:


class A{
 public XXX m1(int a){
   return a*10/4-30;
 }
}
class A2 extends A{
 public YYY m1(int a){
   return a*10/4.0;
 }
}


What can be substituted for XXX and YYY so that it can compile without any problems?
 

Correct Option is :  C 

A. int, int
a*10/4.0; generates a double so, A2's m1() cannot return an int. (It will need a cast otherwise: return (int) (a*10/4.0);)


B. int, double
The return type should be same for overridden and overriding method.


C. double, double
a*10/4-30; generates an int which can be returned as a double without any cast.


D. double, int
The return type should be same for overridden and overriding method.


E. Nothing, they are simply not compatible.
 


Explanation: 
Note that when a method returns objects (as opposed to primitives, like in this question), the principle of covariant returns applies. Meaning, the overriding method is allowed to return a subclass of the return type defined in the overridden method. Thus, if a base class's method is: public A m(); then a subclass is free to override it with: public A1 m(); if A1 extends A.

 
Back to Question without Answer
 



12.     QID - 2.1473 : Lambda Expressions 
 

What can be inserted in the code below so that it will print true when run?



public class TestClass{



   public static boolean checkList(List list, Predicate<List> p){

      return p.test(list);

   }

  

   public static void main(String[] args) {

      boolean b = //WRITE CODE HERE

      System.out.println(b);

   }

}
 

Correct Options are :  A D 

A. checkList(new ArrayList(), al -> al.isEmpty());
The test method of Predicate returns a boolean. So all you need for your  body part in your lambda expression is an expression that returns a boolean. 

isEmpty() is a valid method of ArrayList, which returns true if there are no elements in the list. Therefore, al.isEmpty() constitutes a valid body for the lambda expression in this case.


B. checkList(new ArrayList(), ArrayList al -> al.isEmpty());
You need to put the parameter list of the lambda expression in brackets if you want to use the parameter type. For example,

 checkList(new ArrayList(), (List al) -> al.isEmpty());

Remember that specifying the parameter type is optional ( as shown in option 1) because the compiler can figure out the parameter types by looking at the signature of the abstract method of any functional interface (here, Predicate's test method).


C. checkList(new ArrayList(), al -> return al.size() == 0);
You need to put the body withing curly braces if you want to use the return keyword. For example,

checkList(new ArrayList(), al -> { return al.size() == 0; });


D. checkList(new ArrayList(), al -> al.add("hello"));
The add method of ArrayList returns a boolean. Further, it returns true if the list is altered because of the call to add. In this case, al.add("hello") indeed alters the list because a new element is added to the list.


E.  checkList(new ArrayList(), (ArrayList al) -> al.isEmpty());
Predicate is typed to List (not ArrayList) in the checkList method, therefore, the parameter type in the lambda expression must also be List. It cannot be ArrayList.


 
Back to Question without Answer
 



13.     QID - 2.1464 : Using Operators and Decision Constructs 
 

Given:

public class LoopTest {

    int k = 5;

    public boolean checkIt(int k){

        return k-->0?true:false;

    }

    public void printThem(){

        while(checkIt(k)){

            System.out.print(k);

        }

    }

    public static void main(String[] args) {

        new LoopTest().printThem();

    }

}

What changes should be made so that the program will print 54321?
 

Correct Option is :  B 

A. No change is necessary.
It will go in an infinite loop.


B. Replace System.out.print(k); with System.out.print(k--);
 


C. Replace System.out.print(k); with System.out.print(--k);
It will print 43210.


D. Replace while(checkIt(k)) with while(checkIt(--k)).
It will print 4321.


E. Replace return k-->0?true:false; with return this.k-->0?true:false;
This will print 43210.


Explanation: 
Observe that the method parameter k in checkIt shadows the instance variable k. Therefore, any changes made to k in checkIt will not affect the instance variable k. For checkIt method to access the instance variable k, you need to do this.k.



 k-->0 means, first compare the value of k with 0, and then reduce it by 1. (As opposed to --k>0, which means, first reduce the value of k by 1 and then compare with 0).



In the printThem method, k refers to the instance variable. You need to reduce it by 1 after each iteration. Therefore, System.out.print(k--); will do.

 
Back to Question without Answer
 



14.     QID - 2.1421 : Working with Java Data Types 
 

What will the following code print when compiled and run?





public class Discounter {

    static double percent; //1

    int offset = 10, base= 50; //2

    public static double calc(double value) {

        int coupon, offset, base; //3

        if(percent <10){ //4

            coupon = 15;

            offset = 20;

            base = 10;

        }

        return coupon*offset*base*value/100; //5

    }

    public static void main(String[] args) {

        System.out.println(calc(100));

    }

}


 

Correct Option is :  E 

A. 3000
 


B. 3000.0
 


C. compilation error at //3
 


D. compilation error at //4
 


E. compilation error at //5
 


F. Exception at run time.
 


Explanation: 
Remember that static and instance variables are automatically assigned a value even if you don't initialize them explicitly but local variables must be initialized explicitly before they are used.



Now, observe that the calc method declares local variables coupon, offset, and base but does not assign them a value. Even though at run time, we know that since percent is 0 and is thus < 10, a value will be assigned to these variables, the compiler doesn't know this because the compiler doesn't take values of "variables" into consideration while determining the flow of control. It only considers the values of compile time constants. Therefore, as far as the compiler is concerned, coupon, offset, and base may remain uninitialized before they are used.



Having uninitialized variables itself is not a problem. So there is no compilation error at //3. However, using them before they are initialized is a problem and therefore the compiler flags an error at //5.



Had percent been defined as final ( static final double percent = 0; ), the code would work and print 3000.0.

 
Back to Question without Answer
 



15.     QID - 2.1224 : Using Loop Constructs 
 

Consider the following code for the main() method:


public static void main(String[] args) throws Exception{
   int i = 1, j = 10;
   do {
      if (i++ > --j) continue;
   } while (i < 5);
   System.out.println("i=" + i + " j=" + j);
}


What will be the output when the above code is executed?
 

Correct Option is :  B 

A. i=6 j=6
 


B. i=5 j=6
 


C. i=5 j=5
 


D. i=6 j=5
 


E. None of these.
 


Explanation: 
To understand the flow, let us put a print statement in the code:



  int i = 1, j = 10;

   int k =1;

   do {

      System.out.println("Iteration "+k+": i=" + i + " j=" + j);

      k++;

      if (i++ > --j) continue;

   } while (i < 5);

   System.out.println("i=" + i + " j=" + j);



It generates the following output:



Iteration 1: i=1 j=10

Iteration 2: i=2 j=9

Iteration 3: i=3 j=8

Iteration 4: i=4 j=7

i=5 j=6



In the iteration 1, the if comparison goes like this:

if (1++ > --10 ) continue; => if( 1 > 9 ) . The values of i and j after the if statement are 2 and 9

In the iteration 2, the if comparison goes like this:

if (2++ > --9 ) continue; => if( 2 > 8 ) . The values of i and j after the if statement are 3 and 8

In the iteration 3, the if comparison goes like this:

if (3++ > --8 ) continue; => if( 3 > 7 ) . The values of i and j after the if statement are 4 and 7

In the iteration 4, the if comparison goes like this:

if (4++ > --7 ) continue; => if( 4 > 6 ) . The values of i and j after the if statement are 5 and 6



Now, i is not < 5 so the while(i<5) check fails and the loop terminates. So the final values are 5 and 6.

 
Back to Question without Answer
 



16.     QID - 2.1005 : Handling Exceptions 
 

Consider the following code:


class A {
    public void doA(int k) throws Exception {  // 0
        for(int i=0; i< 10; i++) {
            if(i == k) throw new Exception("Index of k is "+i); // 1
        }
    }
    public void doB(boolean f) { // 2
        if(f) {
            doA(15); // 3
        }
        else return;
    }
    public static void main(String[] args) { // 4
        A a = new A();
        a.doB(args.length>0); // 5
    }
 }


Which of the following statements are correct?
 

Correct Option is :  D 

A. This will compile and run without any errors or exception.
 


B. This will compile if throws Exception is added at line //2
 


C. This will compile if throws Exception is added at line //4
 


D. This will compile if throws Exception is added at line //2 as well as //4
 


E. This will compile if  line marked // 1 is enclosed in a try - catch block.
Even if // 1 is enclosed in a try block, the method still has throws Exception in its declaration, which will force the caller of this method to either declare Exception in its throws clause or put the call within a try block.


Explanation: 
Any checked exceptions must either be handled using a try block or the method that generates the exception must declare that it throws that exception. 

In this case, doA() declares that it throws Exception. doB() is calling doA but it is not handling the exception generated by doA(). So, it must declare that it throws Exception. Now, the main() method is calling doB(), which generates an exception (due to a call to doA()). Therefore, main() must also either wrap the call to doB() in a try block or declare it in its throws clause.



The main(String[] args) method is the last point in your program where any unhandled checked exception can bubble up to. After that the exception is thrown to the JVM and the JVM kills the thread.

 
Back to Question without Answer
 



17.     QID - 2.1424 : Working with Java API - String, StringBuilder 
 

What will the following code print when compiled and run?



public class TestClass{

    

    public static void main(String[] args) {



        System.out.println(getMsg((char)10)); 



    }



    public static String getMsg(char x){

        String msg = "Input value must be ";

        msg = msg.concat("smaller than X");

        msg.replace('X', x);

        String rest = " and larger than 0";

        msg.concat(rest);

        return msg;

    }

}


 

Correct Option is :  C 

A. Input value must be smaller than X and larger than 0
 


B. Input value must be smaller than 10 and larger than 0
 


C. Input value must be smaller than X
 


D. Input value must be smaller than 10
 


Explanation: 
Remember that a String once created cannot be changed. Therefore, when you call replace or concat methods on a String, a new String object is created. The old String remains as it is.

Here, the first call to concat returns a new String object containing "Input value must be smaller than X" and it is assigned back to msg. The original String referred to by msg is now lost (i.e. there is no reference to it anymore).

The first call to replace also creates a new String object but it is not assigned to any reference and is therefore lost and msg keeps pointing to the same String object. The same thing happens to the second call to concat. It create a new String object but it is not assigned back to msg, therefore, msg keeps pointing to the same object i.e.  "Input value must be smaller than X" 

 
Back to Question without Answer
 



18.     QID - 2.908 : Using Operators and Decision Constructs 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        

         boolean flag  = true;

         switch (flag){

             case true : System.out.println("true");

                 default: System.out.println("false");

         }

              

    }

}
 

Correct Option is :  A 

A. It will not compile.
A boolean cannot be used for a switch statement. It needs an integral type, an enum, or a String.


B. false
 


C. true

false
 


D. Exception at run time.
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



19.     QID - 2.1405 : Working with Java Data Types 
 

How many objects have been created by the time the main method reaches its end in the following code?

public class Noobs {

    public Noobs(){

        try{

            throw new MyException();

        }catch(Exception e){

        }

    }

    public static void main(String[] args) {

        Noobs a = new Noobs();

        Noobs b = new Noobs();

        Noobs c = a;

    }

}

class MyException extends Exception{

    

}
 

Correct Option is :  C 

A. 2
 


B. 3
 


C. 4
 


D. 5
 


E. 6
 


Explanation: 
When a Noobs object is created, a MyException object is also created. Therefore a total of 4 objects are created. The line Noobs c = a; just assigns an existing Noobs object to c. No new object is created.



Note: Some candidates have reported getting a similar question. 

The question is ambiguous because two Class objects (one for Noobs and one for MyException) are also created. If you consider those, then the answer would be 6. Further, several Thread objects are also created (although not directly by this code.) Since this is out of scope for the exam, it is best to ignore these kind of objects and consider only the objects created directly by the code.

 
Back to Question without Answer
 



20.     QID - 2.1428 : Working with Java API - Time and Date 
 

Which of the following are valid ways to create a LocalDateTime?
 

Correct Option is :  C 

A. java.time.LocalDate.parse("2015-01-02");
To create an instance of LocalDateTime, you need to use the methods in LocalDateTime class. Methods in LocalDate class create LocalDate instances. Similarly, methods in LocalTime class create LocalTime instances.


B. java.time.LocalDateTime.parse("2015-01-02");
LocalDateTime requires date as well as time. Here, you just have a date in the input so it will throw a java.time.format.DateTimeParseException.

java.time.LocalDateTime.parse("2015-01-02T17:13:50"); would be valid.


C. java.time.LocalDateTime.of(2015, 10, 1, 10, 10);
 


D. java.time.LocalDateTime.of(2015, "January", 1, 10, 10);
All parameters should be ints. For the month argument, you can either pass the numbers 1 to 12  (and not 0 to 11) or use constants such as java.time.Month.JANUARY.


 
Back to Question without Answer
 



21.     QID - 2.1409 : Working with Java Data Types 
 

What will the following code print?



public class Test{

    public static void testInts(Integer obj, int var){

        obj = var++;

        obj++;

    }

    public static void main(String[] args) {

        Integer val1 = new Integer(5);

        int val2 = 9;

        testInts(val1++, ++val2);

        System.out.println(val1+" "+val2);

    }

}           


 

Correct Option is :  D 

A. 10 9
 


B. 10 10
 


C. 6 9
 


D. 6 10
 


E. 5 11
 


Explanation: 
There are multiple concepts at play here:

1. All the wrapper objects are immutable. So when you do obj++, what actually happens is something like this:

obj = new Integer( obj.intValue()  + 1);  



2.val1++ uses post-increment operator, which implies that you note down the current value of val1, increment it, and then pass the original noted down value to the method testInts. Thus, the reference value of Integer 5 is passed to testInts. But val1 is set to point to a new Integer object containing 6.

 ++val2 uses pre-increment operator, which implies that you first increment val2 and then pass the incremented value. Therefore, val2 is incremented to 10 and then 10 is passed to the method testInts.



3. Java uses pass by value semantics in method calls. In case of primitive variables, their values are passed, while in case of Objects, their reference values are passed.  Thus, when you assign a different object to reference variable in a method, the original reference variable that was passed from the calling method still points to the same object that it pointed to before the call.

In this question, therefore, val1 in main still points to 6 after the call to testInts returns.

 
Back to Question without Answer
 



22.     QID - 1.926 : Working with Methods - Overloading 
 

Consider the following class...


class TestClass{
    void probe(Object x) { System.out.println("In Object"); } //3 

    void probe(Number x) { System.out.println("In Number"); } //2

    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        double a = 10; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Correct Option is :  A 

A. In Number
 


B. In Object
 


C. In Long
 


D. In Integer
 


E. It will not compile.
 


Explanation: 
Here, we have four overloaded probe methods but there is no probe method that takes a double parameter. However, a double will be boxed into a Double and class Double extends Number. Therefore, a Double can be passed to the method that takes Number. A Double can also be passed to a method that takes Object, but Number is more specific than Object therefore probe(Number ) will be called.



We advise you to run this program and try out various combinations. The exam has questions on this pattern.

 
Back to Question without Answer
 



23.     QID - 2.1482 : Working with Inheritance 
 

What will the following code print when compiled and run?

class Baap{

    public int h = 4;

    public int getH(){ 

        System.out.println("Baap "+h); return h;

    }

}





public class Beta extends Baap{

    public int h = 44;

    public int getH(){ 

        System.out.println("Beta "+h); return h;

    }    

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h+" "+b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h+" "+bb.getH());

    }

}
 

Correct Option is :  C 

A. Baap 44

4 44

Beta 44

44 44
 


B. Beta 44

4 44

Baap 44

44 44
 


C. Beta 44

4 44

Beta 44

44 44
 


D. 4 44

Beta 44

44 44

Beta 44
 


E. 44 44

Beta 44

4 44

Beta 44
 


F. 4 44

Beta 44

4 44

Beta 44
 


Explanation: 
Always remember: Instance methods are overridden and variables are hidden. Which method is invoked depends on the class of the actual object, while which field is accessed depends on the class of the variable.

Here, b refers to an object of class Beta so b.getH() will always call the overridden (subclass's method). However, the type of reference of b is Baap. so b.h will always refer to Baap's h. Further, inside Beta's getH(), Beta's h will be accessed instead of Baap's h because you are accessing this.h ('this' is implicit) and the type of this is Beta.



The class of bb, on the other hand, is Beta. Thus, bb.h will always refer to Beta's h.

 
Back to Question without Answer
 



24.     QID - 2.1286 : Creating and Using Arrays 
 

Consider the following array definitions:

int[] array1, array2[];

int[][] array3;

int[] array4[], array5[];

Which of the following are valid statements?
 

Correct Options are :  A B E 

A. array2 = array3;
 


B. array2 = array4;
 


C. array1 = array2;
 


D. array4 = array1;
 


E. array5 = array3;
 


Explanation: 
There is a subtle difference between: int[] i; and int i[]; although in both the cases, i is an array of integers.

The difference is if you declare multiple variables in the same statement such as: int[] i, j; and int i[], j;, j is not of the same type in the two cases.

In the first case, j is an array of integers while in the second case, j is just an integer.

Therefore, in this question:

array1 is an array of int

array2, array3, array4, and array5  are arrays of int arrays

Therefore, option 1, 2 and 5 are valid.

 
Back to Question without Answer
 



25.     QID - 2.1462 : Working with Java API - ArrayList 
 

What will the following code print?

List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

System.out.println(s1.remove("a")+" "+s1.remove("x"));
 

Correct Option is :  E 

A. 1 0
 


B. 2 -1
 


C. 2 0
 


D. 1 -1
 


E. true false
 


Explanation: 
ArrayList's remove(Object ) method returns a boolean. It returns true if the element is found in the list and false otherwise. The JavaDoc API description of this method is important for the exam - 



public boolean remove(Object o)

Removes the first occurrence of the specified element from this list, if it is present (optional operation). If this list does not contain the element, it is unchanged. More formally, removes the element with the lowest index i such that (o==null ? get(i)==null : o.equals(get(i))) (if such an element exists). Returns true if this list contained the specified element (or equivalently, if this list changed as a result of the call).



Observe that it does not remove all occurences of the element. It removes just the first one. In this case, only the first "a" will be removed.

 
Back to Question without Answer
 



26.     QID - 2.1121 : Using Loop Constructs 
 

What will the following code print?


void crazyLoop(){
  int c = 0;
  JACK: while (c < 8){
    JILL: System.out.println(c);
    if (c > 3) break JACK; else c++;
  }
}

 

Correct Option is :  E 

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


Explanation: 
This is a straight forward loop that contains a labelled break statement. A labelled break breaks out of the loop that is marked with the given label. Therefore, a labelled break is used to break out from deeply nested loops to the outer loops. Here, there is only one nested loop so the break; and break JACK; are same, but consider the following code:

    public static void crazyLoop(){
      int c = 0;
      JACK: while (c < 8){
        JILL: System.out.println("c = "+c);
        for(int k = 0; k<c; k++){
            System.out.println(" k = "+k+" c = "+c);
            if (c > 3) break JACK; 
        }
        c++;
      }
    }


This code prints:

c = 0
c = 1
  k = 0 c = 1
c = 2
  k = 0 c = 2
  k = 1 c = 2
c = 3
  k = 0 c = 3
  k = 1 c = 3
  k = 2 c = 3
c = 4
  k = 0 c = 4


As you can see, in this case, break JACK; will break out from the outer most loop (the while loop). If break JACK; is replaced by break; it will print:

c = 0
c = 1
  k = 0 c = 1
c = 2
  k = 0 c = 2
  k = 1 c = 2
c = 3
  k = 0 c = 3
  k = 1 c = 3
  k = 2 c = 3
c = 4
  k = 0 c = 4
c = 5
  k = 0 c = 5
c = 6
  k = 0 c = 6
c = 7
  k = 0 c = 7


This shows that a break without a label only breaks out of the current loop.

 
Back to Question without Answer
 



27.     QID - 2.901 : Java Basics - OO Concepts 
 

Given:

public class Triangle{
    public int base;
    public int height;
    public double area;
    
    public Triangle(int base, int height){
        this.base = base; this.height = height;
        updateArea();
    }

    void updateArea(){
        area = base*height/2;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


The above class needs to protect an invariant on the "area" field. Which three members must have the public access modifiers removed to ensure that the invariant is maintained?
 

Correct Options are :  A B C 

A. the base field
 


B. the height field
 


C. the area field
 


D. the Triangle constructor
 


E. the setBase method
 


F. the setHeight method
 


Explanation: 
An invariant means a certain condition that constrains the state stored in the object. For example, in this case the value of the area field of the Triangle must always be consistent with its base and height fields. Thus, it should never have a value that is different from base*height/2. 



If you allow other classes to directly change the value of base, height, or area, using direct field access, the area field may not contain the correct area thereby breaking the invariant.



To prevent this inconsistency from happening, you need to prohibit changing the instance fields directly and instead permit the changes only through the setter method because these methods call the updateArea method and keep the area and base and height consistent.

 
Back to Question without Answer
 



Standard Tests
 
 
	This test environment mimics the real exam environment. You should take the tests in this environment if you are fully prepared for the final exam. You should be able to score more than 65% on these tests. If you score less on a topic, you should study it again before taking the next test.

DO NOT ATTEMPT NEXT STANDARD TEST BEFORE GOING THROUGH A BOOK IF YOU SCORE LESS THAN 65%.





Foundation Test
This test is meant to check your conceptual knowledge. Questions in this test are mostly theoretical in nature and are designed to get your fundamentals right. Although you will most likely not get such questions in the real exam, we sincerely advise you to go through this test, especially if you are a Java beginner. We have tried to include exhaustive explanations that will help you answer questions in the real exam with confidence.




01.     QID - 2.1439 
 

Given:

//In file AccessTest.java

package a;

public class AccessTest {

 int a;

 private int b;

 protected void c(){ }

 public int d(){  return 0; }

}



//In file AccessTester.java

package b;

import a.AccessTest;



public class AccessTester extends AccessTest{

    public static void main(String[] args) {

        AccessTest ref = new AccessTest();



    }

}

Idenfity the correct statements -
 

Select 1 option

A. Only c() and d() can be accessed by ref.
 


B. b, c(), as well as d(), can be accessed by ref.
 


C. Only d() can be accessed by ref.
 


D. Only a and d() can be accessed by ref.
 


 
Check Answer
 



02.     QID - 2.1133 
 

Objects of which of the following classes can be thrown using a throw statement?
 

Select 3 options

A. Event
 


B. Object
 


C. Throwable
 


D. Exception
 


E. RuntimeException
 


 
Check Answer
 



03.     QID - 2.1004 
 

Which of these statements concerning the use of modifiers are true?
 

Select 1 option

A. By default (i.e. no modifier) the member is only accessible to classes in the same package and subclasses of the class.
 


B. You cannot specify visibility of local variables.
 


C. Local variable always have default accessibility.
 


D. Local variables can be declared as private.
 


E. Local variables can only be declared as public.
 


 
Check Answer
 



04.     QID - 2.1106 
 

Is it possible to create arrays of length zero?
 

Select 1 option

A. Yes, you can create arrays of any type with length zero.
 


B. Yes, but only for primitive datatypes.
 


C. Yes, but only for arrays of object references.
 


D. Yes, and it is same as a null Array.
 


E. No, arrays of length zero do not exist in Java.
 


 
Check Answer
 



05.     QID - 2.1314 
 

Which statements concerning conversion are true?
 

Select 4 options

A. Conversion from char to long does not need a cast.
 


B. Conversion from byte to short does not need a cast.
 


C. Conversion from short to char needs a cast.
 


D. Conversion from int to float needs a cast.
 


E. Conversion from byte, char or short to int, long or float does not need a cast.
 


 
Check Answer
 



06.     QID - 2.836 
 

Which of the following statements are correct?
 

Select 3 options

A. An abstract class can be extended by an abstract or a concrete class.
 


B. A concrete class can be extended by an abstract or a concrete class.
 


C. An interface can be extended by another interface.
 


D. An interface can be extended by an abstract class.
 


E. An interface can be extended by a concrete class.
 


F. An abstract class cannot implement an interface.
 


 
Check Answer
 



07.     QID - 2.1256 
 

Which of these statements are true?
 

Select 2 options

A. A super( <appropriate list of arguments> ) or this( <appropriate list of arguments> ) call must always be provided explicitly as the first statement in the body of the constructor.
 


B. If a subclass does not have any declared constructors, the implicit default constructor of the subclass will have a call to super( ).
 


C. If neither super( ) or this( ) is declared as the first statement of the body of a constructor, then this( ) will implicitly be inserted as the first statement.
 


D. super(<appropriate list of arguments>) can only be called in the first line of the constructor but this(<appropriate list of arguments>) can be called from anywhere.
 


E. You can either call super(<appropriate list of arguments>) or this(<appropriate list of arguments>) but not both from a constructor.
 


 
Check Answer
 



08.     QID - 2.1218 
 


 

 
 
Check Answer
 



09.     QID - 2.1336 
 

Which of these methods are not a part of the String class?
 

Select 1 option

A. trim
 


B. length
 


C. concat
 


D. hashCode
 


E. reverse
 


 
Check Answer
 



10.     QID - 2.867 
 

Which of the following keywords may occur multiple times in a Java source file?
 

Select 4 options

A. import
 


B. class
 


C. private
 


D. package
 


E. public
 


 
Check Answer
 



11.     QID - 2.1053 
 

Compared to public, protected and private accessibility, default accessibility is....
 

Select 1 option

A. Less restrictive than public
 


B. More restrictive than public, but less restrictive than protected.
 


C. More restrictive than protected, but less restrictive than private.
 


D. More restrictive than private.
 


E. Less restrictive than protected from within a package, and more restrictive than protected from outside a package.
 


 
Check Answer
 



12.     QID - 2.1417 
 

Identify the valid members of Boolean class.
 

Select 3 options

A. parseBoolean(String )
 


B. valueOf(boolean )
 


C. parseBoolean(boolean )
 


D. FALSE
 


E. Boolean(Boolean )
 


 
Check Answer
 



13.     QID - 2.1094 
 

What will the following program print when run?



public class TestClass{

  public static void main(String[] args){

     try{

        System.exit(0);

     }

     finally{

         System.out.println("finally is always executed!");

     }

  }

}


 

Select 1 option

A. It will print  "finally is always executed!"
 


B. It will not compile as there is no catch block.
 


C. It will not print anything.
 


D. An exception will be thrown
 


E. None of the above.
 


 
Check Answer
 



14.     QID - 2.1289 
 


 

 
 
Check Answer
 



15.     QID - 2.932 
 

Which of the following statements are true?
 

Select 2 options

A. The modulus operator % can only be used with integer operands.
 


B. & can have integral as well as boolean operands.
 


C. The arithmetic operators *, / and % have the same level of precedence.
 


D. && can have integer as well as boolean operands.
 


E. ~ can have integer as well as boolean operands.
 


 
Check Answer
 



16.     QID - 2.1023 
 


 

 
 
Check Answer
 



17.     QID - 2.1257 
 

Which of the following statements concerning the switch construct are true?
 

Select 3 options

A. A character literal can be used as a value for a case label.
 


B. A 'long' cannot be used as a switch variable.
 


C. An empty switch block is a valid construct.
 


D. A switch block must have a default label.
 


E. If present, the default label must be the last of all the labels.
 


 
Check Answer
 



18.     QID - 2.975 
 

In which of these variable declarations, will the variable remain uninitialized unless explicitly initialized?
 

Select 1 option

A. Declaration of an instance variable of type int.
 


B. Declaration of a static class variable of type float.
 


C. Declaration of a local variable of type float.
 


D. Declaration of a static class variable of class Object
 


E. Declaration of an instance variable of class Object.
 


 
Check Answer
 



19.     QID - 2.1135 
 

Which of the following statements is/are true?
 

Select 1 option

A. Subclasses must define all the abstract methods that the superclass defines.
 


B. A class implementing an interface must define all the methods of that interface.
 


C. A class cannot override the super class's constructor.
 


D. It is possible for two classes to be the superclass of each other.
 


E. An interface can implement multiple interfaces.
 


 
Check Answer
 



20.     QID - 2.1159 
 

What happens when you try to compile and run the following class...


public class TestClass{
      public static void main(String[] args) throws Exception{
            int a = Integer.MIN_VALUE;
            int b = -a;
            System.out.println( a+ "   "+b);
      }
}


 

Select 1 option

A. It throws an OverFlowException.
 


B. It will print two same negative numbers.
 


C. It will print two different negative numbers.
 


D. It will print one negative and one positive number of same magnitude.
 


E. It will print one negative and one positive number of different magnitude.
 


 
Check Answer
 



21.     QID - 2.1352 
 

Using a continue in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



22.     QID - 2.830 
 

Consider the following method :



public void myMethod(int m, Object p, double d){

  ... valid code here

}



Assuming that there is no other method with the same name, which of the following options are correct regarding the above method?
 

Select 1 option

A. If this method is called with two parameters, the value of d in the method will be 0.0.
 


B. If this method is called with one parameter, the value of p and d in the method will be null and 0.0 respectively.
 


C. If this method is called with one parameter, the call will throw a NullPointerException.
 


D. If this method is called with one parameter, the call will throw a NullPointerException only if the code in the method tries to access p.
 


E. If this method is called with two parameters, the code will not compile.
 


 
Check Answer
 



23.     QID - 2.945 
 

Which of the following statements are true?
 

Select 2 options

A. Private methods cannot be overridden in subclasses.
 


B. A subclass can override any method in a non-final superclass.
 


C. An overriding method can declare that it throws a wider spectrum of checked exceptions than the method it is overriding.
 


D. The parameter list of an overriding method must be a subset of the parameter list of the method that it is overriding.
 


E. The overriding method may opt not to declare any throws clause even if the original method has a throws clause.
 


 
Check Answer
 



24.     QID - 2.1427 
 

Which of the following classes should you use to represent just a date without any time or zone information?
 

Select 1 option

A. java.util.Date
 


B. java.sql.Date
 


C. java.time.Date
 


D. java.time.LocalDate
 


 
Check Answer
 



25.     QID - 2.1116 
 

Which of the following are true about the "default" constructor?
 

Select 2 options

A. It is provided by the compiler only if the class does not define any constructor.
 


B. It initializes the instance members of the class.
 


C. It calls the no-args constructor of the super class.
 


D. It initializes instance as well as class fields of the class.
 


E. It is provided by the compiler if the class does not define a 'no-args' constructor.
 


 
Check Answer
 



26.     QID - 2.1203 
 

A method with no access modifier can be overridden by a method marked protected (assuming that it is not final).
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



27.     QID - 2.1357 
 

Which of these combinations of switch expression types and case label value types are legal within a switch statement?
 

Select 1 option

A. switch expression of type int and case label value of type char.
 


B. switch expression of type float and case label value of type int.
 


C. switch expression of type byte and case label value of type float.
 


D. switch expression of type char and case label value of type byte.
 


E. switch expression of type boolean and case label value of type boolean.
 


 
Check Answer
 



28.     QID - 2.1047 
 

An overriding method must have a same parameter list and the same return type as that of the overridden method.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



29.     QID - 2.1102 
 

Under what situations does a class get a default constructor?
 

Select 1 option

A. All classes in Java get a default constructor.
 


B. You have to define at least one constructor to get the default constructor.
 


C. If the class does not define any constructors explicitly.
 


D. All classes get default constructor from Object class.
 


E. None of the above.
 


 
Check Answer
 



30.     QID - 2.1035 
 

Which of the following statements are true?
 

Select 2 options

A. The extends keyword is used to specify inheritance.
 


B. subclass of a non-abstract class cannot be declared abstract.
 


C. subclass of an abstract class can be declared abstract.
 


D. subclass of a final class cannot be abstract.
 


E. A class, in which all the members are declared private, cannot be declared public.
 


 
Check Answer
 



31.     QID - 2.1064 
 

Consider this code:


interface X1{ }
interface X2{ }
class A { }
class B extends A implements X1{ }
class C extends B implements X2{
   D d = new D();
}
class D { }



Which of the following statements are true?
 

Select 3 options

A. D is-a B.
 


B. B has-a D.
 


C. C is-a A
 


D. C is-a X1
 


E. C is-a X2
 


 
Check Answer
 



32.     QID - 2.1007 
 

How can you declare a method someMethod() such that an instance of the class is not needed to access it and all the members of the same package have access to it.
 

Select 3 options

A. public static void someMethod()
 


B. static void someMethod()
 


C. protected static void someMethod()
 


D. void someMethod()
 


E. protected void someMethod()
 


F. public abstract static void someMethod()
 


 
Check Answer
 



33.     QID - 2.958 
 

Consider the following code:



public class Conversion{

   public static void main(String[] args){

     int i = 1234567890;

     float f = i;

     System.out.println(i - (int)f);

   }

}



What will it print when run?
 

Select 1 option

A. It will print 0.
 


B. It will not print 0.
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



34.     QID - 2.1140 
 

Which of the following are valid declarations in a class?
 

Select 1 option

A. abstract int absMethod(int param) throws Exception;
 


B. abstract native int absMethod(int param) throws Exception;
 


C. float native getVariance() throws Exception;
 


D. abstract private int absMethod(int param) throws Exception;
 


 
Check Answer
 



35.     QID - 2.1013 
 

Using a break in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



36.     QID - 2.1216 
 

Which of these statements are true?
 

Select 2 options

A. All classes must explicitly define a constructor.
 


B. A constructor can be declared private.
 


C. A constructor can declare a return value.
 


D. A constructor must initialize all the member variables of a class.
 


E. A constructor can access the non-static members of a class.
 


 
Check Answer
 



37.     QID - 2.1033 
 

A try statement must always have a ............. associated with it.
 

Select 1 option

A. catch
 


B. throws
 


C. finally
 


D. catch, finally or both
 


E. throw
 


 
Check Answer
 



38.     QID - 2.1147 
 

Given the following code, which statements are true?



class A{

   int i;

}

class B extends A{

   int j;

}


 

Select 3 options

A. Class B extends class A.
 


B. Class B is the superclass of class A.
 


C. Class A inherits from class B.
 


D. Class B is a subclass of class A.
 


E. Objects of class B will always have a member variable named i .
 


 
Check Answer
 



39.     QID - 2.1306 
 

Which of these statements concerning interfaces are true?
 

Select 2 options

A. An interface may extend an interface.
 


B. An interface may extend a class and may implement an interface.
 


C. A class can implement an interface and extend a class.
 


D. A class can extend an interface and can implement a class.
 


E. An interface can only be implemented and cannot be extended.
 


 
Check Answer
 



40.     QID - 2.1020 
 

What does the zeroth element of the string array passed to the standard main method contain?
 

Select 1 option

A. The name of the class.
 


B. The string "java".
 


C. The number of arguments.
 


D. The first argument of the argument list, if present.
 


E. None of the above.
 


 
Check Answer
 



41.     QID - 2.954 
 

What class of objects can be declared by the throws clause?
 

Select 3 options

A. Exception
 


B. Error
 


C. Event
 


D. Object
 


E. RuntimeException
 


 
Check Answer
 



42.     QID - 2.1160 
 

Given that OurClass is a MyClass and OurClass has a YourClass object.

Which of the following options are correct?



(Assume that OurClass, MyClass, and YourClass are valid java classes.)
 

Select 2 options

A. MyClass contains a reference to OurClass
 


B. OurClass contains a reference to MyClass
 


C. MyClass contains a reference to YourClass
 


D. OurClass contains a reference to YourClass
 


E. OurClass inherits from MyClass
 


 
Check Answer
 



43.     QID - 2.902 
 

Given:


class Triangle{
    public int base;
    public int height;
    public double area = 0;
    
    public Triangle(int pBase, int pHeight){
        this.base = pBase; this.height = pHeight;
        updateArea();
    }
    public void updateArea(){
        double a = base*height/2;
        area = a;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


Which variables are not accessible from anywhere within given class code except from the scope in which they are declared?
 

Select 1 option

A. base, height, area
 


B. area, b, h
 


C. base, height
 


D. b, h, a
 


 
Check Answer
 



44.     QID - 2.1034 
 


 

 
 
Check Answer
 



45.     QID - 2.1184 
 


 

 
 
Check Answer
 



46.     QID - 2.1466 
 

Which of the following statements are correct regarding a functional interface?
 

Select 1 option

A. It has exactly one method and it must be abstract.
 


B. It has exactly one method and it may or may not be abstract.
 


C. It must have exactly one abstract method and may have other default or static methods.
 


D. It must have exactly one static method and may have other default or abstract methods.
 


 
Check Answer
 



47.     QID - 2.858 
 

Which of the following are true about the "default" constructor?
 

Select 1 option

A. It is provided by the compiler only if the class and any of its super classes does not define any constructor.
 


B. It takes no arguments.
 


C. A default constructor is used to return a default value.
 


D. To define a default constructor, you must use the default keyword.
 


E. It is always public.
 


 
Check Answer
 



48.     QID - 2.1283 
 

What is the correct declaration for an abstract method 'add' in a class that is accessible to any class, takes no arguments and returns nothing?
 

Select 1 option

A. public void add();
 


B. abstract add();
 


C. abstract null add();
 


D. abstract public void add(){ }
 


E. abstract public void add() throws Exception;
 


 
Check Answer
 



49.     QID - 2.1125 
 


 

 
 
Check Answer
 



50.     QID - 2.1435 
 

Identify the correct statements.
 

Select 1 option

A. LocalDate, LocalTime, and LocalDateTime extend Date.
 


B. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor.
 


C. Both - LocalDate and LocalTime extend LocalDateTime, which extends java.util.Date.
 


D. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor and extend java.util.Date.
 


 
Check Answer
 



51.     QID - 2.1031 
 


 

 
 
Check Answer
 



52.     QID - 2.966 
 

Select the correct order of restrictiveness for access modifiers...

(First one should be least restrictive)
 

Select 1 option

A. public < protected < package (i.e. no modifier) < private
 


B. public < package (i.e. no modifier) < protected < private
 


C. public < protected < private < package (i.e. no modifier)
 


D. protected < package (i.e. no modifier) < private < public
 


E. depends on the implementation of the class or method.
 


 
Check Answer
 



53.     QID - 2.1089 
 


 

 
 
Check Answer
 



54.     QID - 2.1362 
 

Which of the following statements are true?
 

Select 2 options

A. private keyword can never be applied to a class.
 


B. synchronized keyword can never be applied to a class.
 


C. synchronized keyword may be applied to a non-primitive variable.
 


D. final keyword can never be applied to a class.
 


E. A final variable can be hidden in a subclass.
 


 
Check Answer
 



55.     QID - 2.1426 
 

Which of the following are true regarding the new Date-Time API of Java 8?
 

Select 2 options

A. It uses the calendar system defined in ISO-8601 as the default calendar.
 


B. Most of the actual date related classes in the Date-Time API such as LocalDate, LocalTime, and LocalDateTime are immutable.
 


C. LocalDateTime include time zone information but LocalDate does not.
 


D. To create a LocalDate or a LocalDateTime object, you can use one of their several constructors.
 


 
Check Answer
 



56.     QID - 2.1253 
 

Where, in a constructor, can you place a call to a super class's constructor ?
 

Select 1 option

A. Anywhere in the constructor's body.
 


B. As the first statement in the constructor.
 


C. Only as the first statement and it can be called just like any other method call i.e. ClassName( ... ).
 


D. You can't call super class's constructor in a base class as constructors are not inherited.
 


E. None of the above.
 


 
Check Answer
 



57.     QID - 2.1300 
 

An abstract method cannot be overridden.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



58.     QID - 2.1171 
 

Consider the following variable declaration within the definition of an interface:

  int i = 10;

Which of the following declarations defined in a non-abstract class, is equivalent to the above?
 

Select 1 option

A. public static int i = 10;
 


B. public final int i = 10;
 


C. public static final int i = 10;
 


D. public int i = 10;
 


E. final int i = 10;
 


 
Check Answer
 



59.     QID - 2.955 
 

An instance member ...
 

Select 2 options

A. can be a variable, a constant or a method.
 


B. is a variable or a constant.
 


C. belongs to the class.
 


D. belongs to an instance of the class.
 


E. is same as a local variable.
 


 
Check Answer
 



60.     QID - 2.1338 
 

What is the correct parameter specification for the standard main method?
 

Select 2 options

A. void
 


B. String[ ] args
 


C. Strings args[ ]
 


D. String args
 


E. String args[ ]
 


 
Check Answer
 



61.     QID - 2.973 
 

Which operators will always evaluate all the operands?
 

Select 2 options

A. &&
 


B. |
 


C. ||
 


D. ? :
 


E. %
 


 
Check Answer
 



62.     QID - 2.1363 
 

In Java, Strings are immutable. A direct implication of this is...
 

Select 2 options

A. you cannot call methods like "1234".replace('1', '9'); and expect to change the original String.
 


B. you cannot change a String object, once it is created.
 


C. you can change a String object only by the means of its methods.
 


D. you cannot extend String class.
 


E. you cannot compare String objects.
 


 
Check Answer
 



63.     QID - 2.1003 
 

Given the following code, which statements are true?


interface Automobile { String describe(); }

class FourWheeler implements Automobile{
   String name;
   public String describe(){ return " 4 Wheeler " + name; }
}

class TwoWheeler extends FourWheeler{
    String name;
    public String describe(){ return " 2 Wheeler " + name; }
}

 

Select 3 options

A. An instance of TwoWheeler is also an instance of FourWheeler.
 


B. An instance of TwoWheeler is a valid instance of Automobile.
 


C. The use of inheritance is not justified here because a TwoWheeler is not really a FourWheeler in the real world that the code is trying to model.
 


D. The code will compile only if name is removed from TwoWheeler.
 


E. The code will fail to compile.
 


 
Check Answer
 



64.     QID - 2.1281 
 

Which of the following statements regarding 'break' and 'continue' are true?
 

Select 1 option

A. break without a label, can occur only in a switch, while, do, or for statement.
 


B. continue without a label, can occur only in a switch, while, do, or for statement.
 


C. break can never occur without a label.
 


D. continue can never occur WITH a label.
 


E. None of the above.
 


 
Check Answer
 



65.     QID - 2.1084 
 

Which of the following are valid operators in Java?
 

Select 4 options

A. !
 


B. ~
 


C. &
 


D. %=
 


E. $
 


 
Check Answer
 



66.     QID - 2.866 
 

What can be the type of a catch argument ?
 

Select 1 option

A. Any class that extends java.lang.Exception
 


B. Any class that extends java.lang.Exception except any class that extends java.lang.RuntimeException
 


C. Any class that is-a Throwable.
 


D. Any Object
 


E. Any class that extends Error
 


 
Check Answer
 



67.     QID - 2.1292 
 


 

 
 
Check Answer
 



68.     QID - 2.916 
 

Consider the following code written by a new developer:



while(true){

        //additional valid code

        if(isDone()) break;

 }



What can be done to make this code more readable?
 

Select 1 option

A. Use a for loop
 


B. Use the enhanced for loop
 


C. use do-while instead of while.
 


D. Use continue instead of break.
 


 
Check Answer
 



69.     QID - 2.1266 
 

Which of the following statements are true?
 

Select 3 options

A. The condition expression in an if statement can contain method calls.
 


B. If a and b are of type boolean, the expression (a = b) can be used as the condition expression of an if statement.
 


C. An if statement can have either an 'if' clause or an 'else' clause.
 


D. The statement : if (false) ; else ; is illegal.
 


E. Only expressions which evaluate to a boolean value can be used as the condition in an if statement.
 


 
Check Answer
 



70.     QID - 2.1305 
 

Which of these statements are true?
 

Select 2 options

A. If a RuntimeException is not caught, the method will terminate and normal execution of the thread will resume.
 


B. An overriding method must declare that it throws the same exception classes as the method it overrides.
 


C. The main method of a program can declare that it throws checked exceptions.
 


D. A method declaring that it throws a certain exception class may throw instances of any subclass of that exception class.
 


E. finally blocks are executed if and only if an exception gets thrown while inside the corresponding try block.
 


 
Check Answer
 



71.     QID - 2.1235 
 

A Java programmer is developing a desktop application. Which of the following exceptions would be appropriate for him to throw explicitly from his code?
 

Select 1 option

A. NullPointerException
 


B. ClassCastException
 


C. ArrayIndexOutOfBoundsException
 


D. Exception
 


E. NoClassDefFoundError
 


 
Check Answer
 



72.     QID - 2.956 
 

Consider the following class...



class MyString extends String{

   MyString(){ super(); }

}





The above code will not compile.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



73.     QID - 2.1387 
 

Identify correct statements about a two dimensional array.
 

Select 1 option

A. It is like a rectangular matrix where number of rows and number of columns may be different but each row or each column have the same number of elements.
 


B. It is like a square matrix where number of rows and number of columns are same and each row or each column have the same number of elements.
 


C. The number of rows and columns must be specified at the time it is declared.
 


D. It is basically an array of arrays.
 


 
Check Answer
 



74.     QID - 2.1041 
 

Which of the following is not a primitive data value in Java?
 

Select 2 options

A. "x"
 


B. 'x'
 


C. 10.2F
 


D. Object
 


E. false
 


 
Check Answer
 



75.     QID - 2.1179 
 

The following code snippet will print 'true'.



short s = Short.MAX_VALUE;

char c = s;

System.out.println( c == Short.MAX_VALUE);
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



76.     QID - 2.1317 
 

Which of the following are NOT valid operators in Java?
 

Select 4 options

A. sizeof
 


B. <<<
 


C. instanceof
 


D. mod
 


E. equals
 


 
Check Answer
 



77.     QID - 2.1470 
 

Which of the following are correct about java.util.function.Predicate?
 

Select 1 option

A. It is an interface that has only one method with the signature - 

public void test(T t);
 


B. It is an interface that has only one method with the signature - 

public boolean test(T t);
 


C. It is an abstract class that has only one abstract method with the signature - 

public abstract void test(T t);
 


D. It is an abstract class that has only one abstract method with the signature - 

public abstract boolean test(T t);
 


 
Check Answer
 



78.     QID - 2.953 
 

Which of the following are also known as "short circuiting logical operators"?
 

Select 2 options

A. &
 


B. ||
 


C. &&
 


D. |
 


E. ^
 


 
Check Answer
 



Foundation Test (Answered)
This test is meant to check your conceptual knowledge. Questions in this test are mostly theoretical in nature and are designed to get your fundamentals right. Although you will most likely not get such questions in the real exam, we sincerely advise you to go through this test, especially if you are a Java beginner. We have tried to include exhaustive explanations that will help you answer questions in the real exam with confidence.




01.     QID - 2.1439 : Working with Methods 
 

Given:

//In file AccessTest.java

package a;

public class AccessTest {

 int a;

 private int b;

 protected void c(){ }

 public int d(){  return 0; }

}



//In file AccessTester.java

package b;

import a.AccessTest;



public class AccessTester extends AccessTest{

    public static void main(String[] args) {

        AccessTest ref = new AccessTest();



    }

}

Idenfity the correct statements -
 

Correct Option is :  C 

A. Only c() and d() can be accessed by ref.
 


B. b, c(), as well as d(), can be accessed by ref.
 


C. Only d() can be accessed by ref.
 


D. Only a and d() can be accessed by ref.
 


Explanation: 
The wording of this question is a bit vague because it is not clear what is meant by "can be accessed by". Expect such wording in the real exam as well. Our guess is that it means what variables of class AccessTest can be accessed using the reference named ref. 



Since a public member is always accessible to every one, ref.d() is definitely correct. private is only accessible within that class, therefore, b cannot be accessed from anywhere outside of class AccessTest. A default (aka package protected) member is accessible only from members of the same package. Since AccessTester is in a different package a cannot be accessed from AccessTester either.



Now, the question is only about the method c(). A protected member is inherited by a subclass and it is therefore accessible in the subclass. However, In the words of Java Language Specification, protected members of a class are accessible outside the package only in subclasses of that class, and only when they are fields of objects that are being implemented by the code that is accessing them.

Basically, it implies that a protected member is accessible in the subclass only using a reference whose declared type is of the same subclass (or its subclass.). 



In this case, the declared type of ref is AccessTest, which is not of the same type as the class from which you are trying to access c(). Therefore, you cannot do ref.c() in AccessTester. If you had AccessTester ref = new AccessTester(); you could do ref.c() because now the declared type of ref (i.e. AcessTester) is the same subclass from which you are trying to access c(). It will work even if the declared type of the reference is a child of the subclass. For example, the following would be valid as well.

        SubAccessTester ref = new SubAccessTester();

        ref.c(); //this is valid

Where SubAccessTester is a subclass of AccessTester - 

class SubAccessTester extends AccessTester{ }

 
Back to Question without Answer
 



02.     QID - 2.1133 : Handling Exceptions 
 

Objects of which of the following classes can be thrown using a throw statement?
 

Correct Options are :  C D E 

A. Event
 


B. Object
 


C. Throwable
 


D. Exception
 


E. RuntimeException
 


Explanation: 
You can only throw a Throwable using a throws clause. Exception and Error are two main subclasses of Throwable.

 
Back to Question without Answer
 



03.     QID - 2.1004 : Java Basics 
 

Which of these statements concerning the use of modifiers are true?
 

Correct Option is :  B 

A. By default (i.e. no modifier) the member is only accessible to classes in the same package and subclasses of the class.
No, the member will be accessible only within the package.


B. You cannot specify visibility of local variables.
They are always only accessible within the block in which they are declared.


C. Local variable always have default accessibility.
A local variable (aka automatic variable) means a variable declared in a method. They don't have any accessibility. They are accessible only from the block they are declared in.

Remember, they are not initialized automatically. You have to initialize them explicitly.


D. Local variables can be declared as private.
 


E. Local variables can only be declared as public.
 


Explanation: 
You cannot apply any modifier except final to a local variable. i.e. you cannot make them transient, volatile, static, public, and private.

But you can apply access modifiers (public private and protected) and final, transient, volatile, static to instance variables.

You cannot apply native and synchronized to any kind of variable.

 
Back to Question without Answer
 



04.     QID - 2.1106 : Creating and Using Arrays 
 

Is it possible to create arrays of length zero?
 

Correct Option is :  A 

A. Yes, you can create arrays of any type with length zero.
Java allows arrays of length zero to be created.  Here is an example:

int[] zeroLengthArray1 = new int[0];

System.out.println(zeroLengthArray1.length); //will print 0

String[] zeroLengthArray2 = new String[0];

System.out.println(zeroLengthArray2.length);  //will print 0




B. Yes, but only for primitive datatypes.
 


C. Yes, but only for arrays of object references.
 


D. Yes, and it is same as a null Array.
A null pointer is different from an array of length zero. A reference being null or pointing to null means it is not pointing to anything at all. But an array of length zero is a valid object. Thus, a reference pointing to such an array is not pointing to null.



For example, if you have int[] intArr = new int[0]; then (intArr == null) is false.


E. No, arrays of length zero do not exist in Java.
 


Explanation: 
Example: When a Java program is run without any program arguments, the String[] args argument to main() gets an array of length Zero.

 
Back to Question without Answer
 



05.     QID - 2.1314 : Working with Java Data Types 
 

Which statements concerning conversion are true?
 

Correct Options are :  A B C E 

A. Conversion from char to long does not need a cast.
 


B. Conversion from byte to short does not need a cast.
 


C. Conversion from short to char needs a cast.
The reverse is also true. Because their ranges are not compatible.


D. Conversion from int to float needs a cast.
It does not need a cast because a float can hold any value of int. Note that opposite is not true because of loss of precision.


E. Conversion from byte, char or short to int, long or float does not need a cast.
Because int, long or float are bigger that byte char or short.


Explanation: 
Think of it as transferring contents of one bucket into another. You can always transfer the contents of a smaller bucket to a bigger one. But the opposite is not always possible. You can transfer the contents of the bigger bucket into the smaller bucket only if the actual content in the bigger bucket can fit into the smaller one. Otherwise, it will spill.



It is the same with integral types as well. byte is smaller than short or int. So you can assign a byte to an int (or an int to a float, or a float to a double) without any cast. But for the reverse you need to assure the compiler that the actual contents in my int will be smaller than a byte so let me assign this int to a byte. This is achieved by the cast.

int i = 10;

byte b = 20;

b = i;//will not compile because byte is smaller than int

b = (byte) i; //OK





Further, if you have a final variable and its value fits into a smaller type, then you can assign it without a cast because compiler already knows its value and realizes that it can fit into the smaller type. This is called implicit narrowing and is allowed between byte, int, char, and, short but not for long, float, and double.





final int k = 10;

b = k; //Okay because k is final and 10 fits into a byte



final float f = 10.0;//will not compile because 10.0 is a double even though the value 10.0 fits into a float

i = f;//will not compile.

 
Back to Question without Answer
 



06.     QID - 2.836 : Working with Inheritance 
 

Which of the following statements are correct?
 

Correct Options are :  A B C 

A. An abstract class can be extended by an abstract or a concrete class.
 


B. A concrete class can be extended by an abstract or a concrete class.
 


C. An interface can be extended by another interface.
 


D. An interface can be extended by an abstract class.
A class "implements" an interface. It does not "extend" an interface.


E. An interface can be extended by a concrete class.
 


F. An abstract class cannot implement an interface.
Any class, whether abstract or concrete, can implement any interface.


 
Back to Question without Answer
 



07.     QID - 2.1256 : Working with Inheritance 
 

Which of these statements are true?
 

Correct Options are :  B E 

A. A super( <appropriate list of arguments> ) or this( <appropriate list of arguments> ) call must always be provided explicitly as the first statement in the body of the constructor.
super(); is automatically added if the sub class constructor doesn't call any of the super class's constructors.


B. If a subclass does not have any declared constructors, the implicit default constructor of the subclass will have a call to super( ).
 


C. If neither super( ) or this( ) is declared as the first statement of the body of a constructor, then this( ) will implicitly be inserted as the first statement.
super() is added and not this()


D. super(<appropriate list of arguments>) can only be called in the first line of the constructor but this(<appropriate list of arguments>) can be called from anywhere.
 


E. You can either call super(<appropriate list of arguments>) or this(<appropriate list of arguments>) but not both from a constructor.
 


Explanation: 
Note that calling super(); will not always work because if the super class has defined a constructor with arguments and has not defined a no args constructor then no args constructor will not be provided by the compiler. It is provided only to the class that does not define ANY constructor explicitly.

 
Back to Question without Answer
 



08.     QID - 2.1218 : Working with Methods 
 


 

 
Explanation: 
This question is based on the principle that primitives are always passed by value. Thus, when you pass a to update() method, the value of a is passed. The variable a in update() method is not same as the a in main(). It is a completely different variable and so updating update() method's a does not affect main()'s a. Therefore, we need to return the new value from update() method and assign it to main()'s a.



The following is the complete code listing:



public class Updater {

  public int update(int a, int offset){

    a = a + offset;

    return a;

  }



  public static void main(String[] args) {

    Updater u = new Updater();

    int a = 99;

    a = u.update(a, 111);

    System.out.println(a);

  }

}

 
Back to Question without Answer
 



09.     QID - 2.1336 : Working with Java API - String, StringBuilder 
 

Which of these methods are not a part of the String class?
 

Correct Option is :  E 

A. trim
 


B. length
 


C. concat
 


D. hashCode
 


E. reverse
The String class has no reverse( ) method but StringBuffer (and StringBuilder) do have this method.


 
Back to Question without Answer
 



10.     QID - 2.867 : Java Basics 
 

Which of the following keywords may occur multiple times in a Java source file?
 

Correct Options are :  A B C E 

A. import
 


B. class
 


C. private
 


D. package
There can be at most one package statement in a Java source file and it must be the first statement in the file.


E. public
 


 
Back to Question without Answer
 



11.     QID - 2.1053 : Working with Methods 
 

Compared to public, protected and private accessibility, default accessibility is....
 

Correct Option is :  C 

A. Less restrictive than public
public is least restrictive.


B. More restrictive than public, but less restrictive than protected.
 


C. More restrictive than protected, but less restrictive than private.
The default accessibility is more restrictive than protected, but less restrictive than private. Members with default accessibility are only accessible within the class itself and from other classes in the same package. protected members are in addition accessible from subclasses in any other package as well. Members with private accessibility are only accessible within the class itself.


D. More restrictive than private.
private is most restrictive.


E. Less restrictive than protected from within a package, and more restrictive than protected from outside a package.
 


Explanation: 
The correct order :

public < protected < package (or default) < private

(here, public is least restrictive and private is most restrictive.)

 
Back to Question without Answer
 



12.     QID - 2.1417 : Working with Java Data Types 
 

Identify the valid members of Boolean class.
 

Correct Options are :  A B D 

A. parseBoolean(String )
 


B. valueOf(boolean )
 


C. parseBoolean(boolean )
 


D. FALSE
TRUE and FALSE are valid static members of Boolean class.


E. Boolean(Boolean )
There is no constructor that takes a Boolean.


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



13.     QID - 2.1094 : Handling Exceptions 
 

What will the following program print when run?



public class TestClass{

  public static void main(String[] args){

     try{

        System.exit(0);

     }

     finally{

         System.out.println("finally is always executed!");

     }

  }

}


 

Correct Option is :  C 

A. It will print  "finally is always executed!"
 


B. It will not compile as there is no catch block.
 


C. It will not print anything.
 


D. An exception will be thrown
 


E. None of the above.
 


Explanation: 
finally is always executed (even if you throw an exception in try or catch) but this is the exception to the rule.

When you call System.exit(...); The JVM exits so there is no way to execute the finally block.

 
Back to Question without Answer
 



14.     QID - 2.1289 : Working with Java Data Types 
 


 

 
Explanation: 
In all of these cases, auto-unboxing of integers will occur. For the last statement, after unboxing a and b, the value 12 will be boxed into an Integer object.

 
Back to Question without Answer
 



15.     QID - 2.932 : Using Operators and Decision Constructs 
 

Which of the following statements are true?
 

Correct Options are :  B C 

A. The modulus operator % can only be used with integer operands.
It can be used on floating points operands also. For example, 5.5 % 3 = 2.5


B. & can have integral as well as boolean operands.
unlike &&, & will not "short circuit" the expression if used on boolean parameters.


C. The arithmetic operators *, / and % have the same level of precedence.
 


D. && can have integer as well as boolean operands.
!, && and || operate only on booleans.


E. ~ can have integer as well as boolean operands.
~ Operates only on integral types


Explanation: 
Note : 

integral types means byte, short, int, long, and char





As per Section 4.1 of JLS 8 -



The integral types are byte, short, int, and long, whose values are 8-bit, 16-bit, 32-bit and 64-bit signed two's-complement integers, respectively, and char, whose

values are 16-bit unsigned integers representing UTF-16 code units.

 
Back to Question without Answer
 



16.     QID - 2.1023 : Handling Exceptions 
 


 

 
Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

 
Back to Question without Answer
 



17.     QID - 2.1257 : Using Operators and Decision Constructs 
 

Which of the following statements concerning the switch construct are true?
 

Correct Options are :  A B C 

A. A character literal can be used as a value for a case label.
boolean, long, float and double cannot be used.


B. A 'long' cannot be used as a switch variable.
boolean, long, float and double cannot be used.


C. An empty switch block is a valid construct.
 


D. A switch block must have a default label.
 


E. If present, the default label must be the last of all the labels.
Any order is valid.


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



18.     QID - 2.975 : Working with Java Data Types 
 

In which of these variable declarations, will the variable remain uninitialized unless explicitly initialized?
 

Correct Option is :  C 

A. Declaration of an instance variable of type int.
 


B. Declaration of a static class variable of type float.
 


C. Declaration of a local variable of type float.
 


D. Declaration of a static class variable of class Object
 


E. Declaration of an instance variable of class Object.
 


Explanation: 
We have to explicitly initialize local variables otherwise they remain uninitialized and it will be a compile time error if such variables are accessed without getting initialized first.

Instance variables and static variables receive  a default value if not explicitly initialized. All primitive types get a defaults value equivalent to 0, that is, int to 0 and float to 0.0f and so on and boolean to false.

The type/class of a variable does not affect whether a variable is initialized or not.

 
Back to Question without Answer
 



19.     QID - 2.1135 : Working with Inheritance 
 

Which of the following statements is/are true?
 

Correct Option is :  C 

A. Subclasses must define all the abstract methods that the superclass defines.
Not if the subclass is also defined abstract!


B. A class implementing an interface must define all the methods of that interface.
Not if the class is defined abstract. Further, Java 8 allows an interface to have default and static methods, which need not be implemented by a non-abstract class that says it implements that interface.


C. A class cannot override the super class's constructor.
Because constructors are not inherited.


D. It is possible for two classes to be the superclass of each other.
 


E. An interface can implement multiple interfaces.
Interface cannot "implement" another interfaces. It can extend multiple interfaces. The following is a valid declaration : 

interface I1 extends I2, I3, I4 { }


 
Back to Question without Answer
 



20.     QID - 2.1159 : Working with Java Data Types 
 

What happens when you try to compile and run the following class...


public class TestClass{
      public static void main(String[] args) throws Exception{
            int a = Integer.MIN_VALUE;
            int b = -a;
            System.out.println( a+ "   "+b);
      }
}


 

Correct Option is :  B 

A. It throws an OverFlowException.
 


B. It will print two same negative numbers.
 


C. It will print two different negative numbers.
 


D. It will print one negative and one positive number of same magnitude.
 


E. It will print one negative and one positive number of different magnitude.
 


Explanation: 
It prints: -2147483648   -2147483648



This happens because negative integers are stored in 2's complement form (complement the bits and add 1). For example:



Integer 1 in binary is  00000000 00000000 00000000 00000001  (32 bits)



So -1 in binary would be (complement the bits for 1 and add 1) :



Step 1 (complement the bits of 1): 11111111 11111111 11111111 11111110  

Step 2 (add 1 to step 1): 11111111 11111111 11111111 11111111.



Now, let's see what happens in this question:



a = Integer.MIN_VALUE = 10000000 00000000 00000000 00000000



To get -a, apply the above two steps:



Step 1  (complement the bits): 011111111 11111111 11111111 11111111 

Step 2 (add 1) : 10000000 00000000 00000000 00000000



So you got the exact same value that you started with! 



(Note that you can see the binary form of an integer using Integer.toBinaryString(i) method.)

 
Back to Question without Answer
 



21.     QID - 2.1352 : Using Loop Constructs 
 

Using a continue in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
A continue causes the next iteration of the loop to start without executing the remaining statements in the loop.

 
Back to Question without Answer
 



22.     QID - 2.830 : Working with Methods 
 

Consider the following method :



public void myMethod(int m, Object p, double d){

  ... valid code here

}



Assuming that there is no other method with the same name, which of the following options are correct regarding the above method?
 

Correct Option is :  E 

A. If this method is called with two parameters, the value of d in the method will be 0.0.
 


B. If this method is called with one parameter, the value of p and d in the method will be null and 0.0 respectively.
 


C. If this method is called with one parameter, the call will throw a NullPointerException.
 


D. If this method is called with one parameter, the call will throw a NullPointerException only if the code in the method tries to access p.
 


E. If this method is called with two parameters, the code will not compile.
 


Explanation: 
To call myMethod(int m, Object p, double d), you must pass exactly three parameters. If you try to pass less (or more) number of parameters, the code will not compile. Note that method parameters are not assigned default values.



It is possible to declare a method that can take variable number of parameters. For example: 



 public static void someMethod(Object... params){

        System.out.println(params.length);

    }



You can call this method by passing any number of parameters. In this case, calling someMethod() without any parameter will print 0. i.e. the length of params array will be 0. params will NOT be null.

 
Back to Question without Answer
 



23.     QID - 2.945 : Working with Inheritance 
 

Which of the following statements are true?
 

Correct Options are :  A E 

A. Private methods cannot be overridden in subclasses.
Only methods that are inherited can be overridden and private methods are not inherited.


B. A subclass can override any method in a non-final superclass.
Only the methods that are not declared to be final can be overridden. Further, private methods are not inherited so they cannot be overridden either.


C. An overriding method can declare that it throws a wider spectrum of checked exceptions than the method it is overriding.
 


D. The parameter list of an overriding method must be a subset of the parameter list of the method that it is overriding.
An overriding method (the method that is trying to override the base class’s method) must have the same parameters.


E. The overriding method may opt not to declare any throws clause even if the original method has a throws clause.
No exception (i.e. an empty set of exceptions) is a valid subset of the set of exceptions thrown by the original method so an overriding method can choose to not have any throws clause.


Explanation: 
A method can be overridden by defining a method with the same signature(i.e. name and parameter list) and return type as the method in a superclass. The return type can also be a subclass of the original method's return type.



Only methods that are accessible can be overridden. A private method cannot, therefore, be overridden in subclasses, but the subclasses are allowed to define a new method with exactly the same signature. 



A final method cannot be overridden. 



An overriding method cannot exhibit behavior that contradicts the declaration of the original method. An overriding method therefore cannot return a different type (except a subtype) or throw a wider spectrum of exceptions than the original method in the superclass. This, of course, applies only to checked exceptions because unchecked exceptions are not required to be declared at all.



A subclass may have a static method with the same signature as a static method in the base class but it is not called overriding. It is called hiding because the concept of polymorphism doesn't apply to static members.

 
Back to Question without Answer
 



24.     QID - 2.1427 : Working with Java API - Time and Date 
 

Which of the following classes should you use to represent just a date without any time or zone information?
 

Correct Option is :  D 

A. java.util.Date
 


B. java.sql.Date
 


C. java.time.Date
 


D. java.time.LocalDate
 


Explanation: 
Java 8 introduces a new package java.time to deal with dates. The old classes such as java.util.Date are not recommended anymore.



Briefly:

java.time Package: This is the base package of new Java Date Time API. All the commonly used classes such as LocalDate, LocalTime, LocalDateTime, Instant, Period, Duration are part of this package. All of these classes are immutable and thread safe. 



java.time.format Package: This package contains classes used for formatting and parsing date time objects such as java.time.format.DateTimeFormatter.



(The following two are not important for the exam.)



java.time.zone Package: This package contains classes for supporting different time zones and their rules.



java.time.chrono Package: This package defines generic APIs for non ISO calendar systems. We can extend AbstractChronology class to create our own calendar system.

java.time.temporal Package: This package contains temporal objects and we can use it for find out specific date or time related to date/time object. For example, we can use these to find out the first or last day of the month. You can identify these methods easily because they always have format “withXXX”.

 
Back to Question without Answer
 



25.     QID - 2.1116 : Constructors 
 

Which of the following are true about the "default" constructor?
 

Correct Options are :  A C 

A. It is provided by the compiler only if the class does not define any constructor.
 


B. It initializes the instance members of the class.
 


C. It calls the no-args constructor of the super class.
 


D. It initializes instance as well as class fields of the class.
 


E. It is provided by the compiler if the class does not define a 'no-args' constructor.
It is not provided even if the class declares any other with-args constructor.


Explanation: 
The default constructor is provided by the compiler only when a class does not define ANY constructor explicitly.
For example,

public class A{
  public A()  //This constructor is automatically inserted by the compiler because there is no other constructor defined by the programmer explicitly.
  {
    super();  //Note that it calls the super class' default no-args constructor.
  }
}
public class A{
  //Compiler will not generate any constructor because the programmer has defined a constructor.
  public A(int i){
     //do something
  }
}


 
Back to Question without Answer
 



26.     QID - 2.1203 : Working with Inheritance 
 

A method with no access modifier can be overridden by a method marked protected (assuming that it is not final).
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
An Overriding method is allowed to make the overridden method more accessible, and since protected is more accessible than default (package), this is allowed. Note that protected access will allow access to the subclass even if the subclass is in a different package but package access will not.

 
Back to Question without Answer
 



27.     QID - 2.1357 : Using Operators and Decision Constructs 
 

Which of these combinations of switch expression types and case label value types are legal within a switch statement?
 

Correct Option is :  A 

A. switch expression of type int and case label value of type char.
Note that the following is invalid though because a char cannot be assigned to an Integer:

Integer x = 1;  // int x = 1; is valid.

switch(x){

   case 'a' : System.out.println("a");

}


B. switch expression of type float and case label value of type int.
 


C. switch expression of type byte and case label value of type float.
 


D. switch expression of type char and case label value of type byte.
This will not work in all cases because a byte may have negative values which cannot be assigned to a char. For example, char ch = -1; does not compile. Therefore, the following does not compile either:



       char ch = 'x';

       switch(ch){

          case -1 :        System.out.println("-1"); break; // This will not compile : "possible loss of precision"

          default:        System.out.println("default");    

       }


E. switch expression of type boolean and case label value of type boolean.
 


Explanation: 
You should remember the following rules for a switch statement:



1. Only String, byte, char, short, int, and enum values can be used as types of a switch variable. (String is allowed since Java 7.) Wrapper classes Byte, Character, Short, and Integer are allowed as well.



2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.



3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535. Similarly, the following will not compile because 300 cannot be assigned to 'by', which can only hold values from -128 to 127.

byte by = 10;

switch(by){

    case 200 :  //some code;

    case 300 :  //some code;

}



4.  All case labels should be COMPILE TIME CONSTANTS. 



5. No two of the case constant expressions associated with a switch statement may have the same value.



6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



28.     QID - 2.1047 : Working with Inheritance 
 

An overriding method must have a same parameter list and the same return type as that of the overridden method.
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
This would have been true prior to Java 1.5. But from Java 1.5, an overriding method is allowed to change the return type to any subclass of the original return type, also known as covariant return type. This does not apply to primitives, in which case, the return type of the overriding method must match exactly to the return type of the overridden method.

 
Back to Question without Answer
 



29.     QID - 2.1102 : Constructors 
 

Under what situations does a class get a default constructor?
 

Correct Option is :  C 

A. All classes in Java get a default constructor.
No. If a class defines a constructor explicitly, it will not get the default constructor.


B. You have to define at least one constructor to get the default constructor.
A default (no args one) will be given if the class doesn't define any.


C. If the class does not define any constructors explicitly.
In this case, the compiler will add a no args constructor for this class.


D. All classes get default constructor from Object class.
Constructors are NEVER inherited.


E. None of the above.
 


 
Back to Question without Answer
 



30.     QID - 2.1035 : Working with Inheritance 
 

Which of the following statements are true?
 

Correct Options are :  A C 

A. The extends keyword is used to specify inheritance.
 


B. subclass of a non-abstract class cannot be declared abstract.
 


C. subclass of an abstract class can be declared abstract.
 


D. subclass of a final class cannot be abstract.
final class cannot be subclassed.


E. A class, in which all the members are declared private, cannot be declared public.
There is no such rule.


Explanation: 
The extends clause is used to specify that a class extends another class and thereby inherits all non-private instance members of that class.



A subclass can be declared abstract regardless of whether the superclass was declared abstract. A class cannot be declared abstract and final at the same time. This restriction makes sense because abstract classes need to be subclassed to be useful and final forbids subclasses. 



The visibility of the class is not limited by the visibility of its members. A class with all the members declared private can still be declared public or a class having all public members may be declared private.

 
Back to Question without Answer
 



31.     QID - 2.1064 : Working with Inheritance 
 

Consider this code:


interface X1{ }
interface X2{ }
class A { }
class B extends A implements X1{ }
class C extends B implements X2{
   D d = new D();
}
class D { }



Which of the following statements are true?
 

Correct Options are :  C D E 

A. D is-a B.
 


B. B has-a D.
C has-a D.


C. C is-a A
Because C 'is-a' B and B 'is-a' A.


D. C is-a X1
Because C is-a B and B is-a X1.


E. C is-a X2
Because C implements X2


Explanation: 
Consider this code:



class C extends B implements X2{

   D d = new D();

}



Now, Inheritance defines an is-a relation , so C is-a B because C extends B. This actually means that C can be used in all the places where B is used. C can substitute for B anywhere because C is-a B. As all objects have Object as their super class, every object 'is-a' Object.



Since C implements X2, it is sometimes said that C 'is-like-a' X2. That is, although C is not an X2 but for all purposes C is like an X2. The distinction between is-a and is-like-a is not important for the exam. For the purpose of the exam, is-like-a is same as is-a. Therefore, C is-a X2 as well.



Aggregation defines a has-a relation. Here, D is a member object in C. In other words, D is contained within C. It is therefore said that C 'has-a' D.



All Java objects have the class Object as the ultimate superclass, and so Object is always at the root of any inheritance hierarchy.

 
Back to Question without Answer
 



32.     QID - 2.1007 : Java Basics 
 

How can you declare a method someMethod() such that an instance of the class is not needed to access it and all the members of the same package have access to it.
 

Correct Options are :  A B C 

A. public static void someMethod()
 


B. static void someMethod()
 


C. protected static void someMethod()
 


D. void someMethod()
 


E. protected void someMethod()
 


F. public abstract static void someMethod()
static methods can't be abstract.


Explanation: 
Since the question says, "...an instance of the class is not needed...", the method has to be static.

Also, as the question does not say that other packages should not have access to the method so public or protected is also correct.

 
Back to Question without Answer
 



33.     QID - 2.958 : Working with Java Data Types 
 

Consider the following code:



public class Conversion{

   public static void main(String[] args){

     int i = 1234567890;

     float f = i;

     System.out.println(i - (int)f);

   }

}



What will it print when run?
 

Correct Option is :  B 

A. It will print 0.
 


B. It will not print 0.
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
Actually it prints -46. This is because the information was lost during the conversion from type int to type float as values of type float are not precise to nine significant digits.

Note: You are not required to know the number of significant digits that can be stored by a float for the exam. However, it is good to know about loss of precision while using float and double.

 
Back to Question without Answer
 



34.     QID - 2.1140 : Working with Inheritance 
 

Which of the following are valid declarations in a class?
 

Correct Option is :  A 

A. abstract int absMethod(int param) throws Exception;
 


B. abstract native int absMethod(int param) throws Exception;
native method cannot be abstract.


C. float native getVariance() throws Exception;
return type should always be on the immediate left of method name.


D. abstract private int absMethod(int param) throws Exception;
private method cannot be abstract. A private method is not inherited so how can a subclass implement it?


 
Back to Question without Answer
 



35.     QID - 2.1013 : Using Loop Constructs 
 

Using a break in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
The break statement is to break out of any loop completely. So the current iteration and any other remaining iterations of the loop will not execute.

Control is transferred to the first statement after the loop.

 
Back to Question without Answer
 



36.     QID - 2.1216 : Constructors 
 

Which of these statements are true?
 

Correct Options are :  B E 

A. All classes must explicitly define a constructor.
A default no args one will be provided if not defined any.


B. A constructor can be declared private.
This feature is used for implementing Singleton Classes.


C. A constructor can declare a return value.
 


D. A constructor must initialize all the member variables of a class.
All non-final instance variables get default values if not explicitly initialized.


E. A constructor can access the non-static members of a class.
A constructor is non-static, and so it can access directly both the static and non-static members of the class.


Explanation: 
Constructors need not initialize *all* the member variables of the class. A non-final member(i.e. an instance) variable will be assigned a default value if not explicitly initialized.

 
Back to Question without Answer
 



37.     QID - 2.1033 : Handling Exceptions 
 

A try statement must always have a ............. associated with it.
 

Correct Option is :  D 

A. catch
 


B. throws
 


C. finally
 


D. catch, finally or both
 


E. throw
 


Explanation: 
A try without resources must have either a catch or a finally. It may have both as well.

Thus, the following constructs are valid:



1.

try{

}

catch(Exception e){  }          // no finally



2.

try{

}

finally{  }          // no catch



3.

try{

}

catch(Exception e){  }

finally{  }



4. A catch can catch multiple exceptions:

try{

}

catch(Exception1|Exception2|Exception3 e){  } 



Note: try with resources (which is not on this exam) may omit catch as well as finally blocks.

 
Back to Question without Answer
 



38.     QID - 2.1147 : Working with Inheritance 
 

Given the following code, which statements are true?



class A{

   int i;

}

class B extends A{

   int j;

}


 

Correct Options are :  A D E 

A. Class B extends class A.
 


B. Class B is the superclass of class A.
A is the super class of B.


C. Class A inherits from class B.
B inherits from A


D. Class B is a subclass of class A.
Class B is a subclass of class A. Given the declaration "class B extends A" we can conclude that class B extends class A, class A is the superclass of class B, class B is a subclass of class A, and class B inherits from class A, which means that objects of class B also have all the members that objects of class A have.


E. Objects of class B will always have a member variable named i .
Note that 'i' is not public or protected. So it will be inherited only if both the classes are in same package.


Explanation: 
Here are a few good words from the Java Language Specification:

Members of a class that are declared private are not inherited by subclasses of that class. Only members of a class that are declared protected or public are inherited by subclasses declared in a package other than the one in which the class is declared.

Constructors and static initializers are not members and therefore are not inherited.

 
Back to Question without Answer
 



39.     QID - 2.1306 : Working with Inheritance 
 

Which of these statements concerning interfaces are true?
 

Correct Options are :  A C 

A. An interface may extend an interface.
Unlike a class, an interface can extend from multiple interfaces.


B. An interface may extend a class and may implement an interface.
An interface cannot implement another interface. It can extend another interface but not a class.


C. A class can implement an interface and extend a class.
 


D. A class can extend an interface and can implement a class.
 


E. An interface can only be implemented and cannot be extended.
It can be extended by another interface.


Explanation: 
The keyword implements is used when a class inherits method prototypes from an interface. The keyword extends is used when an interface inherits from another interface, or a class inherits from another class.

 
Back to Question without Answer
 



40.     QID - 2.1020 : Java Basics 
 

What does the zeroth element of the string array passed to the standard main method contain?
 

Correct Option is :  D 

A. The name of the class.
 


B. The string "java".
 


C. The number of arguments.
 


D. The first argument of the argument list, if present.
 


E. None of the above.
 


Explanation: 
Note that if no argument is passed to the program, the args parameter is NOT null but a non-null array of Strings of length zero.

 
Back to Question without Answer
 



41.     QID - 2.954 : Handling Exceptions 
 

What class of objects can be declared by the throws clause?
 

Correct Options are :  A B E 

A. Exception
 


B. Error
 


C. Event
 


D. Object
 


E. RuntimeException
 


Explanation: 
You can declare anything that is a Throwable or a subclass of Throwable, in the throws clause.

 
Back to Question without Answer
 



42.     QID - 2.1160 : Java Basics - OO Concepts 
 

Given that OurClass is a MyClass and OurClass has a YourClass object.

Which of the following options are correct?



(Assume that OurClass, MyClass, and YourClass are valid java classes.)
 

Correct Options are :  D E 

A. MyClass contains a reference to OurClass
 


B. OurClass contains a reference to MyClass
 


C. MyClass contains a reference to YourClass
 


D. OurClass contains a reference to YourClass
 


E. OurClass inherits from MyClass
 


Explanation: 
Visualize the hierarchy like this:

OurClass is a MyClass => OurClass extends  (or inherits from) MyClass. Thus, option 5 is correct.

OurClass has a YourClass => OurClass refers to (or contains a reference to ) YourClass object. Thus, option 4 is correct.

 
Back to Question without Answer
 



43.     QID - 2.902 : Java Basics 
 

Given:


class Triangle{
    public int base;
    public int height;
    public double area = 0;
    
    public Triangle(int pBase, int pHeight){
        this.base = pBase; this.height = pHeight;
        updateArea();
    }
    public void updateArea(){
        double a = base*height/2;
        area = a;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


Which variables are not accessible from anywhere within given class code except from the scope in which they are declared?
 

Correct Option is :  D 

A. base, height, area
 


B. area, b, h
 


C. base, height
 


D. b, h, a
b and h are method parameters and are only accessible in the method setBase and setHeight respectively.

a is a local variable and is accessible only in updateArea method.



base, height, and area are instance level and can be accessed from anywhere within the class where "this" is accessible.


Explanation: 
"class level" means static fields and they can be accessed from anywhere (i.e. static as well as non-static methods) in the class (and from outside the class depending on their accessibility).

"instance level" means the instance fields and they can be accessed only from instance methods in the class.

 
Back to Question without Answer
 



44.     QID - 2.1034 : Handling Exceptions 
 


 

 
Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

 
Back to Question without Answer
 



45.     QID - 2.1184 : Working with Java API - String, StringBuilder 
 


 

 
Explanation: 
You need to understand how append, insert, delete, and substring methods of StringBuilder/StringBuffer work. Please go through JavaDoc API for these methods. This is very important for the exam. Observe that substring() does not modify the object it is invoked on but append, insert and delete do.



In the exam, you will find questions that use such quirky syntax, where multiple calls are chained together. For example: sb.append("a").append("asdf").insert(2, "asdf"). Make yourself familiar with this technique. If in doubt, just break it down into multiple calls. For example, the aforementioned statement can be thought of as: 



sb.append("a"); 

sb.append("asdf"); 

sb.insert(2, "asdf")



Note that the method substring() in StringBuilder/StringBuffer returns a String (and not a reference to itself, unlike append, insert, and delete). So another StringBuilder method cannot be chained to it. For example, the following is not valid: sb.append("a").substring(0, 4).insert(2, "asdf");



The following is valid though:  String str = sb.append("a").insert(2, "asdf").substring(0, 4);

 
Back to Question without Answer
 



46.     QID - 2.1466 : Lambda Expressions 
 

Which of the following statements are correct regarding a functional interface?
 

Correct Option is :  C 

A. It has exactly one method and it must be abstract.
 


B. It has exactly one method and it may or may not be abstract.
 


C. It must have exactly one abstract method and may have other default or static methods.
 


D. It must have exactly one static method and may have other default or abstract methods.
 


Explanation: 
A functional interface is an interface that contains exactly one abstract method. It may contain zero or more default methods and/or static methods. Because a functional interface contains exactly one abstract method, you can omit the name of that method when you implement it using a lambda expression. For example, consider the following interface - 

interface Predicate<T> {

    boolean test(T t);

}



The purpose of this interface is to provide a method that operates on an object of class T and return a boolean.



You could have a method that takes an instance of class that implements this interface defined like this - 

public void printImportantData(ArrayList<Data> dataList, Predicate<Data> p){

   for(Data d: dataList){

      if(p.test(d)) System.out.println(d);

   }

}



where Data class could be as simple as public class Data{ public int value; }



Now, you can call the above method as follows:



        printImportantData(al, (Data d)->{ return d.value>1; } ); 

Notice the lack of method name here. This is possible because the interface has only one abstract method so the compiler can figure out the name. This can be shortened to:



        printImportantData(al, (Data d)->d.value>1);  

Notice the lack of curly brackets, the return keywordm, and the semicolon. This is possible because the method returns a boolean and the expression d.value>1 also returns a boolean. The compiler is therefore able to figure out that the value of this expression is to be returned from the method. This can be shortened even more to:



        printImportantData(al, d->d.value>1); 

Notice that there is no declaration of d! The compiler can figure out all information it needs because the interface has only one abstract method and that method has only one parameter. So you don't need to write all those things in your code.

        



Compare the above approach to the old style using an inner class that does the same thing - 



       printImportantData(al,  new Predicate<Data>(){ 

                            public boolean test(Data d){ 

                                 return d.value>1; 

                             }   }   );



The Predicate interface described above can be used anywhere there is a need to "do something with an object and return a boolean" and is actually provided by the standard java library in java.util.function package. This package provides a few other useful functional interfaces. 



Predicate<T>    Represents a predicate (boolean-valued function) of one argument of type T.

Consumer<T> Represents an operation that accepts a single input argument of type T and returns no result.

Function<T,R> Represents a function that accepts one argument of type T and produces a result of type R

Supplier<T> Represents a supplier of results of type T.



For the exam, you only need to be aware of Predicate. 



Please see http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html for learning Lambda expressions in Java.

 
Back to Question without Answer
 



47.     QID - 2.858 : Constructors 
 

Which of the following are true about the "default" constructor?
 

Correct Option is :  B 

A. It is provided by the compiler only if the class and any of its super classes does not define any constructor.
It is provided by the compiler if the class does not define any constructor. It is immaterial if the super class provides a constructor or not.


B. It takes no arguments.
 


C. A default constructor is used to return a default value.
A constructor does not return any value at all. It is meant to initialize the state of an object.


D. To define a default constructor, you must use the default keyword.
 


E. It is always public.
The access type of a default constructor is same as the access type of the class. Thus, if a class is public, the default constructor will be public.


Explanation: 
The default constructor is provided by the compiler only when a class does not define ANY constructor explicitly.
For example,

public class A{
  public A()  //This constructor is automatically inserted by the compiler because there is no other constructor defined by the programmer explicitly.
  {
    super();  //Note that it calls the super class's default no-args constructor.
  }
}
public class A{
  //Compiler will not generate any constructor because the programmer has defined a constructor.
  public A(int i){
     //do something
  }
}



 
Back to Question without Answer
 



48.     QID - 2.1283 : Working with Methods 
 

What is the correct declaration for an abstract method 'add' in a class that is accessible to any class, takes no arguments and returns nothing?
 

Correct Option is :  E 

A. public void add();
An abstract method must have the abstract keyword and must not have a method body i.e. { }.


B. abstract add();
A method that is not supposed to return anything must specify void as its return type.


C. abstract null add();
A method that is not supposed to return anything must specify void as its return type. null is not a  type, though it is a valid return value for any reference type.


D. abstract public void add(){ }
It is invalid because has a method body i.e. { }.


E. abstract public void add() throws Exception;
 


 
Back to Question without Answer
 



49.     QID - 2.1125 : Using Operators and Decision Constructs 
 


 

 
Explanation: 
i1 == i2 will return false because both are pointing to different object.

i1 == i3 will return true because one operand is a primitive int and so the other will be unboxed and then the value will be compared.

i1 == b1 will not even compile because type of i1 and b1 references are classes that are not in the same class hierarchy. So == knows at compile time itself that they can't point to the same object.

i1.equals(i2) will return true because both are Integer objects and both have the value 1.

i1.equals(b1) and i1.equals(g1) will return false because they are pointing to objects of different types.



Signature of equals method is : boolean equals(Object o); So it can take any object hence there will be no compilation error. 

Further, The equals methods of all wrapper classes first check if the two object are of same class or not. If not, they immediately return false.

 
Back to Question without Answer
 



50.     QID - 2.1435 : Working with Java API - Time and Date 
 

Identify the correct statements.
 

Correct Option is :  B 

A. LocalDate, LocalTime, and LocalDateTime extend Date.
 


B. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor.
 


C. Both - LocalDate and LocalTime extend LocalDateTime, which extends java.util.Date.
 


D. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor and extend java.util.Date.
 


Explanation: 
Here are some points that you should keep in mind about the new Date/Time classes introduced in Java 8 - 



1. They are in package java.time and they have no relation at all to the old java.util.Date and java.sql.Date.



2. java.time.TemporalAccessor is the base interface that is implemented by LocalDate, LocalTime, and LocalDateTime concrete classes. This interface defines read-only access to temporal objects, such as a date, time, offset or some combination of these, which are represented by the interface TemporalField.



3. LocalDate, LocalTime, and LocalDateTime classes do not have any parent/child relationship among themselves. As their names imply, LocalDate contains just the date information and no time information, LocalTime contains only time and no date, while LocalDateTime contains date as well as time. None of them contains zone information. For that, you can use ZonedDateTime. 



These classes are immutable and have no public constructors. You create objects of these classes using their static factory methods such as of(...) and from(TemporalAccessor ).  For example, 

LocalDate ld = LocalDate.of(2015, Month.JANUARY, 1); or LocalDate ld = LocalDate.from(anotherDate); or LocalDateTime ldt = LocalDateTime.of(2015, Month.JANUARY, 1, 21, 10); //9.10 PM



Since you can't modify them once created, if you want to create new object with some changes to the original, you can use the instance method named with(...). For example, 

LocalDate sunday = ld.with(java.time.temporal.TemporalAdjusters.next(DayOfWeek.SUNDAY));



4. Formatting of date objects into String and parsing of Strings into date objects is done by java.time.format.DateTimeFormatter class. This class provides public static references to readymade DateTimeFormatter objects through the fields named ISO_DATE, ISO_LOCAL_DATE, ISO_LOCAL_DATE_TIME, etc.  For example - 

        

LocalDate d1 = LocalDate.parse("2015-01-01", DateTimeFormatter.ISO_LOCAL_DATE);



The parameter type and return type of the methods of DateTimeFormatter class is the base interface TemporalAccessor instead of concrete classes such as LocalDate or LocalDateTime. So you shouldn't directly cast the returned values to concrete classes like this - 

   LocalDate d2 = (LocalDate) DateTimeFormatter.ISO_LOCAL_DATE.parse("2015-01-01"); //will compile but may or may not throw a ClassCastException at runtime.

You should do like this - 

   LocalDate d2 = LocalDate.from(DateTimeFormatter.ISO_LOCAL_DATE.parse("2015-01-01"));



5. Besides dates, java.time package also provides Period and Duration classes. Period is used for quantity or amount of time in terms of years, months and days, while Duration is used for quantity or amount of time in terms of hour, minute, and seconds.



Durations and periods differ in their treatment of daylight savings time when added to ZonedDateTime. A Duration will add an exact number of seconds, thus a duration of one day is always exactly 24 hours. By contrast, a Period will add a conceptual day, trying to maintain the local time.



For example, consider adding a period of one day and a duration of one day to 18:00 on the evening before a daylight savings gap. The Period will add the conceptual day and result in a ZonedDateTime at 18:00 the following day. By contrast, the Duration will add exactly 24 hours, resulting in a ZonedDateTime at 19:00 the following day (assuming a one hour DST gap).

 
Back to Question without Answer
 



51.     QID - 2.1031 : Handling Exceptions 
 


 

 
Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

Note that the question is not asking what exception you need to put in the catch(...) part or throws clause. It is just asking what exceptions will be thrown by the code fragments when they are executed.

 
Back to Question without Answer
 



52.     QID - 2.966 : Working with Methods 
 

Select the correct order of restrictiveness for access modifiers...

(First one should be least restrictive)
 

Correct Option is :  A 

A. public < protected < package (i.e. no modifier) < private
That's right, protected is less restrictive than package.


B. public < package (i.e. no modifier) < protected < private
 


C. public < protected < private < package (i.e. no modifier)
The default accessibility is more restrictive than protected, but less restrictive than private.


D. protected < package (i.e. no modifier) < private < public
 


E. depends on the implementation of the class or method.
 


Explanation: 
Members with default accessibility are only accessible within the class itself and from classes in the same package.

Protected members are in addition accessible from subclasses. Members with private accessibility are only accessible

within the class itself.

 
Back to Question without Answer
 



53.     QID - 2.1089 : Using Operators and Decision Constructs 
 


 

 
Explanation: 
1. i = (int) k.shortValue();   --> You can use *= here but then you can't complete the 4th line.



2. str += b; -->  You can't use =, or *= here. Only += is valid.



3. b = !b; --> You can't use anything other than = here.



4. c *= i; --> You can only use *= or +=. = is not valid. Further, if you use += here, you can't complete line 2.

 
Back to Question without Answer
 



54.     QID - 2.1362 : Working with Methods 
 

Which of the following statements are true?
 

Correct Options are :  B E 

A. private keyword can never be applied to a class.
private, protected and public can be applied to a nested class.



Although not too important for the exam, you should still know the following terminology: A top level class is a class that is not a nested class. A nested class is any class whose declaration occurs within the body of another class or interface.


B. synchronized keyword can never be applied to a class.
 


C. synchronized keyword may be applied to a non-primitive variable.
It can only be applied to a method or a block.


D. final keyword can never be applied to a class.
It can be applied to class, variable and methods.


E. A final variable can be hidden in a subclass.
If the class declares a field with a certain name, then the declaration of that field is said to hide any and all accessible declarations of fields with the same name in superclasses, and superinterfaces of the class.

For example,

class Base{

   int i=10;

}

class Sub extends Base{

  int i=20; //This i hides Base's i.   

}

...

Sub s = new Sub();

int k = s.i; //assigns 20 to k.



k = ((Base)s).i;//assigns 10 to k. The cast is used to show the Base's i.



Base b = new Sub();

k = b.i;//assigns 10 to k because which field is accessed depends on the class of the variable and not on the class of the actual object. Same rule applies to static methods but the opposite is true for instance methods.




Explanation: 
final keyword when applied to a class means the class cannot be subclassed, when applied to a method means the method cannot be overridden (it can be overloaded though) and when applied to a variable means that the variable is a constant.

 
Back to Question without Answer
 



55.     QID - 2.1426 : Working with Java API - Time and Date 
 

Which of the following are true regarding the new Date-Time API of Java 8?
 

Correct Options are :  A B 

A. It uses the calendar system defined in ISO-8601 as the default calendar.
This calendar is based on the Gregorian calendar system and is used globally as the defacto standard for representing date and time. The core classes in the Date-Time API have names such as LocalDateTime, ZonedDateTime, and OffsetDateTime. All of these use the ISO calendar system. 



If you want to use an alternative calendar system, such as Hijrah or Thai Buddhist, the java.time.chrono package allows you to use one of the predefined calendar systems. Or you can create your own.


B. Most of the actual date related classes in the Date-Time API such as LocalDate, LocalTime, and LocalDateTime are immutable.
These classes do not have any setters. Once created you cannot change their contents. Even their constructors are private.


C. LocalDateTime include time zone information but LocalDate does not.
None of LocalDate, LocalDateTime, or LocalTime store zone information.



java.time.ZonedDateTime does. ZonedDateTime is an immutable representation of a date-time with a time-zone. This class stores all date and time fields, to a precision of nanoseconds, and a time-zone, with a zone offset used to handle ambiguous local date-times. For example, the value "2nd October 2007 at 13:45.30.123456789 +02:00 in the Europe/Paris time-zone" can be stored in a ZonedDateTime.


D. To create a LocalDate or a LocalDateTime object, you can use one of their several constructors.
These classes do not have any public constructors. You need to use their static factory methods to get their instances.

For example: 



java.time.LocalDate d1 = java.time.LocalDate.of(2015, Month.JANUARY, 31);



java.time.LocalDateTime d2 = java.time.LocalDateTime.of(2015, Month.JANUARY, 31, 10, 56);



java.time.LocalDateTime d3 = java.time.LocalDateTime.parse("2015-01-02T17:13:50");

//Note that this will throw a  java.time.format.DateTimeParseException if the input string lacks the time component i.e.T17:13:50



java.time.LocalDate d4 = java.time.LocalDate.parse("2015-01-02");

//Note that this will throw a  java.time.format.DateTimeParseException if the input string contains the time component



java.time.LocalTime d5 = java.time.LocalTime.parse("02:13:59.985"); 

//Note that this will throw a  java.time.format.DateTimeParseException if the input string contains the Date component






 
Back to Question without Answer
 



56.     QID - 2.1253 : Working with Inheritance 
 

Where, in a constructor, can you place a call to a super class's constructor ?
 

Correct Option is :  B 

A. Anywhere in the constructor's body.
 


B. As the first statement in the constructor.
 


C. Only as the first statement and it can be called just like any other method call i.e. ClassName( ... ).
No. You have to do super( ...) instead of ClassName(...)


D. You can't call super class's constructor in a base class as constructors are not inherited.
That constructors are not inherited is true but you can call them using super(...). You can call the super class's constructor only from a constructor and only as the first statement.


E. None of the above.
 


Explanation: 
A constructor of a class is meant to initialize the instance of that class. It is an opportunity for the programmer to make the instance ready for use by others. Therefore, when you create an object of a class using the new keyword, the JVM invokes that class's constructor as per the supplied arguments. It is so important that if you don't have any thing that you want to do to the instance and decide to not write a constructor, the compiler automatically creates one constructor for that class.



Remember that an instance of a class is also an instance of its super class. Therefore, the fields of its super class need to be initialized as well. Now, observe that a sub class is always aware of its super class and so it can make use of the fields of its super class (depending on accessibility) but a super class has no knowledge of its subclasses. Therefore, the fields defined by the super class must be initialized before the fields of the subclass can be initialized because a subclass constructor may utilize the fields of the super class. This means that a super class constructor must execute before a sub class constructor. This logic applies to all the super classes in the chain right up to java.lang.Object class, since Object class is the root class of all objects. Obviously then, the Object class's constructor must be the first one to execute.



The compiler ensures this order of execution of constructors by checking that each constructor of a class first calls either a constructor of its super class or another constructor of the same class. If a constructor of a class doesn't explicitly do that (i.e. it neither calls super class's constructor nor calls another one of its own constructors as the first thing), the compiler automatically inserts a call to the default no-args constructor of the super class. This is same as writing super(); as the first statement in the constructor of the class.



Now, what if the super class doesn't have a no-args constructor? Obviously, the automatic call to super(); inserted by the compiler will fail and therefore, the sub class code will fail to compile.

 
Back to Question without Answer
 



57.     QID - 2.1300 : Working with Inheritance 
 

An abstract method cannot be overridden.
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
Abstract methods are meant to be overridden in the subclass. Abstract methods describe a behavior but do not implement it. So the subclasses have to override it to actually implement the behavior. A subclass may chose not to override it, in which case, the subclass will have to be abstract too.

 
Back to Question without Answer
 



58.     QID - 2.1171 : Working with Inheritance 
 

Consider the following variable declaration within the definition of an interface:

  int i = 10;

Which of the following declarations defined in a non-abstract class, is equivalent to the above?
 

Correct Option is :  C 

A. public static int i = 10;
 


B. public final int i = 10;
 


C. public static final int i = 10;
 


D. public int i = 10;
 


E. final int i = 10;
 


Explanation: 
Fields in an interface are implicitly public, static and final. Although you can put these words in the interface definition but it is not a good practice to do so.

 
Back to Question without Answer
 



59.     QID - 2.955 : Java Basics 
 

An instance member ...
 

Correct Options are :  A D 

A. can be a variable, a constant or a method.
 


B. is a variable or a constant.
 


C. belongs to the class.
 


D. belongs to an instance of the class.
 


E. is same as a local variable.
variables defined in methods are called local variables (also known as automatic variables) where as instance members are defined in the class scope.


Explanation: 
An instance member belongs to a single instance, not the class as a whole. An instance member is a member variable or a member method that belongs to a specific object instance. All non-static members are instance members.

 
Back to Question without Answer
 



60.     QID - 2.1338 : Java Basics 
 

What is the correct parameter specification for the standard main method?
 

Correct Options are :  B E 

A. void
 


B. String[ ] args
 


C. Strings args[ ]
 


D. String args
 


E. String args[ ]
 


Explanation: 
There is a no difference for args whether it is defined as String[] args or String args[]. However, there is an important difference in the way it is defined as illustrated by the following:



1. String[] sa1, sa2;

Here, both - sa1 and sa2 are String arrays.



2. String sa1[], sa2;

Here, only sa1 is a String array. sa2 is just a String.

 
Back to Question without Answer
 



61.     QID - 2.973 : Using Operators and Decision Constructs 
 

Which operators will always evaluate all the operands?
 

Correct Options are :  B E 

A. &&
 


B. |
 


C. ||
 


D. ? :
If the condition before ? returns true, only the first operand will be evaluated, otherwise only the second operand is evaluated.


E. %
All mathematical operators evaluate all the operands.


Explanation: 
|| and && are also known as short circuit operators since they do not evaluate the rest of the expression if the value of the expression can be determined by just evaluating part of the expression for example ( true || (bool = false)) will not assign false to bool because the value of the expression can be told just by seeing the first part i.e. true. But ( true | (bool = false)) will assign false to bool.

 
Back to Question without Answer
 



62.     QID - 2.1363 : Working with Java API - String, StringBuilder 
 

In Java, Strings are immutable. A direct implication of this is...
 

Correct Options are :  A B 

A. you cannot call methods like "1234".replace('1', '9'); and expect to change the original String.
calling such methods do not change this object. They create a new String object.


B. you cannot change a String object, once it is created.
 


C. you can change a String object only by the means of its methods.
 


D. you cannot extend String class.
That's because it is final, not because it is immutable. You can have a final class whose objects are mutable.


E. you cannot compare String objects.
String class implements Comparable interface.


 
Back to Question without Answer
 



63.     QID - 2.1003 : Working with Inheritance 
 

Given the following code, which statements are true?


interface Automobile { String describe(); }

class FourWheeler implements Automobile{
   String name;
   public String describe(){ return " 4 Wheeler " + name; }
}

class TwoWheeler extends FourWheeler{
    String name;
    public String describe(){ return " 2 Wheeler " + name; }
}

 

Correct Options are :  A B C 

A. An instance of TwoWheeler is also an instance of FourWheeler.
 


B. An instance of TwoWheeler is a valid instance of Automobile.
 


C. The use of inheritance is not justified here because a TwoWheeler is not really a FourWheeler in the real world that the code is trying to model.
 


D. The code will compile only if name is removed from TwoWheeler.
 


E. The code will fail to compile.
 


Explanation: 
The use of inheritance in this code is not justifiable, since conceptually, a TwoWheeler is-not-a FourWheeler.

 
Back to Question without Answer
 



64.     QID - 2.1281 : Using Loop Constructs 
 

Which of the following statements regarding 'break' and 'continue' are true?
 

Correct Option is :  A 

A. break without a label, can occur only in a switch, while, do, or for statement.
 


B. continue without a label, can occur only in a switch, while, do, or for statement.
It cannot occur in a switch.


C. break can never occur without a label.
 


D. continue can never occur WITH a label.
 


E. None of the above.
 


Explanation: 
A break statement with no label attempts to transfer control to the innermost enclosing switch, while, do, or for statement; this statement, which is called the break target, then immediately completes normally. If no switch, while, do, or for statement encloses the break statement, a compile-time error occurs.



A break statement with label Identifier attempts to transfer control to the enclosing labeled statement  that has the same Identifier as its label; this statement, which is called the break target, then immediately completes normally. In this case, the break target need not be a while, do, for, or switch statement.



A continue statement with no label attempts to transfer control to the innermost enclosing while, do, or for statement; this statement, which is called the continue target, then immediately ends the current iteration and begins a new one. If no while, do, or for statement encloses the continue statement, a compile-time error occurs.



A continue statement with label Identifier attempts to transfer control to the enclosing labelled statement that has the same Identifier as its label; that statement, which is called the continue target, then immediately ends the current iteration and begins a new one. The continue target must be a while, do, or for statement or a compile-time error occurs. If no labelled statement with Identifier as its label contains the continue statement, a compile-time error occurs.

 
Back to Question without Answer
 



65.     QID - 2.1084 : Using Operators and Decision Constructs 
 

Which of the following are valid operators in Java?
 

Correct Options are :  A B C D 

A. !
operates only on booleans


B. ~
bitwise negation. Operates only on integral types.


C. &
bitwise AND


D. %=
similar to += or /=


E. $
It is not an operator!


 
Back to Question without Answer
 



66.     QID - 2.866 : Handling Exceptions 
 

What can be the type of a catch argument ?
 

Correct Option is :  C 

A. Any class that extends java.lang.Exception
 


B. Any class that extends java.lang.Exception except any class that extends java.lang.RuntimeException
 


C. Any class that is-a Throwable.
The catch argument type declares the type of exception that the handler can handle and must be the name of a class that extends Throwable or Throwable itself.


D. Any Object
 


E. Any class that extends Error
 


Explanation: 
You must remember the hierarchy of exception classes:



The base class of all exceptions is java.lang.Throwable. java.lang.Error and java.lang.Exception are the only two subclasses of Throwable. 



Error is used by the JVM to throw exception that have nothing to do with the program code as such but occur because of environment. For example, OutOfMemoryError. It indicates serious problems that a reasonable application should not try to catch. Most such errors are abnormal conditions. Error and its subclasses are regarded as unchecked exceptions for the purposes of compile-time checking of exceptions.





Exception is used by the programmer as well as the JVM when it encounters exceptional situation in the program. Exception and its subclasses (except RuntimeException) are called Checked Exceptions. Checked exceptions need to be declared in a method or constructor's throws clause if they can be thrown by the execution of the method or constructor and propagate outside the method or constructor boundary. For example, java.io.IOException.



RuntimeException extends Exception, which is used to report exceptional situations that cannot be predetermined at compile time. For example, IndexOutOfBoundsException or NullPointerException. RuntimeException and its subclasses are unchecked exceptions. Unchecked exceptions do not need to be declared in a method or constructor's throws clause.

 
Back to Question without Answer
 



67.     QID - 2.1292 : Working with Inheritance 
 


 

 
Explanation: 
Even though class Klass implements m1(), it does not declare that it implements I. Therefore, for a subclass to 'implement' I, it must have 'implements I' in its declaration.

Further, m1() in Klass is not public. So even though Subclass inherits m1() from Klass, it will not be a valid implementation of I because interface methods must be public. Therefore, SubClass must override m1() and make it public.

 
Back to Question without Answer
 



68.     QID - 2.916 : Using Loop Constructs 
 

Consider the following code written by a new developer:



while(true){

        //additional valid code

        if(isDone()) break;

 }



What can be done to make this code more readable?
 

Correct Option is :  C 

A. Use a for loop
The following is how it can be done using a for loop:

for(;!isDone();) {

//additional valid code

}


B. Use the enhanced for loop
 


C. use do-while instead of while.
In the current state, the actual loop breaker condition is coded far away from the while condition. This reduces readability because it isn't immediately known when the loop breaks. Therefore, it should be changed to:

do{

} while( !isDone() );




D. Use continue instead of break.
 


 
Back to Question without Answer
 



69.     QID - 2.1266 : Using Operators and Decision Constructs 
 

Which of the following statements are true?
 

Correct Options are :  A B E 

A. The condition expression in an if statement can contain method calls.
Yes, as long as the method returns a boolean value.


B. If a and b are of type boolean, the expression (a = b) can be used as the condition expression of an if statement.
 


C. An if statement can have either an 'if' clause or an 'else' clause.
An if-statement must always have an 'if' clause. 'else' is optional.


D. The statement : if (false) ; else ; is illegal.
if-clause and the else-clause can have empty statements. Empty statement ( i.e. just  a semi-colon ) is a valid statement.


E. Only expressions which evaluate to a boolean value can be used as the condition in an if statement.
Unlike C/C++ where you can use integers as conditions, in java, only booleans are allowed.


Explanation: 
The expression (a = b) does not compare the variables a and b, but rather assigns the value of b to the variable a. The result of the expression is the value being assigned. Since a and b are boolean variables, the value returned by the expression is also boolean. This allows the expressions to be used as the condition for an if-statement.

if-clause and the else-clause can have empty statements. Empty statement ( i.e. just ; ) is a valid statement.

But this is illegal :

if (true) else;

because the if part doesn't contain any valid statement. ( A statement cannot start with an else!)

So, the following is valid.

if(true) if(false);

because if(false); is a valid statement.

 
Back to Question without Answer
 



70.     QID - 2.1305 : Handling Exceptions 
 

Which of these statements are true?
 

Correct Options are :  C D 

A. If a RuntimeException is not caught, the method will terminate and normal execution of the thread will resume.
Any remaining code of the method will not be executed. Further, any uncaught exception will cause the JVM to kill the thread.


B. An overriding method must declare that it throws the same exception classes as the method it overrides.
It can throw any subset of the exceptions thrown by overridden class.


C. The main method of a program can declare that it throws checked exceptions.
Any method can do that !


D. A method declaring that it throws a certain exception class may throw instances of any subclass of that exception class.
Note that it cannot throw the instances of any superclasses of the exception.


E. finally blocks are executed if and only if an exception gets thrown while inside the corresponding try block.
Finally is ALWAYS executed. (Only exception is System.exit() )


Explanation: 
Normal execution will not resume if an exception is uncaught by a method. The exception will propagate up the method invocation stack until some method handles it. If no one handles it then the exception will be handled by the JVM and the JVM will terminated that thread.



An overriding method only needs to declare that it can throw a subset of the exceptions the overridden method can throw. Having no throws clause in the overriding method is OK.

 
Back to Question without Answer
 



71.     QID - 2.1235 : Handling Exceptions 
 

A Java programmer is developing a desktop application. Which of the following exceptions would be appropriate for him to throw explicitly from his code?
 

Correct Option is :  D 

A. NullPointerException
 


B. ClassCastException
 


C. ArrayIndexOutOfBoundsException
 


D. Exception
 


E. NoClassDefFoundError
NoClassDefFoundError is thrown by the JVM when it attempts to load a class and is unable to find the class file. 

Note that it extends java.lang.Error and Errors are always thrown by the JVM. A programmer should never throw an Error explicitly.


Explanation: 
Observe that all the exceptions given in the options other than Exception and NoClassDefFoundError are RuntimeExceptions. These are usually thrown implicitly. A programmer should not throw these exceptions explicitly. java.lang.Exception and its subclasses (except RuntimeException) should be used by the programmer to reflect known exceptional situations, while RuntimeExceptions are used to reflect unforseen or unrecoverable exceptional situations.



Note: There is no hard and fast rule that says RuntimeExceptions (such as the ones mentioned in this questions)  must not be thrown explicitly. It is ok to throw these exceptions explicitly in certain situations. For example, framework/library classes such as Struts, Spring, and Hibernate, and standard JDK classes throw these exceptions explicitly. But for the purpose of the exam, it is a good way to determine if a given application should be thrown explicitly by the programmer or not.

 
Back to Question without Answer
 



72.     QID - 2.956 : Working with Java API - String, StringBuilder 
 

Consider the following class...



class MyString extends String{

   MyString(){ super(); }

}





The above code will not compile.
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
This will not compile because String is a final class and final classes cannot be extended. 

There are questions on this aspect in the exam and so you should remember that StringBuffer and StringBuilder are also final. All Primitive wrappers are also final (i.e. Boolean, Integer, Byte etc).

java.lang.System is also final.

 
Back to Question without Answer
 



73.     QID - 2.1387 : Creating and Using Arrays 
 

Identify correct statements about a two dimensional array.
 

Correct Option is :  D 

A. It is like a rectangular matrix where number of rows and number of columns may be different but each row or each column have the same number of elements.
 


B. It is like a square matrix where number of rows and number of columns are same and each row or each column have the same number of elements.
 


C. The number of rows and columns must be specified at the time it is declared.
Size of the dimensions is required to be specified only at the time of instantiation and not at the time of declaration. For example,

int[][] ia; //this is a valid declaration.

int[][] ia = new int[2][3];//This is a valid declaration and a valid instantiation



Further, only the size of the first dimension is required to be specified at the time of instantiation for an array of more than one dimension. Sizes of the other dimensions may be left out.

int[][] iaa=new int[3][]; 

int[][][] iaaa = new int[3][][]; //Both are valid. 

This is allowed because a multi dimensional array in Java is just an array of arrays. They do not have to be symmetric, that is, each sub array is an independent array and so they do not have to be of the same size. So, in the above example, iaa[0] can be initialized to new int[5], and ia[1] to new int[10], while ia[2] can be left null.


D. It is basically an array of arrays.
 


Explanation: 
Unlike some other languages, multi dimensional arrays in Java are not like matrices. They are just arrays of arrays. For example, if you have a two dimensional array then each element of this array is a one dimensional array. Each such array element is independent and therefore can be of different lengths (but not of different type).

 
Back to Question without Answer
 



74.     QID - 2.1041 : Working with Java Data Types 
 

Which of the following is not a primitive data value in Java?
 

Correct Options are :  A D 

A. "x"
This is a string containing x. String is not a primitive data type.


B. 'x'
This is a char.


C. 10.2F
 


D. Object
 


E. false
 


Explanation: 
Java has only the following primitive data types:

boolean, byte, short, char, int, long, float and double.

 
Back to Question without Answer
 



75.     QID - 2.1179 : Using Operators and Decision Constructs 
 

The following code snippet will print 'true'.



short s = Short.MAX_VALUE;

char c = s;

System.out.println( c == Short.MAX_VALUE);
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
This will not compile because a short VARIABLE can NEVER be assigned to a char without explicit casting. A short CONSTANT can be assigned to a char only if the value fits into a char.



short s = 1; byte b = s; => this will also not compile because although value is small enough to be held by a byte but the Right Hand Side i.e. s is a variable and not a constant.

final short s = 1; byte b = s; => This is fine because s is a constant and the value fits into a byte.

final short s = 200; byte b = s; => This is invalid because although s is a constant but the value does not fit into a byte.



Implicit narrowing occurs only for byte, char, short, and int. Remember that it does not occur for long, float, or double. So, this will not compile: int i = 129L;

 
Back to Question without Answer
 



76.     QID - 2.1317 : Using Operators and Decision Constructs 
 

Which of the following are NOT valid operators in Java?
 

Correct Options are :  A B D E 

A. sizeof
It is a valid operator in C++ but not in java because size of everything is known at compile time and is not machine dependent.


B. <<<
For left shifts there is no difference between shifting signed and unsigned values so there is only one leftshift '<<' in java.


C. instanceof
 


D. mod
No such thing.


E. equals
boolean equals(Object o) is a method in java.lang.Object. It is not an operator.


 
Back to Question without Answer
 



77.     QID - 2.1470 : Lambda Expressions 
 

Which of the following are correct about java.util.function.Predicate?
 

Correct Option is :  B 

A. It is an interface that has only one method with the signature - 

public void test(T t);
 


B. It is an interface that has only one method with the signature - 

public boolean test(T t);
 


C. It is an abstract class that has only one abstract method with the signature - 

public abstract void test(T t);
 


D. It is an abstract class that has only one abstract method with the signature - 

public abstract boolean test(T t);
 


Explanation: 
java.util.function.Predicate is one of the several functional interfaces that have been added to Java 8. This interface has exactly one abstract method named test, which takes any object as input and returns a boolean. This comes in very handy when you have a collection of objects and you want to go through each object of that collection and see if that object satisfies some criteria. For example, you may have a collection of Employee objects and, in one place of your application, you want to remove all such employees whose age is below 50, while in other place, you want to remove all such employees whose salary is above 100,000. In both the cases, you want to go through your collection of employees, and check each Employee object to determine if it fits the criteria. This can be implemented by writing an interface named CheckEmployee and having a method check(Employee ) which would return true if the passed object satisfies the criteria. The following code fragments illustrate how it can be done - 

 



//define the interface for creating criteria

interface CheckEmployee {

  boolean check(Employee e );

}



...



//write a method that filters Employees based on given criteria.

public void filterEmployees(ArrayList<Employee> dataList, CheckEmployee p){

   Iterator<Employee> i = dataList.iterator();

   while(i.hasNext()){

        if(p.check(i.next())){

             i.remove();

    }

   }

}



...



//create a specific criteria by defining a class that implements CheckEmployee

class MyCheckEmployee implements CheckEmployee{

   public boolean check(Employee e){

       return e.getSalary()>100000;

   }

};

...



//use the filter method with the specific criteria to filter the collection.

filterEmployees(employeeList, new MyCheckEmployee());





This is a very common requirement across applications. The purpose of Predicate interface (and other standard functional interfaces) is to eliminate the need for every application to write a customized interface.  For example, you can do the same thing with the Predicate interface as follows - 





public void filterEmployees(ArrayList<Employee> dataList, Predicate<Employee> p){

   Iterator<Employee> i = dataList.iterator();

   while(i.hasNext()){

        if(p.test(i.next())){

             i.remove();

    }

   }

}



...



// Instead of defining a MyPredicate class (like we did with MyCheckEmployee), we could also define and instantiate an anonymous inner class to reduce code clutter

Predicate<Employee> p = new Predicate<Employee>(){

  public boolean test(Employee e){

     return e.getSalary()>100000;

  }

};

...



filterEmployees(employeeList, p);





Note that both the interfaces (CheckEmployee and Predicate) can be used with lambda expressions in exactly the same way.  Instead of creating an anonymous inner class that implements the CheckEmployee or Predicate interface, you could just do -



filterEmployees(employeeList, e->e.getSalary()>100000);



The benefit with Predicate is that you don't have to write it. It is already there in the standard java library.

 
Back to Question without Answer
 



78.     QID - 2.953 : Using Operators and Decision Constructs 
 

Which of the following are also known as "short circuiting logical operators"?
 

Correct Options are :  B C 

A. &
 


B. ||
 


C. &&
 


D. |
 


E. ^
 


Explanation: 
|| and && are called short circuiting operators because if, while evaluating a logical expression, at any stage, the value of the whole expression can be determined without evaluating the rest of the expression, then the remaining sub-expressions are not evaluated.



Consider this:

boolean bool  = true; int k = 10;

if( bool == false && ( (k = 3) == 5 )  ) { .....}

System.out.println(k);             // this will print 10.



Because the value of the whole expression can be determined just by looking at bool == false. 

So k = 3 is never executed. The big expression was short circuited by &&.



Had the expression been if( bool == false & ( (k = 3) == 5 )  ) { .....}  /* notice single & instead of && */  

then it would have printed 3 because k = 3 will be executed. Even though the value of the expression is known immediately after evaluating bool == false, the rest of the expression is still evaluated. Thus, & is not a short circuiting operator.



Same thing happens with || and | as well.

 
Back to Question without Answer
 



Test 1



01.     QID - 2.827 
 

What will be the output when the following program is run?


package exceptions;
public class TestClass{
    public static void main(String[] args) {
        try{
            hello();
        }
        catch(MyException me){
            System.out.println(me);
        }
    }
    
    static void hello() throws MyException{
        int[] dear = new int[7];
        dear[0] = 747;
        foo();
    }
    
    static void foo() throws MyException{
        throw new MyException("Exception from foo");
    }
}

class MyException extends Exception {
    public MyException(String msg){
        super(msg);
    }
}


(Assume that line numbers printed in the messages given below are correct.)
 

Select 1 option

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:24)

    at exceptions.TestClass.main(TestClass.java:14)
 


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
 


C. exceptions.MyException: Exception from foo
 


D. exceptions.MyException: Exception from foo

    at exceptions.TestClass.foo(TestClass.java:29)

    at exceptions.TestClass.hello(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
 


 
Check Answer
 



02.     QID - 2.1353 
 

Which of the lines will cause a compile time error in the following program?


public class MyClass{
   public static void main(String args[]){
      char c;
      int i;
      c = 'a';//1
      i = c;  //2
      i++;    //3
      c = i;  //4
      c++;    //5
   }
}


 

Select 1 option

A. line 1
 


B. line 2
 


C. line 3
 


D. line 4
 


E. line 5
 


 
Check Answer
 



03.     QID - 2.1158 
 

What will the following program print?


public class InitTest{
   public InitTest(){
      s1 = sM1("1");
   }
   static String s1 = sM1("a");
   String s3 = sM1("2");{
      s1 = sM1("3");
   }
   static{
      s1 = sM1("b");
   }
   static String s2 = sM1("c");
   String s4 = sM1("4");
    public static void main(String args[]){
        InitTest it = new InitTest();
    }
    private static String sM1(String s){
       System.out.println(s);  return s;
    }
}


 

Select 1 option

A. The program will not compile.
 


B. It will print : a b c 2 3 4 1
 


C. It will print : 2 3 4 1 a b c
 


D. It will print : 1 a 2 3 b c 4
 


E. It will print : 1 a b c 2 3 4
 


 
Check Answer
 



04.     QID - 2.1224 
 

Consider the following code for the main() method:


public static void main(String[] args) throws Exception{
   int i = 1, j = 10;
   do {
      if (i++ > --j) continue;
   } while (i < 5);
   System.out.println("i=" + i + " j=" + j);
}


What will be the output when the above code is executed?
 

Select 1 option

A. i=6 j=6
 


B. i=5 j=6
 


C. i=5 j=5
 


D. i=6 j=5
 


E. None of these.
 


 
Check Answer
 



05.     QID - 2.1126 
 

Given:

 String mStr = "123";

 long m = // 1

Which of the following options when put at //1 will assign 123 to m?
 

Select 3 options

A. new Long(mStr);
 


B. Long.parseLong(mStr);
 


C. Long.longValue(mStr);
 


D. (new Long()).parseLong(mStr);
 


E. Long.valueOf(mStr).longValue();
 


 
Check Answer
 



06.     QID - 2.1061 
 

What will be the result of attempting to compile and run the following class?



public class TestClass{

   public static void main(String args[ ] ){

      int i, j, k;

      i = j = k = 9;

      System.out.println(i);

   }

}
 

Select 2 options

A. The code will not compile because unlike in c++, operator '=' cannot be chained i.e. a = b = c = d is invalid.
 


B. The code will not compile as 'j' is being used before getting initialized.
 


C. The code will compile correctly and will display '9' when run.
 


D. The code will not compile as 'j' and 'i' are being used before getting initialized.
 


E. All the variables will get a value of 9.
 


 
Check Answer
 



07.     QID - 2.860 
 

What will the following code print when run?


public class TestClass {
    public void switchString(String input){
        switch(input){
            case "a" : System.out.println( "apple" );
            case "b" : System.out.println( "bat" );
                break;
            case "B" : System.out.println( "big bat" );                
            default : System.out.println( "none" );
        }
    }

    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.switchString("B");
    }
}

 

Select 1 option

A. bat

big bat
 


B. big bat

none
 


C. big bat
 


D. bat
 


E. The code will not compile.
 


 
Check Answer
 



08.     QID - 2.1375 
 

Identify the valid code fragments when occurring by themselves within a method.
 

Select 1 option

A. long y = 123_456_L;
 


B. long z = _123_456L;
 


C. float f1 = 123_.345_667F;
 


D. float f2 = 123_345_667F;
 


E. None of the above declarations are valid.
 


 
Check Answer
 



09.     QID - 2.974 
 

What will be the contents of s1 and s2 at the time of the println statement in the main method of the following program?


import java.util.*;
public class TestClass{
   public static void main(String args[]){
      Stack s1 = new Stack ();
      Stack s2 = new Stack ();
      processStacks (s1,s2);
      System.out.println (s1 + "    "+ s2);
   }
   public static void processStacks(Stack x1, Stack x2){
      x1.push (new Integer ("100")); //assume that the method push adds the passed object to the stack.
      x2 = x1;
   }
 }

Note:[] is used in the options below to denote each element of the Stack.
 

Select 1 option

A. [100] [100]
 


B. [100] []
 


C. [] [100]
 


D. [] []
 


 
Check Answer
 



10.     QID - 2.1134 
 

Which of the following are valid at line 1?



public class X{

    //line 1: insert code here.

}
 

Select 2 options

A. String s;
 


B. String s = 'asdf';
 


C. String s = 'a';
 


D. String s = this.toString();
 


E. String s = asdf;
 


 
Check Answer
 



11.     QID - 2.1392 
 

Given:





package strings;

public class StringFromChar {

    

    public static void main(String[] args) {

        String myStr = "good";

        char[] myCharArr = {'g', 'o', 'o', 'd' };

        

        String newStr = null;

        for(char ch : myCharArr){

            newStr = newStr + ch;

        }



        System.out.println((newStr == myStr)+ " " + (newStr.equals(myStr)));

        

    }

}



What will it print when compiled and run?
 

Select 1 option

A. true true
 


B. true false
 


C. false true
 


D. false false
 


 
Check Answer
 



12.     QID - 2.1327 
 

What will be the output when the following program is run?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0; j < i; ++j, i++){
         System.out.println(i + " " + j);
      }
      System.out.println(i + " " + j);
   }
}


 

Select 1 option

A. 0 0 will be printed twice.
 


B. 0 0 will be printed once.
 


C. It will keep on printing 0 0
 


D. It will not compile.
 


E. It will print 0 0 and then 0 1.
 


 
Check Answer
 



13.     QID - 2.1303 
 

Consider following classes:
 

//In File Other.java
package other;
public class Other { public static String hello = "Hello"; }

//In File Test.java
package testPackage;
import other.*;
class Test{
   public static void main(String[] args){
      String hello = "Hello", lo = "lo";
      System.out.print((testPackage.Other.hello == hello) + " ");    //line 1
      System.out.print((other.Other.hello == hello) + " ");   //line 2
      System.out.print((hello == ("Hel"+"lo")) + " ");           //line 3
      System.out.print((hello == ("Hel"+lo)) + " ");              //line 4
      System.out.println(hello == ("Hel"+lo).intern());          //line 5
   }
}
class Other { static String hello = "Hello"; }


What will be the output of running class Test?
 

Select 1 option

A. false false true false true
 


B. false true true false true
 


C. true true true true true
 


D. true true true false true
 


E. None of the above.
 


 
Check Answer
 



14.     QID - 2.897 
 

Given the following code :


public class TestClass {

    int[][] matrix = new int[2][3];
    
    int a[] = {1, 2, 3};
    int b[] = {4, 5, 6};
            
    public int compute(int x, int y){
        //1 : Insert Line of Code here
    }
    
    public void loadMatrix(){
        for(int x=0; x<matrix.length; x++){
            for(int y=0; y<matrix[x].length; y++){
                //2: Insert Line of Code here
            }
        }
    }
}



What can be inserted at //1 and //2?
 

Select 1 option

A. return a(x)*b(y);

and

matrix(x, y) = compute(x, y);
 


B. return a[x]*b[y];

and

matrix[x, y] = compute(x, y);
 


C. return a[x]*b[y];

and

matrix[x][y] = compute(x, y);
 


D. return a(x)*b(y);

and

matrix(x)(y) = compute(x, y);
 


E. return a[x]*b[y];

and

matrix[[x][y]] = compute(x, y);
 


 
Check Answer
 



15.     QID - 2.1443 
 

What will the following code print when compiled and run?



public class OrderTest {



    public void initData(String[] arr){

        int ind = 0;

        for(String str : arr){

            str.concat(str+" "+ind);

            ind++;

        }

    }

    

    public void printData(String[] arr){

        for(String str : arr){

            System.out.println(str);

        }

    }

    

    public static void main(String[] args) {

        OrderTest ot = new OrderTest();

        String[] arr = new String[2];

        ot.initData(arr);

        ot.printData(arr);

    }

}
 

Select 1 option

A. null 0

null 1
 


B. 0

1
 


C.    0

   1

(There is a space before 0 and 1)
 


D. null

null
 


E. It will throw a RuntimeException at run time.
 


 
Check Answer
 



16.     QID - 2.1409 
 

What will the following code print?



public class Test{

    public static void testInts(Integer obj, int var){

        obj = var++;

        obj++;

    }

    public static void main(String[] args) {

        Integer val1 = new Integer(5);

        int val2 = 9;

        testInts(val1++, ++val2);

        System.out.println(val1+" "+val2);

    }

}           


 

Select 1 option

A. 10 9
 


B. 10 10
 


C. 6 9
 


D. 6 10
 


E. 5 11
 


 
Check Answer
 



17.     QID - 2.962 
 

Consider the following method...



public int setVar(int a, int b, float c) { ...}



Which of the following methods correctly overload the above method?
 

Select 2 options

A. public int setVar(int a, float b, int c){

  return (int)(a + b + c);

}
 


B. public int setVar(int a, float b, int c){

  return this(a, c, b);

}


 


C. public int setVar(int x, int y, float z){

  return x+y;

}


 


D. public float setVar(int a, int b, float c){

  return c*a;

}
 


E. public float setVar(int a){

  return a;

}
 


 
Check Answer
 



18.     QID - 2.1201 
 

Consider the following interface definition:

interface Bozo{

         int type = 0;

         public void jump();

}





Now consider the following class:



public class Type1Bozo implements Bozo{

         public Type1Bozo(){

            type = 1;

         }



         public void jump(){

            System.out.println("jumping..."+type);

         }



         public static void main(String[] args){

            Bozo b = new Type1Bozo();

            b.jump();

         }

}



What will the program print when compiled and run?
 

Select 1 option

A. jumping...0
 


B. jumping...1
 


C. This program will not compile.
 


D. It will throw an exception at runtime.
 


 
Check Answer
 



19.     QID - 2.1123 
 

Consider the contents of following two files:



//In file A.java

package a;

public class A{

   A(){ }

   public void  print(){ System.out.println("A"); }

}



//In file B.java

package b;

import a.*;

public class B extends A{

   B(){ }

   public void  print(){ System.out.println("B"); }

   public static void main(String[] args){

      new B();

   }

}





What will be printed when you try to compile and run class B?
 

Select 1 option

A. It will print A.
 


B. It will print B.
 


C. It will not compile.
 


D. It will compile but will not run.
 


E. None of the above.
 


 
Check Answer
 



20.     QID - 2.941 
 

What will the following code print?



    String abc = "";

    abc.concat("abc");

    abc.concat("def");

    System.out.print(abc);


 

Select 1 option

A. abc
 


B. abcdef
 


C. def
 


D. It will print empty string (or in other words, nothing).
 


E. It will not compile because there is no concat() method in String class.
 


 
Check Answer
 



21.     QID - 2.1086 
 

What will be the result of compiling and running the following code?



class Base{

   public Object getValue(){ return new Object(); } //1

}



class Base2 extends Base{

   public String getValue(){ return "hello"; } //2

}



public class TestClass{

   public static void main(String[] args){

      Base b = new Base2();

      System.out.println(b.getValue()); //3

   }

}
 

Select 1 option

A. It will print the hash code of the object.
 


B. It will print hello.
 


C. Compile time error at //1.
 


D. Compile time error at //2.
 


E. Compile time error at //3.
 


 
Check Answer
 



22.     QID - 2.1365 
 

Which of the following standard java exception classes extend java.lang.RuntimeException?
 

Select 4 options

A. java.lang.SecurityException
 


B. java.lang.ClassCastException
 


C. java.lang.NullPointerException
 


D. java.lang.CloneNotSupportedException
 


E. java.lang.IndexOutOfBoundsException
 


 
Check Answer
 



23.     QID - 2.1320 
 

What will the following code print when compiled and run?

class ABCD{
   int x = 10;
   static int y = 20;
}
class MNOP extends ABCD{
   int x = 30;
   static int y = 40;
}

public class TestClass {
   public static void main(String[] args) {
     System.out.println(new MNOP().x+", "+new MNOP().y);
   }
}


 

Select 1 option

A. 10, 40
 


B. 30, 20
 


C. 10, 20
 


D. 30, 40
 


E. 20, 30
 


F. Compilation error.
 


 
Check Answer
 



24.     QID - 2.1078 
 

The following code snippet will print true.



String str1 = "one";

String str2 = "two";

System.out.println( str1.equals(str1=str2) );
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



25.     QID - 2.849 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        String[] sa = {"a", "b", "c"};

        for(String s :  sa){

            if("b".equals(s)) continue;

            System.out.println(s);

            if("b".equals(s)) break;

            System.out.println(s+" again");

        }

    }

}
 

Select 1 option

A. a

a again

c

c again
 


B. a

a again

b
 


C. a

a again

b

b again
 


D. c

c again
 


 
Check Answer
 



26.     QID - 2.964 
 

What letters, and in what order, will be printed when the following program is compiled and run?



public class FinallyTest{

   public static void main(String args[]) throws Exception{

       try{

          m1();

          System.out.println("A");

       }

       finally{

          System.out.println("B");

       }

       System.out.println("C");

   }

   public static void m1() throws Exception { throw new Exception(); }

}


 

Select 1 option

A. It will print C and B, in that order.
 


B. It will print A and B, in that order.
 


C. It will print B and throw Exception.
 


D. It will print A, B and C in that order.
 


E. Compile time error.
 


 
Check Answer
 



27.     QID - 2.1199 
 

Given:

public class TestClass{
  public static int getSwitch(String str){
      return (int) Math.round( Double.parseDouble(str.substring(1, str.length()-1)) );
  }
  public static void main(String args []){
    switch(getSwitch(args[0])){
      case 0 : System.out.print("Hello ");
      case 1 : System.out.print("World"); break;
      default : System.out.print("Good Bye");
    }
  }
}



What will be printed by the above code if it is run with command line: 

java TestClass --0.50

(There are two minuses before 0.)
 

Select 1 option

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. Good Bye
 


 
Check Answer
 



28.     QID - 2.967 
 

What will the following code print when compiled and run?





abstract class Calculator{

   abstract void calculate();

   public static void main(String[] args){

      System.out.println("calculating");

      Calculator x = null;

      x.calculate();

   }

}


 

Select 1 option

A. It will not compile.
 


B. It will not print anything and will throw NullPointerException
 


C. It will print calculating and then throw NullPointerException.
 


D. It will print calculating and will throw NoSuchMethodError
 


E. It will print calculating and will throw MethodNotImplementedException
 


 
Check Answer
 



29.     QID - 2.1273 
 

What will be the result of attempting to compile and run the following program?





public class TestClass{

   public static void main(String args[ ] ){

      A o1 = new C( );

      B o2 = (B) o1;

      System.out.println(o1.m1( ) );

      System.out.println(o2.i );

   }

}

class A { int i = 10;  int m1( ) { return i; } }

class B extends A { int i = 20;  int m1() { return i; } }

class C extends B { int i = 30;  int m1() { return i; } }
 

Select 1 option

A. The program will fail to compile.
 


B. Class cast exception at runtime.
 


C. It will print 30, 20.
 


D. It will print 30, 30.
 


E. It will print 20, 20.
 


 
Check Answer
 



30.     QID - 2.1029 
 

The following class will print 'index = 2' when compiled and run.



class Test{

   public static int[ ] getArray() {  return null;  }

   public static void main(String[] args){

      int index = 1;

      try{

         getArray()[index=2]++;

      }

      catch (Exception e){  }  //empty catch

      System.out.println("index = " + index);

   }

}
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



31.     QID - 2.949 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2 = false;

if (b2 != b1 = !b2){

   System.out.println("true");

}

else{

   System.out.println("false");

}


 

Select 1 option

A. Compile time error.
 


B. It will print true.
 


C. It will print false.
 


D. Runtime error.
 


E. It will print nothing.
 


 
Check Answer
 



32.     QID - 2.982 
 

Given the following class, which of the given blocks can be inserted at line 1 without errors?


public class InitClass{
       private static int loop = 15 ;
       static final int INTERVAL = 10 ;
       boolean flag ;
       //line 1
}

 

Select 4 options

A. static {System.out.println("Static"); } 
 


B. static { loop = 1; }
 


C. static { loop += INTERVAL; }
 


D. static { INTERVAL = 10; } 
 


E. { flag = true; loop = 0; }
 


 
Check Answer
 



33.     QID - 2.1422 
 

What will the following code print when compiled and run?



class StringWrapper {

   private String theVal;

   public StringWrapper(String str){ this.theVal = str; }

}

public class Tester{

    public static void main(String[] args) {

        StringWrapper sw = new StringWrapper("How are you?");

        StringBuilder sb = new StringBuilder("How are you?");

        System.out.println("Hello, "+sw);

        System.out.println("Hello, "+sb);

   }

}


 

Select 1 option

A. Hello, How are you?

Hello, How are you?
 


B. Hello, StringWrapper@<hashcode>

Hello, How are you?
 


C. Hello, How are you?

Hello, StringBuilder@<hashcode>
 


D. Hello, How are you?

Hello, java.lang.StringBuilder@<hashcode>
 


E. Hello, StringWrapper@<hashcode>

Hello, java.lang.StringBuilder@<hashcode>
 


 
Check Answer
 



34.     QID - 2.1113 
 

Which of the following is a legal return type of a method overriding the given method:



public Object  myMethod() {...}

(Select the best option.)
 

Select 1 option

A. Object
 


B. String
 


C. Return type can be any class since all objects can be cast to Object.
 


D. void
 


E. None of the above.
 


 
Check Answer
 



35.     QID - 2.1127 
 

Consider the following class and interface definitions (in separate files):



public class Sample implements IInt{

   public static void main(String[] args){

      Sample s = new Sample();  //1

      int j = s.thevalue;       //2

      int k = IInt.thevalue;    //3

      int l = thevalue;         //4

   }

}

public interface IInt{

      int thevalue = 0;

}





What will happen when the above code is compiled and run?
 

Select 1 option

A. It will give an error at compile time at line //1.
 


B. It will give an error at compile time at line //2.
 


C. It will give an error at compile time at line //3
 


D. It will give an error at compile time at line //4.
 


E. It will compile and run without any problem.
 


 
Check Answer
 



36.     QID - 2.1230 
 

What will the following code print when run?



public class TestClass{

  public static long main(String[] args){

     System.out.println("Hello");

     return 10L;

  }

}
 

Select 1 option

A. Hello
 


B. It will not print anything.
 


C. It will not compile
 


D. It will throw an Error at runtime.
 


E. None of the above.
 


 
Check Answer
 



37.     QID - 2.1264 
 

What sequence of characters will the following program print?


import java.util.* ;
public class ListTest{
   public static void main(String args[]){
      List s1 = new ArrayList( );
      s1.add("a");
      s1.add("b");
      s1.add(1, "c");
      List s2 = new ArrayList(  s1.subList(1, 1) );
      s1.addAll(s2);
      System.out.println(s1);
   }
}


 

Select 1 option

A. The sequence a, b, c is printed.
 


B. The sequence a, b, c, b is printed.
 


C. The sequence a, c, b, c is printed.
 


D. The sequence a, c, b is printed.
 


E. None of the above.
 


 
Check Answer
 



38.     QID - 2.951 
 

Consider the following program...


class Super {  }
class Sub extends Super {  }
public class TestClass{
   public static void main(String[] args){
      Super s1 = new Super(); //1
      Sub s2 = new Sub();     //2
      s1 = (Super) s2;        //3
   }
}


Which of the following statements are correct?
 

Select 1 option

A. It will compile and run without any problems.
 


B. It will compile but WILL throw ClassCastException at runtime.
 


C. It will compile but MAY throw ClassCastException at runtime.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



39.     QID - 2.1079 
 

Consider the following two classes defined in two .java files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1  <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       System.out.println(X.LOGICID);
    }
}



What should be inserted at //1 so that Y.java can compile without any error?
 

Select 1 option

A. import static X;
 


B. import static com.foo.*;
 


C. import static com.foo.X.*;
 


D. import com.foo.*;
 


E. import com.foo.X.LOGICID;
 


 
Check Answer
 



40.     QID - 2.888 
 

What will the following code print when run?


class A {
}

class AA extends A { 
}


public class TestClass {
    public static void main(String[] args) throws Exception {
        A a = new A();
        AA aa = new AA();
        a = aa;
        System.out.println("a = "+a.getClass());
        System.out.println("aa = "+aa.getClass());
    }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw ClassCastException at runtime.
 


C. a = class AA

aa = class AA
 


D. a = class A

aa = class AA
 


 
Check Answer
 



41.     QID - 2.1287 
 

Consider the following class hierarchy shown in the image. (B1 and B2 are subclasses of A and C1, C2 are subclasses of B1)



Assume that method public void m1(){ ... } is defined in all of these classes EXCEPT B1 and C1.



Assume that "objectOfXX" means a variable that points to an object of class XX. So, objectOfC1 means a reference variable that is pointing to an object of class C1.



Which of the following statements are correct?
 

[image: Class Diagram] 
 
Select 1 option

A. objectOfC1.m1(); will cause a compilation error.
 


B. objectOfC2.m1(); will cause A's m1() to be called.
 


C. objectOfC1.m1(); will cause A's m1() to be called.
 


D. objectOfB1.m1(); will cause an exception at runtime.
 


E. objectOfB2.m1(); will cause an exception at runtime.
 


 
Check Answer
 



42.     QID - 2.1190 
 

What will the following code snippet print?



    Object t = new Integer(107);

    int k = (Integer) t.intValue()/9;

    System.out.println(k);
 

Select 1 option

A. 11
 


B. 12
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


 
Check Answer
 



43.     QID - 2.1473 
 

What can be inserted in the code below so that it will print true when run?



public class TestClass{



   public static boolean checkList(List list, Predicate<List> p){

      return p.test(list);

   }

  

   public static void main(String[] args) {

      boolean b = //WRITE CODE HERE

      System.out.println(b);

   }

}
 

Select 2 options

A. checkList(new ArrayList(), al -> al.isEmpty());
 


B. checkList(new ArrayList(), ArrayList al -> al.isEmpty());
 


C. checkList(new ArrayList(), al -> return al.size() == 0);
 


D. checkList(new ArrayList(), al -> al.add("hello"));
 


E.  checkList(new ArrayList(), (ArrayList al) -> al.isEmpty());
 


 
Check Answer
 



44.     QID - 2.1437 
 

Given the following code - 

public class MyFirstClass{

  public static void main(String[] args){

     System.out.println(args[1]);

  }

}



Which of the following commands will compile and then print "hello"?
 

Select 1 option

A. javac MyFirstClass

java MyFirstClass hello hello
 


B. javac MyFirstClass.java

java MyFirstClass hello hello
 


C. javac MyFirstClass

java MyFirstClass hello
 


D. javac MyFirstClass.java

java MyFirstClass hello
 


 
Check Answer
 



45.     QID - 2.1095 
 

What will be the result of compiling and running the following code?


class Base{
   public short getValue(){ return 1; } //1
}
class Base2 extends Base{
   public byte getValue(){ return 2; } //2
}
public class TestClass{
   public static void main(String[] args){
      Base b = new Base2();
      System.out.println(b.getValue()); //3
   }
}

 

Select 1 option

A. It will print 1
 


B. It will print 2.
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


 
Check Answer
 



46.     QID - 2.841 
 

You have a method that currently does not handle any exception thrown from the code contained in its method body. You are now changing this method to call another method that throws IOException.



What changes, independent of each other, can you make to your method so that it will compile?
 

Select 2 options

A. Set the exception to null and don't rethrow it.
 


B. Declare IOException in the throws clause of your method.
 


C. Wrap the call to another method within a try-catch block that catches RuntimeException.
 


D. Wrap the call to another method within a try-catch block that catches Exception.
 


 
Check Answer
 



47.     QID - 2.1038 
 

What will be the output of the following program?



public class TestClass{

   public static void main(String args[ ] ){

      int i = 0 ;

      boolean bool1 = true ;

      boolean bool2 = false;

      boolean bool  = false;

      bool = ( bool2 &  method1(i++) ); //1

      bool = ( bool2 && method1(i++) ); //2

      bool = ( bool1 |  method1(i++) ); //3

      bool = ( bool1 || method1(i++) ); //4

      System.out.println(i);

   }

   public static boolean method1(int i){

       return i>0 ? true : false;

   }

}


 

Select 1 option

A. It will print 1.
 


B. It will print 2.
 


C. It will print 3.
 


D. It will print 4.
 


E. It will print 0.
 


 
Check Answer
 



48.     QID - 2.1063 
 

Consider the directory structure shown in Image 1 that displays available folders and classes and the code given below:



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public void store() throws IOException{

     Util.store(stock);

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements MUST be added to the above class?
 

[image: 2.60.DirStruct] 
 
Select 4 options

A. package com.enthu.rad.*;
 


B. import com.enthu.*;
 


C. package com.enthu.rad;
 


D. import com.*;
 


E. import java.io.*;
 


F. It is not required to import java.io.* or import java.io.IOException because java.io package is imported automatically.
 


 
Check Answer
 



49.     QID - 2.1155 
 

Which line will print the string "MUM"?



public class TestClass{

   public static void main(String args []){

      String s = "MINIMUM";

      System.out.println(s.substring(4, 7)); //1

      System.out.println(s.substring(5)); //2

      System.out.println(s.substring(s.indexOf('I', 3))); //3

      System.out.println(s.substring(s.indexOf('I', 4))); //4

   }

}
 

Select 1 option

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. None of these.
 


 
Check Answer
 



50.     QID - 2.1109 
 

Which of the following statements are true?
 

Select 2 options

A. method length() of String class is a final method.
 


B. You can make mutable subclasses of the String class.
 


C. StringBuilder extends String.
 


D. StringBuilder is a final class.
 


E. String class is not final.
 


 
Check Answer
 



51.     QID - 2.900 
 

What, if anything, is wrong with the following code?





interface T1{

}

interface T2{

   int VALUE = 10;

   void m1();

}



interface T3 extends T1, T2{

   public void m1();

   public void m1(int x);

}
 

Select 1 option

A. T3 cannot implement both T1 and T2 because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from T2 interface.
 


D. The code will work fine only if m1() is removed from either T2 and T3.
 


E. None of the above.
 


 
Check Answer
 



52.     QID - 2.1469 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

    public String toString(){ return ""+value; }

}



and the following code fragments:

public  void filterData(ArrayList<Data> dataList, Predicate<Data> p){

   Iterator<Data> i = dataList.iterator();

   while(i.hasNext()){

        if(p.test(i.next())){

             i.remove();

    }

   }

}

....

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(3); al.add(d);



        //INSERT METHOD CALL HERE

       System.out.println(al);





Which of the following options can be inserted above so that it will print [1, 3]?
 

Select 1 option

A. filterData(al, d -> d.value%2 == 0 );
 


B. filterData(al, (Data x) -> x.value%2 == 0 );
 


C. filterData(al, (Data y) -> y.value%2  );
 


D. filterData(al, d -> return d.value%2 );
 


 
Check Answer
 



53.     QID - 2.1189 
 

Which of the following statements are acceptable?
 

Select 4 options

A. Object o = new java.io.File("a.txt");

(Assume that java.io.File is a valid class with a constructor that takes a String.)
 


B. Boolean bool = false;
 


C. char ch = 10;
 


D. Thread t = new Runnable();

(Assume that Runnable is a valid interface.)
 


E. Runnable r = new Thread();

(Assume that Thread is a class that implements Runnable interface)
 


 
Check Answer
 



54.     QID - 2.920 
 

Which is the earliest line in the following code after which the object created on line // 1 can be garbage collected, assuming no compiler optimizations are done?


public class NewClass{
   private Object o;
   void doSomething(Object s){  o = s;   }

   public static void main(String args[]){
      Object obj = new Object(); // 1
      NewClass tc = new NewClass(); //2
      tc.doSomething(obj); //3
      obj = new Object();    //4
      obj = null;    //5
      tc.doSomething(obj); //6
   }
}


 

Select 1 option

A. Line 1
 


B. Line 2
 


C. Line 3
 


D. Line 4
 


E. Line 5
 


F. Line 6
 


 
Check Answer
 



55.     QID - 2.869 
 

Which of the following are true about the enhanced for loop?
 

Select 3 options

A. It can iterate over an array or a Collection but not a Map.
 


B. Using an enhanced for loop prevents the code from going into an infinite loop.
 


C. Using an enhanced for loop on an array may cause infinite loop.
 


D. An enhanced for loop can iterate over a Map.
 


E. You cannot find out the number of the current iteration while iterating.
 


 
Check Answer
 



56.     QID - 2.1056 
 

Which one of these is a proper definition of a class TestClass that cannot be sub-classed?
 

Select 1 option

A. final class TestClass { }
 


B. abstract class TestClass { }
 


C. native class TestClass { }
 


D. static class TestClass { }
 


E. private class TestClass { }
 


 
Check Answer
 



57.     QID - 2.1348 
 

Which digits and in what order will be printed when the following program is run?

public class TestClass{
   public static void main(String args[]){
      int k = 0;
      try{
         int i = 5/k;
      }
      catch (ArithmeticException e){
         System.out.println("1");
      }
      catch (RuntimeException e){
         System.out.println("2");
         return ;
      }
      catch (Exception e){
         System.out.println("3");
      }
      finally{
         System.out.println("4");
      }
      System.out.println("5");
   }
}


 

Select 1 option

A. The program will print 5.
 


B. The program will print 1 and 4, in that order.
 


C. The program will print 1, 2 and 4, in that order.
 


D. The program will print 1, 4 and 5, in that order.
 


E. The program will print 1,2, 4 and 5, in that order.
 


 
Check Answer
 



58.     QID - 2.1316 
 

Which of the following statements will correctly create and initialize an array of Strings to non null elements?
 

Select 4 options

A. String[] sA = new String[1] { "aaa"};
 


B. String[] sA = new String[] { "aaa"};
 


C. String[] sA = new String[1] ; sA[0] = "aaa";
 


D. String[] sA = {new String( "aaa")};
 


E. String[] sA = { "aaa"};
 


 
Check Answer
 



59.     QID - 2.1119 
 

Given:


public class Switcher{
 
   public static void main(String[] args){
       switch(Integer.parseInt(args[1]))  //1
       {
          case 0 :
             boolean b = false;
             break;
     
          case 1 :
             b = true; //2
             break;
       }
       
       if(b) System.out.println(args[2]);
   }
}


What will the above  program print if compiled and run using the following command line: 

 java Switcher 1 2 3

 

Select 1 option

A. It will print 1
 


B. It will print 2
 


C. It will print 3
 


D. It will not print anything.
 


E. It will not compile because of //1.
 


F. It will not compile because of //2.
 


G. It will not compile for some other reason.
 


 
Check Answer
 



60.     QID - 2.1457 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will fail to compile?
 

Select 1 option

A. ArrayList<Vehicle> al1 = new ArrayList<>();

al1.add(new SUV());
 


B. ArrayList<Drivable> al2 = new ArrayList<>();

al2.add(new Car());
 


C. ArrayList<Drivable> al3 = new ArrayList<>();

al3.add(new SUV());
 


D. ArrayList<SUV> al4 = new ArrayList<>();

al4.add(new Car());
 


E. ArrayList<Vehicle> al5 = new ArrayList<>();

al5.add(new Car());
 


 
Check Answer
 



61.     QID - 2.1332 
 

What happens when you try to compile and run the following program?

public class CastTest{
   public static void main(String args[ ] ){
      byte b = -128 ;
      int i = b ;
      b = (byte) i;
      System.out.println(i+" "+b);
   }
}


 

Select 1 option

A. The compiler will refuse to compile it because i and b are of different types cannot be assigned to each other.
 


B. The program will compile and will print -128 and -128 when run .
 


C. The compiler will refuse to compile it because -128 is outside the legal range of values for a byte.
 


D. The program will compile and will print 128 and -128 when run .
 


E. The program will compile and will print 255 and -128 when run .
 


 
Check Answer
 



62.     QID - 2.835 
 

Which of the following can be valid declarations of an integer variable?
 

Select 2 options

A. global int x = 10;
 


B. final int x = 10;
 


C. public Int x = 10;
 


D. Int x = 10;
 


E. static int x = 10;
 


 
Check Answer
 



63.     QID - 2.1370 
 

What will the following code print when run?



class Baap {

    public int h = 4;

    public int getH() {

        System.out.println("Baap " + h);

        return h;

    }

}



public class Beta extends Baap {

    public int h = 44;

    public int getH() {

        System.out.println("Beta " + h);

        return h;

    }

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h + " " + b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h + " " + bb.getH());

    }

}
 

Select 1 option

A. Beta 44

4 44

Baap 44

44 44
 


B. Baap 44

4 44

Beta 44

44 44
 


C. Beta 44

4 44

Beta 44

4 44
 


D. Beta 44

4 44

Beta 44

44 44
 


 
Check Answer
 



64.     QID - 2.1476 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Select 2 options

A. default void compute();
 


B. public void compute();
 


C. static void compute(){

   System.out.println("computing...");

 }
 


D. static void compute();
 


E. default static void compute(){

   System.out.println("computing...");

};
 


 
Check Answer
 



65.     QID - 2.834 
 

Consider the following


public class TestClass {
    public static void main(String[] args) {
        TestClass tc = new TestClass();
        tc.myMethod();
    }
    
    public void myMethod() {
        yourMethod();
    }
    
    public void yourMethod() {
        throw new Exception();
    }    
}


What changes can be done to make the above code compile?
 

Select 1 option

A. Change declaration of main to :

public static void main(String[] args) throws Exception 
 


B. Change declaration of myMethod to 

public void myMethod throws Exception 
 


C. Change declaration of yourMethod to 

public void yourMethod throws Exception 
 


D. Change declaration of main and yourMethod to :

public static void main(String[] args) throws Exception and

public void yourMethod throws Exception 
 


E. Change declaration of all the three method to include throws Exception.
 


 
Check Answer
 



66.     QID - 2.1236 
 

What will the following program print?





public class TestClass{

  public static void main(String[] args){

     int x = 1;

     int y = 0;

     if( x/y ) System.out.println("Good");

     else  System.out.println("Bad");

  }

}
 

Select 1 option

A. Good
 


B. Bad
 


C. Exception at runtime saying division by Zero.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



67.     QID - 2.1259 
 

Note: Although Wrapper classes are not explicitly mentioned in the exam objectives, we have seen some candidates get questions on this aspect of Wrapper classes.



What will be the output of the following program?



public class EqualTest{

   public static void main(String args[]){

      Integer i = new Integer(1) ;

      Long m = new Long(1);

      if( i.equals(m)) System.out.println("equal");   // 1

      else System.out.println("not equal");

   }

}
 

Select 1 option

A. equal
 


B. not equal
 


C. Compile time error at //1
 


D. Runtime error at //1
 


E. None of the above.
 


 
Check Answer
 



68.     QID - 2.909 
 

Which of the following declarations is/are valid:



1.  bool b = null;



2. boolean b = 1;



3. boolean b = true|false;



4 bool b = (10<11);



5. boolean b = true||false;
 

Select 1 option

A. 1 and 4
 


B. 2, 3, and 5
 


C. 2 and 3
 


D. 3 and 5
 


E. 5
 


 
Check Answer
 



69.     QID - 2.1481 
 

Given:



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

   //INSERT CODE HERE

}



Which of the following options can be inserted in PremiumAccount independent of each other?
 

Select 2 options

A. static String getId(){

  return "1111";

}
 


B. String getId();
 


C. default String getId(){

   return "1111";

};
 


D. abstract static String getName();
 


E. static String getName();
 


F. default String getName();
 


 
Check Answer
 



70.     QID - 2.1144 
 

Consider the following interface definition:


public interface ConstTest{
	public int A = 1; //1
	int B = 1;          //2
	static int C = 1;  //3
	final int D = 1; 	 //4
	public static int E = 1; //5
	public final int F = 1;  //6
	static final int G = 1;    //7
	public static final int H = 1; //8
}


Which line(s) will cause a compilation error?
 

Select 1 option

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


H. 8
 


I. None of them will cause any error.
 


 
Check Answer
 



71.     QID - 2.999 
 

Which of the following method calls can be applied to a String object?
 

Select 3 options

A. equals(Object)
 


B. equalsIgnoreCase(String)
 


C. prune()
 


D. append()
 


E. intern()
 


 
Check Answer
 



72.     QID - 2.929 
 

Consider the following lines of code:



boolean greenLight = true;

boolean pedestrian = false;

boolean rightTurn = true;

boolean otherLane = false;



You can go ahead only if  the following expression evaluates to 'true' :



(( (rightTurn && !pedestrian || otherLane) || ( ? && !pedestrian && greenLight ) )  == true )



What variables can you put in place of '?' so that you can go ahead?
 

Select 1 option

A. rightTurn
 


B. otherLane
 


C. Any variable would do.
 


D. None of the variable would allow to go.
 


 
Check Answer
 



73.     QID - 2.1212 
 

Which of the following expressions will evaluate to true if preceded by the following code?



 String a = "java";

    char[] b = { 'j', 'a', 'v', 'a' };

    String c = new String(b);

    String d = a;
 

Select 3 options

A. (a == d)
 


B. (b == d)
 


C. (a == "java")
 


D. a.equals(c)
 


 
Check Answer
 



74.     QID - 2.961 
 

Which one of these is a proper definition of a class Car that cannot be sub-classed?
 

Select 1 option

A. class Car { }
 


B. abstract class Car { }
 


C. native class Car { }
 


D. static class Car { }
 


E. final class Car { }
 


 
Check Answer
 



75.     QID - 2.1015 
 

Which statement regarding the following code is correct?



class A{

   public int i = 10;

   private int j = 20;



}



class B extends A{

   private int i = 30; //1

   public int k = 40;



}



class C extends B{

}



public class TestClass{

   public static void main(String args[]){

      C c = new C();

      System.out.println(c.i); //2

      System.out.println(c.j); //3

      System.out.println(c.k); 

   }

}


 

Select 1 option

A. The code will print 10 and 40 if //3 is commented.
 


B. The code will print 40 if //2 and //3 are commented.
 


C. The code will not compile because of //1.
 


D. The code will compile if the line marked //2 is commented out.
 


E. None of these.
 


 
Check Answer
 



76.     QID - 2.1388 
 

Consider the following code:

        String[] dataList = {"x", "y", "z"};

        for (String dataElement : dataList) {

            int innerCounter = 0;

            while (innerCounter < dataList.length) {

                System.out.println(dataElement + ", " + innerCounter);

                innerCounter++;

            }



        }



How many times will the output contain 2?
 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. 3
 


E. 4
 


F. It will fail to compile.
 


 
Check Answer
 



77.     QID - 2.1369 
 

Given the following declarations, identify which statements will return true:



Integer i1 = 1; 

Integer i2 = new Integer(1);

int i3 = 1;

Byte b1 = 1;

Long g1 = 1L;
 

Select 2 options

A. i1 == i2
 


B. i1 == i3
 


C. i1 == b1
 


D. i1.equals(i2)
 


E. i1.equals(g1)
 


F. i1.equals(b1)
 


 
Check Answer
 



Test 1 (Answered)



01.     QID - 2.827 : Handling Exceptions 
 

What will be the output when the following program is run?


package exceptions;
public class TestClass{
    public static void main(String[] args) {
        try{
            hello();
        }
        catch(MyException me){
            System.out.println(me);
        }
    }
    
    static void hello() throws MyException{
        int[] dear = new int[7];
        dear[0] = 747;
        foo();
    }
    
    static void foo() throws MyException{
        throw new MyException("Exception from foo");
    }
}

class MyException extends Exception {
    public MyException(String msg){
        super(msg);
    }
}


(Assume that line numbers printed in the messages given below are correct.)
 

Correct Option is :  C 

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:24)

    at exceptions.TestClass.main(TestClass.java:14)
You are creating an array of length 7. Since array numbering starts with 0, the first element would be array[0]. So ArrayIndexOutOfBoundsException will NOT be thrown.


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
java.lang.ArrayIndexOutOfBoundsException extends java.lang.RuntimeException, which in turn extends java.lang.Exception. Therefore, ArrayIndexOutOfBoundsException is an Exception and not an Error.


C. exceptions.MyException: Exception from foo
 


D. exceptions.MyException: Exception from foo

    at exceptions.TestClass.foo(TestClass.java:29)

    at exceptions.TestClass.hello(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
me.printStackTrace() would have produced this output.


Explanation: 
Note that there are a few questions in the exam that test your knowledge about how exception messages are printed. 



When you use System.out.println(exception), a stack trace is not printed. Just the name of the exception class and the message is printed.

When you use exception.printStackTrace(), a complete chain of the names of the methods called, along with the line numbers, is printed. It contains the names of the methods in the chain of method calls that led to the place where the exception was created going back up to the point where the thread, in which the exception was created, was started.

 
Back to Question without Answer
 



02.     QID - 2.1353 : Using Operators and Decision Constructs 
 

Which of the lines will cause a compile time error in the following program?


public class MyClass{
   public static void main(String args[]){
      char c;
      int i;
      c = 'a';//1
      i = c;  //2
      i++;    //3
      c = i;  //4
      c++;    //5
   }
}


 

Correct Option is :  D 

A. line 1
 


B. line 2
 


C. line 3
 


D. line 4
 


E. line 5
 


Explanation: 
1. A char value can ALWAYS be assigned to an int variable, since the int type is wider than the char type. So line 2 is valid.



2. Line 4 will not compile because it is trying to assign an int to a char. Although the value of i can be held by the char but since  'i' is not a constant but a variable, implicit narrowing will not occur.



Here is the rule given in JLS:

A narrowing primitive conversion may be used if all of the following conditions are satisfied:

The expression is a constant expression of type int.

The type of the variable is byte, short, or char.

The value of the expression (which is known at compile time, because it is a constant expression) is representable in the type of the variable.

Note that narrowing conversion does not apply to long or double.

so, char ch = 30L; will fail although 30 is representable by a char.

 
Back to Question without Answer
 



03.     QID - 2.1158 : Working with Methods 
 

What will the following program print?


public class InitTest{
   public InitTest(){
      s1 = sM1("1");
   }
   static String s1 = sM1("a");
   String s3 = sM1("2");{
      s1 = sM1("3");
   }
   static{
      s1 = sM1("b");
   }
   static String s2 = sM1("c");
   String s4 = sM1("4");
    public static void main(String args[]){
        InitTest it = new InitTest();
    }
    private static String sM1(String s){
       System.out.println(s);  return s;
    }
}


 

Correct Option is :  B 

A. The program will not compile.
 


B. It will print : a b c 2 3 4 1
 


C. It will print : 2 3 4 1 a b c
 


D. It will print : 1 a 2 3 b c 4
 


E. It will print : 1 a b c 2 3 4
 


Explanation: 
First, static statements/blocks are called IN THE ORDER they are defined.

Next, instance initializer statements/blocks are called IN THE ORDER they are defined.

Finally, the constructor is called. So, it prints a b c 2 3 4 1.

 
Back to Question without Answer
 



04.     QID - 2.1224 : Using Loop Constructs 
 

Consider the following code for the main() method:


public static void main(String[] args) throws Exception{
   int i = 1, j = 10;
   do {
      if (i++ > --j) continue;
   } while (i < 5);
   System.out.println("i=" + i + " j=" + j);
}


What will be the output when the above code is executed?
 

Correct Option is :  B 

A. i=6 j=6
 


B. i=5 j=6
 


C. i=5 j=5
 


D. i=6 j=5
 


E. None of these.
 


Explanation: 
To understand the flow, let us put a print statement in the code:



  int i = 1, j = 10;

   int k =1;

   do {

      System.out.println("Iteration "+k+": i=" + i + " j=" + j);

      k++;

      if (i++ > --j) continue;

   } while (i < 5);

   System.out.println("i=" + i + " j=" + j);



It generates the following output:



Iteration 1: i=1 j=10

Iteration 2: i=2 j=9

Iteration 3: i=3 j=8

Iteration 4: i=4 j=7

i=5 j=6



In the iteration 1, the if comparison goes like this:

if (1++ > --10 ) continue; => if( 1 > 9 ) . The values of i and j after the if statement are 2 and 9

In the iteration 2, the if comparison goes like this:

if (2++ > --9 ) continue; => if( 2 > 8 ) . The values of i and j after the if statement are 3 and 8

In the iteration 3, the if comparison goes like this:

if (3++ > --8 ) continue; => if( 3 > 7 ) . The values of i and j after the if statement are 4 and 7

In the iteration 4, the if comparison goes like this:

if (4++ > --7 ) continue; => if( 4 > 6 ) . The values of i and j after the if statement are 5 and 6



Now, i is not < 5 so the while(i<5) check fails and the loop terminates. So the final values are 5 and 6.

 
Back to Question without Answer
 



05.     QID - 2.1126 : Working with Java Data Types 
 

Given:

 String mStr = "123";

 long m = // 1

Which of the following options when put at //1 will assign 123 to m?
 

Correct Options are :  A B E 

A. new Long(mStr);
Auto unboxing will occur.


B. Long.parseLong(mStr);
 


C. Long.longValue(mStr);
longValue is a non-static method in Long class.


D. (new Long()).parseLong(mStr);
Long (or any wrapper class) does not have a no-args constructor, so new Long() is invalid.


E. Long.valueOf(mStr).longValue();
Long.valueOf(mStr) returns a Long object containing 123. longValue() on the Long object returns 123.


 
Back to Question without Answer
 



06.     QID - 2.1061 : Working with Java Data Types 
 

What will be the result of attempting to compile and run the following class?



public class TestClass{

   public static void main(String args[ ] ){

      int i, j, k;

      i = j = k = 9;

      System.out.println(i);

   }

}
 

Correct Options are :  C E 

A. The code will not compile because unlike in c++, operator '=' cannot be chained i.e. a = b = c = d is invalid.
= can be chained. For example, assuming all the variables are declared appropriately before hand, a = b = c = d; is valid.

However, chaining to use a value of a variable at the time of declaration is not allowed. For example, int a = b = c = 100; is invalid if b and c are not already declared. Had b and c been already declared, int a = b = c = 100; would have been valid.


B. The code will not compile as 'j' is being used before getting initialized.
j is being initialize by the expression k = 9, which evaluates to 9.


C. The code will compile correctly and will display '9' when run.
 


D. The code will not compile as 'j' and 'i' are being used before getting initialized.
 


E. All the variables will get a value of 9.
 


Explanation: 
Every expression has a value, in this case the value of the expression is the value that is assigned to the right hand side of the equation.

k has a value of 9 which is assigned to j and then to i.



Another implication of this is :

boolean b = false;

if( b = true) { System.out.println("TRUE");}

The above code is valid and will print TRUE. Because b = true has a boolean value, which is what an if statement expects.



Note that if( i = 5) { ... } is not valid because the value of the expression i = 5 is an int (5) and not a boolean.

 
Back to Question without Answer
 



07.     QID - 2.860 : Using Operators and Decision Constructs 
 

What will the following code print when run?


public class TestClass {
    public void switchString(String input){
        switch(input){
            case "a" : System.out.println( "apple" );
            case "b" : System.out.println( "bat" );
                break;
            case "B" : System.out.println( "big bat" );                
            default : System.out.println( "none" );
        }
    }

    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.switchString("B");
    }
}

 

Correct Option is :  B 

A. bat

big bat
 


B. big bat

none
Since there is a case condition that matches the input string "B", that case statement will be executed directly. This prints "big bat". Since there is no break after this case statement and the next case statement, the control will fall through the next one (which is default : ) and so "none" will be printed as well.



Note that "b" and "B" are different strings. "B" is not equal to "b".


C. big bat
 


D. bat
 


E. The code will not compile.
 


Explanation: 
As of JDK 7 release, you can use a String object in the expression of a switch statement:


public String getTypeOfDayWithSwitchStatement(String dayOfWeekArg) {
     String typeOfDay;
     switch (dayOfWeekArg) {
         case "Monday":
             typeOfDay = "Start of work week";
             break;
         case "Tuesday":
         case "Wednesday":
         case "Thursday":
             typeOfDay = "Midweek";
             break;
         case "Friday":
             typeOfDay = "End of work week";
             break;
         case "Saturday":
         case "Sunday":
             typeOfDay = "Weekend";
             break;
         default:
             throw new IllegalArgumentException("Invalid day of the week: " + dayOfWeekArg);
     }
     return typeOfDay;
}


The switch statement compares the String object in its expression with the expressions associated with each case label as if it were using the String.equals method; consequently, the comparison of String objects in switch statements is case sensitive. The Java compiler generates generally more efficient bytecode from switch statements that use String objects than from chained if-then-else statements.

 
Back to Question without Answer
 



08.     QID - 2.1375 : Working with Java Data Types 
 

Identify the valid code fragments when occurring by themselves within a method.
 

Correct Option is :  D 

A. long y = 123_456_L;
An underscore can only occur in between two digits. So the _ before L is invalid.


B. long z = _123_456L;
An underscore can only occur in between two digits. So the _ before 1 is invalid.

_123_456L is a valid variable name though. So the following code is valid:

int _123_456L = 10;

long z = _123_456L;

An exception to this rule is that multiple continuous underscores can appear between two digits. For example, 2____3 is as good as 2_3 and is same as 23.


C. float f1 = 123_.345_667F;
An underscore can only occur in between two digits. So the _ before . is invalid.


D. float f2 = 123_345_667F;
 


E. None of the above declarations are valid.
 


Explanation: 
You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



09.     QID - 2.974 : Working with Methods 
 

What will be the contents of s1 and s2 at the time of the println statement in the main method of the following program?


import java.util.*;
public class TestClass{
   public static void main(String args[]){
      Stack s1 = new Stack ();
      Stack s2 = new Stack ();
      processStacks (s1,s2);
      System.out.println (s1 + "    "+ s2);
   }
   public static void processStacks(Stack x1, Stack x2){
      x1.push (new Integer ("100")); //assume that the method push adds the passed object to the stack.
      x2 = x1;
   }
 }

Note:[] is used in the options below to denote each element of the Stack.
 

Correct Option is :  B 

A. [100] [100]
 


B. [100] []
 


C. [] [100]
 


D. [] []
 


Explanation: 
. Primitives are always passed by value. 

  . Object "references" are passed by value. So it looks like the object is passed by reference but actually it is the value of the reference that is passed. 



        An  example: 

        Object o1 = new Object(); //Let us say, the object is stored at memory location 15000. 

        //Since o1 actually stores the address of the memory location where the object is stored, it contains 15000. 



        Now, when you call someMethod(o1); the value 15000 is passed to the method. 



        Inside the method someMethod():



        someMethod( Object localVar) { 

            /*localVar now contains 15000, which means it also points to the same memory location where the object is stored.

            Therefore, when you call a method on localVar, it will be executed on the same object.

            However, when you change the value of localVar itself, for example if you do localVar=null, 

            it then starts pointing to a different memory location. But the original variable o1 still 

            contains 15000 so it still points to the same object. */

        }



If you need even more detailed explanation, please check http://www.javaranch.com/campfire/StoryPassBy.jsp

  

This is what happens in this question.



You created two objects in main method:

s1 ------------> [ EMPTY ] STACK 1 OBJECT

s1 actually contains 15000 (say)

s2 ------------> [ EMPTY ] STACK 2 OBJECT

s2 actually contains 25000 (say)



inside the method processStacks() :



Step 1:

s1 ----> [ EMPTY ] STACK 1 OBJECT <----x1 Local variable

s1 and x1 both contain 15000 (say)

s2 ----> [ EMPTY ] STACK 2 OBJECT <----x2 Local variable

s2 and x2 both contain 25000 (say)



Step 2;

s1 -----> [ 100 ] STACK 1 OBJECT <----x1 Local variable

Because x1 is referring to the same memory location.

s2 -----> [ EMPTY ] STACK 2 OBJECT <---x2 Local variable



Step 3: After doing x2 = x1

s1 ---> [ 100 ] STACK 1 OBJECT <---- x1 and x2 Local variables

s1 and x1 both contain 15000 (say) and x2 now also contains 15000.

s2 ------------> [ EMPTY ] STACK 2 OBJECT



But s2 still contains 25000.



Note that it is the local variable x2 that is pointing to the same object as x1, which is s1 stack object. The original s2 (of the main method) is still pointing to the same object which is empty.



So when you come back to the main method, you print s1 (which has now 100) and s2 (which is still empty).

 
Back to Question without Answer
 



10.     QID - 2.1134 : Working with Java Data Types 
 

Which of the following are valid at line 1?



public class X{

    //line 1: insert code here.

}
 

Correct Options are :  A D 

A. String s;
 


B. String s = 'asdf';
A string must be enclosed in double quotes ".


C. String s = 'a';
'a' is a char. "a" is a String.


D. String s = this.toString();
Since every class directly or indirectly extends Object class and since Object class has a toString() method, that toString() method will be invoked and the String that it returns will be assigned to s.


E. String s = asdf;
there is no variable asdf defined in the given class.


 
Back to Question without Answer
 



11.     QID - 2.1392 : Working with Java API - String, StringBuilder 
 

Given:





package strings;

public class StringFromChar {

    

    public static void main(String[] args) {

        String myStr = "good";

        char[] myCharArr = {'g', 'o', 'o', 'd' };

        

        String newStr = null;

        for(char ch : myCharArr){

            newStr = newStr + ch;

        }



        System.out.println((newStr == myStr)+ " " + (newStr.equals(myStr)));

        

    }

}



What will it print when compiled and run?
 

Correct Option is :  D 

A. true true
 


B. true false
 


C. false true
 


D. false false
 


Explanation: 
Since newStr is null at the beginning, the first iteration of the loop assigns "nullg" to newStr. Therefore, at the end of the loop, myStr is actually "nullgood".

Had newStr been defined as String newStr = ""; then the program would have printed false for newStr == myStr because both the references are pointing to two different objects, and true for newStr.equals(myStr) because both the objects contain the exact same String.

 
Back to Question without Answer
 



12.     QID - 2.1327 : Using Loop Constructs 
 

What will be the output when the following program is run?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0; j < i; ++j, i++){
         System.out.println(i + " " + j);
      }
      System.out.println(i + " " + j);
   }
}


 

Correct Option is :  B 

A. 0 0 will be printed twice.
 


B. 0 0 will be printed once.
 


C. It will keep on printing 0 0
 


D. It will not compile.
 


E. It will print 0 0 and then 0 1.
 


Explanation: 
++j and i++ do not matter in this case.

The loop will not execute even once since j is not less than i at the start of the loop so the condition fails and the program will print 0 0 just once.

 
Back to Question without Answer
 



13.     QID - 2.1303 : Working with Java API - String, StringBuilder 
 

Consider following classes:
 

//In File Other.java
package other;
public class Other { public static String hello = "Hello"; }

//In File Test.java
package testPackage;
import other.*;
class Test{
   public static void main(String[] args){
      String hello = "Hello", lo = "lo";
      System.out.print((testPackage.Other.hello == hello) + " ");    //line 1
      System.out.print((other.Other.hello == hello) + " ");   //line 2
      System.out.print((hello == ("Hel"+"lo")) + " ");           //line 3
      System.out.print((hello == ("Hel"+lo)) + " ");              //line 4
      System.out.println(hello == ("Hel"+lo).intern());          //line 5
   }
}
class Other { static String hello = "Hello"; }


What will be the output of running class Test?
 

Correct Option is :  D 

A. false false true false true
 


B. false true true false true
 


C. true true true true true
 


D. true true true false true
 


E. None of the above.
 


Explanation: 
These are the six facts on Strings:

1. Literal strings within the same class in the same package represent references to the same String object. 

2. Literal strings within different classes in the same package represent references to the same String object. 

3. Literal strings within different classes in different packages likewise represent references to the same String object. 

4. Strings computed by constant expressions are computed at compile time and then treated as if they were literals. 

5. Strings computed at run time are newly created and therefore are distinct. (So line 4 prints false.)

6. The result of explicitly interning a computed string is the same string as any pre-existing literal string with the same contents. (So line 5 prints true.)



We advise you to read section 3.10.5 String Literals in Java Language Specification.

 
Back to Question without Answer
 



14.     QID - 2.897 : Creating and Using Arrays 
 

Given the following code :


public class TestClass {

    int[][] matrix = new int[2][3];
    
    int a[] = {1, 2, 3};
    int b[] = {4, 5, 6};
            
    public int compute(int x, int y){
        //1 : Insert Line of Code here
    }
    
    public void loadMatrix(){
        for(int x=0; x<matrix.length; x++){
            for(int y=0; y<matrix[x].length; y++){
                //2: Insert Line of Code here
            }
        }
    }
}



What can be inserted at //1 and //2?
 

Correct Option is :  C 

A. return a(x)*b(y);

and

matrix(x, y) = compute(x, y);
( and ) are used to call a method on an object. To access array elements, you need to use [ and ].


B. return a[x]*b[y];

and

matrix[x, y] = compute(x, y);
 


C. return a[x]*b[y];

and

matrix[x][y] = compute(x, y);
 


D. return a(x)*b(y);

and

matrix(x)(y) = compute(x, y);
a(x), b(y), and matrix(x)(y) are invalid because a, b, and matrix are not methods.


E. return a[x]*b[y];

and

matrix[[x][y]] = compute(x, y);
[[x][y]] is invalid syntax.


Explanation: 
The correct syntax to access any element within an array is to use the square brackets - [ ]. Thus, to access the first element in an array, you would use array[0].



For a multi dimensional array, to reach an individual item, you need to specify index for each dimension. For example, since matrix is a two dimensional array, matrix is an array of array and matrix[0] will give you the first array of the arrays. matrix[0][0] will give you the first element of the first array of the arrays.

 
Back to Question without Answer
 



15.     QID - 2.1443 : Creating and Using Arrays 
 

What will the following code print when compiled and run?



public class OrderTest {



    public void initData(String[] arr){

        int ind = 0;

        for(String str : arr){

            str.concat(str+" "+ind);

            ind++;

        }

    }

    

    public void printData(String[] arr){

        for(String str : arr){

            System.out.println(str);

        }

    }

    

    public static void main(String[] args) {

        OrderTest ot = new OrderTest();

        String[] arr = new String[2];

        ot.initData(arr);

        ot.printData(arr);

    }

}
 

Correct Option is :  E 

A. null 0

null 1
 


B. 0

1
 


C.    0

   1

(There is a space before 0 and 1)
 


D. null

null
 


E. It will throw a RuntimeException at run time.
When you do new String[2], you create a String array of two elements. arr is therefore not null. But each element of the array is not given any value and is therefore null. When you call a method on that element (i.e. str.concat(str+" "+ind); in initData), it will generate a NullPointerException, which is a RuntimeException.


 
Back to Question without Answer
 



16.     QID - 2.1409 : Working with Java Data Types 
 

What will the following code print?



public class Test{

    public static void testInts(Integer obj, int var){

        obj = var++;

        obj++;

    }

    public static void main(String[] args) {

        Integer val1 = new Integer(5);

        int val2 = 9;

        testInts(val1++, ++val2);

        System.out.println(val1+" "+val2);

    }

}           


 

Correct Option is :  D 

A. 10 9
 


B. 10 10
 


C. 6 9
 


D. 6 10
 


E. 5 11
 


Explanation: 
There are multiple concepts at play here:

1. All the wrapper objects are immutable. So when you do obj++, what actually happens is something like this:

obj = new Integer( obj.intValue()  + 1);  



2.val1++ uses post-increment operator, which implies that you note down the current value of val1, increment it, and then pass the original noted down value to the method testInts. Thus, the reference value of Integer 5 is passed to testInts. But val1 is set to point to a new Integer object containing 6.

 ++val2 uses pre-increment operator, which implies that you first increment val2 and then pass the incremented value. Therefore, val2 is incremented to 10 and then 10 is passed to the method testInts.



3. Java uses pass by value semantics in method calls. In case of primitive variables, their values are passed, while in case of Objects, their reference values are passed.  Thus, when you assign a different object to reference variable in a method, the original reference variable that was passed from the calling method still points to the same object that it pointed to before the call.

In this question, therefore, val1 in main still points to 6 after the call to testInts returns.

 
Back to Question without Answer
 



17.     QID - 2.962 : Working with Methods - Overloading 
 

Consider the following method...



public int setVar(int a, int b, float c) { ...}



Which of the following methods correctly overload the above method?
 

Correct Options are :  A E 

A. public int setVar(int a, float b, int c){

  return (int)(a + b + c);

}
 


B. public int setVar(int a, float b, int c){

  return this(a, c, b);

}


this( ... ) can only be called in a constructor and that too as a first statement.


C. public int setVar(int x, int y, float z){

  return x+y;

}


It will not compile because it is same as the original method. The name of parameters do not matter.


D. public float setVar(int a, int b, float c){

  return c*a;

}
It will not compile as it is same as the original method. The return type does not matter.


E. public float setVar(int a){

  return a;

}
 


Explanation: 
A method is said to be overloaded when the other method's name is same and parameters ( either the number or their order) are different.

Option 2 is not valid Because of the line: return this(a, c, b); This is the syntax of calling a constructor and not a method. It should have been: return this.setVar(a, c, b);

 
Back to Question without Answer
 



18.     QID - 2.1201 : Working with Inheritance 
 

Consider the following interface definition:

interface Bozo{

         int type = 0;

         public void jump();

}





Now consider the following class:



public class Type1Bozo implements Bozo{

         public Type1Bozo(){

            type = 1;

         }



         public void jump(){

            System.out.println("jumping..."+type);

         }



         public static void main(String[] args){

            Bozo b = new Type1Bozo();

            b.jump();

         }

}



What will the program print when compiled and run?
 

Correct Option is :  C 

A. jumping...0
 


B. jumping...1
 


C. This program will not compile.
 


D. It will throw an exception at runtime.
 


Explanation: 
Fields defined in an interface are ALWAYS considered as public, static, and final. Even if you don't explicitly define them as such. In fact, you cannot even declare a field to be private or protected in an interface. Therefore, you cannot assign any value to 'type' outside the interface definition.

 
Back to Question without Answer
 



19.     QID - 2.1123 : Working with Inheritance 
 

Consider the contents of following two files:



//In file A.java

package a;

public class A{

   A(){ }

   public void  print(){ System.out.println("A"); }

}



//In file B.java

package b;

import a.*;

public class B extends A{

   B(){ }

   public void  print(){ System.out.println("B"); }

   public static void main(String[] args){

      new B();

   }

}





What will be printed when you try to compile and run class B?
 

Correct Option is :  C 

A. It will print A.
 


B. It will print B.
 


C. It will not compile.
Because A() is not accessible in B.


D. It will compile but will not run.
 


E. None of the above.
 


Explanation: 
Note that there is no modifier for A's constructor. So it has default access. This means only classes in package a can use it. Also note that class B is in a different package and is extending from A. In B's constructor the compiler will automatically add super() as the first line. But since A() is not accessible in B, this code will not compile.

 
Back to Question without Answer
 



20.     QID - 2.941 : Working with Java API - String, StringBuilder 
 

What will the following code print?



    String abc = "";

    abc.concat("abc");

    abc.concat("def");

    System.out.print(abc);


 

Correct Option is :  D 

A. abc
 


B. abcdef
 


C. def
 


D. It will print empty string (or in other words, nothing).
 


E. It will not compile because there is no concat() method in String class.
 


Explanation: 
Strings are immutable so doing abc.concat("abc") will create a new string "abc" but will not affect the original string "".

 
Back to Question without Answer
 



21.     QID - 2.1086 : Working with Inheritance 
 

What will be the result of compiling and running the following code?



class Base{

   public Object getValue(){ return new Object(); } //1

}



class Base2 extends Base{

   public String getValue(){ return "hello"; } //2

}



public class TestClass{

   public static void main(String[] args){

      Base b = new Base2();

      System.out.println(b.getValue()); //3

   }

}
 

Correct Option is :  B 

A. It will print the hash code of the object.
 


B. It will print hello.
Covariant returns are allowed since Java 1.5, which means that an overriding method can change the return type to a subclass of the return type declared in the overridden method. But remember than covarient returns does not apply to primitives.


C. Compile time error at //1.
 


D. Compile time error at //2.
 


E. Compile time error at //3.
 


Explanation: 
Observe that at run time b points to an object of class Base2. Further, Base2 overrides getValue(). Therefore, Base2's getValue() will be invoked and it will return hello.

 
Back to Question without Answer
 



22.     QID - 2.1365 : Handling Exceptions 
 

Which of the following standard java exception classes extend java.lang.RuntimeException?
 

Correct Options are :  A B C E 

A. java.lang.SecurityException
SecurityException extends RuntimeException: It is thrown by the security manager upon security violation. For example, when a java program runs in a sandbox (such as an applet) and it tries to use prohibited APIs such as File I/O, the security manager throws this exception.

Since this exception is explicitly thrown using the new keyword by a security manager class, it can be considered to be thrown by the application programmer.


B. java.lang.ClassCastException
ClassCastException extends RuntimeException: Usually thrown by the JVM. Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an instance. For example, the following code generates a ClassCastException: 

     Object x = new Integer(0);

     System.out.println((String)x);


C. java.lang.NullPointerException
NullPointerException extends RuntimeException: Usually thrown by the JVM. Thrown when an application attempts to use null in a case where an object is required. These include: 

  Calling the instance method of a null object. 

  Accessing or modifying the field of a null object. 

  Taking the length of null as if it were an array. 

  Accessing or modifying the slots of null as if it were an array. 

  Throwing null as if it were a Throwable value. 

Applications should throw instances of this class to indicate other illegal uses of the null object.


D. java.lang.CloneNotSupportedException
public class CloneNotSupportedException extends Exception

Thrown to indicate that the clone method in class Object has been called to clone an object, but that the object's class does not implement the Cloneable interface.

Applications that override the clone method can also throw this exception to indicate that an object could not or should not be cloned.


E. java.lang.IndexOutOfBoundsException
IndexOutOfBoundsException extends RuntimeException: 

 Usually thrown by the JVM. Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out of range.  Applications can subclass this class to indicate similar exceptions.

ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException both extend IndexOutOfBoundsException.


Explanation: 
The other two exceptions you should know about are:

IllegalArgumentException extends RuntimeException: If a parameter passed to a method is not valid. Usually thrown by the application.



IllegalStateException extends RuntimeException: Signals that a method has been invoked at an illegal or inappropriate time. In other words, the Java environment or Java application is not in an appropriate state for the requested operation. Usually thrown by the application.

 
Back to Question without Answer
 



23.     QID - 2.1320 : Working with Inheritance 
 

What will the following code print when compiled and run?

class ABCD{
   int x = 10;
   static int y = 20;
}
class MNOP extends ABCD{
   int x = 30;
   static int y = 40;
}

public class TestClass {
   public static void main(String[] args) {
     System.out.println(new MNOP().x+", "+new MNOP().y);
   }
}


 

Correct Option is :  D 

A. 10, 40
 


B. 30, 20
 


C. 10, 20
 


D. 30, 40
 


E. 20, 30
 


F. Compilation error.
 


Explanation: 
Access to static and instance fields and static methods depends on the class of reference variable and not the actual object to which the variable points to. Observe that this is opposite of what happens in the case of instance methods.  In case of instance methods the method of the actual class of the object is called.



Therefore, in case of System.out.println(new MNOP().x); the reference is of type MNOP and so MNOP's x will be accessed. 



Had it been like this:

   ABCD a = new MNOP();

   System.out.println(a.x);

   System.out.println(a.y);

ABCD's x and y would have been accessed because a is of type ABCD even though the actual object is of type MNOP.

 
Back to Question without Answer
 



24.     QID - 2.1078 : Using Operators and Decision Constructs 
 

The following code snippet will print true.



String str1 = "one";

String str2 = "two";

System.out.println( str1.equals(str1=str2) );
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
First the value of 'str1' is evaluated (i.e. one). Now, before the method is called, the operands are evaluated, so str1 becomes "two". so "one".equals("two") is false.

 
Back to Question without Answer
 



25.     QID - 2.849 : Using Loop Constructs 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        String[] sa = {"a", "b", "c"};

        for(String s :  sa){

            if("b".equals(s)) continue;

            System.out.println(s);

            if("b".equals(s)) break;

            System.out.println(s+" again");

        }

    }

}
 

Correct Option is :  A 

A. a

a again

c

c again
 


B. a

a again

b
 


C. a

a again

b

b again
 


D. c

c again
 


Explanation: 
To determine the output you have to run through the loop one iteration at a time in your mind:



Iteration 1: s is "a". It is not equal to "b" so, it will print "a", and then "a again".

Iteration 2: s is "b". It is equal to "b", so the first if will execute "continue", which mean the rest of the code in the loop will not be executed (thus b and b again will not be printed), and the next iteration will start. Note that the second if is not executed at all because of the continue in the first if.

Iteration 3: s is "c", both the if conditions are not satisfied. So "c" and "c again" will be printed.

 
Back to Question without Answer
 



26.     QID - 2.964 : Handling Exceptions 
 

What letters, and in what order, will be printed when the following program is compiled and run?



public class FinallyTest{

   public static void main(String args[]) throws Exception{

       try{

          m1();

          System.out.println("A");

       }

       finally{

          System.out.println("B");

       }

       System.out.println("C");

   }

   public static void m1() throws Exception { throw new Exception(); }

}


 

Correct Option is :  C 

A. It will print C and B, in that order.
 


B. It will print A and B, in that order.
 


C. It will print B and throw Exception.
 


D. It will print A, B and C in that order.
 


E. Compile time error.
 


Explanation: 
An exception is thrown in method m1() so println("A") will not be executed.

As there is no catch block, the exception will not be handled and the main() method will throw the exception to the caller. Therefore, println("C"); will also not be executed.

'finally' block is always executed (even if there is a return in try but not if there is System.exit() ) so println("B") is executed.

 
Back to Question without Answer
 



27.     QID - 2.1199 : Working with Java Data Types 
 

Given:

public class TestClass{
  public static int getSwitch(String str){
      return (int) Math.round( Double.parseDouble(str.substring(1, str.length()-1)) );
  }
  public static void main(String args []){
    switch(getSwitch(args[0])){
      case 0 : System.out.print("Hello ");
      case 1 : System.out.print("World"); break;
      default : System.out.print("Good Bye");
    }
  }
}



What will be printed by the above code if it is run with command line: 

java TestClass --0.50

(There are two minuses before 0.)
 

Correct Option is :  C 

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. Good Bye
 


Explanation: 
str.substring(1, str.length()-1) => "--0.50".substring(1, (6-1) ) => -0.5

Math.round(-0.5) = 0.0 

so getSwitch(...) returns 0 if passed an argument of "--0.50".

Now, there is no "break" in case 0 of switch. so the control falls through to the next case ( i.e. case 1) after printing Hello. At case 1, it prints World. And since there is a break. default is not executed.



Observe that rounding is a standard mathematical procedure where the number that lies exactly between two numbers always rounds up to the higher one. So .5 rounds to 1 and -.5 rounds to 0.

 
Back to Question without Answer
 



28.     QID - 2.967 : Handling Exceptions 
 

What will the following code print when compiled and run?





abstract class Calculator{

   abstract void calculate();

   public static void main(String[] args){

      System.out.println("calculating");

      Calculator x = null;

      x.calculate();

   }

}


 

Correct Option is :  C 

A. It will not compile.
It will compile without any issue.


B. It will not print anything and will throw NullPointerException
 


C. It will print calculating and then throw NullPointerException.
After printing, when it tries to call calculate() on x, it will throw NullPointerException since x is null.


D. It will print calculating and will throw NoSuchMethodError
 


E. It will print calculating and will throw MethodNotImplementedException
 


 
Back to Question without Answer
 



29.     QID - 2.1273 : Working with Inheritance 
 

What will be the result of attempting to compile and run the following program?





public class TestClass{

   public static void main(String args[ ] ){

      A o1 = new C( );

      B o2 = (B) o1;

      System.out.println(o1.m1( ) );

      System.out.println(o2.i );

   }

}

class A { int i = 10;  int m1( ) { return i; } }

class B extends A { int i = 20;  int m1() { return i; } }

class C extends B { int i = 30;  int m1() { return i; } }
 

Correct Option is :  C 

A. The program will fail to compile.
 


B. Class cast exception at runtime.
 


C. It will print 30, 20.
 


D. It will print 30, 30.
 


E. It will print 20, 20.
 


Explanation: 
Remember : variables are SHADOWED and methods are OVERRIDDEN.

Which variable will be used depends on the class that the variable is declared of.

Which method will be used depends on the actual class of the object that is referenced by the variable.

So, in line o1.m1(), the actual class of the object is C, so C's m1() will be used. So it returns 30.

In line o2.i, o2 is declared to be of class B, so B's i is used. So it returns 20.

 
Back to Question without Answer
 



30.     QID - 2.1029 : Creating and Using Arrays 
 

The following class will print 'index = 2' when compiled and run.



class Test{

   public static int[ ] getArray() {  return null;  }

   public static void main(String[] args){

      int index = 1;

      try{

         getArray()[index=2]++;

      }

      catch (Exception e){  }  //empty catch

      System.out.println("index = " + index);

   }

}
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
If the array reference expression produces null instead of a reference to an array, then a NullPointerException is thrown at runtime, but only after all parts of the array reference expression have been evaluated and only if these evaluations completed normally. 



This means, first index = 2 will be executed, which assigns 2 to index. After that null[2] is executed, which throws a NullPointerException. But this exception is caught by the catch block, which prints nothing. So it seems like NullPointerException is not thrown but it actually is.



In other words, the embedded assignment of 2 to index occurs before the check for array reference produced by getArray().



In an array access, the expression to the left of the brackets appears to be fully evaluated before any part of the expression within the brackets is evaluated. Note that if evaluation of the expression to the left of the brackets completes abruptly, no part of the expression within the brackets will appear to have been evaluated.

 
Back to Question without Answer
 



31.     QID - 2.949 : Using Operators and Decision Constructs 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2 = false;

if (b2 != b1 = !b2){

   System.out.println("true");

}

else{

   System.out.println("false");

}


 

Correct Option is :  A 

A. Compile time error.
 


B. It will print true.
 


C. It will print false.
 


D. Runtime error.
 


E. It will print nothing.
 


Explanation: 
Note that  boolean operators have more precedence than =. (In fact, = has least precedence of all operators.)

so, in (b2 != b1 = !b2)  first b2 != b1 is evaluated which returns a value 'false'. So the expression becomes false = !b2. And this is illegal because false is a value and not a variable!

 

Had it been something like (b2 = b1 != b2) then it is valid because it will boil down to : b2 = false.

Because all an if() needs is a boolean, now b1 != b2 returns false which is a boolean and as b2 =  false is an expression and every expression has a return value (which is actually the Left Hand Side of the expression). Here, it returns false, which is again a boolean.



Note that return value of expression :  i = 10 , where i is an int, is 10 (an int).

 
Back to Question without Answer
 



32.     QID - 2.982 : Working with Java Data Types 
 

Given the following class, which of the given blocks can be inserted at line 1 without errors?


public class InitClass{
       private static int loop = 15 ;
       static final int INTERVAL = 10 ;
       boolean flag ;
       //line 1
}

 

Correct Options are :  A B C E 

A. static {System.out.println("Static"); } 
 


B. static { loop = 1; }
 


C. static { loop += INTERVAL; }
 


D. static { INTERVAL = 10; } 
INTERVAL is final and so it can never be changed after it is given a value.


E. { flag = true; loop = 0; }
flag is not static and so it can be accessed only from a non-static block. loop is static so can be accessed from any block.


 
Back to Question without Answer
 



33.     QID - 2.1422 : Working with Java API - String, StringBuilder 
 

What will the following code print when compiled and run?



class StringWrapper {

   private String theVal;

   public StringWrapper(String str){ this.theVal = str; }

}

public class Tester{

    public static void main(String[] args) {

        StringWrapper sw = new StringWrapper("How are you?");

        StringBuilder sb = new StringBuilder("How are you?");

        System.out.println("Hello, "+sw);

        System.out.println("Hello, "+sb);

   }

}


 

Correct Option is :  B 

A. Hello, How are you?

Hello, How are you?
 


B. Hello, StringWrapper@<hashcode>

Hello, How are you?
 


C. Hello, How are you?

Hello, StringBuilder@<hashcode>
 


D. Hello, How are you?

Hello, java.lang.StringBuilder@<hashcode>
 


E. Hello, StringWrapper@<hashcode>

Hello, java.lang.StringBuilder@<hashcode>
 


Explanation: 
1. When one of the operands of the + operator is a String and other is an object (other than String), toString method is called on the other operand and then both the Strings are concatenated to produce the result of the operation.

2. Object class contains an implementation of toString that returns the name of the class (including the package name) and the hash code of the object in the format <classname>@<hashcode>. For example, System.out.println("Hello, "+new Object()); will print Hello, java.lang.Object@3cd1a2f1, where 3cd1a2f1 is the hash code of the object.

3. StringBuilder class provides its own implementation of toString method, which returns the String value of its contents.



In this question, StringWrapper class does not implement toString method and so Object class's version is used.

 
Back to Question without Answer
 



34.     QID - 2.1113 : Working with Inheritance 
 

Which of the following is a legal return type of a method overriding the given method:



public Object  myMethod() {...}

(Select the best option.)
 

Correct Option is :  C 

A. Object
 


B. String
 


C. Return type can be any class since all objects can be cast to Object.
Note that the return type cannot be a primitive such as int or char. It must be a class. So it can be Integer or Character as well.


D. void
 


E. None of the above.
 


Explanation: 
Version 1.5 onwards, Java allows covariant return types, which means that an overriding method can have its return type as any subclass of the return type of the overridden method.



Here, since the return type of the original method is Object, the overriding method can return any object type because all classes in Java ultimately extend from Object. 

Note that covariant return types is not applicable to primitives. So for example, if the overridden method returns int, the overriding method's return type must also be int. It cannot be short or long. It cannot even be Integer.

 
Back to Question without Answer
 



35.     QID - 2.1127 : Working with Inheritance 
 

Consider the following class and interface definitions (in separate files):



public class Sample implements IInt{

   public static void main(String[] args){

      Sample s = new Sample();  //1

      int j = s.thevalue;       //2

      int k = IInt.thevalue;    //3

      int l = thevalue;         //4

   }

}

public interface IInt{

      int thevalue = 0;

}





What will happen when the above code is compiled and run?
 

Correct Option is :  E 

A. It will give an error at compile time at line //1.
 


B. It will give an error at compile time at line //2.
 


C. It will give an error at compile time at line //3
 


D. It will give an error at compile time at line //4.
 


E. It will compile and run without any problem.
 


Explanation: 
As a rule, fields defined in an interface are public, static, and final. The methods are public. 

Here, the interface IInt defines thevalue and thus any class that implements this interface gets this field. Therefore, it can be accessed using s.thevalue or just thevalue inside the class. Also, since it is static, it can also be accessed using IInt.thevalue or Sample.thevalue.

 
Back to Question without Answer
 



36.     QID - 2.1230 : Java Basics 
 

What will the following code print when run?



public class TestClass{

  public static long main(String[] args){

     System.out.println("Hello");

     return 10L;

  }

}
 

Correct Option is :  D 

A. Hello
 


B. It will not print anything.
 


C. It will not compile
 


D. It will throw an Error at runtime.
 


E. None of the above.
 


Explanation: 
When the program is run, the JVM looks for a method named main() which takes an array of Strings as input and returns nothing (i.e. the return type is void).

But in this case, it doesn't find such a method ( the given main() method is returning long!) so it throws a java.lang.NoSuchMethodError.

Note that java.lang.Error does not extend Exception class. It  extends java.lang.Throwable and so it can be "thrown".

 
Back to Question without Answer
 



37.     QID - 2.1264 : Working with Java API - ArrayList 
 

What sequence of characters will the following program print?


import java.util.* ;
public class ListTest{
   public static void main(String args[]){
      List s1 = new ArrayList( );
      s1.add("a");
      s1.add("b");
      s1.add(1, "c");
      List s2 = new ArrayList(  s1.subList(1, 1) );
      s1.addAll(s2);
      System.out.println(s1);
   }
}


 

Correct Option is :  D 

A. The sequence a, b, c is printed.
 


B. The sequence a, b, c, b is printed.
 


C. The sequence a, c, b, c is printed.
 


D. The sequence a, c, b is printed.
add(1, "c") will insert 'c' between 'a' and 'b' . subList(1 , 1) will return an empty list.


E. None of the above.
 


Explanation: 
First, "a" and "b" are appended to an empty list. Next, "c" is added between "a" and "b".

Then a new list s2 is created using the sublist view allowing access to elements from index 1 to index 1(exclusive) (i.e. no elements ).

Now, s2 is added to s1.

So s1 remains :a, c, b

 
Back to Question without Answer
 



38.     QID - 2.951 : Working with Inheritance 
 

Consider the following program...


class Super {  }
class Sub extends Super {  }
public class TestClass{
   public static void main(String[] args){
      Super s1 = new Super(); //1
      Sub s2 = new Sub();     //2
      s1 = (Super) s2;        //3
   }
}


Which of the following statements are correct?
 

Correct Option is :  A 

A. It will compile and run without any problems.
 


B. It will compile but WILL throw ClassCastException at runtime.
 


C. It will compile but MAY throw ClassCastException at runtime.
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
Note that s2 is a variable of class Sub, which is a subclass of Super. s1 is a variable of class Super. A subclass can ALWAYS be assigned to a super class variable without any cast. It will always compile and run without any exception.



For example, a Dog  "IS A" Animal, so you don't need to cast it.

But an Animal may not always be a Dog. So you need to cast it to make it compile and during the runtime the actual object referenced by animal should be a Dog  otherwise it will throw a ClassCastException.

 
Back to Question without Answer
 



39.     QID - 2.1079 : Java Basics 
 

Consider the following two classes defined in two .java files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1  <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       System.out.println(X.LOGICID);
    }
}



What should be inserted at //1 so that Y.java can compile without any error?
 

Correct Option is :  D 

A. import static X;
 


B. import static com.foo.*;
Bad syntax. Package import does not use static keyword.


C. import static com.foo.X.*;
This static import, although syntactically correct, will not help here because Y is accessing class X in X.LOGICID.


D. import com.foo.*;
This is required because Y is accessing class X. static import of LOGICID is NOT required because Y is accessing LOGICID through X ( X.LOGICID). Had it been just System.out.println(LOGICID), only one import statement: import static com.foo.X.*; would have worked.


E. import com.foo.X.LOGICID;
Bad Syntax. Syntax for importing static fields is:  import static <package>.<classname>.*; or import static <package>.<classname>.<fieldname>;


 
Back to Question without Answer
 



40.     QID - 2.888 : Working with Inheritance 
 

What will the following code print when run?


class A {
}

class AA extends A { 
}


public class TestClass {
    public static void main(String[] args) throws Exception {
        A a = new A();
        AA aa = new AA();
        a = aa;
        System.out.println("a = "+a.getClass());
        System.out.println("aa = "+aa.getClass());
    }
}

 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ClassCastException at runtime.
 


C. a = class AA

aa = class AA
 


D. a = class A

aa = class AA
 


Explanation: 
getClass is a public instance method in Object class. That means it is polymorphic. In other words, this method is bound at run time and so it returns the name of the class of the actual object to which the reference points. 

Here, at run time, both - a and aa, point to an object of class AA. So both will print AA.

 
Back to Question without Answer
 



41.     QID - 2.1287 : Working with Inheritance 
 

Consider the following class hierarchy shown in the image. (B1 and B2 are subclasses of A and C1, C2 are subclasses of B1)



Assume that method public void m1(){ ... } is defined in all of these classes EXCEPT B1 and C1.



Assume that "objectOfXX" means a variable that points to an object of class XX. So, objectOfC1 means a reference variable that is pointing to an object of class C1.



Which of the following statements are correct?
 

[image: Class Diagram] 
 
Correct Option is :  C 

A. objectOfC1.m1(); will cause a compilation error.
C1 will inherit B1's m1() which in turn inherits m1() from A.


B. objectOfC2.m1(); will cause A's m1() to be called.
C2 has m1(), so its m1() will override A's m1().


C. objectOfC1.m1(); will cause A's m1() to be called.
C1 will inherit B1's m1() which in turn inherits m1() from A.


D. objectOfB1.m1(); will cause an exception at runtime.
B1 will inherit m1() from A. So this is valid.


E. objectOfB2.m1(); will cause an exception at runtime.
B2 overrides m1() of A. So there will be no exception.


 
Back to Question without Answer
 



42.     QID - 2.1190 : Using Operators and Decision Constructs 
 

What will the following code snippet print?



    Object t = new Integer(107);

    int k = (Integer) t.intValue()/9;

    System.out.println(k);
 

Correct Option is :  C 

A. 11
 


B. 12
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


Explanation: 
Compiler will complain that the method intValue() is not available in Object. This is because the . operator has more precedence than the cast operator. So you have to write it like this:

    int k = ((Integer) t).intValue()/9;

Now, since both the operands of / are ints, it is an integer division. This means the resulting value is truncated (and not rounded). Therefore, the above statement will print 11 and not 12.

 
Back to Question without Answer
 



43.     QID - 2.1473 : Lambda Expressions 
 

What can be inserted in the code below so that it will print true when run?



public class TestClass{



   public static boolean checkList(List list, Predicate<List> p){

      return p.test(list);

   }

  

   public static void main(String[] args) {

      boolean b = //WRITE CODE HERE

      System.out.println(b);

   }

}
 

Correct Options are :  A D 

A. checkList(new ArrayList(), al -> al.isEmpty());
The test method of Predicate returns a boolean. So all you need for your  body part in your lambda expression is an expression that returns a boolean. 

isEmpty() is a valid method of ArrayList, which returns true if there are no elements in the list. Therefore, al.isEmpty() constitutes a valid body for the lambda expression in this case.


B. checkList(new ArrayList(), ArrayList al -> al.isEmpty());
You need to put the parameter list of the lambda expression in brackets if you want to use the parameter type. For example,

 checkList(new ArrayList(), (List al) -> al.isEmpty());

Remember that specifying the parameter type is optional ( as shown in option 1) because the compiler can figure out the parameter types by looking at the signature of the abstract method of any functional interface (here, Predicate's test method).


C. checkList(new ArrayList(), al -> return al.size() == 0);
You need to put the body withing curly braces if you want to use the return keyword. For example,

checkList(new ArrayList(), al -> { return al.size() == 0; });


D. checkList(new ArrayList(), al -> al.add("hello"));
The add method of ArrayList returns a boolean. Further, it returns true if the list is altered because of the call to add. In this case, al.add("hello") indeed alters the list because a new element is added to the list.


E.  checkList(new ArrayList(), (ArrayList al) -> al.isEmpty());
Predicate is typed to List (not ArrayList) in the checkList method, therefore, the parameter type in the lambda expression must also be List. It cannot be ArrayList.


 
Back to Question without Answer
 



44.     QID - 2.1437 : Java Basics 
 

Given the following code - 

public class MyFirstClass{

  public static void main(String[] args){

     System.out.println(args[1]);

  }

}



Which of the following commands will compile and then print "hello"?
 

Correct Option is :  B 

A. javac MyFirstClass

java MyFirstClass hello hello
 


B. javac MyFirstClass.java

java MyFirstClass hello hello
Since the code is printing args[1] i.e. the second parameter, you need to specify "hello" as the second argument. The first argument is ignored by this code. If you do not specify two parameters, this code will throw ArrayIndexOutOfBoundsException because it will be trying to access the second element of an array of size 1.


C. javac MyFirstClass

java MyFirstClass hello
 


D. javac MyFirstClass.java

java MyFirstClass hello
 


 
Back to Question without Answer
 



45.     QID - 2.1095 : Working with Inheritance 
 

What will be the result of compiling and running the following code?


class Base{
   public short getValue(){ return 1; } //1
}
class Base2 extends Base{
   public byte getValue(){ return 2; } //2
}
public class TestClass{
   public static void main(String[] args){
      Base b = new Base2();
      System.out.println(b.getValue()); //3
   }
}

 

Correct Option is :  D 

A. It will print 1
 


B. It will print 2.
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


Explanation: 
In case of overriding, the return type of the overriding method must match exactly to the return type of the overridden method if the return type is a primitive.

(In case of objects, the return type of the overriding method may be a subclass of the return type of the overridden method.)

 
Back to Question without Answer
 



46.     QID - 2.841 : Handling Exceptions 
 

You have a method that currently does not handle any exception thrown from the code contained in its method body. You are now changing this method to call another method that throws IOException.



What changes, independent of each other, can you make to your method so that it will compile?
 

Correct Options are :  B D 

A. Set the exception to null and don't rethrow it.
This option doesn't make sense. To get the exception, you first need to catch it.


B. Declare IOException in the throws clause of your method.
 


C. Wrap the call to another method within a try-catch block that catches RuntimeException.
java.io.IOException extends Exception. It cannot be caught by a catch block that catches RuntimeException.


D. Wrap the call to another method within a try-catch block that catches Exception.
Since IOException is an Exception, you can catch it with a catch block that catches Exception.


 
Back to Question without Answer
 



47.     QID - 2.1038 : Using Operators and Decision Constructs 
 

What will be the output of the following program?



public class TestClass{

   public static void main(String args[ ] ){

      int i = 0 ;

      boolean bool1 = true ;

      boolean bool2 = false;

      boolean bool  = false;

      bool = ( bool2 &  method1(i++) ); //1

      bool = ( bool2 && method1(i++) ); //2

      bool = ( bool1 |  method1(i++) ); //3

      bool = ( bool1 || method1(i++) ); //4

      System.out.println(i);

   }

   public static boolean method1(int i){

       return i>0 ? true : false;

   }

}


 

Correct Option is :  B 

A. It will print 1.
 


B. It will print 2.
 


C. It will print 3.
 


D. It will print 4.
 


E. It will print 0.
 


Explanation: 
& and | do not short circuit the expression but && and || do.

As the value of all the expressions ( 1 through 4) can be determined just by looking at the first part, && and || do not evaluate the rest of the expression, so method1() is not called for 2 and 4.

Hence the value of i is incremented only twice.

 
Back to Question without Answer
 



48.     QID - 2.1063 : Java Basics 
 

Consider the directory structure shown in Image 1 that displays available folders and classes and the code given below:



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public void store() throws IOException{

     Util.store(stock);

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements MUST be added to the above class?
 

[image: 2.60.DirStruct] 
 
Correct Options are :  B C D E 

A. package com.enthu.rad.*;
Bad syntax. A package statement can never have a *. It should specify the exact package name.


B. import com.enthu.*;
 


C. package com.enthu.rad;
Since there is no import statement available for com.enthu.rad package, you must put the given class in com.enthu.rad package so that it will be accessible. Classes of the same package are always available to each other.


D. import com.*;
 


E. import java.io.*;
 


F. It is not required to import java.io.* or import java.io.IOException because java.io package is imported automatically.
Since the code is using IOException, the java.io package (or just java.io.IOException class) must be imported. Only java.lang package is imported automatically.


 
Back to Question without Answer
 



49.     QID - 2.1155 : Working with Java API - String, StringBuilder 
 

Which line will print the string "MUM"?



public class TestClass{

   public static void main(String args []){

      String s = "MINIMUM";

      System.out.println(s.substring(4, 7)); //1

      System.out.println(s.substring(5)); //2

      System.out.println(s.substring(s.indexOf('I', 3))); //3

      System.out.println(s.substring(s.indexOf('I', 4))); //4

   }

}
 

Correct Option is :  A 

A. 1
 


B. 2
It will print UM.


C. 3
It will print IMUM. as s.indexOf('I', 3) will return 3.


D. 4
It will throw an exception as s.indexOf('I', 4) will return -1.


E. None of these.
 


Explanation: 
You should know how substring and indexOf methods of String class work.



String substring(int beginIndex) 

          Returns a new string that is a substring of this string. 

String substring(int beginIndex, int endIndex) 

          Returns a new string that is a substring of this string. 





int indexOf(int ch) 

          Returns the index within this string of the first occurrence of the specified character. 

 int indexOf(int ch, int fromIndex) 

          Returns the index within this string of the first occurrence of the specified character, starting the search at the specified index. 

 int indexOf(String str) 

          Returns the index within this string of the first occurrence of the specified substring. 

 int indexOf(String str, int fromIndex) 

          Returns the index within this string of the first occurrence of the specified substring, starting at the specified index.

 
Back to Question without Answer
 



50.     QID - 2.1109 : Working with Java API - String, StringBuilder 
 

Which of the following statements are true?
 

Correct Options are :  A D 

A. method length() of String class is a final method.
Actually, String class itself is final and so all of its methods are implicitly final.


B. You can make mutable subclasses of the String class.
Both - String and StringBuilder are final classes. So is StringBuffer.


C. StringBuilder extends String.
StringBuilder extends Object


D. StringBuilder is a final class.
String, StringBuilder, and StringBuffer - all are final classes.



1. Remember that wrapper classes (java.lang.Boolean, java.lang.Integer, java.lang.Long, java.lang.Short etc.) are also final and so they cannot be extended. 



2. java.lang.Number, however, is not final. Integer, Long, Double etc. extend Number.



3. java.lang.System is final as well.


E. String class is not final.
 


 
Back to Question without Answer
 



51.     QID - 2.900 : Working with Inheritance 
 

What, if anything, is wrong with the following code?





interface T1{

}

interface T2{

   int VALUE = 10;

   void m1();

}



interface T3 extends T1, T2{

   public void m1();

   public void m1(int x);

}
 

Correct Option is :  B 

A. T3 cannot implement both T1 and T2 because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from T2 interface.
 


D. The code will work fine only if m1() is removed from either T2 and T3.
 


E. None of the above.
 


Explanation: 
Having ambiguous fields or methods does not cause any problem by itself but referring to such fields or methods in an ambiguous way will cause a compile time error. 

T3.m1() is also fine because even though m1() is declared in T2 as well as T3 , the definition to both resolves unambiguously to only one m1(). Explicit cast is not required for calling the method m1() : ( ( T2) t).m1();



m1(int x) is valid because it is a totally independent method declared by T3.

 
Back to Question without Answer
 



52.     QID - 2.1469 : Lambda Expressions 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

    public String toString(){ return ""+value; }

}



and the following code fragments:

public  void filterData(ArrayList<Data> dataList, Predicate<Data> p){

   Iterator<Data> i = dataList.iterator();

   while(i.hasNext()){

        if(p.test(i.next())){

             i.remove();

    }

   }

}

....

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(3); al.add(d);



        //INSERT METHOD CALL HERE

       System.out.println(al);





Which of the following options can be inserted above so that it will print [1, 3]?
 

Correct Option is :  B 

A. filterData(al, d -> d.value%2 == 0 );
Syntactically, this lambda expression is correct. However, remember that a lambda expression does not create a new scope for variables. Therefore, you cannot reuse the variable names that have already been used to define new variables in your argument list . 

Here, observe that the variable d is already defined so your argument list cannot use d as a variable name. It would be like defining the same variable twice in the same scope.


B. filterData(al, (Data x) -> x.value%2 == 0 );
When all your method does is return the value of an expression, you can omit the curly braces, the return keyword, and the semi-colon from the method body part. Thus, instead of { return x.value%2 == 0; }, you can just write x.value%2 == 0


C. filterData(al, (Data y) -> y.value%2  );
java.util.function.Predicate interface has one method named test and this method returns a boolean. Therefore, the body of the lambda expression that satisfies this method must return a boolean. Here, y.value%2 is an int and not a boolean.


D. filterData(al, d -> return d.value%2 );
This is invalid because of three reasons - 

1. You cannot use d as the name for your parameter as explained in option 1.

2. If you write return statement in your method body, you must enclose it within curly braces and include the semi-colon.

3. To satisfy the Predicate interface, your lambda expression must return a boolean not an int as explained in option 3.


Explanation: 
There is a simple trick to identify invalid lambda constructs. When you write a lambda expression for a functional interface, you are essentially providing an implementation of the method declared in that interface but in a very concise manner.  Therefore, the lambda expression code that you write must contain all the pieces of the regular method code except the ones that the compiler can easily figure out on its own such as the parameter types, return keyword, and brackets. So, in a lambda expression, just check that all the information is there and that the expression follows the basic syntax - 



(parameter list) OR single_variable_without_type -> { regular lines of code } OR just_an_expression_without_semicolon



For a complete discussion on this topic please see this short tutorial - http://enthuware.com/index.php/home/115

 
Back to Question without Answer
 



53.     QID - 2.1189 : Working with Java Data Types 
 

Which of the following statements are acceptable?
 

Correct Options are :  A B C E 

A. Object o = new java.io.File("a.txt");

(Assume that java.io.File is a valid class with a constructor that takes a String.)
This is valid because every object in Java is an Object.


B. Boolean bool = false;
bool is a variable of type Boolean and not of a primitive type boolean however this is still valid because Java performs auto-boxing (and unboxing) for primitives and their wrapper types which allows false to be automatically be boxed into a Boolean false object.


C. char ch = 10;
Because 10 can fit into a char.


D. Thread t = new Runnable();

(Assume that Runnable is a valid interface.)
Since Runnable is an interface, it cannot be instantiated like this. But you can do :

Runnable r = new Runnable(){

                       public void run(){ }

                    };


E. Runnable r = new Thread();

(Assume that Thread is a class that implements Runnable interface)
Since Thread implements Runnable, this is a valid assignment.


 
Back to Question without Answer
 



54.     QID - 2.920 : Working with Java Data Types - Garbage Collection 
 

Which is the earliest line in the following code after which the object created on line // 1 can be garbage collected, assuming no compiler optimizations are done?


public class NewClass{
   private Object o;
   void doSomething(Object s){  o = s;   }

   public static void main(String args[]){
      Object obj = new Object(); // 1
      NewClass tc = new NewClass(); //2
      tc.doSomething(obj); //3
      obj = new Object();    //4
      obj = null;    //5
      tc.doSomething(obj); //6
   }
}


 

Correct Option is :  F 

A. Line 1
 


B. Line 2
 


C. Line 3
 


D. Line 4
 


E. Line 5
 


F. Line 6
Before this line the object is being pointed to by at least one variable.


Explanation: 
The official exam objectives now explicitly mention Garbage collection.  All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();

 
Back to Question without Answer
 



55.     QID - 2.869 : Using Loop Constructs 
 

Which of the following are true about the enhanced for loop?
 

Correct Options are :  A B E 

A. It can iterate over an array or a Collection but not a Map.
An enhanced for loop needs either an array or an object of a class that implements java.lang.Iterable. Map does not implement Iterable, though you can use keySet() or values() methods to get a Collection (which extends Iterable) and then iterate over that Collection.


B. Using an enhanced for loop prevents the code from going into an infinite loop.
Since there is no explicit condition check written in the code, it provides less opportunity to write code that causes infinite loop.


C. Using an enhanced for loop on an array may cause infinite loop.
 


D. An enhanced for loop can iterate over a Map.
 


E. You cannot find out the number of the current iteration while iterating.
Unlike in a regular for loop, there is no iteration variable available in an enhanced for loop, so it is not possible to determine the number of the iteration just by using the enhanced for loop. You will need to do something like:



int i = 0;

for(Object obj : collectionOrArray){

  System.out.println("Iteration number = "+i+" Object = "+obj);

  i++;

}


 
Back to Question without Answer
 



56.     QID - 2.1056 : Working with Inheritance 
 

Which one of these is a proper definition of a class TestClass that cannot be sub-classed?
 

Correct Option is :  A 

A. final class TestClass { }
 


B. abstract class TestClass { }
 


C. native class TestClass { }
 


D. static class TestClass { }
 


E. private class TestClass { }
 


Explanation: 
A final class cannot be subclassed.

Although declaring a method static usually implies that it is also final, this is not true for classes. An inner class can be declared static and still be extended.

Note that for classes, final means it cannot be extended, while for methods, final means it cannot be overridden in a subclass.

The native keyword can only be used on methods, not on classes and or variables.

 
Back to Question without Answer
 



57.     QID - 2.1348 : Handling Exceptions 
 

Which digits and in what order will be printed when the following program is run?

public class TestClass{
   public static void main(String args[]){
      int k = 0;
      try{
         int i = 5/k;
      }
      catch (ArithmeticException e){
         System.out.println("1");
      }
      catch (RuntimeException e){
         System.out.println("2");
         return ;
      }
      catch (Exception e){
         System.out.println("3");
      }
      finally{
         System.out.println("4");
      }
      System.out.println("5");
   }
}


 

Correct Option is :  D 

A. The program will print 5.
 


B. The program will print 1 and 4, in that order.
 


C. The program will print 1, 2 and 4, in that order.
 


D. The program will print 1, 4 and 5, in that order.
 


E. The program will print 1,2, 4 and 5, in that order.
 


Explanation: 
Division by 0 throws a java.lang.ArithmeticException, which is a RuntimeException. This is caught by the first catch clause because it is the first block that can handle ArithmeticException. This prints 1. Now, as the exception is already handled, control goes to finally which prints 4 and then the try/catch/finally ends and 5 is printed.

Remember : finally is always executed even if try or catch return; (Except when there is System.exit() in try or catch.)

 
Back to Question without Answer
 



58.     QID - 2.1316 : Creating and Using Arrays 
 

Which of the following statements will correctly create and initialize an array of Strings to non null elements?
 

Correct Options are :  B C D E 

A. String[] sA = new String[1] { "aaa"};
Array size cannot be given here as the array is being initialized in the declaration.


B. String[] sA = new String[] { "aaa"};
 


C. String[] sA = new String[1] ; sA[0] = "aaa";
 


D. String[] sA = {new String( "aaa")};
 


E. String[] sA = { "aaa"};
 


 
Back to Question without Answer
 



59.     QID - 2.1119 : Using Operators and Decision Constructs 
 

Given:


public class Switcher{
 
   public static void main(String[] args){
       switch(Integer.parseInt(args[1]))  //1
       {
          case 0 :
             boolean b = false;
             break;
     
          case 1 :
             b = true; //2
             break;
       }
       
       if(b) System.out.println(args[2]);
   }
}


What will the above  program print if compiled and run using the following command line: 

 java Switcher 1 2 3

 

Correct Option is :  G 

A. It will print 1
 


B. It will print 2
 


C. It will print 3
 


D. It will not print anything.
 


E. It will not compile because of //1.
There is no problem here because Integer.parseInt() returns an int.


F. It will not compile because of //2.
There is no problem here. b is in scope for the rest of the switch block.


G. It will not compile for some other reason.
It will not compile because of if(b) because b is declared in the switch block and it is out of scope after the switch block ends. Pay close attention to question text. It may seem to test you on one concept but actually it could be testing something entirely different.


 
Back to Question without Answer
 



60.     QID - 2.1457 : Working with Java API - ArrayList 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will fail to compile?
 

Correct Option is :  D 

A. ArrayList<Vehicle> al1 = new ArrayList<>();

al1.add(new SUV());
Since an SUV is-a Vehicle, you can add instances of SUV in an ArrayList of Vehicles.


B. ArrayList<Drivable> al2 = new ArrayList<>();

al2.add(new Car());
Since an Car is-a Drivable, you can add instances of Car in an ArrayList of Drivables.


C. ArrayList<Drivable> al3 = new ArrayList<>();

al3.add(new SUV());
Since an SUV is-a Drivable, you can add instances of SUV in an ArrayList of Drivables.


D. ArrayList<SUV> al4 = new ArrayList<>();

al4.add(new Car());
Since a Car is not an SUV, you cannot add instances of Car in an ArrayList of SUVs.


E. ArrayList<Vehicle> al5 = new ArrayList<>();

al5.add(new Car());
Since an Car is-a Vehicle, you can add instances of Car in an ArrayList of Vehicles.


Explanation: 
Although generics are not included in this exam, some candidates have reported getting similar questions that incidently touch generic syntax but are not really about generics.



This question is based on your understand of is-a relationship. When class A extends or implements B directly or indirectly, you can say that A is-a B. Here, Car directly extends Vehicle and directly implements Drivable. Therefore, a Car is-a Vehicle and a Car is-a Drivable.

Similarly, an SUV is-a Car and since Car is-a Vehicle and is-a Drivable, SUV is also a Vehicle and a Drivable.



Now, the rule is that if you have a container that is meant to contain A, then you can add anything that is-a A to that container. For example, if you have ArrayList<Car>, you can add a SUV to it because an SUV is-a Car. But if you have ArrayList<SUV>, you cannot add a Car to it because a Car is not an SUV.

 
Back to Question without Answer
 



61.     QID - 2.1332 : Working with Java Data Types 
 

What happens when you try to compile and run the following program?

public class CastTest{
   public static void main(String args[ ] ){
      byte b = -128 ;
      int i = b ;
      b = (byte) i;
      System.out.println(i+" "+b);
   }
}


 

Correct Option is :  B 

A. The compiler will refuse to compile it because i and b are of different types cannot be assigned to each other.
 


B. The program will compile and will print -128 and -128 when run .
A byte can ALWAYS be assigned to an int.


C. The compiler will refuse to compile it because -128 is outside the legal range of values for a byte.
Range of byte is -128 to 127


D. The program will compile and will print 128 and -128 when run .
 


E. The program will compile and will print 255 and -128 when run .
 


Explanation: 
byte and int both hold signed values. So when b is assigned to i, the sign is preserved.

 
Back to Question without Answer
 



62.     QID - 2.835 : Working with Java Data Types 
 

Which of the following can be valid declarations of an integer variable?
 

Correct Options are :  B E 

A. global int x = 10;
global is an invalid modifier. There is nothing like global in java. The closest you can get is static.


B. final int x = 10;
 


C. public Int x = 10;
Int with a capital I is invalid.


D. Int x = 10;
Int with a capital I is invalid.


E. static int x = 10;
 


 
Back to Question without Answer
 



63.     QID - 2.1370 : Working with Methods - Overloading 
 

What will the following code print when run?



class Baap {

    public int h = 4;

    public int getH() {

        System.out.println("Baap " + h);

        return h;

    }

}



public class Beta extends Baap {

    public int h = 44;

    public int getH() {

        System.out.println("Beta " + h);

        return h;

    }

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h + " " + b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h + " " + bb.getH());

    }

}
 

Correct Option is :  D 

A. Beta 44

4 44

Baap 44

44 44
 


B. Baap 44

4 44

Beta 44

44 44
 


C. Beta 44

4 44

Beta 44

4 44
 


D. Beta 44

4 44

Beta 44

44 44
 


Explanation: 
Always remember: Methods are overridden and variables are shadowed.

Here, b refers to an object of class Beta so b.getH() will always call the overridden (subclass's method). However, the type of reference of b is Baap. so b.h will always refer to Baap's h.



Further, inside Beta's getH(), Beta's h will be accessed instead of Baap's h because you are accessing this.h ('this' is implicit) and the type of this is Beta.

 
Back to Question without Answer
 



64.     QID - 2.1476 : Working with Inheritance 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Correct Options are :  B C 

A. default void compute();
When you mark a method in an interface as default, you are basically trying to provide a default implementation of that method so that any class that implements this interface doesn't necessarily have to provide its own implementation. Thus, a default method without a method body doesn't make sense. 

default void compute(){ } would be valid.



Remember that default keyword can occur for a method only in an interface and NOT in an abstract class.


B. public void compute();
 


C. static void compute(){

   System.out.println("computing...");

 }
This is a valid static method in an interface. Note that all members of an interface (i.e. fields as well as methods) are always public.


D. static void compute();
An interface can have a static method but the method must have a body in that case because a static method cannot be abstract.


E. default static void compute(){

   System.out.println("computing...");

};
An interface method cannot be default and static at the same time because a default method is always an instance method.


 
Back to Question without Answer
 



65.     QID - 2.834 : Handling Exceptions 
 

Consider the following


public class TestClass {
    public static void main(String[] args) {
        TestClass tc = new TestClass();
        tc.myMethod();
    }
    
    public void myMethod() {
        yourMethod();
    }
    
    public void yourMethod() {
        throw new Exception();
    }    
}


What changes can be done to make the above code compile?
 

Correct Option is :  E 

A. Change declaration of main to :

public static void main(String[] args) throws Exception 
 


B. Change declaration of myMethod to 

public void myMethod throws Exception 
 


C. Change declaration of yourMethod to 

public void yourMethod throws Exception 
 


D. Change declaration of main and yourMethod to :

public static void main(String[] args) throws Exception and

public void yourMethod throws Exception 
 


E. Change declaration of all the three method to include throws Exception.
 


Explanation: 
java.lang.Exception is a checked Exception. Which means, the method that throws this exception must declare it in the throws clause. Hence, yourMethod must declare throws Exception in its throws clause.



Now, since the call to yourMethod in myMethod can also potentially throw an exception, myMethod must also declare it in its throws clause. By the same logic, main method should also declare it in its throws clause.



Another alternative is to catch this exception in myMethod:



public void myMethod(){



   try{

     yourMethod();

   }

   catch(Exception e){  // since you are catching the exception thrown by yourMethod, there is no need to declare it in the throws clause of myMethod.

      e.printStackTrace();

   }

}



Further, since a call to myMethod cannot throw Exception anymore, main method does not need to declare it either.



Yet another alternative is to catch the exception in the main method:



    public static void main(String[] args) {

        TestClass tc = new TestClass();

        try{

          tc.myMethod();

        }

       catch(Exception e){  // since you are catching the exception thrown by myMethod, there is no need to declare it in the throws clause of main.

         e.printStackTrace();

       }

    }

    

    public void myMethod()  throws Exception{ //Notice the throws clause here.

        yourMethod();

    }

 
Back to Question without Answer
 



66.     QID - 2.1236 : Handling Exceptions 
 

What will the following program print?





public class TestClass{

  public static void main(String[] args){

     int x = 1;

     int y = 0;

     if( x/y ) System.out.println("Good");

     else  System.out.println("Bad");

  }

}
 

Correct Option is :  D 

A. Good
 


B. Bad
 


C. Exception at runtime saying division by Zero.
 


D. It will not compile.
You need a boolean in the 'if' condition. Here, compiler sees that there is no way x/y can produce a boolean so it generates an error at compile time.


E. None of the above.
 


 
Back to Question without Answer
 



67.     QID - 2.1259 : Working with Java Data Types 
 

Note: Although Wrapper classes are not explicitly mentioned in the exam objectives, we have seen some candidates get questions on this aspect of Wrapper classes.



What will be the output of the following program?



public class EqualTest{

   public static void main(String args[]){

      Integer i = new Integer(1) ;

      Long m = new Long(1);

      if( i.equals(m)) System.out.println("equal");   // 1

      else System.out.println("not equal");

   }

}
 

Correct Option is :  B 

A. equal
 


B. not equal
 


C. Compile time error at //1
 


D. Runtime error at //1
 


E. None of the above.
 


Explanation: 
Signature of equals method is : boolean equals(Object o); So it can take any object.

The equals methods of all wrapper classes first check if the two object are of same class or not. If not, they immediately return false. Hence it will print not equal.

 
Back to Question without Answer
 



68.     QID - 2.909 : Working with Java Data Types 
 

Which of the following declarations is/are valid:



1.  bool b = null;



2. boolean b = 1;



3. boolean b = true|false;



4 bool b = (10<11);



5. boolean b = true||false;
 

Correct Option is :  D 

A. 1 and 4
 


B. 2, 3, and 5
 


C. 2 and 3
 


D. 3 and 5
 


E. 5
 


Explanation: 
bool is an invalid keyword. Therefore, 1 and 4 can't be right. (Although 1 could be right if bool were a user defined class but as per Java coding conventions, a class name should start with a capital letter.)



boolean b = 1; is wrong because you can only assign true or false to a boolean variable. 1 is an integral value it cannot be converted to boolean. Also note that boolean b = null; would be invalid as well because null is not a true or false value. A primitive (whether it is a boolean or an int or a double), can never be assigned null.



boolean b = true|false; and boolean b = true||false; are both valid and the difference between true|false and true||false is not material in this case. However, there is a lot of difference between | (and &) and || (and &&) as explained below:





|| and && perform short circuit evaluation, while & and | do not. Which means, if you use the || and && forms, Java will not bother to evaluate the right-hand operand if the result of the expression can be known by just evaluating the left hand operand.



Consider the following example.



Boolean b = true; 

if(b || foo.timeConsumingCall()) {    

  //entered here without calling timeConsumingCall() 

} 



Another example:



String s = null;

if(s != null && s.isEmpty())  //No NullPointerException because string.isEmpty() is not called.

//If you use & instead of && , s.isEmpty will be called and a NullPointerException will be thrown.{     

   ...

} 

 
Back to Question without Answer
 



69.     QID - 2.1481 : Working with Inheritance 
 

Given:



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

   //INSERT CODE HERE

}



Which of the following options can be inserted in PremiumAccount independent of each other?
 

Correct Options are :  B C 

A. static String getId(){

  return "1111";

}
Trying to override a static method with a non-static method (and vice-versa) in a class will result in a compilation error. Even in case of interfaces, a subinterface not override a default method with a static method.



You can, however, have a default method in a subinterface with the same signature as a static method of its super interface.

Example:

interface I{

   public default void valid(){ }

   public static void invalid(){ }

}

interface I2 extends I{

   public static void valid(){ } //this is ok

   public default void invalid(){ } //WILL NOT COMPILE

}


B. String getId();
An interface can redeclare a default method and also make it abstract.


C. default String getId(){

   return "1111";

};
An interface can redeclare a default method and provide a different implementation.


D. abstract static String getName();
1. static methods can never be abstract (neither in an interface not in a class).

2. An interface can have a static method but the method must have a body.


E. static String getName();
An interface can have a static method but the method must have a body.


F. default String getName();
A default method must have a body.


 
Back to Question without Answer
 



70.     QID - 2.1144 : Working with Inheritance 
 

Consider the following interface definition:


public interface ConstTest{
	public int A = 1; //1
	int B = 1;          //2
	static int C = 1;  //3
	final int D = 1; 	 //4
	public static int E = 1; //5
	public final int F = 1;  //6
	static final int G = 1;    //7
	public static final int H = 1; //8
}


Which line(s) will cause a compilation error?
 

Correct Option is :  I 

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


H. 8
 


I. None of them will cause any error.
Any field in an interface is implicitly public, static, and final, whether these keywords are specified or not.


 
Back to Question without Answer
 



71.     QID - 2.999 : Working with Java API - String, StringBuilder 
 

Which of the following method calls can be applied to a String object?
 

Correct Options are :  A B E 

A. equals(Object)
 


B. equalsIgnoreCase(String)
 


C. prune()
There is no such method.


D. append()
This method is in StringBuffer and StringBuilder but not in String.


E. intern()
 


Explanation: 
public String intern()

Returns a canonical representation for the string object.

A pool of strings, initially empty, is maintained privately by the class String.

When the intern method is invoked, if the pool already contains a string equal to this String object as determined by the equals(Object) method, then the string from the pool is returned. Otherwise, this String object is added to the pool and a reference to this String object is returned.

It follows that for any two strings s and t, s.intern() == t.intern() is true if and only if s.equals(t) is true.

All literal strings and string-valued constant expressions are interned. String literals are defined in 3.10.5 of the Java Language Specification

Returns:

a string that has the same contents as this string, but is guaranteed to be from a pool of unique strings.

 
Back to Question without Answer
 



72.     QID - 2.929 : Using Operators and Decision Constructs 
 

Consider the following lines of code:



boolean greenLight = true;

boolean pedestrian = false;

boolean rightTurn = true;

boolean otherLane = false;



You can go ahead only if  the following expression evaluates to 'true' :



(( (rightTurn && !pedestrian || otherLane) || ( ? && !pedestrian && greenLight ) )  == true )



What variables can you put in place of '?' so that you can go ahead?
 

Correct Option is :  C 

A. rightTurn
 


B. otherLane
 


C. Any variable would do.
since the part before second || is true, the next part is not even evaluated.


D. None of the variable would allow to go.
 


Explanation: 
Observe that (rightTurn && !pedestrian || otherLane) is true, therefore ( ? && !pedestrian && greenLight ) does not matter.



 || and && are short circuit operators. So, if the first part of the expression ( i.e. part before || ) is true ( or false for && ) the other part is not evaluated at all.



Note that this is not true for | and &. In that case, the whole expression will be evaluated even if the value of the expression can be known by just evaluating first part.

 
Back to Question without Answer
 



73.     QID - 2.1212 : Using Operators and Decision Constructs 
 

Which of the following expressions will evaluate to true if preceded by the following code?



 String a = "java";

    char[] b = { 'j', 'a', 'v', 'a' };

    String c = new String(b);

    String d = a;
 

Correct Options are :  A C D 

A. (a == d)
 


B. (b == d)
b and d can not even be compared because they are of different types.


C. (a == "java")
 


D. a.equals(c)
Note that a == c will be false because doing 'new' creates an entirely new object.


 
Back to Question without Answer
 



74.     QID - 2.961 : Working with Inheritance 
 

Which one of these is a proper definition of a class Car that cannot be sub-classed?
 

Correct Option is :  E 

A. class Car { }
This can be subclassed.


B. abstract class Car { }
it cannot be instantiated but it can be subclassed.


C. native class Car { }
Classes and variables can't be declared native. Only methods can be native.


D. static class Car { }
package level classes can't be declared static.


E. final class Car { }
final keyword prevents a class from being subclassed and a method from being overridden.


Explanation: 
A class can be extended unless it is declared final. 

An inner class can be declared static and still be extended. Notice the distinction. For classes, final means it cannot be extended, while for methods, final means it cannot be overridden in a subclass.

The native keyword can only be used on methods, not on classes and instance variables.

 
Back to Question without Answer
 



75.     QID - 2.1015 : Working with Inheritance 
 

Which statement regarding the following code is correct?



class A{

   public int i = 10;

   private int j = 20;



}



class B extends A{

   private int i = 30; //1

   public int k = 40;



}



class C extends B{

}



public class TestClass{

   public static void main(String args[]){

      C c = new C();

      System.out.println(c.i); //2

      System.out.println(c.j); //3

      System.out.println(c.k); 

   }

}


 

Correct Option is :  B 

A. The code will print 10 and 40 if //3 is commented.
 


B. The code will print 40 if //2 and //3 are commented.
 


C. The code will not compile because of //1.
 


D. The code will compile if the line marked //2 is commented out.
Just commenting out //2 is not enough. It will still fail compilation because of //3.


E. None of these.
 


Explanation: 
You cannot access c.i because i is private in B. But you can access ( (A)c).i because i is public in A. Remember that member variables are hidden and not overridden. So, B's i hides A's i and since B's i is private, you can't access A's i unless you cast the reference to A.

You cannot access c.j because j is private in A.

 
Back to Question without Answer
 



76.     QID - 2.1388 : Using Loop Constructs 
 

Consider the following code:

        String[] dataList = {"x", "y", "z"};

        for (String dataElement : dataList) {

            int innerCounter = 0;

            while (innerCounter < dataList.length) {

                System.out.println(dataElement + ", " + innerCounter);

                innerCounter++;

            }



        }



How many times will the output contain 2?
 

Correct Option is :  D 

A. 0
 


B. 1
 


C. 2
 


D. 3
 


E. 4
 


F. It will fail to compile.
 


Explanation: 
The while loop runs three times for each element in the dataList. So it will print 2 three times. Here is the complete output:

x, 0

x, 1

x, 2

y, 0

y, 1

y, 2

z, 0

z, 1

z, 2

 
Back to Question without Answer
 



77.     QID - 2.1369 : Using Operators and Decision Constructs 
 

Given the following declarations, identify which statements will return true:



Integer i1 = 1; 

Integer i2 = new Integer(1);

int i3 = 1;

Byte b1 = 1;

Long g1 = 1L;
 

Correct Options are :  B D 

A. i1 == i2
This will return false because both are pointing to different objects.


B. i1 == i3
This will return true because one operand is a primitive int, so the other will be unboxed and then the value will be compared.


C. i1 == b1
This will not compile because type of i1 and b1 references are classes that are not in the same class hierarchy. So the compiler figures out at compile time itself these two references cannot ever point to the same object.


D. i1.equals(i2)
This will return true because both are Integer objects and both have the value 1.


E. i1.equals(g1)
This will return false because they are pointing to objects of different types.



Signature of equals method is : boolean equals(Object o);

Thus, it can take any object as a parameter and so there will be no compilation error. 



Further, The equals method of all wrapper classes first checks if the two object are of same class or not. If not, they immediately return false.


F. i1.equals(b1)
This will return false because they are pointing to objects of different types.


 
Back to Question without Answer
 



Test 2



01.     QID - 2.1142 
 

Which of the given options should be inserted at line 1 so that the following code can compile without any errors?



package objective1;

// 1

public class StaticImports{

    

    public StaticImports(){

    out.println(MAX_VALUE);

    }

    

}
 

Select 2 options

A. import static java.lang.Integer.*;
 


B. static import java.lang.System.out;
 


C. static import Integer.MAX_VALUE;
 


D. import static java.lang.System.*;
 


E. static import java.lang.System.*;
 


 
Check Answer
 



02.     QID - 2.1391 
 

Given:



package loops;

public class JustLooping {

    private int j;

    void showJ(){

        while(j<=5){

            for(int j=1; j <= 5;){

                System.out.print(j+" ");

                j++;

            }

            j++;

        }

    }

    public static void main(String[] args) {

        new JustLooping().showJ();

    }

}

What is the result?
 

Select 1 option

A. It will not compile.
 


B. It will print 1 2 3 4 5 five times.
 


C. It will print 1 3 5 five times.
 


D. It will print 1 2 3 4 5 once.
 


E. It will print 1 2 3 4 5 six times.
 


 
Check Answer
 



03.     QID - 2.1001 
 

Consider the following class:


public class Test{
    public int id;
}


Which of the following is the correct way to make the variable 'id' read only for any other class?
 

Select 1 option

A. Make 'id' private.
 


B. Make 'id' private and provide a public method getId() which will return its value.
 


C. Make 'id' static and provide a public static method getId() which will return its value.
 


D. Make id 'protected'
 


 
Check Answer
 



04.     QID - 2.1323 
 

What is the result of compiling and running this code?



class MyException extends Throwable{}

class MyException1 extends MyException{}

class MyException2 extends MyException{}

class MyException3 extends MyException2{}

public class ExceptionTest{

   void myMethod() throws MyException{

      throw new MyException3();

   }

   public static void main(String[] args){

      ExceptionTest et = new ExceptionTest();

      try{

         et.myMethod();

      }

      catch(MyException me){

         System.out.println("MyException thrown");

      }

      catch(MyException3 me3){

         System.out.println("MyException3 thrown");

      }

      finally{

         System.out.println(" Done");

      }

   }

}


 

Select 1 option

A. MyException thrown
 


B. MyException3 thrown
 


C. MyException thrown Done
 


D. MyException3 thrown Done
 


E. It fails to compile
 


 
Check Answer
 



05.     QID - 2.863 
 

Consider the following code appearing in the same file:


class Data {
    private int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}



Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Select 1 option

A. Add the following two statements :

d.x = 2;

d.y = 2;
 


B. Add the following statement:

d = new Data(2, 2);
 


C. Add the following two statements:

d.x += 1;

d.y += 1;
 


D. Add the following method to Data class:

public void setValues(int x, int y){

  this.x.setInt(x);   this.y.setInt(y);

}



Then add the following statement:

d.setValues(2, 2);
 


E. Add the following method to Data class:

public void setValues(int x, int y){

  this.x = x;   this.y = y;

}



Then add the following statement:

d.setValues(2, 2);
 


 
Check Answer
 



06.     QID - 2.1403 
 

Given:

//in file Movable.java

package p1;

public interface Movable {

  int location = 0;

  void move(int by);

  public void moveBack(int by);

}





//in file Donkey.java

package p2;

import p1.Movable;

public class Donkey implements Movable{

    int location = 200;

    public void move(int by) {

        location = location+by;

    }

    public void moveBack(int by) {

        location = location-by;

    }

}





//in file TestClass.java

package px;

import p1.Movable;

import p2.Donkey;

public class TestClass {

    public static void main(String[] args) {

        Movable m = new Donkey();

        m.move(10);

        m.moveBack(20);

        System.out.println(m.location);

    }

}

Identify the correct statement(s).
 

Select 1 option

A. Donkey.java will not compile.
 


B. TestClass.java will not compile.
 


C. Movable.java will not compile.
 


D. It will print 190 when TestClass is run.
 


E. It will print 0 when TestClass is run.
 


 
Check Answer
 



07.     QID - 2.1154 
 

Consider the following code:


class A{
 public XXX m1(int a){
   return a*10/4-30;
 }
}
class A2 extends A{
 public YYY m1(int a){
   return a*10/4.0;
 }
}


What can be substituted for XXX and YYY so that it can compile without any problems?
 

Select 1 option

A. int, int
 


B. int, double
 


C. double, double
 


D. double, int
 


E. Nothing, they are simply not compatible.
 


 
Check Answer
 



08.     QID - 2.971 
 

What will be the result of trying to compile and execute the following program?



public class TestClass{

   public static void main(String args[] ){

      int i = 0 ;

      int[] iA = {10, 20} ;

      iA[i] = i = 30 ;

      System.out.println(""+ iA[ 0 ] + " " + iA[ 1 ] + "  "+i) ;

    }

}


 

Select 1 option

A. It will throw ArrayIndexOutOfBoundsException at Runtime.
 


B. Compile time Error.
 


C. It will print 10 20 30
 


D. It will print 30 20 30
 


E. It will print 0 20 30
 


 
Check Answer
 



09.     QID - 2.887 
 

Given:


class OverloadingTest{
    
    void m1(int x){
        System.out.println("m1 int");
    }
    
    void m1(double x){
        System.out.println("m1 double");
    }
    
    void m1(String x){
        System.out.println("m1 String");
    }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        OverloadingTest ot = new OverloadingTest();
        ot.m1(1.0);
    }
}


What will be the output?
 

Select 1 option

A. It will fail to compile.
 


B. m1 int
 


C. m1 double
 


D. m1 String
 


 
Check Answer
 



10.     QID - 2.844 
 

Consider the following code:

 import java.util.ArrayList;

 public class Student{
    
    ArrayList<Integer> scores;
    private double average;
    
    public ArrayList<Integer> getScores(){ return scores; }
    
    public double getAverage(){ return average; }
    
    private void computeAverage(){
        //valid code to compute average
        average =//update average value
    }

    public Student(){
        computeAverage();
    }
}


What can be done to improve the encapsulation of this class?
 

Select 2 options

A. Make the class private.
 


B. Make the scores instance field private.
 


C. Make getScores() protected.
 


D. Make computeAverage() public.
 


E. Change getScores to return a copy of the scores list:

   public ArrayList<Integer> getScores(){ 

     return new ArrayList(scores); 

  }
 


 
Check Answer
 



11.     QID - 2.1173 
 

Consider the following class :



public class Test{

   public static void main(String[] args){

      if (args[0].equals("open"))

         if (args[1].equals("someone"))

            System.out.println("Hello!");

      else System.out.println("Go away "+ args[1]);

    }

}



Which of the following statements are true if the above program is run with the command line :

java Test closed
 

Select 1 option

A. It will throw ArrayIndexOutOfBoundsException at runtime.
 


B. It will end without exceptions and will print nothing.
 


C. It will print Go away
 


D. It will print Go away and then will throw ArrayIndexOutOfBoundsException.
 


E. None of the above.
 


 
Check Answer
 



12.     QID - 2.826 
 

What will be the output when the following program is run?



package exceptions;

public class TestClass {

    public static void main(String[] args) {

        try{

            doTest();

        }

        catch(MyException me){

            System.out.println(me);

        }

    }

    

    static void doTest() throws MyException{

        int[] array = new int[10];

        array[10] = 1000;

        doAnotherTest();

    }

    

    static void doAnotherTest() throws MyException{

        throw new MyException("Exception from doAnotherTest");

    }

}

class MyException extends Exception {

    public MyException(String msg){

     super(msg);

    }

}



(Assume that there is no error in the line numbers given in the options.)
 

Select 1 option

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:14)

    at exceptions.TestClass.main(TestClass.java:5)
 


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
 


C. exceptions.MyException: Exception from doAnotherTest
 


D. exceptions.MyException: Exception from doAnotherTest

    at exceptions.TestClass.doAnotherTest(TestClass.java:29)

    at exceptions.TestClass.doTest(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
 


 
Check Answer
 



13.     QID - 2.1039 
 

What will the following method return if called with an argument of 7?



public int transformNumber(int n){

   int radix = 2;

   int output = 0;

   output += radix*n;

   radix = output/radix;

   if(output<14){

       return output;

   }

   else{

       output = output*radix/2;

       return output;

   }

   else {

       return output/2;

   }

}
 

Select 1 option

A. 7
 


B. 14
 


C. 49
 


D. Compilation fails.
 


 
Check Answer
 



14.     QID - 2.1279 
 

Which of the following code snippets will compile without any errors?

(Assume that the statement int x = 0; exists prior to the statements below.)
 

Select 3 options

A. while (false) { x=3; }
 


B. if (false) { x=3; }
 


C. do{ x = 3; } while(false);
 


D. for( int i = 0; i< 0; i++) x = 3;
 


 
Check Answer
 



15.     QID - 2.1275 
 

How can you declare 'i' so that it is not visible outside the package test.


package test;
public class Test{
   XXX int i;
   /*  irrelevant code */
}


 

Select 2 options

A. private
 


B. public
 


C. protected
 


D. No access modifier
 


E. friend
 


 
Check Answer
 



16.     QID - 2.990 
 

Consider the following classes...


class Teacher{
      void teach(String student){
          /* lots of code */
      }
}
class Prof extends Teacher{
        //1
}


Which of the following methods can be inserted at line  //1 ?
 

Select 4 options

A. public void teach() throws Exception
 


B. private void teach(int i) throws Exception
 


C. protected void teach(String s)
 


D. public final void teach(String s)
 


E. public abstract void teach(String s)
 


 
Check Answer
 



17.     QID - 2.880 
 

Which of the following are standard Java exception classes?
 

Select 2 options

A. java.io.FileNotFoundException
 


B. java.io.InputException
 


C. java.lang.CPUError
 


D. java.lang.MemoryException
 


E. java.lang.SecurityException
 


 
Check Answer
 



18.     QID - 2.924 
 

Consider the following class...


class TestClass{
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Object x) { System.out.println("In Object"); } //3 
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        String a = "hello"; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Select 1 option

A. In Integer
 


B. In Object
 


C. In Long
 


D. It will not compile
 


 
Check Answer
 



19.     QID - 2.1057 
 

What will the following code print?

void crazyLoop(){
   int c = 0;
   JACK: while (c < 8){
       JILL: System.out.println(c);
       if (c > 3) break JILL; else c++;
   }
}


 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


 
Check Answer
 



20.     QID - 2.1227 
 

Given the following code, which of these statements are true?


class TestClass{
   public static void main(String args[]){
      int k = 0;
      int m = 0;
      for ( int i = 0; i <= 3; i++){
         k++;
         if ( i == 2){
            // line 1
         }
         m++;
      }
      System.out.println( k + ", " + m );
   }
}


 

Select 3 options

A. It will print 3, 2 when line 1 is replaced by break;
 


B. It will print 3, 2 when line 1 is replaced by continue.
 


C. It will print 4, 3 when line 1 is replaced by continue.
 


D. It will print 4, 4 when line 1 is replaced by i = m++;
 


E. It will print 3, 3 when line 1 is replaced by i = 4;
 


 
Check Answer
 



21.     QID - 2.1049 
 

Consider that you are writing a set of classes related to a new Data Transmission Protocol and have created your own exception hierarchy derived from java.lang.Exception as follows:

enthu.trans.ChannelException
              +-- enthu.trans.DataFloodingException, 
                    enthu.trans.FrameCollisionException



You have a TransSocket class that has the following method:


   long connect(String ipAddr) throws ChannelException




Now, you also want to write another "AdvancedTransSocket" class, derived from "TransSocket" which overrides the above mentioned method. Which of the following are valid declaration of the overriding method?
 

Select 2 options

A. int connect(String ipAddr) throws DataFloodingException
 


B. int connect(String ipAddr) throws ChannelException
 


C. long connect(String ipAddr) throws FrameCollisionException
 


D. long connect(String ipAddr) throws Exception
 


E. long connect(String str)
 


 
Check Answer
 



22.     QID - 2.1137 
 

What will the following code snippet print?



 int index = 1;

 String[] strArr = new String[5];

 String   myStr  = strArr[index];

 System.out.println(myStr);


 

Select 1 option

A. nothing
 


B. null
 


C. It will throw ArrayIndexOutOfBounds at runtime.
 


D. It will print some junk value.
 


E. None of the above.
 


 
Check Answer
 



23.     QID - 2.874 
 

Which of the following are benefits of an array over an ArrayList ?
 

Select 2 options

A. It consumes less memory.
 


B. Accessing an element in an array is faster than in ArrayList.
 


C. You do not have to worry about thread safety.
 


D. It implements Collection interface and can thus be passed where ever a Collection is required.
 


 
Check Answer
 



24.     QID - 2.915 
 

Given the following contents of two java source files:



package util.log4j;

public class Logger  { 

  public void log(String msg){

      System.out.println(msg);

  } 

}



and



package util;

public class TestClass {

    public static void main(String[] args) throws Exception {

        Logger logger = new Logger();

        logger.log("hello");

    }

}



What changes, when made independently, will enable the code to compile and run?
 

Select 2 options

A. Replace Logger logger = new Logger(); with:

log4j.Logger logger = new log4j.Logger();
 


B. Replace package util.log4j; with 

package util;
 


C. Replace Logger logger = new Logger(); with:

util.log4j.Logger logger = new util.log4j.Logger();
 


D. Remove package util.log4j; from Logger.
 


E. Add import log4j; to TestClass.
 


 
Check Answer
 



25.     QID - 2.1110 
 

Which of these statements are true?
 

Select 2 options

A. A static method can call other non-static methods in the same class by using the 'this' keyword.
 


B. A class may contain both static and non-static variables and both static and non-static methods.
 


C. Each object of a class has its own copy of each non-static member variable.
 


D. Instance methods may access local variables of static methods.
 


E. All methods in a class are implicitly passed a 'this' parameter when called.
 


 
Check Answer
 



26.     QID - 2.1440 
 

Given:

   public static boolean getBool(){

      return true;

   }

   public static String getString(){

      return "true";

   }   

   public static void main(String args[]){

       switch( getBool() ){

            case true : 

              System.out.println("true");

              break;

          default : 

              System.out.println("none");

              break;

       }

   }



What changes can be done so that it will print only true?
 

Select 1 option

A. No change is necessary.
 


B. Call getString instead of getBool in the switch.
 


C. Call getString instead of getBool in the switch and also change the case label from true to "true".
 


D. Remove the default section of the switch block.
 


 
Check Answer
 



27.     QID - 2.1290 
 

Consider the following method:



    static int mx(int s){

        for(int i=0; i<3; i++){

            s = s + i;

        }

        return s;

    }



and the following code snippet:



    int s = 5;

        s += s + mx(s) + ++s;

        System.out.println(s); 



What will it print?
 

Select 1 option

A. 21
 


B. 22
 


C. 23
 


D. 24
 


E. 25
 


F. 26
 


 
Check Answer
 



28.     QID - 2.1415 
 

Which of the following comparisons will yield false?
 

Select 3 options

A. Boolean.parseBoolean("true") == true
 


B. Boolean.parseBoolean("TrUe") == new Boolean(null);
 


C. new Boolean("TrUe") == new Boolean(true);
 


D. new Boolean() == false;
 


E. new Boolean("true") == Boolean.TRUE
 


F. new Boolean("no") == false;
 


 
Check Answer
 



29.     QID - 2.1060 
 

Identify the valid for loop constructs assuming the following declarations:


Object o = null;
Collection c = //valid collection object.
int[][] ia = //valid array

 

Select 2 options

A. for(o : c){ }
 


B. for(final Object o2 :c){ }
 


C. for(int i : ia) { }
 


D. for(Iterator it : c.iterator()){ }
 


E. for(int i : ia[0]){ }
 


 
Check Answer
 



30.     QID - 2.1098 
 

What will be the result of attempting to compile the following program?


public class TestClass{
   long l1;
   public void TestClass(long pLong) { l1 = pLong ; }  //(1)
   public static void main(String args[]){
      TestClass a, b ;
      a = new TestClass();  //(2)
      b = new TestClass(5);  //(3)
   }
}


 

Select 1 option

A. A compilation error will be encountered at (1), since constructors should not specify a return value.
 


B. A compilation error will be encountered at (2), since the class does not have a default constructor.
 


C. A compilation error will be encountered at (3).
 


D. The program will compile correctly.
 


E. It will not compile because parameter type of the constructor is different than the type of value passed to it.
 


 
Check Answer
 



31.     QID - 2.1150 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Select 2 options

A. void compute();
 


B. public void compute();
 


C. public final void compute();
 


D. static void compute();
 


E. protected void compute();
 


 
Check Answer
 



32.     QID - 2.968 
 

Which of these expressions will obtain the substring "456" from a string defined by String str = "01234567"?
 

Select 1 option

A. str.substring(4, 7)
 


B. str.substring(4)
 


C. str.substring(3, 6)
 


D. str.substring(4, 6)
 


E. str.substring(4, 3)
 


 
Check Answer
 



33.     QID - 2.1247 
 

Which of these assignments are valid?
 

Select 3 options

A. short s = 12 ;
 


B. long g = 012 ;
 


C. int i = (int) false;
 


D. float f = -123;
 


E. float d = 0 * 1.5;
 


 
Check Answer
 



34.     QID - 2.1012 
 

Which lines contain a valid constructor in the following code?


public class TestClass{
   public TestClass(int a, int b) { } // 1
   public void TestClass(int a) { }   // 2
   public TestClass(String s); // 3
   private TestClass(String s, int a) { }     //4
   public TestClass(String s1, String s2) { }; //5
}

 

Select 3 options

A. Line // 1
 


B. Line // 2
 


C. Line // 3
 


D. Line // 4
 


E. Line // 5
 


 
Check Answer
 



35.     QID - 2.1356 
 

How many times will the line marked //1 be called in the following code?


int x = 10;
do{
 x--;
 System.out.println(x);  // 1
}while(x<10);


 

Select 1 option

A. 0
 


B. 1
 


C. 9
 


D. 10
 


E. None of these.
 


 
Check Answer
 



36.     QID - 2.917 
 

Given:

public class Square {
    private double side = 0;  // LINE 2
  
    public static void main(String[] args) {   // LINE 4
        Square sq = new Square();  // LINE 5
        side = 10;  // LINE 6
   }
}


What can be done to make this code compile and run?
 

Select 1 option

A. replace // LINE 2 with:

private int side = 0;
 


B. replace // LINE 2 with:

public int side = 0;
 


C. replace // LINE 5 with:

double sq = new Square();
 


D. replace // LINE 6 with:

sq.side = 10;
 


 
Check Answer
 



37.     QID - 2.1401 
 

Given:





int expr1 = 3 + 5 * 9 - 7;        

int expr2 = 3 + (5 * 9) - 7;        

int expr3 = 3 + 5 * (9 - 7);        

int expr4 = (3 + 5) * 9 - 7;                





Which of the above variables will have the value 45?
 

Select 1 option

A. expr1
 


B. expr2
 


C. expr3
 


D. expr4
 


E. None of them.
 


 
Check Answer
 



38.     QID - 2.988 
 

What will the following code print?



public class Test{

    public static void stringTest(String s){

        s.replace('h', 's');

    }

    public static void stringBuilderTest(StringBuilder s){

        s.append("o");

    }

    public static void main(String[] args){

        String s = "hell";

        StringBuilder sb = new StringBuilder("well");

        stringTest(s);

        stringBuilderTest(sb);

        System.out.println(s + sb);

    }

}
 

Select 1 option

A. sellwello
 


B. hellwello
 


C. hellwell
 


D. sellwell
 


E. None of these.
 


 
Check Answer
 



39.     QID - 2.1399 
 

What will the following code print when compiled and run?



import java.util.*;

public class ClassnameTest {

    public static void main(String[] args) {

        List<String> list = new ArrayList<>();

        StringBuilder sb = new StringBuilder("mrx");

        String s = sb.toString();

        list.add(s);

        System.out.println(s.getClass());

        System.out.println(list.getClass());

    }

}


 

Select 1 option

A. class java.lang.String

class java.util.List
 


B. class java.lang.String

class java.util.Collection
 


C. class java.lang.String

class java.util.ArrayList
 


D. class java.lang.Object

class java.util.ArrayList
 


E. class java.lang.Object

class java.util.List
 


 
Check Answer
 



40.     QID - 2.1104 
 

Consider the following lines of code:



Integer i = new Integer(42);

Long ln = new Long(42);

Double d = new Double(42.0);



Which of the following options are valid?
 

Select 3 options

A. i == ln;
 


B. ln == d;
 


C. i.equals(d);
 


D. d.equals(ln);
 


E. ln.equals(42);
 


 
Check Answer
 



41.     QID - 2.847 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        int k = 2;

        while(--k){

            System.out.println(k);

        }

    }

}
 

Select 1 option

A. 1
 


B. 1

0
 


C. 2

1
 


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
 


 
Check Answer
 



42.     QID - 2.1311 
 

Which exact exception class will the following class throw when compiled and run?



class Test{

   public static void main(String[] args) throws Exception{

      int[] a = null;

      int i = a [ m1() ];

   }

   public static int m1() throws Exception{

      throw new Exception("Some Exception");

   }

}
 

Select 1 option

A. NullPointerException
 


B. ArrayIndexOutOfBoundsException
 


C. Exception
 


D. RuntimeException
 


 
Check Answer
 



43.     QID - 2.892 
 

Which of the following are valid classes?
 

Select 1 option

A. public class ImaginaryNumber extends Number {

 //implementation for abstract methods of the base class

}
 


B. public class ThreeWayBoolean extends Boolean {

 //implementation for abstract methods of the base class

}
 


C. public class NewSystem extends System {

 //implementation for abstract methods of the base class

}
 


D. public class ReverseString extends String {

 //implementation for abstract methods of the base class

}
 


 
Check Answer
 



44.     QID - 2.1114 
 

What will the following code print?


public class TestClass{
        int x = 5;
        int getX(){ return x; }

        public static void main(String args[]) throws Exception{
            TestClass tc = new TestClass();
            tc.looper();
            System.out.println(tc.x);
        }
        
        public void looper(){
            int x = 0;
            while( (x = getX()) != 0 ){
                for(int m = 10; m>=0; m--){
                    x = m;
                }
            }
            
       }     
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print 0.
 


D. It will print 5.
 


E. None of these.
 


 
Check Answer
 



45.     QID - 2.937 
 

Given the following class, which statements can be inserted at line 1 without causing the code to fail compilation?


public class TestClass{
   int a;
   int b = 0;
   static int c;
   public void m(){
      int d;
      int e = 0;
      // Line 1
   }
}

 

Select 4 options

A. a++;
 


B. b++;
 


C. c++;
 


D. d++;
 


E. e++;
 


 
Check Answer
 



46.     QID - 2.886 
 

Given:


class StaticTest{
    
    void m1(){
        StaticTest.m2();  // 1
        m4();             // 2
        StaticTest.m3();  // 3
    }
    
    static void m2(){ }  // 4
    
    void m3(){
        m1();            // 5
        m2();            // 6
        StaticTest.m1(); // 7
    }
    
    static void m4(){ }
}


Which of the lines will fail to compile?
 

Select 2 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


 
Check Answer
 



47.     QID - 2.1449 
 

Which of the following are features of Java?

Some candidates have reported a similar question being asked with a slightly different (and ambiguous) wording: 

Which of the following are objected oriented features of Java?
 

Select 1 option

A. Every class must have a main method so that it can be tested individually from command line.
 


B. Every class belongs to a package.
 


C. A package must have more than one class.
 


D. A class may inherit from another class.
 


 
Check Answer
 



48.     QID - 2.1299 
 

What will the following program print?


class Test{
   public static void main(String args[]){
      int var = 20, i=0;
      do{
         while(true){
         if( i++ > var) break;
         }
      }while(i<var--);
      System.out.println(var);
   }
}


 

Select 1 option

A. 19
 


B. 20
 


C. 21
 


D. 22
 


E. It will enter an infinite loop.
 


 
Check Answer
 



49.     QID - 2.1219 
 

What will be the output of compiling and running the following program:


class TestClass implements I1, I2{
   public void m1() { System.out.println("Hello"); }
   public static void main(String[] args){
      TestClass tc = new TestClass();
      ( (I1) tc).m1();
   }
}
interface I1{
   int VALUE = 1;
   void m1();
}
interface I2{
   int VALUE = 2;
   void m1();
}


 

Select 1 option

A. It will print Hello.
 


B. There is no way to access any VALUE in TestClass.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



50.     QID - 2.1042 
 

Consider the following method which is called with an argument of 7:


public void method1(int i){
   int j = (i*30 - 2)/100;
   
   POINT1 : for(;j<10; j++){
       boolean flag  = false;
       while(!flag){
	if(Math.random()>0.5) break POINT1;
       }
   }
  while(j>0){
     System.out.println(j--);
     if(j == 4) break POINT1;
   }
}


What will it print?

(Assume that Math.random() return a double between 0.0 and 1.0, not including 1.0)
 

Select 1 option

A. It will print 1 and 2
 


B. It will print 1 to N where N is a random number.
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


 
Check Answer
 



51.     QID - 2.883 
 

When is the Object created at line //1 eligible for garbage collection?



public class TestClass{

  public Object getObject(){

     Object obj = new String("aaaaa");   //1

     Object objArr[] = new Object[1]; //2

     objArr[0] = obj; //3

     obj = null;      //4

     objArr[0] = null;//5

     return obj;      //6

  }

}
 

Select 1 option

A. Just after line 2.
 


B. Just after line 3.
 


C. Just after line 4.
 


D. Just after line 5.
 


E. Just after line 6.
 


 
Check Answer
 



52.     QID - 2.1405 
 

How many objects have been created by the time the main method reaches its end in the following code?

public class Noobs {

    public Noobs(){

        try{

            throw new MyException();

        }catch(Exception e){

        }

    }

    public static void main(String[] args) {

        Noobs a = new Noobs();

        Noobs b = new Noobs();

        Noobs c = a;

    }

}

class MyException extends Exception{

    

}
 

Select 1 option

A. 2
 


B. 3
 


C. 4
 


D. 5
 


E. 6
 


 
Check Answer
 



53.     QID - 2.1213 
 

When a class whose members should be accessible only to members of that class is coded such a way that its members are accessible to other classes as well, this is called ...
 

Select 1 option

A. strong coupling
 


B. weak coupling
 


C. strong typing
 


D. weak encapsulation
 


E. weak polymorphism
 


F. high cohesion
 


G. low cohesion
 


 
Check Answer
 



54.     QID - 2.933 
 

Which of the given options can be successfully inserted at line 1....



  //line 1

   public class A{

   }
 

Select 3 options

A. import java.lang.*;
 


B. package p.util;
 


C. public class MyClass{ }
 


D. abstract class MyClass{ }
 


 
Check Answer
 



55.     QID - 2.1355 
 

Given the following code, which of the constructors shown in the options can be added to class B without causing a compilation to fail?


class A{
   int i;
   public A(int x) { this.i = x; }
}
class B extends A{
   int j;
   public B(int x, int y) { super(x);  this.j = y; }
}

 

Select 2 options

A. B( ) { }
 


B. B(int y ) { j = y; }
 


C. B(int y ) { super(y*2 ); j = y; }
 


D. B(int y ) { i = y; j = y*2; }
 


E. B(int z ) { this(z, z); }
 


 
Check Answer
 



56.     QID - 2.1337 
 

Consider the following code:


class A{
   A() {  print();   }
   void print() { System.out.println("A"); }
}
class B extends A{
   int i =   4;
   public static void main(String[] args){
      A a = new B();
      a.print();
   }
   void print() { System.out.println(i); }
}


What will be the output when class B is run ?
 

Select 1 option

A. It will print A, 4.
 


B. It will print A, A
 


C. It will print 0, 4
 


D. It will print 4, 4
 


E. None of the above.
 


 
Check Answer
 



57.     QID - 2.939 
 

Which of the following are true regarding overloading of a method?
 

Select 1 option

A. An overloading method must have a different parameter list and same return type as that of the overloaded method.
 


B. If there is another method with the same name but with a different number of arguments in a class then that method can be called as overloaded.
 


C. If there is another method with the same name and same number and type of arguments but with a different return type in a class then that method can be called as overloaded.
 


D. An overloaded method means a method with the same name and same number and type of arguments exists in the super class and sub class.
 


 
Check Answer
 



58.     QID - 2.1255 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      loop :         // 1
      {
         System.out.println("Loop Lable line");
         try{
            for (  ;  true ;  i++ ){
               if( i >5) break loop;       // 2
            }
         }
         catch(Exception e){
            System.out.println("Exception in loop.");
         }
         finally{
            System.out.println("In Finally");      // 3
         }
      }
   }
}


 

Select 1 option

A. Compilation error at line 1 as this is an invalid syntax for defining a label.
 


B. Compilation error at line 2 as 'loop' is not visible here.
 


C. No compilation error and line 3 will be executed.
 


D. No compilation error and line 3 will NOT be executed.
 


E. Only the line with the label loop will be printed.
 


 
Check Answer
 



59.     QID - 2.875 
 

What will the following code print when compiled and run:

class Data {

    int intVal = 0;
    String strVal = "default";
    public Data(int k){
        this.intVal = k; 
    }

}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d1 = new Data(10);
        d1.strVal = "D1";
        Data d2 = d1;
        d2.intVal = 20;
        System.out.println("d2 val = "+d2.strVal);
    }
}


 

Select 1 option

A. d2 val =
 


B. d2 val = default
 


C. d2 val = D1
 


D. Exception at run time.
 


 
Check Answer
 



60.     QID - 2.1232 
 

Which of the following lines can be inserted at line 1 to make the program run?



//line 1

public class TestClass{

  public static void main(String[] args){

     PrintWriter pw = new PrintWriter(System.out);

     OutputStreamWriter osw  =  new OutputStreamWriter( System.out );

     pw.print("hello");

  }

}



Assume that PrintWriter and OutputStreamWriter are valid classes in java.io package.
 

Select 1 option

A. import java.lang.*;
 


B. import java.io.*;
 


C. import java.io.OutputStreamWriter;
 


D. include java.io.*;
 


E. include java.lang.System;
 


 
Check Answer
 



61.     QID - 2.890 
 

Given:


class Square {
    private double side = 0;
    String color;
    public Square(double length){
        this.side = length;
    }
    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Square mysq = new Square(10);
        mysq.color = "red";
        
        //set mysq's side to 20
    }
}


Which of the following statements will set the side of Square object referred by mysq to 20?
 

Select 1 option

A. mysq.side = 20;
 


B. mysq = new Square(20);
 


C. mysq.setSide(20);
 


D. side = 20;
 


E. Square.mysq.side = 20;
 


 
Check Answer
 



62.     QID - 2.859 
 

What will the following code print when run?



public class TestClass {



    public void switchString(String input){

        switch(input){

            case "a" : System.out.println( "apple" );

            case "b" : System.out.println( "bat" );

                break;

            case "c" : System.out.println( "cat" );                

            default : System.out.println( "none" );

        }

    }



    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        tc.switchString("c");

    }

}
 

Select 1 option

A. apple

cat

none
 


B. apple

cat
 


C. cat

none
 


D. cat
 


 
Check Answer
 



63.     QID - 2.1002 
 

Given the following definitions and reference declarations:


interface I1 { }
interface I2 { }
class C1 implements I1 { }
class C2 implements I2 { }
class C3 extends C1 implements I2 { }
C1 o1;
C2 o2;
C3 o3;


Which of these statements are legal?
 

Select 3 options

A. class C4 extends C3 implements I1, I2 { }
 


B. o3 = o1;
 


C. o3 = o2;
 


D. I1 i1 = o3; I2 i2 = (I2) i1;
 


E. I1 b = o3;
 


 
Check Answer
 



64.     QID - 2.985 
 

Which of the following declarations are valid?
 

Select 3 options

A. float f1 = 1.0;
 


B. float f = 43e1;
 


C. float f = -1;
 


D. float f = 0x0123;
 


E. float f = 4;
 


 
Check Answer
 



65.     QID - 2.1196 
 

Consider the following code snippet:



XXXX m ; 

//other code

  switch( m ){

     case 32  : System.out.println("32");   break;

     case 64  : System.out.println("64");   break;

     case 128 : System.out.println("128");  break;

  }



What type can 'm' be of so that the above code compiles and runs as expected ?
 

Select 3 options

A. int m;
 


B. long m;
 


C. char m;
 


D. byte m;
 


E. short m;
 


 
Check Answer
 



66.     QID - 2.891 
 

What can you do to make the following code compile?



public class TestClass {

    public static void main(String[] args) {

        int[] values = { 10, 20, 30 };

        for( /* put code here */ ){

        }

    }

}
 

Select 2 options

A. int k : values
 


B. int k in values
 


C. int k; k<0; k++
 


D. ;;
 


E. ; k<values.length;k++
 


 
Check Answer
 



67.     QID - 2.1249 
 

Consider the following class:



public class ArgsPrinter{

   public static void main(String args){

      for(int i=0; i<3; i++){

         System.out.print(args+" ");

      }

   }

}



What will be printed when the above class is run using the following command line:

java ArgsPrinter 1 2 3 4
 

Select 1 option

A. 1 2 3
 


B. ArgsPrinter 1 2 
 


C. java ArgsPrinter 1 2 
 


D. 1 1 1
 


E. None of these.
 


 
Check Answer
 



68.     QID - 2.1423 
 

What will the following code print when compiled and run?



public class Paper {

    public String title;

    public int id;

    

    public Paper(String title, int id){

        this.title = title;

        this.id = id;

    }

    

    public static void main(String[] args) {

        Paper[] papers = { 

            new Paper("T1", 1), 

            new Paper("T2", 2),

            new Paper("T3", 3)

        };

        

        System.out.println(papers);

        System.out.println(papers[1]);

        System.out.println(papers[1].id);

    }

}
 

Select 1 option

A. papers

Paper

2
 


B. papers

T2,2

2
 


C. [LPaper;@<hashcode>

Paper

2
 


D. [LPaper;@<hashcode>

Paper@<hashcode>

2
 


 
Check Answer
 



69.     QID - 2.910 
 

Consider the following code:





interface Flyer{ String getName(); }



class Bird implements Flyer{

    public String name;

    public Bird(String name){

        this.name = name;

    }

    public String getName(){ return name; }

}



class Eagle extends Bird { 

    public Eagle(String name){

        super(name);

    }

}



public class TestClass {

    public static void main(String[] args) throws Exception {

        Flyer f = new Eagle("American Bald Eagle");

        //PRINT NAME HERE

   }

}



Which of the following lines of code will print the name of the Eagle object?
 

Select 3 options

A. System.out.println(f.name);
 


B. System.out.println(f.getName());
 


C. System.out.println(((Eagle)f).name);
 


D. System.out.println(((Bird)f).getName());
 


E. System.out.println(Eagle.name);
 


F. System.out.println(Eagle.getName(f));
 


 
Check Answer
 



70.     QID - 2.1088 
 

Consider:

o1 and o2 denote two object references to two different objects of the same class.

Which of the following statements are true?
 

Select 2 options

A. o1.equals(o2) will always be false.
 


B. o1.hashCode() == o2.hashCode() will always be false.
 


C. o1 == o2 will always be false.
 


D. Nothing can be said about o1.equals(o2) regarding what it will return based on the given information.
 


E. Nothing can be said about o1 == o2.
 


 
Check Answer
 



71.     QID - 2.1200 
 

What can be done to get the following code to compile and run?
(Assume that the options are independent of each other.)


public float parseFloat( String s ){
     float f = 0.0f;      // 1
     try{
          f = Float.valueOf( s ).floatValue();    // 2
          return f ;      // 3
     }
     catch(NumberFormatException nfe){
        f = Float.NaN ;    // 4
       return f;     // 5
     }
     finally {
         return f;     // 6
     }
     return f ;    // 7
 }

 

Select 4 options

A. Remove line 3, 6
 


B. Remove line 5
 


C. Remove line 5, 6
 


D. Remove line 7
 


E. Remove line 3, 7
 


 
Check Answer
 



72.     QID - 2.868 
 

How can you initialize a StringBuilder to have a capacity of at least 100 characters?
 

Select 2 options

A. StringBuilder sb = new StringBuilder(100);
 


B. StringBuilder sb = StringBuilder.getInstance(100);
 


C. StringBuilder sb = new StringBuilder();

sb.setCapacity(100);
 


D. StringBuilder sb = new StringBuilder();

sb.ensureCapacity(100);
 


 
Check Answer
 



73.     QID - 2.1371 
 

Given the following declarations:

        int a = 5, b = 7, k = 0;

        Integer m = null;

and the following statements:



        k = new Integer(a) + new Integer(b);  //1

        k = new Integer(a) + b; //2

        k = a + new Integer(b); //3

        m = new Integer(a) + new Integer(b); //4



Executed independent of each other, what will be the value of k (for //1, //2, and //3) and m (for //4) after execution of each of these statements?
 

Select 1 option

A. 12

will not compile

will not compile

12
 


B. will not compile

will not compile

will not compile

12
 


C. 12

12

12

12
 


D. will not compile

will not compile

will not compile

will not compile
 


E. 12

12

12

will not compile
 


 
Check Answer
 



74.     QID - 2.1431 
 

Given the following line of code:



LocalDateTime dt = LocalDateTime.parse("2015-01-02T17:13:50");



Which of the following lines will return the date string in ISO 8601 format?
 

Select 2 options

A. dt.format(java.time.format.DateTimeFormatter.DATE_TIME);
 


B. dt.format(java.time.format.DateTimeFormatter.ISO_DATE_TIME);
 


C. dt.format(java.time.format.DateTimeFormatter.LOCAL_DATE_TIME);
 


D. dt.toString();
 


 
Check Answer
 



75.     QID - 2.898 
 

Given:

public class Employee{
    String name;
    public Employee(){
    }
}


Which of the following lines creates an Employee instance?
 

Select 1 option

A. Employee e;
 


B. Employee e = new Employee();
 


C. Employee e = Employee.new();
 


D. Employee e = Employee();
 


 
Check Answer
 



76.     QID - 2.1220 
 

Given the following classes and declarations, which of these statements about //1 and //2 are true?


class A{
   private int i = 10;
   public void  f(){}
   public void g(){}
}

class B extends A{
   public int i = 20;
   public void g(){}
}

public class C{
   A a = new A();//1
   A b = new B();//2
}

 

Select 1 option

A. System.out.println(b.i); will print 10.
 


B. The statement b.f( ); will give compile time error..
 


C. System.out.println(b.i); will print 20
 


D. All the above are correct.
 


E. None of the above statements is correct.
 


 
Check Answer
 



77.     QID - 2.1468 
 

Given :



interface Process{

    public void process(int a, int b);

}



public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void processList(ArrayList<Data> dataList, Process p){

   for(Data d: dataList){

        p.process(d.value, d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 1 4 9?
 

Select 3 options

A. processList(al, a, b->System.out.println(a*b));
 


B. processList(al, (int a, int b)->System.out.println(a*b) );
 


C. processList(al, (int a, int b)->System.out.println(a*b); );
 


D. processList(al, (a, b)->System.out.println(a*b));
 


E. processList(al, (a, b) ->{  System.out.println(a*b); } );
 


 
Check Answer
 



Test 2 (Answered)



01.     QID - 2.1142 : Java Basics 
 

Which of the given options should be inserted at line 1 so that the following code can compile without any errors?



package objective1;

// 1

public class StaticImports{

    

    public StaticImports(){

    out.println(MAX_VALUE);

    }

    

}
 

Correct Options are :  A D 

A. import static java.lang.Integer.*;
 


B. static import java.lang.System.out;
 


C. static import Integer.MAX_VALUE;
 


D. import static java.lang.System.*;
The code uses out.println instead of System.out.println. out is a static field in java.lang.System class. That is why you need to import the static fields of java.lang.System.


E. static import java.lang.System.*;
 


Explanation: 
The order of keywords for a static import must be "import static ... ".

You can either import all the static members using import static java.lang.Integer.* or one specific member using import static java.lang.Integer.MAX_VALUE;

You must specify the full package name of the class that you are importing (just like the regular import statement). So, import static Integer.*; is wrong.

 
Back to Question without Answer
 



02.     QID - 2.1391 : Using Loop Constructs 
 

Given:



package loops;

public class JustLooping {

    private int j;

    void showJ(){

        while(j<=5){

            for(int j=1; j <= 5;){

                System.out.print(j+" ");

                j++;

            }

            j++;

        }

    }

    public static void main(String[] args) {

        new JustLooping().showJ();

    }

}

What is the result?
 

Correct Option is :  E 

A. It will not compile.
There is no problem with the code. The variable j declared in the for loop shadows the instance member j inside the for loop.


B. It will print 1 2 3 4 5 five times.
 


C. It will print 1 3 5 five times.
 


D. It will print 1 2 3 4 5 once.
 


E. It will print 1 2 3 4 5 six times.
 


Explanation: 
The point to note here is that the j in for loop is different from the instance member j. Therefore, j++ occuring in the for loop doesn't affect the while loop. The for loop prints 1 2 3 4 5.

The while loop runs for the values 0 to 5 i.e. 6 iterations. Thus, 1 2 3 4 5 is printed 6 times. Note that after the end of the while loop the value of j is 6.

 
Back to Question without Answer
 



03.     QID - 2.1001 : Working with Methods 
 

Consider the following class:


public class Test{
    public int id;
}


Which of the following is the correct way to make the variable 'id' read only for any other class?
 

Correct Option is :  B 

A. Make 'id' private.
This will not allow others to read or write.


B. Make 'id' private and provide a public method getId() which will return its value.
 


C. Make 'id' static and provide a public static method getId() which will return its value.
 


D. Make id 'protected'
 


Explanation: 
This is a standard way of providing read only access to internal variables.

 
Back to Question without Answer
 



04.     QID - 2.1323 : Handling Exceptions 
 

What is the result of compiling and running this code?



class MyException extends Throwable{}

class MyException1 extends MyException{}

class MyException2 extends MyException{}

class MyException3 extends MyException2{}

public class ExceptionTest{

   void myMethod() throws MyException{

      throw new MyException3();

   }

   public static void main(String[] args){

      ExceptionTest et = new ExceptionTest();

      try{

         et.myMethod();

      }

      catch(MyException me){

         System.out.println("MyException thrown");

      }

      catch(MyException3 me3){

         System.out.println("MyException3 thrown");

      }

      finally{

         System.out.println(" Done");

      }

   }

}


 

Correct Option is :  E 

A. MyException thrown
 


B. MyException3 thrown
 


C. MyException thrown Done
 


D. MyException3 thrown Done
 


E. It fails to compile
 


Explanation: 
You can have multiple catch blocks to catch different kinds of exceptions, including exceptions that are subclasses of other exceptions. However, the catch clause for more specific exceptions (i.e. a SubClassException) should come before the catch clause for more general exceptions ( i.e. a SuperClassException). Failure to do so results in a compiler error as the more specific exception is unreachable.



In this case, catch for MyException3 cannot follow catch for MyException because if MyException3 is thrown, it will be caught by the catch clause for MyException. And so, there is no way the catch clause for MyException3 can ever execute. And so it becomes an unreachable statement.

 
Back to Question without Answer
 



05.     QID - 2.863 : Working with Methods 
 

Consider the following code appearing in the same file:


class Data {
    private int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}



Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Correct Option is :  E 

A. Add the following two statements :

d.x = 2;

d.y = 2;
Note that x and y are private in class Data. Therefore, you cannot access these members from any other class.


B. Add the following statement:

d = new Data(2, 2);
This will create a new Data object and will not change the original Data object referred to be d.


C. Add the following two statements:

d.x += 1;

d.y += 1;
Note that x and y are private in class Data. Therefore, you cannot access these members from any other class.


D. Add the following method to Data class:

public void setValues(int x, int y){

  this.x.setInt(x);   this.y.setInt(y);

}



Then add the following statement:

d.setValues(2, 2);
x is primitive int.You cannot call any methods on a primitive. so this.x.setInt(...) or this.y.setInt(...) don't make any sense.


E. Add the following method to Data class:

public void setValues(int x, int y){

  this.x = x;   this.y = y;

}



Then add the following statement:

d.setValues(2, 2);
This is a good example of encapsulation where the data members of Data class are private and there is a method in Data class to manipulate its data. Compare this approach to making x and y as public and letting other classes directly modify the values.


 
Back to Question without Answer
 



06.     QID - 2.1403 : Working with Inheritance 
 

Given:

//in file Movable.java

package p1;

public interface Movable {

  int location = 0;

  void move(int by);

  public void moveBack(int by);

}





//in file Donkey.java

package p2;

import p1.Movable;

public class Donkey implements Movable{

    int location = 200;

    public void move(int by) {

        location = location+by;

    }

    public void moveBack(int by) {

        location = location-by;

    }

}





//in file TestClass.java

package px;

import p1.Movable;

import p2.Donkey;

public class TestClass {

    public static void main(String[] args) {

        Movable m = new Donkey();

        m.move(10);

        m.moveBack(20);

        System.out.println(m.location);

    }

}

Identify the correct statement(s).
 

Correct Option is :  E 

A. Donkey.java will not compile.
 


B. TestClass.java will not compile.
 


C. Movable.java will not compile.
 


D. It will print 190 when TestClass is run.
 


E. It will print 0 when TestClass is run.
 


Explanation: 
There is no problem with the code. All variables in an interface are implicitly public, static, and final. All methods in an interface are public. There is no need to define them so explicitly. Therefore, the location variable in Movable is public and static and the move() method is public.



Now, when you call m.move(10) and m.moveBack(20), the instance member location of Donkey is updated to 190 because  the reference m refers to a Donkey at run time and so move and moveBack methods of Donkey are invoked at runtime. However, when you print m.location, it is the Movable's location (which is never updated) that is printed.

 
Back to Question without Answer
 



07.     QID - 2.1154 : Working with Inheritance 
 

Consider the following code:


class A{
 public XXX m1(int a){
   return a*10/4-30;
 }
}
class A2 extends A{
 public YYY m1(int a){
   return a*10/4.0;
 }
}


What can be substituted for XXX and YYY so that it can compile without any problems?
 

Correct Option is :  C 

A. int, int
a*10/4.0; generates a double so, A2's m1() cannot return an int. (It will need a cast otherwise: return (int) (a*10/4.0);)


B. int, double
The return type should be same for overridden and overriding method.


C. double, double
a*10/4-30; generates an int which can be returned as a double without any cast.


D. double, int
The return type should be same for overridden and overriding method.


E. Nothing, they are simply not compatible.
 


Explanation: 
Note that when a method returns objects (as opposed to primitives, like in this question), the principle of covariant returns applies. Meaning, the overriding method is allowed to return a subclass of the return type defined in the overridden method. Thus, if a base class's method is: public A m(); then a subclass is free to override it with: public A1 m(); if A1 extends A.

 
Back to Question without Answer
 



08.     QID - 2.971 : Creating and Using Arrays 
 

What will be the result of trying to compile and execute the following program?



public class TestClass{

   public static void main(String args[] ){

      int i = 0 ;

      int[] iA = {10, 20} ;

      iA[i] = i = 30 ;

      System.out.println(""+ iA[ 0 ] + " " + iA[ 1 ] + "  "+i) ;

    }

}


 

Correct Option is :  D 

A. It will throw ArrayIndexOutOfBoundsException at Runtime.
 


B. Compile time Error.
 


C. It will print 10 20 30
 


D. It will print 30 20 30
 


E. It will print 0 20 30
 


Explanation: 
The statement iA[i] = i = 30 ; will be processed as follows:

iA[i] = i = 30; => iA[0] = i = 30 ;  =>  i = 30; iA[0] = i ; =>   iA[0] = 30 ;



Here is what JLS says on this:

1 Evaluate Left-Hand Operand First  

2 Evaluate Operands before Operation  

3 Evaluation Respects Parentheses and Precedence  

4 Argument Lists are Evaluated Left-to-Right  



For Arrays: First, the dimension expressions are evaluated, left-to-right. If any of the expression evaluations completes abruptly, the expressions to the right of it are not evaluated.

 
Back to Question without Answer
 



09.     QID - 2.887 : Working with Methods - Overloading 
 

Given:


class OverloadingTest{
    
    void m1(int x){
        System.out.println("m1 int");
    }
    
    void m1(double x){
        System.out.println("m1 double");
    }
    
    void m1(String x){
        System.out.println("m1 String");
    }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        OverloadingTest ot = new OverloadingTest();
        ot.m1(1.0);
    }
}


What will be the output?
 

Correct Option is :  C 

A. It will fail to compile.
 


B. m1 int
 


C. m1 double
 


D. m1 String
 


Explanation: 
Here, m1() is overloading for three different argument types. So when you call ot.m1(1.0), the one with argument of type double will be invoked.

 
Back to Question without Answer
 



10.     QID - 2.844 : Java Basics - OO Concepts 
 

Consider the following code:

 import java.util.ArrayList;

 public class Student{
    
    ArrayList<Integer> scores;
    private double average;
    
    public ArrayList<Integer> getScores(){ return scores; }
    
    public double getAverage(){ return average; }
    
    private void computeAverage(){
        //valid code to compute average
        average =//update average value
    }

    public Student(){
        computeAverage();
    }
}


What can be done to improve the encapsulation of this class?
 

Correct Options are :  B E 

A. Make the class private.
 


B. Make the scores instance field private.
An important aspect of encapsulation is that other classes should not be able to modify the state fields of a class directly. Therefore, the data members should be private (or protected if you want to allow subclasses to inherit the field) and if the class wants to allow access to these fields, it should provide appropriate setters and getters with public access.


C. Make getScores() protected.
 


D. Make computeAverage() public.
 


E. Change getScores to return a copy of the scores list:

   public ArrayList<Integer> getScores(){ 

     return new ArrayList(scores); 

  }
If you return the same scores list, the caller would be able to add or remove elements from it, thereby rendering the average incorrect.

This can be prevented by returning a copy of the list.


 
Back to Question without Answer
 



11.     QID - 2.1173 : Using Operators and Decision Constructs 
 

Consider the following class :



public class Test{

   public static void main(String[] args){

      if (args[0].equals("open"))

         if (args[1].equals("someone"))

            System.out.println("Hello!");

      else System.out.println("Go away "+ args[1]);

    }

}



Which of the following statements are true if the above program is run with the command line :

java Test closed
 

Correct Option is :  B 

A. It will throw ArrayIndexOutOfBoundsException at runtime.
 


B. It will end without exceptions and will print nothing.
 


C. It will print Go away
 


D. It will print Go away and then will throw ArrayIndexOutOfBoundsException.
 


E. None of the above.
 


Explanation: 
As in C and C++, the Java if statement suffers from the so-called "dangling else problem," The problem is that both the outer if statement and the inner if statement might conceivably own the else clause.

In this example, one might be tempted to assume that the programmer intended the else clause to belong to the outer if statement.



The Java language, like C and C++ and many languages before them, arbitrarily decree that an else clause belongs to the innermost if so as the first if() condition fails (args[0] not being "open") there is no else associated to execute. So, the program does nothing. The else actually is associated with the second if. So had the command line been :

java Test open, it would have executed the second if and thrown ArrayIndexOutOfBoundsException.

If the command line had been:

java Test open xyz, it would execute the else part(which is associated with the second if) and would have printed "Go away xyz".

 
Back to Question without Answer
 



12.     QID - 2.826 : Handling Exceptions 
 

What will be the output when the following program is run?



package exceptions;

public class TestClass {

    public static void main(String[] args) {

        try{

            doTest();

        }

        catch(MyException me){

            System.out.println(me);

        }

    }

    

    static void doTest() throws MyException{

        int[] array = new int[10];

        array[10] = 1000;

        doAnotherTest();

    }

    

    static void doAnotherTest() throws MyException{

        throw new MyException("Exception from doAnotherTest");

    }

}

class MyException extends Exception {

    public MyException(String msg){

     super(msg);

    }

}



(Assume that there is no error in the line numbers given in the options.)
 

Correct Option is :  A 

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:14)

    at exceptions.TestClass.main(TestClass.java:5)
You are creating an array of length 10. Since array numbering starts with 0, the last element would be array[9]. 

array[10] would be outside the range of the array and therefore an ArrayIndexOutOfBoundsException will be thrown, which cannot be caught by catch(MyException ) clause.

The exception is thus thrown out of the main method and is handled by the JVM's uncaught exception handling mechanism, which prints the stack trace.


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
java.lang.ArrayIndexOutOfBoundsException extends java.lang.IndexOutOfBoundsException, which extends java.lang.RuntimeException, and which in turn extends java.lang.Exception. 

Therefore, ArrayIndexOutOfBoundsException is an Exception and not an Error.


C. exceptions.MyException: Exception from doAnotherTest
 


D. exceptions.MyException: Exception from doAnotherTest

    at exceptions.TestClass.doAnotherTest(TestClass.java:29)

    at exceptions.TestClass.doTest(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
 


Explanation: 
Note that there are a few questions in the exam that test your knowledge about how exception messages are printed. 



When you use System.out.println(exception), a stack trace is not printed. Just the name of the exception class and the message is printed.

When you use exception.printStackTrace(), a complete chain of the names of the methods called, along with the line numbers, is printed. It contains the names of the methods in the chain of method calls that led to the place where the exception was created going back up to the point where the thread, in which the exception was created, was started.

 
Back to Question without Answer
 



13.     QID - 2.1039 : Using Operators and Decision Constructs 
 

What will the following method return if called with an argument of 7?



public int transformNumber(int n){

   int radix = 2;

   int output = 0;

   output += radix*n;

   radix = output/radix;

   if(output<14){

       return output;

   }

   else{

       output = output*radix/2;

       return output;

   }

   else {

       return output/2;

   }

}
 

Correct Option is :  D 

A. 7
 


B. 14
 


C. 49
 


D. Compilation fails.
The if-else-else is invalid. It should be if , else if, else.


 
Back to Question without Answer
 



14.     QID - 2.1279 : Using Loop Constructs 
 

Which of the following code snippets will compile without any errors?

(Assume that the statement int x = 0; exists prior to the statements below.)
 

Correct Options are :  B C D 

A. while (false) { x=3; }
 


B. if (false) { x=3; }
 


C. do{ x = 3; } while(false);
In a do- while, the block is ALWAYS executed at least once because the condition check is done after the block is executed. Unlike a while loop, where the condition is checked before the execution of the block.


D. for( int i = 0; i< 0; i++) x = 3;
 


Explanation: 
while (false) { x=3; } is a compile-time error because the statement x=3; is not reachable;

Similarly, for( int i = 0; false; i++) x = 3; is also a compile time error because x= 3 is unreachable.



In if(false){ x=3; }, although the body of the condition is unreachable, this is not an error because the JLS explicitly defines this as an exception to the rule. It allows this construct to support optimizations through the conditional compilation. For example,



if(DEBUG){ System.out.println("beginning task 1"); } 



Here, the DEBUG variable can be set to false in the code while generating the production version of the class file, which will allow the compiler to optimize the code by removing the whole if statement entirely from the class file.

 
Back to Question without Answer
 



15.     QID - 2.1275 : Working with Methods 
 

How can you declare 'i' so that it is not visible outside the package test.


package test;
public class Test{
   XXX int i;
   /*  irrelevant code */
}


 

Correct Options are :  A D 

A. private
Note that the question does not require that 'i' should be accessible from test package. So private is fine.


B. public
Marking it public will make it accessible from all classes in all packages.


C. protected
It will make it available to a subclass even if the subclass is in a different package.


D. No access modifier
 


E. friend
There is no such modifier in Java.


 
Back to Question without Answer
 



16.     QID - 2.990 : Working with Methods - Overloading 
 

Consider the following classes...


class Teacher{
      void teach(String student){
          /* lots of code */
      }
}
class Prof extends Teacher{
        //1
}


Which of the following methods can be inserted at line  //1 ?
 

Correct Options are :  A B C D 

A. public void teach() throws Exception
It overloads the teach() method instead of overriding it.


B. private void teach(int i) throws Exception
It overloads the teach() method instead of overriding it.


C. protected void teach(String s)
This overrides Teacher's teach method. The overriding method can have more visibility. (It cannot have less. Here, it cannot be private.)


D. public final void teach(String s)
Overriding method may be made final.


E. public abstract void teach(String s)
This is wrong because class Prof has not been declared as abstract. Note that otherwise it is OK to override a method by an abstract method.


Explanation: 
Note that 'protected' is less restrictive than default 'no modifier'. So choice 3 is valid.

"public abstract void teach(String s)" would have been valid if class Prof had been declared abstract.

 
Back to Question without Answer
 



17.     QID - 2.880 : Handling Exceptions 
 

Which of the following are standard Java exception classes?
 

Correct Options are :  A E 

A. java.io.FileNotFoundException
 


B. java.io.InputException
There is an java.io.IOException but no InputException or OutputException.


C. java.lang.CPUError
There is no such class.


D. java.lang.MemoryException
There is a java.lang.OutOfMemoryError but no MemoryException. There is also a java.lang.StackOverflowError.


E. java.lang.SecurityException
Java has a java.lang.SecurityException. This exception extends RuntimeException and is thrown by the security manager upon security violation. For example, when a java program runs in a sandbox (such as an applet) and it tries to use prohibited APIs such as File I/O, the security manager throws this exception.

Since this exception is explicitly thrown using the new keyword by a security manager class, it can be considered to be thrown by the application programmer.


 
Back to Question without Answer
 



18.     QID - 2.924 : Working with Methods - Overloading 
 

Consider the following class...


class TestClass{
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Object x) { System.out.println("In Object"); } //3 
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        String a = "hello"; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Correct Option is :  B 

A. In Integer
 


B. In Object
 


C. In Long
 


D. It will not compile
 


Explanation: 
Here, we have three overloaded probe methods but there is no probe method that takes a String parameter. The only one that is able to accept a String is the one that takes Object as a parameter. So that method will be called.



A String cannot be assigned to a variable of class Integer or Long variable, but it can be assigned to a variable of class Object.

 
Back to Question without Answer
 



19.     QID - 2.1057 : Using Loop Constructs 
 

What will the following code print?

void crazyLoop(){
   int c = 0;
   JACK: while (c < 8){
       JILL: System.out.println(c);
       if (c > 3) break JILL; else c++;
   }
}


 

Correct Option is :  A 

A. It will not compile.
Because break JILL; would be valid only when it is within the block of code under the scope of the label JILL. 

In this case, the scope of JILL extends only up till System.out.println(c); and break JILL; is out of the scope of the label.


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


 
Back to Question without Answer
 



20.     QID - 2.1227 : Using Loop Constructs 
 

Given the following code, which of these statements are true?


class TestClass{
   public static void main(String args[]){
      int k = 0;
      int m = 0;
      for ( int i = 0; i <= 3; i++){
         k++;
         if ( i == 2){
            // line 1
         }
         m++;
      }
      System.out.println( k + ", " + m );
   }
}


 

Correct Options are :  A C E 

A. It will print 3, 2 when line 1 is replaced by break;
 


B. It will print 3, 2 when line 1 is replaced by continue.
 


C. It will print 4, 3 when line 1 is replaced by continue.
 


D. It will print 4, 4 when line 1 is replaced by i = m++;
It will print 4, 5


E. It will print 3, 3 when line 1 is replaced by i = 4;
 


Explanation: 
This is a simple loop. All you need to do is execute each statement in your head. For example, if line 1 is replaced by break:



1. k=0, m=0

2. iteration 1: i=0

    2.1 k = 1

    2.2 i == 2 is false

    2.3 m = 1

3. iteration 2: i = 1

    3.1 k=2

    3.2 i==2 is false

    3.3 m = 2

4. iteration 3: i = 2

    4.1 k=3

    4.2 i==2 is true

    4.3 break

5. print 3, 2



 
Back to Question without Answer
 



21.     QID - 2.1049 : Working with Inheritance 
 

Consider that you are writing a set of classes related to a new Data Transmission Protocol and have created your own exception hierarchy derived from java.lang.Exception as follows:

enthu.trans.ChannelException
              +-- enthu.trans.DataFloodingException, 
                    enthu.trans.FrameCollisionException



You have a TransSocket class that has the following method:


   long connect(String ipAddr) throws ChannelException




Now, you also want to write another "AdvancedTransSocket" class, derived from "TransSocket" which overrides the above mentioned method. Which of the following are valid declaration of the overriding method?
 

Correct Options are :  C E 

A. int connect(String ipAddr) throws DataFloodingException
The return type must match. Otherwise the method is OK.


B. int connect(String ipAddr) throws ChannelException
The return type must match. Otherwise the method is OK.


C. long connect(String ipAddr) throws FrameCollisionException
 


D. long connect(String ipAddr) throws Exception
This option is invalid because Exception is a super class of ChannelException so it cannot be thrown by the overriding method.


E. long connect(String str)
 


Explanation: 
There are 2 important concepts involved here:

1. The overriding method must have same return type in case of primitives (a subclass is allowed in case of classes)  (Therefore, the choices returning int are not valid.) and the parameter list must be the same (The name of the parameter does not matter, just the Type is important). 



2. The overriding method can throw a subset of the exception or subclass of the exceptions thrown by the overridden class. Having no throws clause is also valid since an empty set is a valid subset.

 
Back to Question without Answer
 



22.     QID - 2.1137 : Creating and Using Arrays 
 

What will the following code snippet print?



 int index = 1;

 String[] strArr = new String[5];

 String   myStr  = strArr[index];

 System.out.println(myStr);


 

Correct Option is :  B 

A. nothing
 


B. null
 


C. It will throw ArrayIndexOutOfBounds at runtime.
 


D. It will print some junk value.
 


E. None of the above.
 


Explanation: 
When you create an array of Objects ( here, Strings) all the elements are initialized to null. So in the line 3, null is assigned to myStr.

Note that. empty string is "" ( String str = ""; ) and is not same as null.

 
Back to Question without Answer
 



23.     QID - 2.874 : Working with Java API - ArrayList 
 

Which of the following are benefits of an array over an ArrayList ?
 

Correct Options are :  A B 

A. It consumes less memory.
This is an ambiguous option because in certain situation an ArrayList may consume a little bit more memory than an array (because of additional internal data structure and pointers), while in some other situation it may consume less (when your array is only half full).


B. Accessing an element in an array is faster than in ArrayList.
Although very little, but a direct array access using an index is faster than calling a method on ArrayList.


C. You do not have to worry about thread safety.
Neither an ArrayList nor an array is thread safe. If you have multiple threads trying to add and remove elements from an ArrayList or an array, you have to write additional code to ensure thread safety.


D. It implements Collection interface and can thus be passed where ever a Collection is required.
arrays do not implement Collection interface. ArrayList does. This is actually an advantage of an ArrayList over an array.


Explanation: 
An ArrayList resized dynamically at run time as per the situation. An array cannot be resized once created. This reduces the amount of boiler plate code that is required to do the same task using an array.



Some candidates have reported getting a similar question with ambiguous options such as "An ArrayList implements Collection API". It is anybody's guess as to what is the correct answer.

 
Back to Question without Answer
 



24.     QID - 2.915 : Java Basics 
 

Given the following contents of two java source files:



package util.log4j;

public class Logger  { 

  public void log(String msg){

      System.out.println(msg);

  } 

}



and



package util;

public class TestClass {

    public static void main(String[] args) throws Exception {

        Logger logger = new Logger();

        logger.log("hello");

    }

}



What changes, when made independently, will enable the code to compile and run?
 

Correct Options are :  B C 

A. Replace Logger logger = new Logger(); with:

log4j.Logger logger = new log4j.Logger();
If you are not importing a class or the package of the class, you need to use the class's fully qualified name while using it. Here, you need to use util.log4j.Logger instead of just log4j.Logger:

util.log4j.Logger logger = new util.log4j.Logger();


B. Replace package util.log4j; with 

package util;
This will put both the classes in the same package and TestClass can then directly use Logger class without importing anything.


C. Replace Logger logger = new Logger(); with:

util.log4j.Logger logger = new util.log4j.Logger();
Using a fully qualified class name always works irrespective of whether you import the package or not.  In this case, all classes of package util are available in TestClass without any import statement but Logger is in util.log4j. Therefore, the use of fully qualified class name for Logger, which is util.log4j.Logger, makes it work.


D. Remove package util.log4j; from Logger.
Remember that you can never access a class that is defined in the default package (i.e. the package with no name) from a class in any other package. So if you remove the package statement from Logger, you can't access it from util package, which is where TestClass is.


E. Add import log4j; to TestClass.
This will not help because Logger is in util.log4j package and not in log4j package.


 
Back to Question without Answer
 



25.     QID - 2.1110 : Java Basics 
 

Which of these statements are true?
 

Correct Options are :  B C 

A. A static method can call other non-static methods in the same class by using the 'this' keyword.
'this' reference is not available within a static method.


B. A class may contain both static and non-static variables and both static and non-static methods.
 


C. Each object of a class has its own copy of each non-static member variable.
 


D. Instance methods may access local variables of static methods.
local variables can only be accessed in the method they are defined. So you cannot access them anywhere outside that method.


E. All methods in a class are implicitly passed a 'this' parameter when called.
All non-static/instance methods in a class are implicitly passed a 'this' parameter when called.


Explanation: 
'this' is assigned a reference to the current object automatically by the JVM. Thus, within an instance method foo, calling this.foo(); is same as calling foo();



Since there is no current object available for a static method, 'this' reference is not available in static methods and therefore it can only be used within instance methods. For the same reason, static methods cannot access non static fields or methods of that class directly i.e. without a reference to an instance of that class.



Note : you can't reassign 'this' like this:

this = new Object();

 
Back to Question without Answer
 



26.     QID - 2.1440 : Using Operators and Decision Constructs 
 

Given:

   public static boolean getBool(){

      return true;

   }

   public static String getString(){

      return "true";

   }   

   public static void main(String args[]){

       switch( getBool() ){

            case true : 

              System.out.println("true");

              break;

          default : 

              System.out.println("none");

              break;

       }

   }



What changes can be done so that it will print only true?
 

Correct Option is :  C 

A. No change is necessary.
You cannot use a boolean expression in a switch statement and for case statements. So, as it is, the given code will not compile.


B. Call getString instead of getBool in the switch.
 


C. Call getString instead of getBool in the switch and also change the case label from true to "true".
Strings can be used in a switch.


D. Remove the default section of the switch block.
Since there is a break; statement in the previous case block, there is no need to remove the default section. It will not execute anyway.


 
Back to Question without Answer
 



27.     QID - 2.1290 : Using Operators and Decision Constructs 
 

Consider the following method:



    static int mx(int s){

        for(int i=0; i<3; i++){

            s = s + i;

        }

        return s;

    }



and the following code snippet:



    int s = 5;

        s += s + mx(s) + ++s;

        System.out.println(s); 



What will it print?
 

Correct Option is :  D 

A. 21
 


B. 22
 


C. 23
 


D. 24
s += (expression) will be converted to s =  s + expression. So the given expression will become:

s = s + s + mx(s) + ++s;

s = 5 + 5 + mx(5) + 6;

s = 5 + 5+ 8 + 6;

s = 24;


E. 25
 


F. 26
 


 
Back to Question without Answer
 



28.     QID - 2.1415 : Working with Java Data Types 
 

Which of the following comparisons will yield false?
 

Correct Options are :  B C E 

A. Boolean.parseBoolean("true") == true
 


B. Boolean.parseBoolean("TrUe") == new Boolean(null);
This will yield false because parseBoolean("TrUe") will return true and new Boolean(null) will return a Boolean wrapper object containing false.


C. new Boolean("TrUe") == new Boolean(true);
Even though both the sides have a Boolean wrapper containing true, the expression will yield false because they point to two different Boolean wrapper objects.


D. new Boolean() == false;
This will not compile because Boolean class does not have a no-args constructor.


E. new Boolean("true") == Boolean.TRUE
Even though both the sides have a Boolean wrapper containing true, the expression will yield false because they point to two different Boolean wrapper objects.


F. new Boolean("no") == false;
Any string other than "true" (ignoring case) will produce a Boolean containing false. Therefore, this expression will yield true.


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



29.     QID - 2.1060 : Using Loop Constructs 
 

Identify the valid for loop constructs assuming the following declarations:


Object o = null;
Collection c = //valid collection object.
int[][] ia = //valid array

 

Correct Options are :  B E 

A. for(o : c){ }
Cannot use an existing/predefined variable in the variable declaration part.


B. for(final Object o2 :c){ }
final is the only modifier (excluding annotations) that is allowed here.


C. for(int i : ia) { }
Each element of ia is itself an array. Thus, they cannot be assigned to an int.


D. for(Iterator it : c.iterator()){ }
c.iterator() does not return any Collection. Note that the following would have been valid:

Collection<Iterator> c = //some collection that contains Iterator objects

for(Iterator it : c){ }


E. for(int i : ia[0]){ }
Since ia[0] is an array of ints, this is valid. (It may throw a NullPointerException or ArrayIndexOutOfBoundsException at runtime if ia is not appropriately initialized.)


 
Back to Question without Answer
 



30.     QID - 2.1098 : Constructors 
 

What will be the result of attempting to compile the following program?


public class TestClass{
   long l1;
   public void TestClass(long pLong) { l1 = pLong ; }  //(1)
   public static void main(String args[]){
      TestClass a, b ;
      a = new TestClass();  //(2)
      b = new TestClass(5);  //(3)
   }
}


 

Correct Option is :  C 

A. A compilation error will be encountered at (1), since constructors should not specify a return value.
But it becomes a valid method if you give a return type.


B. A compilation error will be encountered at (2), since the class does not have a default constructor.
The class has an implicit default constructor since the class doesn't have any constructor defined.


C. A compilation error will be encountered at (3).
Because (1) is a method and not a constructor. So there is no constructor that take a parameter.


D. The program will compile correctly.
 


E. It will not compile because parameter type of the constructor is different than the type of value passed to it.
If (1) was a valid constructor 'int' would be promoted to long at the time of passing.


Explanation: 
The declaration at (1) declares a method, not a constructor because it has a return value. The method happens to have the same name as the class, but that is ok.

The class has an implicit default constructor since the class contains no constructor declarations. This allows the instantiation at (2) to work.

 
Back to Question without Answer
 



31.     QID - 2.1150 : Working with Inheritance 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Correct Options are :  A B 

A. void compute();
All interface methods have to be public. No access control keyword in the method declaration also means public in an interface. (Note that the absence of access control keyword in the method declaration in a class means package protected.)


B. public void compute();
 


C. public final void compute();
final is not allowed.


D. static void compute();
An interface can have a static method but the method must have a body in that case.


E. protected void compute();
All interface methods have to be public.


 
Back to Question without Answer
 



32.     QID - 2.968 : Working with Java API - String, StringBuilder 
 

Which of these expressions will obtain the substring "456" from a string defined by String str = "01234567"?
 

Correct Option is :  A 

A. str.substring(4, 7)
 


B. str.substring(4)
It will return "4567".


C. str.substring(3, 6)
It will return "345".


D. str.substring(4, 6)
It will return "45".


E. str.substring(4, 3)
Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of range: -1


Explanation: 
Read this carefully:

public String substring(int beginIndex, int endIndex)

    Returns a new string that is a substring of this string. The substring begins at the specified beginIndex and extends to the character at index endIndex - 1. Thus the length of the substring is endIndex-beginIndex. 



 "hamburger".substring(4, 8) returns "urge"

 "smiles".substring(1, 5) returns "mile"

 "unhappy".substring(2) returns "happy"

 "Harbison".substring(3) returns "bison"

 "emptiness".substring(9) returns "" (an empty string)

 
Back to Question without Answer
 



33.     QID - 2.1247 : Working with Java Data Types 
 

Which of these assignments are valid?
 

Correct Options are :  A B D 

A. short s = 12 ;
This is valid since 12 can fit into a short and an implicit narrowing conversion can occur.


B. long g = 012 ;
012 is a valid octal number.


C. int i = (int) false;
Values of type boolean cannot be converted to any other types.


D. float f = -123;
Implicit widening conversion will occur in this case.


E. float d = 0 * 1.5;
double cannot be implicitly narrowed to a float even though the value is representable by a float.


Explanation: 
Note that

float d = 0 * 1.5f; and float d = 0 * (float)1.5 ; are OK



A narrowing primitive conversion may be used if all of the following conditions are satisfied:



1. The expression is a constant expression of type int.



2. The type of the variable is byte, short, or char.



3. The value of the expression (which is known at compile time, because it is a constant expression) is representable in the type of the variable.



Note that narrowing conversion does not apply to long or double. So, char ch = 30L; will fail even though 30 is representable in char.

 
Back to Question without Answer
 



34.     QID - 2.1012 : Constructors 
 

Which lines contain a valid constructor in the following code?


public class TestClass{
   public TestClass(int a, int b) { } // 1
   public void TestClass(int a) { }   // 2
   public TestClass(String s); // 3
   private TestClass(String s, int a) { }     //4
   public TestClass(String s1, String s2) { }; //5
}

 

Correct Options are :  A D E 

A. Line // 1
 


B. Line // 2
Constructors cannot return anything. Not even void.


C. Line // 3
Constructors cannot have empty bodies (i.e. they cannot be abstract)


D. Line // 4
You can apply public, private, protected to a constructor. But not static, final, synchronized, native and abstract.


E. Line // 5
The compiler ignores the extra semi-colon.


Explanation: 
It is interesting to note that public void TestClass(int a) {} // 2 will actually compile. It is not a constructor, but compiler considers it as a valid method!

 
Back to Question without Answer
 



35.     QID - 2.1356 : Using Loop Constructs 
 

How many times will the line marked //1 be called in the following code?


int x = 10;
do{
 x--;
 System.out.println(x);  // 1
}while(x<10);


 

Correct Option is :  E 

A. 0
 


B. 1
 


C. 9
 


D. 10
 


E. None of these.
 


Explanation: 
A do-while loop is always executed at least once. So in the first iteration, x is decremented and becomes 9. Now the while condition is tested, which returns true because 9 is less than 10. So the loop is executed again with x = 9. In the loop, x is decremented to 8 and the condition is tested again, which again returns true because 8 is less than 10.



As you can see, x keeps on decreasing by one in each iteration and every time the condition x<10 returns true. However, after x reaches -2147483648, which is its MIN_VALUE, it cannot decrease any further and at this time when x-- is executed, the value rolls over to 2147483647, which is Integer.MAX_VALUE. At this time, the condition x<10 fails and the loop terminates.

 
Back to Question without Answer
 



36.     QID - 2.917 : Working with Java Data Types 
 

Given:

public class Square {
    private double side = 0;  // LINE 2
  
    public static void main(String[] args) {   // LINE 4
        Square sq = new Square();  // LINE 5
        side = 10;  // LINE 6
   }
}


What can be done to make this code compile and run?
 

Correct Option is :  D 

A. replace // LINE 2 with:

private int side = 0;
 


B. replace // LINE 2 with:

public int side = 0;
 


C. replace // LINE 5 with:

double sq = new Square();
 


D. replace // LINE 6 with:

sq.side = 10;
side is not a "global variable" that you can access directly (Note that Java doesn't have the concept of a global variable). side is an instance field in Square class, which means, only objects of Square class will have this field. Therefore, you need to specify which Square object's side you are trying to access. You are doing that here by using the reference sq that points to an instance of Square class.



Remember that private members of a class are accessible from the same class. The main method is within Square class and that is why you can access the side field of Square class from this method.



An integer can be assigned to a double without a cast but not vice versa.


 
Back to Question without Answer
 



37.     QID - 2.1401 : Using Operators and Decision Constructs 
 

Given:





int expr1 = 3 + 5 * 9 - 7;        

int expr2 = 3 + (5 * 9) - 7;        

int expr3 = 3 + 5 * (9 - 7);        

int expr4 = (3 + 5) * 9 - 7;                





Which of the above variables will have the value 45?
 

Correct Option is :  E 

A. expr1
 


B. expr2
 


C. expr3
 


D. expr4
 


E. None of them.
 


Explanation: 
Their values are 41 41 13 and 65.

You may find similar questions in the exam where you have to find the expression that returns the highest or lower value. In such cases, you will need to evaluate each expression.

 
Back to Question without Answer
 



38.     QID - 2.988 : Working with Java API - String, StringBuilder 
 

What will the following code print?



public class Test{

    public static void stringTest(String s){

        s.replace('h', 's');

    }

    public static void stringBuilderTest(StringBuilder s){

        s.append("o");

    }

    public static void main(String[] args){

        String s = "hell";

        StringBuilder sb = new StringBuilder("well");

        stringTest(s);

        stringBuilderTest(sb);

        System.out.println(s + sb);

    }

}
 

Correct Option is :  B 

A. sellwello
 


B. hellwello
 


C. hellwell
 


D. sellwell
 


E. None of these.
 


Explanation: 
A String is immutable while a StringBuilder is not. So in stringTest(), "hell".replace('h', 's') will produce a new String "sell" but will not affect the original String that was passed to the method.

However, the append() method of StringBuilder appends to the original String object. So, "well" becomes "wello".

 
Back to Question without Answer
 



39.     QID - 2.1399 : Working with Inheritance 
 

What will the following code print when compiled and run?



import java.util.*;

public class ClassnameTest {

    public static void main(String[] args) {

        List<String> list = new ArrayList<>();

        StringBuilder sb = new StringBuilder("mrx");

        String s = sb.toString();

        list.add(s);

        System.out.println(s.getClass());

        System.out.println(list.getClass());

    }

}


 

Correct Option is :  C 

A. class java.lang.String

class java.util.List
 


B. class java.lang.String

class java.util.Collection
 


C. class java.lang.String

class java.util.ArrayList
 


D. class java.lang.Object

class java.util.ArrayList
 


E. class java.lang.Object

class java.util.List
 


Explanation: 
The getClass method always returns the Class object for the actual object on which the method is called irrespective of the type of the reference. Since s refers to an object of class String, s.getClass returns Class object for String  and similarly list.getClass returns Class object for ArrayList.

 
Back to Question without Answer
 



40.     QID - 2.1104 : Working with Java Data Types 
 

Consider the following lines of code:



Integer i = new Integer(42);

Long ln = new Long(42);

Double d = new Double(42.0);



Which of the following options are valid?
 

Correct Options are :  C D E 

A. i == ln;
This will fail at compile time


B. ln == d;
This will fail at compile time


C. i.equals(d);
 


D. d.equals(ln);
 


E. ln.equals(42);
Due to auto-boxing int 42 is converted into an Integer object containing 42. So this is valid. It will return false though because ln is a Long and 42 is boxed into an Integer.


Explanation: 
The concept to understand here is as follows -

If the compiler can figure out that something can NEVER happen, then it flags an error. In this question, the compiler knows that ln, i or d can never point to the same object in any case because they are references to different classes of objects that have no relation ( superclass/subclass ) between themselves.

 
Back to Question without Answer
 



41.     QID - 2.847 : Using Loop Constructs 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        int k = 2;

        while(--k){

            System.out.println(k);

        }

    }

}
 

Correct Option is :  F 

A. 1
 


B. 1

0
 


C. 2

1
 


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
In Java, a while or do/while construct takes an expression that returns a boolean. The expression --k is an integer, which is invalid and so the compilation fails.



You could change it to: while( --k>0 ){ ... }. In this case, --k<0 is a boolean expression and is valid.


 
Back to Question without Answer
 



42.     QID - 2.1311 : Handling Exceptions 
 

Which exact exception class will the following class throw when compiled and run?



class Test{

   public static void main(String[] args) throws Exception{

      int[] a = null;

      int i = a [ m1() ];

   }

   public static int m1() throws Exception{

      throw new Exception("Some Exception");

   }

}
 

Correct Option is :  C 

A. NullPointerException
 


B. ArrayIndexOutOfBoundsException
 


C. Exception
 


D. RuntimeException
 


Explanation: 
A NullPointerException never occurs because the index expression must be completely evaluated before any part of the indexing operation occurs, and that includes the check as to whether the value of the left-hand operand is null.

If the array reference expression produces null instead of a reference to an array, then a NullPointerException is thrown at runtime, but only after all parts of the array reference expression have been evaluated and only if these evaluations completed normally. 



In an array access, the expression to the left of the brackets appears to be fully evaluated before any part of the expression within the brackets is evaluated.

Note that if evaluation of the expression to the left of the brackets completes abruptly, no part of the expression within the brackets will appear to have been evaluated.



Here, m1() is called first, which throws Exception and so a is never accessed and NullPointerException is never thrown.

 
Back to Question without Answer
 



43.     QID - 2.892 : Working with Java Data Types 
 

Which of the following are valid classes?
 

Correct Option is :  A 

A. public class ImaginaryNumber extends Number {

 //implementation for abstract methods of the base class

}
Number is not a final class so you can extend it.


B. public class ThreeWayBoolean extends Boolean {

 //implementation for abstract methods of the base class

}
 


C. public class NewSystem extends System {

 //implementation for abstract methods of the base class

}
 


D. public class ReverseString extends String {

 //implementation for abstract methods of the base class

}
 


Explanation: 
String, StringBuilder, and StringBuffer - all are final classes.



1. Remember that wrapper classes for primitives (java.lang.Boolean, java.lang.Integer, java.lang.Long, java.lang.Short etc.) are also final and so they cannot be extended. 



2. java.lang.Number, however, is not final. Integer, Long, Double etc. extend Number.



3. java.lang.System is final as well.

 
Back to Question without Answer
 



44.     QID - 2.1114 : Using Loop Constructs 
 

What will the following code print?


public class TestClass{
        int x = 5;
        int getX(){ return x; }

        public static void main(String args[]) throws Exception{
            TestClass tc = new TestClass();
            tc.looper();
            System.out.println(tc.x);
        }
        
        public void looper(){
            int x = 0;
            while( (x = getX()) != 0 ){
                for(int m = 10; m>=0; m--){
                    x = m;
                }
            }
            
       }     
}

 

Correct Option is :  E 

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print 0.
 


D. It will print 5.
 


E. None of these.
This program will compile and run but will never terminate.


Explanation: 
Note that looper() declares an automatic variable x, which shadows the instance variable x. So when x = m; is executed, it is the local variable x that is changed not the instance field x. So getX() never returns 0. If you remove int x = 0; from looper(), it will print 0 and end.

 
Back to Question without Answer
 



45.     QID - 2.937 : Working with Java Data Types 
 

Given the following class, which statements can be inserted at line 1 without causing the code to fail compilation?


public class TestClass{
   int a;
   int b = 0;
   static int c;
   public void m(){
      int d;
      int e = 0;
      // Line 1
   }
}

 

Correct Options are :  A B C E 

A. a++;
Here, 'a' is an instance variable of type int. Therefore, it will be given a default value of Zero and so it need not be initialized explicitly.


B. b++;
 


C. c++;
Here 'c' is a class variable (also called as static variable) of type int so it will be given a default value of Zero and so it need not be initialized explicitly.


D. d++;
This will not compile because 'd' is not initialized. Note that automatic variables (also called as method local variables i.e. variables declared within a method) have to be explicitly initialized.


E. e++;
 


Explanation: 
All the instance or static variables are given a default values if they are not explicitly initialized. All numeric variable are given a value of zero or equivalent to zero (i.e. 0 for integral types and 0.0 for double/float). Booleans are initialized to false and objects are initialized to null.



Note that local (aka automatic) variables, such as the variables d and e in the code given here, are not initialized automatically. They have to be initialized explicitly. However, it is ok to leave them uninitialized if you don't use them anywhere in the code (as is the case with the variable d).

 
Back to Question without Answer
 



46.     QID - 2.886 : Working with Methods 
 

Given:


class StaticTest{
    
    void m1(){
        StaticTest.m2();  // 1
        m4();             // 2
        StaticTest.m3();  // 3
    }
    
    static void m2(){ }  // 4
    
    void m3(){
        m1();            // 5
        m2();            // 6
        StaticTest.m1(); // 7
    }
    
    static void m4(){ }
}


Which of the lines will fail to compile?
 

Correct Options are :  C G 

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


Explanation: 
To call an instance method you need a reference that points to the object on which you want to call that method. Now, within an instance method a reference named "this" pointing to the current object is always available. So to call another instance method from within an instance method, you can either use the this reference explicitly (for example, you may call this.m3() from within m1) , or leave out the this reference altogether (for example, you can directly call m3() from within m1()) because the compiler automatically adds the "this." part implicitly. The "this" variable is available only within an instance method and not in static methods because static methods are not invoked within the context of an object of that class. 



You can call a static method of a class from either a static or an instance method of the same class . No object reference is required. You can call it by using the name of the class or you can omit that as well. To call a static method of another class, you must use the name of the other class, for example OtherClass.staticMethod();



At //3, you are trying to call an instance method from another instance method. Therefore, you need to either specify an object reference or you can rely on this if you omit it. However, you cannot do StaticTest.m3() because StaticTest is not a valid reference that points to an object of class StaticTest.



Same thing happens at //7.

 
Back to Question without Answer
 



47.     QID - 2.1449 : Java Basics - OO Concepts 
 

Which of the following are features of Java?

Some candidates have reported a similar question being asked with a slightly different (and ambiguous) wording: 

Which of the following are objected oriented features of Java?
 

Correct Option is :  D 

A. Every class must have a main method so that it can be tested individually from command line.
It is not required for a class to have a main method. The main method is required only if you want to execute that class directly from a command line. 

Further, running from command line is not the only way to test a class.


B. Every class belongs to a package.
Not entirely true because if you omit the package statement, the class will not be in any package. It can be argued that all such classes belong to a "default" package but it would be incorrect because it is not possible to import this default package in other packages. This implies that "default" is not really a package.


C. A package must have more than one class.
A package may have just one class as well.


D. A class may inherit from another class.
 


 
Back to Question without Answer
 



48.     QID - 2.1299 : Using Loop Constructs 
 

What will the following program print?


class Test{
   public static void main(String args[]){
      int var = 20, i=0;
      do{
         while(true){
         if( i++ > var) break;
         }
      }while(i<var--);
      System.out.println(var);
   }
}


 

Correct Option is :  A 

A. 19
 


B. 20
 


C. 21
 


D. 22
 


E. It will enter an infinite loop.
 


Explanation: 
When the first iteration of outer do-while loop starts, var is 20. Now, the inner loop executes till i becomes 21.

Now, the condition for outer do-while is checked, while( 22 < 20 ), [i is 22 because of the last i++>var check], thereby making var 19. And as the condition is false, the outer loop also ends.

So, 19 is printed.

 
Back to Question without Answer
 



49.     QID - 2.1219 : Working with Inheritance 
 

What will be the output of compiling and running the following program:


class TestClass implements I1, I2{
   public void m1() { System.out.println("Hello"); }
   public static void main(String[] args){
      TestClass tc = new TestClass();
      ( (I1) tc).m1();
   }
}
interface I1{
   int VALUE = 1;
   void m1();
}
interface I2{
   int VALUE = 2;
   void m1();
}


 

Correct Option is :  A 

A. It will print Hello.
 


B. There is no way to access any VALUE in TestClass.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
It works even now.


D. It will not compile.
 


E. None of the above.
 


Explanation: 
Having ambiguous fields does not cause any problems but referring to such fields in an ambiguous way will cause a compile time error. So you cannot call : System.out.println(VALUE) as it will be ambiguous.

  as there is no ambiguity in referring the field:

TestClass tc = new TestClass();

System.out.println(( ( I1) tc).VALUE);

So, any of the VALUE fields can be accessed by casting.

 
Back to Question without Answer
 



50.     QID - 2.1042 : Using Loop Constructs 
 

Consider the following method which is called with an argument of 7:


public void method1(int i){
   int j = (i*30 - 2)/100;
   
   POINT1 : for(;j<10; j++){
       boolean flag  = false;
       while(!flag){
	if(Math.random()>0.5) break POINT1;
       }
   }
  while(j>0){
     System.out.println(j--);
     if(j == 4) break POINT1;
   }
}


What will it print?

(Assume that Math.random() return a double between 0.0 and 1.0, not including 1.0)
 

Correct Option is :  C 

A. It will print 1 and 2
 


B. It will print 1 to N where N is a random number.
 


C. It will not compile.
Remember that a labeled break or continue statement must always exist inside the loop where the label is declared. Here, if(j == 4) break POINT1; is a labelled break that is occurring in the second loop while the label POINT1 is declared for the first loop.


D. It will throw an exception at runtime.
 


 
Back to Question without Answer
 



51.     QID - 2.883 : Working with Java Data Types - Garbage Collection 
 

When is the Object created at line //1 eligible for garbage collection?



public class TestClass{

  public Object getObject(){

     Object obj = new String("aaaaa");   //1

     Object objArr[] = new Object[1]; //2

     objArr[0] = obj; //3

     obj = null;      //4

     objArr[0] = null;//5

     return obj;      //6

  }

}
 

Correct Option is :  D 

A. Just after line 2.
 


B. Just after line 3.
 


C. Just after line 4.
 


D. Just after line 5.
 


E. Just after line 6.
 


Explanation: 
The official exam objectives now explicitly mention Garbage collection.  All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();



After line 3, both, obj and objArr[0] are pointing to the same String object.

After line 4, obj points to null but objArr[0] is still pointing to the String object.

After line 5, objArr[0] also starts pointing to null so there is no reference left that is pointing to the String object. So it is now available for Garbage collection.

 
Back to Question without Answer
 



52.     QID - 2.1405 : Working with Java Data Types 
 

How many objects have been created by the time the main method reaches its end in the following code?

public class Noobs {

    public Noobs(){

        try{

            throw new MyException();

        }catch(Exception e){

        }

    }

    public static void main(String[] args) {

        Noobs a = new Noobs();

        Noobs b = new Noobs();

        Noobs c = a;

    }

}

class MyException extends Exception{

    

}
 

Correct Option is :  C 

A. 2
 


B. 3
 


C. 4
 


D. 5
 


E. 6
 


Explanation: 
When a Noobs object is created, a MyException object is also created. Therefore a total of 4 objects are created. The line Noobs c = a; just assigns an existing Noobs object to c. No new object is created.



Note: Some candidates have reported getting a similar question. 

The question is ambiguous because two Class objects (one for Noobs and one for MyException) are also created. If you consider those, then the answer would be 6. Further, several Thread objects are also created (although not directly by this code.) Since this is out of scope for the exam, it is best to ignore these kind of objects and consider only the objects created directly by the code.

 
Back to Question without Answer
 



53.     QID - 2.1213 : Java Basics - OO Concepts 
 

When a class whose members should be accessible only to members of that class is coded such a way that its members are accessible to other classes as well, this is called ...
 

Correct Option is :  D 

A. strong coupling
 


B. weak coupling
 


C. strong typing
 


D. weak encapsulation
 


E. weak polymorphism
 


F. high cohesion
 


G. low cohesion
 


Explanation: 
When a class is properly encapsulated, only the members that are part of its public API are publicly accessible to other classes. Rest is all private.

 
Back to Question without Answer
 



54.     QID - 2.933 : Java Basics 
 

Which of the given options can be successfully inserted at line 1....



  //line 1

   public class A{

   }
 

Correct Options are :  A B D 

A. import java.lang.*;
Although this package is automatically imported, it is not an error to import it explicitly.


B. package p.util;
It is a perfectly valid package statement.


C. public class MyClass{ }
There can be only 1 "public" class within package scope in a file. You can have additional inner classes that are public though.


D. abstract class MyClass{ }
You can have more than one classes in a file but at most one of them can be public.


Explanation: 
To make a class abstract, you only need to mark it abstract as shown in Option 4. You don't necessarily need to put an abstract method in a class.

 
Back to Question without Answer
 



55.     QID - 2.1355 : Constructors 
 

Given the following code, which of the constructors shown in the options can be added to class B without causing a compilation to fail?


class A{
   int i;
   public A(int x) { this.i = x; }
}
class B extends A{
   int j;
   public B(int x, int y) { super(x);  this.j = y; }
}

 

Correct Options are :  C E 

A. B( ) { }
 


B. B(int y ) { j = y; }
 


C. B(int y ) { super(y*2 ); j = y; }
 


D. B(int y ) { i = y; j = y*2; }
 


E. B(int z ) { this(z, z); }
 


Explanation: 
1. Remember that an instance of a class is also an instance of its parent class. Therefore, as a part of constructing an instance of a subclass, the JVM has to initialize those parts of the instance that are inherited from the super class as well. Further, the parts inherited from the super class need to be initialized first because the subclass may depend on them. Since it is the job of a constructor to initialize an instance, a constructor of the super class has to be invoked before the constructor of the subclass can proceed. The compiler ensures that at least one constructor of the super class is invoked if you do not explicitly call a super class's constructor by adding super(); (i.e. a call to the no-args constructor) as the first line of the sub class constructor. It automatically adds this call IF and ONLY IF the subclass's constructor does not explicitly call any of the super class's constructor in the first line of its code.



Now, if the super class ( here, A ) does not have a no-args constructor, the call super(); will fail. Hence, choices B( ) { }, B(int y ) { j = y; } and B(int y ) { i = y; j = y*2; } are not valid and choice B(int y ) { super(y*2 ); j = y; } is valid because it explicitly calls super( int ), which is available in A.



2. Instead of calling a super class's constructor using super(<args>), you can also call another constructor of the sub class in the first line (as given in choice B(int z ) { this(z, z); } ). Here, this(int, int) is called in the first line, which, in turn, calls super(int). So the super class A is correctly instantiated before the sub class B begins initialization.

 
Back to Question without Answer
 



56.     QID - 2.1337 : Working with Inheritance 
 

Consider the following code:


class A{
   A() {  print();   }
   void print() { System.out.println("A"); }
}
class B extends A{
   int i =   4;
   public static void main(String[] args){
      A a = new B();
      a.print();
   }
   void print() { System.out.println(i); }
}


What will be the output when class B is run ?
 

Correct Option is :  C 

A. It will print A, 4.
 


B. It will print A, A
 


C. It will print 0, 4
 


D. It will print 4, 4
 


E. None of the above.
 


Explanation: 
Note that method print() is overridden in class B. Due to polymorphism, the method to be executed is selected depending on the class of the actual object.

Here, when an object of class B is created, first A's constructor is called, which in turn calls print(). Now, since the class of actual object is B, B's print() is selected. At this point of time, variable i has not been initialized (because we are still initializing A at this point), so its default value i.e. 0 is printed.

This happens because the method print() is non-private, hence polymorphic.



Finally, 4 is printed.

 
Back to Question without Answer
 



57.     QID - 2.939 : Working with Methods - Overloading 
 

Which of the following are true regarding overloading of a method?
 

Correct Option is :  B 

A. An overloading method must have a different parameter list and same return type as that of the overloaded method.
There is no restriction on the return type. If the parameters are different then the methods are totally different (other than the name) so their return types can be anything.


B. If there is another method with the same name but with a different number of arguments in a class then that method can be called as overloaded.
 


C. If there is another method with the same name and same number and type of arguments but with a different return type in a class then that method can be called as overloaded.
For overloading a method, the "signature" of the overloaded methods must be different. In simple terms, a method signature includes method name and the number and type of arguments that it takes. So if the parameter list of the two methods with the same name are different either in terms of number or in terms of the types of the parameters, then they are overloaded.



For example:

Method m1 is overloaded if you have two methods : void m1(int k); and void m1(double d); 

or if you have: void m1(int k); and void m1(int k, double d); 



Note that return type is not considered a part of the method signature.


D. An overloaded method means a method with the same name and same number and type of arguments exists in the super class and sub class.
This is called overriding and not overloading.


 
Back to Question without Answer
 



58.     QID - 2.1255 : Handling Exceptions 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      loop :         // 1
      {
         System.out.println("Loop Lable line");
         try{
            for (  ;  true ;  i++ ){
               if( i >5) break loop;       // 2
            }
         }
         catch(Exception e){
            System.out.println("Exception in loop.");
         }
         finally{
            System.out.println("In Finally");      // 3
         }
      }
   }
}


 

Correct Option is :  C 

A. Compilation error at line 1 as this is an invalid syntax for defining a label.
You can apply a label to any code block or a block level statement (such as a for statement) but not to declarations. For example: loopX : int i = 10;


B. Compilation error at line 2 as 'loop' is not visible here.
 


C. No compilation error and line 3 will be executed.
Even if the break takes the control out of the block, the finally clause will be executed.


D. No compilation error and line 3 will NOT be executed.
 


E. Only the line with the label loop will be printed.
 


Explanation: 
A break without a label breaks the current loop (i.e. no iterations any more) and a break with a label tries to pass the control to the given label.

'Tries to' means that if the break is in a try block and the try block has a finally clause associated with it then it will be executed.

 
Back to Question without Answer
 



59.     QID - 2.875 : Working with Methods 
 

What will the following code print when compiled and run:

class Data {

    int intVal = 0;
    String strVal = "default";
    public Data(int k){
        this.intVal = k; 
    }

}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d1 = new Data(10);
        d1.strVal = "D1";
        Data d2 = d1;
        d2.intVal = 20;
        System.out.println("d2 val = "+d2.strVal);
    }
}


 

Correct Option is :  C 

A. d2 val =
 


B. d2 val = default
 


C. d2 val = D1
 


D. Exception at run time.
 


Explanation: 
This is quite straight forward question. You are creating only one Data object. You are setting its strVal field to "D1". Next, you declare another Data variable d2 and assign to it the same Data object. 



Thus, when you access strVal using d2, you will get D1.



The "throws Exception" part is not required and is there just to confuse you.

 
Back to Question without Answer
 



60.     QID - 2.1232 : Java Basics 
 

Which of the following lines can be inserted at line 1 to make the program run?



//line 1

public class TestClass{

  public static void main(String[] args){

     PrintWriter pw = new PrintWriter(System.out);

     OutputStreamWriter osw  =  new OutputStreamWriter( System.out );

     pw.print("hello");

  }

}



Assume that PrintWriter and OutputStreamWriter are valid classes in java.io package.
 

Correct Option is :  B 

A. import java.lang.*;
Although you can import java.lang package explicitly, it is not required because this package is always imported by the compiler.


B. import java.io.*;
This will make all the classes of java.io package available.


C. import java.io.OutputStreamWriter;
This will only make OutputStreamWriter available. PrintWriter will still be unavailable.


D. include java.io.*;
include is not valid keyword in Java.


E. include java.lang.System;
 


 
Back to Question without Answer
 



61.     QID - 2.890 : Working with Java Data Types 
 

Given:


class Square {
    private double side = 0;
    String color;
    public Square(double length){
        this.side = length;
    }
    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Square mysq = new Square(10);
        mysq.color = "red";
        
        //set mysq's side to 20
    }
}


Which of the following statements will set the side of Square object referred by mysq to 20?
 

Correct Option is :  C 

A. mysq.side = 20;
Since side is a private variable, you cannot access it from outside Square class.


B. mysq = new Square(20);
This will create a new Square object.


C. mysq.setSide(20);
 


D. side = 20;
 


E. Square.mysq.side = 20;
 


 
Back to Question without Answer
 



62.     QID - 2.859 : Using Operators and Decision Constructs 
 

What will the following code print when run?



public class TestClass {



    public void switchString(String input){

        switch(input){

            case "a" : System.out.println( "apple" );

            case "b" : System.out.println( "bat" );

                break;

            case "c" : System.out.println( "cat" );                

            default : System.out.println( "none" );

        }

    }



    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        tc.switchString("c");

    }

}
 

Correct Option is :  C 

A. apple

cat

none
 


B. apple

cat
 


C. cat

none
Since there is a case condition that matches the input string "c", that case statement will be executed directly. This prints "cat". Since there is no break after this case statement and the next case statement, the control will fall through the next one (which is default : ) and so "none" will be printed as well.


D. cat
 


Explanation: 
In the JDK 7 release, you can use a String object in the expression of a switch statement:



public String getTypeOfDayWithSwitchStatement(String dayOfWeekArg) {

     String typeOfDay;

     switch (dayOfWeekArg) {

         case "Monday":

             typeOfDay = "Start of work week";

             break;

         case "Tuesday":

         case "Wednesday":

         case "Thursday":

             typeOfDay = "Midweek";

             break;

         case "Friday":

             typeOfDay = "End of work week";

             break;

         case "Saturday":

         case "Sunday":

             typeOfDay = "Weekend";

             break;

         default:

             throw new IllegalArgumentException("Invalid day of the week: " + dayOfWeekArg);

     }

     return typeOfDay;

}



The switch statement compares the String object in its expression with the expressions associated with each case label as if it were using the String.equals method; consequently, the comparison of String objects in switch statements is case sensitive. The Java compiler generates generally more efficient bytecode from switch statements that use String objects than from chained if-then-else statements.

 
Back to Question without Answer
 



63.     QID - 2.1002 : Working with Inheritance 
 

Given the following definitions and reference declarations:


interface I1 { }
interface I2 { }
class C1 implements I1 { }
class C2 implements I2 { }
class C3 extends C1 implements I2 { }
C1 o1;
C2 o2;
C3 o3;


Which of these statements are legal?
 

Correct Options are :  A D E 

A. class C4 extends C3 implements I1, I2 { }
Although, the implements I1, I2 is redundant here because C3 already implements I1 and I2, it is not invalid.


B. o3 = o1;
superclass reference cannot be assigned to subclass reference without explicit cast.


C. o3 = o2;
There is no way a reference of class C2 (which is o2) can point to an object of class C3 because C2 and C3 have no inheritance relationship. So this assignment is rejected at compile time itself.


D. I1 i1 = o3; I2 i2 = (I2) i1;
This is valid because at run time i1 actually refers to an object that implements I2.


E. I1 b = o3;
Because C3 extends C1 which implements I1.


 
Back to Question without Answer
 



64.     QID - 2.985 : Working with Java Data Types 
 

Which of the following declarations are valid?
 

Correct Options are :  C D E 

A. float f1 = 1.0;
1.0 is a double.


B. float f = 43e1;
43e1 is a double.


C. float f = -1;
 


D. float f = 0x0123;
 


E. float f = 4;
 


Explanation: 
Although the values in the option 1 and 2 are compile time constants and the values i.e. 1.0 and 43e1 can fit into a float, implicit narrowing does not happen because implicit narrowing is permitted only among byte, char, short, and int.

 
Back to Question without Answer
 



65.     QID - 2.1196 : Using Operators and Decision Constructs 
 

Consider the following code snippet:



XXXX m ; 

//other code

  switch( m ){

     case 32  : System.out.println("32");   break;

     case 64  : System.out.println("64");   break;

     case 128 : System.out.println("128");  break;

  }



What type can 'm' be of so that the above code compiles and runs as expected ?
 

Correct Options are :  A C E 

A. int m;
m can hold all the case values.


B. long m;
long, float, double, and boolean can never be used as a switch variable.


C. char m;
m can hold all the case values.


D. byte m;
m will not be able to hold 128. a byte's range is -128 to 127.


E. short m;
m can hold all the case values.


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



66.     QID - 2.891 : Using Loop Constructs 
 

What can you do to make the following code compile?



public class TestClass {

    public static void main(String[] args) {

        int[] values = { 10, 20, 30 };

        for( /* put code here */ ){

        }

    }

}
 

Correct Options are :  A D 

A. int k : values
 


B. int k in values
 


C. int k; k<0; k++
k must be initialized first. So it should be: int k=0; k<0; k++


D. ;;
It will cause an infinite loop, but it is valid.


E. ; k<values.length;k++
k needs to be declared first.


 
Back to Question without Answer
 



67.     QID - 2.1249 : Java Basics 
 

Consider the following class:



public class ArgsPrinter{

   public static void main(String args){

      for(int i=0; i<3; i++){

         System.out.print(args+" ");

      }

   }

}



What will be printed when the above class is run using the following command line:

java ArgsPrinter 1 2 3 4
 

Correct Option is :  E 

A. 1 2 3
 


B. ArgsPrinter 1 2 
 


C. java ArgsPrinter 1 2 
 


D. 1 1 1
 


E. None of these.
 


Explanation: 
To run a class from the command line, you need a main(String[] ) method that takes an array of Strings array not just a String. Therefore, an exception will be thrown at runtime saying no main(String[] ) method found. Note that String[] and String... are equivalent and so  parameter type of String... is also valid for main method. When you use String... the compiler allows you to pass any number of String arguments to that method but internally, compiler converts String... to String[]. It also wraps the arguments into a String[] and invokes the String[] method. The JVM has no idea about String.... It sees only String[].

 
Back to Question without Answer
 



68.     QID - 2.1423 : Java Basics 
 

What will the following code print when compiled and run?



public class Paper {

    public String title;

    public int id;

    

    public Paper(String title, int id){

        this.title = title;

        this.id = id;

    }

    

    public static void main(String[] args) {

        Paper[] papers = { 

            new Paper("T1", 1), 

            new Paper("T2", 2),

            new Paper("T3", 3)

        };

        

        System.out.println(papers);

        System.out.println(papers[1]);

        System.out.println(papers[1].id);

    }

}
 

Correct Option is :  D 

A. papers

Paper

2
 


B. papers

T2,2

2
 


C. [LPaper;@<hashcode>

Paper

2
 


D. [LPaper;@<hashcode>

Paper@<hashcode>

2
 


Explanation: 
You may find a few simple questions in the exam that expect you to know what is printed when you pass an array to System.out.print/println. All you need to know is that when the class (or the superclass) of an object does not override the toString method, Object class's toString is used, which prints the name of the class + @ sign + hash code of the object.



Now, in case of an array, the name of the class is a little complicated. The details (given here: http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName-- ) are:

The internal form of the name consists of the name of the element type preceded by one or more '[' characters representing the depth of the array nesting. The encoding of element type names is as follows:



Element Type   Encoding

boolean   Z

byte      B

char      C

class or interface   Lclassname;  <-- Observe the character L here

double   D

float       F

int          I

long       J

short     S



For example, the name of one dimensional byte array is [B. Therefore, if you pass it to print/println method, [B@<hashcode> will be printed.

The name of two dimensional byte array is [[B. Therefore, if you pass it to print/println method, [[B@<hashcode> will be printed.



Thus, in this question, the first println statement will print [LPaper;@<hashcode> and the second println will print Paper@<hashcode>, both followed by a new line, of course.

 
Back to Question without Answer
 



69.     QID - 2.910 : Working with Inheritance 
 

Consider the following code:





interface Flyer{ String getName(); }



class Bird implements Flyer{

    public String name;

    public Bird(String name){

        this.name = name;

    }

    public String getName(){ return name; }

}



class Eagle extends Bird { 

    public Eagle(String name){

        super(name);

    }

}



public class TestClass {

    public static void main(String[] args) throws Exception {

        Flyer f = new Eagle("American Bald Eagle");

        //PRINT NAME HERE

   }

}



Which of the following lines of code will print the name of the Eagle object?
 

Correct Options are :  B C D 

A. System.out.println(f.name);
 


B. System.out.println(f.getName());
 


C. System.out.println(((Eagle)f).name);
 


D. System.out.println(((Bird)f).getName());
 


E. System.out.println(Eagle.name);
name is not a static field in class Eagle.


F. System.out.println(Eagle.getName(f));
This option doesn't make any sense.


Explanation: 
While accessing a method or variable, the compiler will only allow you to access a method or variable that is visible through the class of the reference.



When you try to use f.name, the class of the reference f is Flyer and Flyer has no field named "name", thus, it will not compile. But when you cast f to Bird (or Eagle), the compiler sees that the class Bird (or Eagle, because Eagle inherits from Bird) does have a field named "name" so ((Eagle)f).name or ((Bird)f).name will work fine.



f.getName() will work because Flyer does have a getName() method.

 
Back to Question without Answer
 



70.     QID - 2.1088 : Using Operators and Decision Constructs 
 

Consider:

o1 and o2 denote two object references to two different objects of the same class.

Which of the following statements are true?
 

Correct Options are :  C D 

A. o1.equals(o2) will always be false.
It depends on how the equals method is overridden. If it is not overridden, then it will return false.


B. o1.hashCode() == o2.hashCode() will always be false.
hashCode() can be overridden and so the given statements is not true.


C. o1 == o2 will always be false.
The == operator compares whether the two references are pointing to the same object or not. Here, they are not, so it returns false.


D. Nothing can be said about o1.equals(o2) regarding what it will return based on the given information.
It depends on how the class implements this method.


E. Nothing can be said about o1 == o2.
It will always return false if references are to two different objects.


Explanation: 
Note that both equals() and hashCode() methods can be overridden by the programmer so you can't say anything about what they will return without looking at the code.

 
Back to Question without Answer
 



71.     QID - 2.1200 : Handling Exceptions 
 

What can be done to get the following code to compile and run?
(Assume that the options are independent of each other.)


public float parseFloat( String s ){
     float f = 0.0f;      // 1
     try{
          f = Float.valueOf( s ).floatValue();    // 2
          return f ;      // 3
     }
     catch(NumberFormatException nfe){
        f = Float.NaN ;    // 4
       return f;     // 5
     }
     finally {
         return f;     // 6
     }
     return f ;    // 7
 }

 

Correct Options are :  A C D E 

A. Remove line 3, 6
 


B. Remove line 5
 


C. Remove line 5, 6
 


D. Remove line 7
 


E. Remove line 3, 7
 


Explanation: 
Basically, an unreachable statement causes a compilation error (There is one exception: if(false) { ... } is valid.). As such, line 7 is unreachable because of the return statement in finally. This is because finally is always executed and there it returns a value, so there is no way line 7 can be executed!

    

When you remove the lines suggested by the options, all the lines of code are executed in one case or another. For example, in option 1, if you comment line 3 and 6, Line 7 will be executed if no exception is thrown in the try block.



We suggest you to try working out other scenarios yourself in a similar manner.

 
Back to Question without Answer
 



72.     QID - 2.868 : Working with Java API - String, StringBuilder 
 

How can you initialize a StringBuilder to have a capacity of at least 100 characters?
 

Correct Options are :  A D 

A. StringBuilder sb = new StringBuilder(100);
public StringBuilder(int capacity)

Constructs a string builder with no characters in it and an initial capacity specified by the capacity argument.


B. StringBuilder sb = StringBuilder.getInstance(100);
 


C. StringBuilder sb = new StringBuilder();

sb.setCapacity(100);
There is no setCapacity method in StringBuilder.


D. StringBuilder sb = new StringBuilder();

sb.ensureCapacity(100);
public void ensureCapacity(int minimumCapacity)

Ensures that the capacity is at least equal to the specified minimum. If the current capacity is less than the argument, then a new internal array is allocated with greater capacity. The new capacity is the larger of: 

The minimumCapacity argument. 

Twice the old capacity, plus 2. 

If the minimumCapacity argument is nonpositive, this method takes no action and simply returns.


Explanation: 
Observe that the question says "at least 100 characters". In the exam, you may get a question that says "100 characters", in that case, ensureCapacity() may not be a valid option.

 
Back to Question without Answer
 



73.     QID - 2.1371 : Working with Java Data Types 
 

Given the following declarations:

        int a = 5, b = 7, k = 0;

        Integer m = null;

and the following statements:



        k = new Integer(a) + new Integer(b);  //1

        k = new Integer(a) + b; //2

        k = a + new Integer(b); //3

        m = new Integer(a) + new Integer(b); //4



Executed independent of each other, what will be the value of k (for //1, //2, and //3) and m (for //4) after execution of each of these statements?
 

Correct Option is :  C 

A. 12

will not compile

will not compile

12
 


B. will not compile

will not compile

will not compile

12
 


C. 12

12

12

12
 


D. will not compile

will not compile

will not compile

will not compile
 


E. 12

12

12

will not compile
 


Explanation: 
In all of these statements, auto-unboxing of integers will occur. For the last statement, after unboxing a and b, the value 12 will be boxed into an Integer object.

 
Back to Question without Answer
 



74.     QID - 2.1431 : Working with Java API - Time and Date 
 

Given the following line of code:



LocalDateTime dt = LocalDateTime.parse("2015-01-02T17:13:50");



Which of the following lines will return the date string in ISO 8601 format?
 

Correct Options are :  B D 

A. dt.format(java.time.format.DateTimeFormatter.DATE_TIME);
DATE_TIME is not a valid formatter.


B. dt.format(java.time.format.DateTimeFormatter.ISO_DATE_TIME);
 


C. dt.format(java.time.format.DateTimeFormatter.LOCAL_DATE_TIME);
LOCAL_DATE_TIME is not a valid formatter. ISO_LOCAL_DATE_TIME is valid though, which is same as ISO_DATE_TIME except that it does not use the Zone or Offset. Details are not too important for the exam but you may check out the JavaDoc descriptions of both as they have good examples.


D. dt.toString();
LocalDateTime's toString method generates the String in ISO 8601 format.


 
Back to Question without Answer
 



75.     QID - 2.898 : Working with Java Data Types 
 

Given:

public class Employee{
    String name;
    public Employee(){
    }
}


Which of the following lines creates an Employee instance?
 

Correct Option is :  B 

A. Employee e;
This declares a variable of class Employee but does not create any object.


B. Employee e = new Employee();
Using the new operator is the right way to create an object.


C. Employee e = Employee.new();
 


D. Employee e = Employee();
 


 
Back to Question without Answer
 



76.     QID - 2.1220 : Working with Inheritance 
 

Given the following classes and declarations, which of these statements about //1 and //2 are true?


class A{
   private int i = 10;
   public void  f(){}
   public void g(){}
}

class B extends A{
   public int i = 20;
   public void g(){}
}

public class C{
   A a = new A();//1
   A b = new B();//2
}

 

Correct Option is :  E 

A. System.out.println(b.i); will print 10.
Since variable b is declared as of class A, you cannot do b.i even if the actual object is of class B because i in A is private.


B. The statement b.f( ); will give compile time error..
class A has f() so b.f() is legal.


C. System.out.println(b.i); will print 20
Since variable b is declared as of class A, you cannot do b.i even if the actual object is of class B because i in A is private.


D. All the above are correct.
 


E. None of the above statements is correct.
 


Explanation: 
Remember that variables and static methods are not overridden and so access to variables and static methods is determined at compile time based on the type of the variable (instead of type of the object referred to by the variable, as is the case with instance methods.)

In the given code, if you declare b to be of type B i.e. B b = new B();, you can access b.i.

 
Back to Question without Answer
 



77.     QID - 2.1468 : Lambda Expressions 
 

Given :



interface Process{

    public void process(int a, int b);

}



public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void processList(ArrayList<Data> dataList, Process p){

   for(Data d: dataList){

        p.process(d.value, d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 1 4 9?
 

Correct Options are :  B D E 

A. processList(al, a, b->System.out.println(a*b));
Observe that without the brackets over a, b, it would imply that you are trying to pass 3 arguments to processList method - a, b, and b->System.out.println(a*b), which is incorrect. You actually want to pass only two arguments - a and the lambda expression. Therefore, whenever the method of a functional interface takes more than one parameter, you need to put the arguments within brackets. 



If the method of a functional interface takes one parameter, you can omit the brackets. For example, x -> expression and (x) -> expression are equivalent.



If the method of a functional interface takes no parameter, you must write empty brackets. For example, ( ) -> expression


B. processList(al, (int a, int b)->System.out.println(a*b) );
 


C. processList(al, (int a, int b)->System.out.println(a*b); );
When your method body comprises only a single expression, you must omit the semi-colon.


D. processList(al, (a, b)->System.out.println(a*b));
It is ok to omit the parameter types in case of a functional interface because the compiler can determine the type of the parameters by looking at the interface method.


E. processList(al, (a, b) ->{  System.out.println(a*b); } );
If you enclose your method body within curly braces, you must write complete lines of code including the semi-colon. 

FYI, if the method is supposed to return a value, then you must include a return statement just like you do in a regular method if you are using the curly braces syntax.


Explanation: 
There is a simple trick to identify invalid lambda constructs. When you write a lambda expression for a functional interface, you are essentially providing an implementation of the method declared in that interface but in a very concise manner.  Therefore, the lambda expression code that you write must contain all the pieces of the regular method code except the ones that the compiler can easily figure out on its own such as the parameter types, return keyword, and brackets. So, in a lambda expression, just check that all the information is there and that the expression follows the basic syntax - 



(parameter list) OR single_variable_without_type -> { regular lines of code } OR just_an_expression_without_semicolon



For a complete discussion on this topic please see this short tutorial - http://enthuware.com/index.php/home/115

 
Back to Question without Answer
 



Test 3



01.     QID - 2.1181 
 

What would be the result of attempting to compile and run the following code?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[]){
      B c = new C();
      System.out.println(c.max(10, 20));
   }
}
class A{
   int max(int x, int y)  { if (x>y) return x; else return y; }
}
class B extends A{
  int max(int x, int y)  {  return 2 * super.max(x, y) ; }
}
class C extends B{
  int max(int x, int y)  {  return super.max( 2*x, 2*y); }
}


 

Select 1 option

A. The code will fail to compile.
 


B. Runtime error.
 


C. The code will compile without errors and will print 80 when run.
 


D. The code will compile without errors and will print 40 when run.
 


E. The code will compile without errors and will print 20 when run.
 


 
Check Answer
 



02.     QID - 2.1461 
 

Consider the following class...

public class ParamTest {

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  public static void printSum(float a, float b){ 

      System.out.println("In float "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1.0, 2.0);

  }

}



What will be printed?
 

Select 1 option

A. In float 3
 


B. In float 3.0
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


 
Check Answer
 



03.     QID - 2.896 
 

Which of the following classes have a default constructor?



class A{  }

class B {  B(){ } }

class C{  C(String s){ } }


 

Select 1 option

A. A
 


B. A and B
 


C. B
 


D. C
 


E. B and C
 


 
Check Answer
 



04.     QID - 2.984 
 

Following is a supposedly robust method to parse an input for a float : 


public float parseFloat(String s){
   float f = 0.0f;
   try{
      f = Float.valueOf(s).floatValue();
      return f ;
   }
   catch(NumberFormatException nfe){
      System.out.println("Invalid input " + s);
      f = Float.NaN ;
      return f;
   }
   finally { System.out.println("finally");  }
   return f ;
}


Which of the following statements about the above method is/are true?
 

Select 1 option

A. If input is 0.1 then it will return 0.1 and print finally.
 


B. If input is 0x.1 then it will return Float.NaN and print Invalid input 0x.1 and finally.
 


C. If input is 1 then it will return 1.0 and print finally.
 


D. If input is 0x1 then it will return 0.0 and print Invalid input 0x1 and finally.
 


E. The code will not compile.
 


 
Check Answer
 



05.     QID - 2.1460 
 

Consider the following class...

public class ParamTest {

  public static void printSum(int a, int b){ 

      System.out.println("In int "+(a+b));

  }

  

  public static void printSum(Integer a, Integer b){ 

      System.out.println("In Integer "+(a+b));

  }

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1, 2);

  }

}



What will be printed?
 

Select 1 option

A. In int 3
 


B. In Integer 3
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


 
Check Answer
 



06.     QID - 2.1453 
 

Given:

        LocalDate d1 = LocalDate.parse("2015-02-05", DateTimeFormatter.ISO_DATE);

        LocalDate d2 = LocalDate.of(2015, 2, 5);

        LocalDate d3 = LocalDate.now();

        System.out.println(d1);

        System.out.println(d2);

        System.out.println(d3);



Assuming that the current date on the system is 5th Feb, 2015, which of the following will be a part of the output?
 

Select 1 option

A. 5th Feb, 2015
 


B. 2015-02-05T00:00:00
 


C. 02/05/2015
 


D. 05/02/2015
 


E. java.time.format.DateTimeParseException
 


F. None of the above.
 


 
Check Answer
 



07.     QID - 2.938 
 

What will the following program print? 


class Test{
   public static void main(String[] args){
      int i = 4;
      int ia[][][] = new int[i][i = 3][i];
      System.out.println( ia.length + ", " + ia[0].length+", "+ ia[0][0].length);
   }
}

 

Select 1 option

A. It will not compile.
 


B. 3, 4, 3
 


C. 3, 3, 3
 


D. 4, 3, 4
 


E. 4, 3, 3
 


 
Check Answer
 



08.     QID - 2.1465 
 

What will the following code snippet print?



        List s1 = new ArrayList( );

        try{

            while(true){

                s1.add("sdfa");

            }

        }catch(RuntimeException e){

            e.printStackTrace();

        }

        System.out.println(s1.size());
 

Select 1 option

A. It will not compile.
 


B. It will print a RuntimeException stack trace from the catch clause.
 


C. It will throw an error at runtime that will not be caught by the catch block.
 


D. It will print a stack trace from the catch clause and a number depending on the memory available in the system.
 


E. It will only print a number depending on the memory available in the system.
 


 
Check Answer
 



09.     QID - 2.881 
 

Java's Exception mechanism helps in which of the following ways?
 

Select 2 options

A. It allows creation of new exceptions that are custom to a particular application domain.
 


B. It improves code because error handling code is clearly separated from the main program logic.
 


C. It enhances the security of the application by reporting errors in the logs.
 


D. It improves the code because the exception is handled right at the place where it occured.
 


E. It provides a vast set of standard exceptions that covers all possible exceptions.
 


 
Check Answer
 



10.     QID - 2.861 
 

You want to find out whether two strings are equal or not,  in terms of the actual characters within the strings. What is the best way to do this?
 

Select 1 option

A. use String's equals method.
 


B. use String's equalsIgnoreCase method.
 


C. Use == operator.
 


D. Use String's match method.
 


 
Check Answer
 



11.     QID - 2.1186 
 

What will the following code print when compiled and run?



public class TestClass {

  public static void main(String[] args) {



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    s.append("whopper");

    sb.append("shopper");

    

    System.out.println(s);

    System.out.println(sb);

  }

}
 

Select 1 option

A. blooper and bloopershopper
 


B. blooperwhopper and bloopershopper
 


C. blooper and blooperwhoppershopper
 


D. It will not compile.
 


 
Check Answer
 



12.     QID - 2.963 
 

Consider the following code snippet:



    for(int i=INT1; i<INT2; i++){

        System.out.println(i);

    }



INT1 and INT2 can be any two integers.



Which of the following will produce the same result?
 

Select 1 option

A. for(int i=INT1; i<INT2; System.out.println(++i));
 


B. for(int i=INT1; i++<INT2; System.out.println(i));
 


C. int i=INT1; while(i++<INT2) { System.out.println(i); }
 


D. int i=INT1; do { System.out.println(i); }while(i++<INT2);
 


E. None of these.
 


 
Check Answer
 



13.     QID - 2.996 
 

Consider the following program:


class Game {
  public void play() throws Exception   {
    System.out.println("Playing...");
  }
}

class Soccer extends Game {
   public void play(String ball)    {
      System.out.println("Playing Soccer with "+ball);      
   }
}

public class TestClass {
   public static void main(String[] args) throws Exception  {
       Game g = new Soccer();
       // 1
       Soccer s = (Soccer) g;
       // 2
   }
}


Which of the given options can be inserted at //1 and //2?
 

Select 2 options

A. It will not compile as it is.
 


B. It will throw an Exception at runtime if it is run as it is.
 


C. g.play(); at //1 and s.play("cosco"); at //2
 


D. g.play(); at //1 and s.play(); at //2
 


E. g.play("cosco"); at //1 and s.play("cosco"); at //2
 


 
Check Answer
 



14.     QID - 2.1312 
 

Which of the following code fragments are valid method declarations?
 

Select 1 option

A. void method1{ }
 


B. void method2( ) { }
 


C. void method3(void){ }
 


D. method4{ }
 


E. method5(void){ }
 


 
Check Answer
 



15.     QID - 2.1412 
 

Checked exceptions are meant for...
 

Select 1 option

A. exceptional conditions external to an application that a well written application should anticipate and from which it can recover.
 


B. exceptional conditions external to the program  that a well written program cannot anticipate but should recover from.
 


C. exceptional conditions from which recovery is difficult or impossible.
 


D. exceptional situations internal to an application that the application can anticipate but cannot recover from.
 


 
Check Answer
 



16.     QID - 2.1402 
 

What will the following program print when run?

public class Operators{



    public static int operators(){

        int x1 = -4;

        int x2 = x1--;

        int x3 = ++x2;

        if(x2 > x3){

            --x3;

        }else{

            x1++;

        }

        return x1 + x2 + x3;

    }

    public static void main(String[] args) {

        System.out.println(operators());

    }

}
 

Select 1 option

A. -9
 


B. -10
 


C. -11
 


D. -12
 


 
Check Answer
 



17.     QID - 2.925 
 

Given:


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<Double> al = new ArrayList<>();

        //INSERT CODE HERE
     }
}


What can be inserted in the above code so that it can compile without any error?
 

Select 2 options

A. al.add(111);
 


B. System.out.println(al.indexOf(1.0));
 


C. System.out.println(al.contains("string"));
 


D. Double d = al.get(al.length);
 


 
Check Answer
 



18.     QID - 2.857 
 

Consider the following code:



public class TestClass {

  

    //define tester method here

    

    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        while(tc.tester()){

            System.out.println("running...");

        }

    }

}



Which of the following options would be a valid implementation of tester() method?
 

Select 2 options

A.   public boolean tester(){

        return false;

    }
 


B.    public Boolean tester(){

        return false;

    }
 


C.     public tester(){

        return false;

    }
 


D.    public int tester(){

        return 0;

    }
 


E.   public String tester(){

        return "false";

    }
 


 
Check Answer
 



19.     QID - 2.928 
 

Given the following set of member declarations, which of the following is true?


 int a;    //  (1)
 static int a;    //  (2)
 int f( )   { return a; }    //  (3)
 static int f( ) { return a; }    //  (4)


 

Select 2 options

A. Declarations (1) and (3) cannot occur in the same class definition.
 


B. Declarations (2) and (4) cannot occur in the same class definition.
 


C. Declarations (1) and (4) cannot occur in the same class definition.
 


D. Declarations (2) and (3) cannot occur in the same class definition.
 


E. Declarations (1) and (2) cannot occur in the same class definition.
 


 
Check Answer
 



20.     QID - 2.1022 
 

What will be the output of the following program (excluding the quotes)?



public class SubstringTest{

   public static void main(String args[]){

      String String = "string isa string";

      System.out.println(String.substring(3, 6));

   }

}
 

Select 1 option

A. It will not compile.
 


B. "ing is"
 


C. "ing isa"
 


D. "ing " (There is a space after g)
 


E. None of the above.
 


 
Check Answer
 



21.     QID - 2.904 
 

Given:

class Triangle{
    public int base;
    public int height;
    private static double ANGLE;

    public static double getAngle();
    
    public static void Main(String[] args) {
        System.out.println(getAngle());
    }
}


Identify the correct statements:
 

Select 1 option

A. It will not compile because it does not implement setAngle method.
 


B. It will not compile because ANGLE cannot be private.
 


C. It will not compile because getAngle() has no body.
 


D. It will not compile because ANGLE field is not initialized.
 


E. It will not compile because of the name of the method Main instead of main.
 


 
Check Answer
 



22.     QID - 2.1014 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

     Object obj1 = new Object();

     Object obj2 = obj1;

     if( obj1.equals(obj2) ) System.out.println("true");

     else  System.out.println("false");

  }

}
 

Select 1 option

A. true
 


B. false
 


C. It will not compile.
 


D. It will compile but throw an exception at run time.
 


E. None of the above.
 


 
Check Answer
 



23.     QID - 2.948 
 

Which statements about the output of the following programs are true?


public class TestClass{
   public static void main(String args[ ] ){
      int i = 0 ;
      boolean bool1 = true;
      boolean bool2 = false;
      boolean bool  = false;
      bool = (bool2 &  method1("1"));  //1
      bool = (bool2 && method1("2"));  //2
      bool = (bool1 |  method1("3"));  //3
      bool = (bool1 || method1("4"));  //4
   }
   public static boolean method1(String str){
      System.out.println(str);
      return true;
   }
}

 

Select 2 options

A. 1 will be the part of the output.
 


B. 2 will be the part of the output.
 


C. 3 will be the part of the output.
 


D. 4 will be the part of the output.
 


E. None of the above
 


 
Check Answer
 



24.     QID - 2.1347 
 

Consider the following code...



class MyException extends Exception {}



public class TestClass{

     public void myMethod() throws XXXX{

         throw new MyException();

     }

}



What can replace XXXX?
 

Select 3 options

A. MyException
 


B. Exception
 


C. No throws clause is necessary
 


D. Throwable
 


E. RuntimeException
 


 
Check Answer
 



25.     QID - 2.1090 
 

What is the effect of compiling and running the code shown in exhibit?


public class TestClass{
   public static void main (String args []){
      int sum = 0;
      for (int i = 0, j = 10; sum > 20; ++i, --j)      // 1
      {
         sum = sum+ i + j;
      }
      System.out.println("Sum = " + sum);
   }
}

 

Select 1 option

A. Compile time error at line 1.
 


B. It will print Sum = 0
 


C. It will print Sum = 20
 


D. Runtime error.
 


E. None of the above.
 


 
Check Answer
 



26.     QID - 2.1346 
 

Which of the following statements can be inserted at // 1 to make the code compile without errors?
 

public class InitTest{
   static int si = 10;
   int  i;
   final boolean bool;
   // 1
}


 

Select 1 option

A. instance { bool = true; }
 


B. InitTest() { si += 10; }
 


C. { si = 5; i = bool ? 1000 : 2000;}
 


D. { i = 1000; }
 


E. { bool = (si > 5); i = 1000; }
 


 
Check Answer
 



27.     QID - 2.1092 
 

What will the following class print when compiled and run?


class Holder{
   int value = 1;
   Holder link;
   public Holder(int val){ this.value = val; }
   public static void main(String[] args){
	final Holder a = new Holder(5);
	Holder b = new Holder(10);
	a.link = b;
	b.link = setIt(a, b);
	System.out.println(a.link.value+" "+b.link.value);
   }
   
   public static Holder setIt(final Holder x, final Holder y){
       x.link = y.link;
       return x;
   }
   
}


 

Select 1 option

A. It will not compile because 'a' is final.
 


B. It will not compile because method setIt() cannot change x.link.
 


C. It will print 5, 10.
 


D. It will print 10, 10.
 


E. It will throw an exception when run.
 


 
Check Answer
 



28.     QID - 2.1217 
 

Consider the following classes in one file named A.java...



abstract class A{

   protected int m1(){ return 0; }

}

class B extends A{

   int m1(){ return 1; }

}



Which of the following statements are correct...
 

Select 1 option

A. The code will not compile as you cannot have more than 1 class in 1 file.
 


B. The code will not compile because class B does not override the method m1() correctly.
 


C. The code will not compile as A is an abstract class.
 


D. The code will not compile as A does not have any abstract method.
 


E. The code will compile fine.
 


 
Check Answer
 



29.     QID - 2.1456 
 

Which of the following are benefits of polymorphism?
 

Select 2 options

A. It makes the code more reusable.
 


B. It makes the code more efficient.
 


C. It protects the code by preventing extension.
 


D. It makes the code more dynamic.
 


 
Check Answer
 



30.     QID - 2.1372 
 

Identify the exceptions that will be received when the following code snippets are executed.



1. int factorial(int n){

       if(n==1) return 1;

      else return n*factorial(n-1);

   }

Assume that it is called with a very large integer.



2. void printMe(Object[] oa){

       for(int i=0; i<=oa.length; i++)

       System.out.println(oa[i]);

    }

Assume that it is called as such: printMe(null);



3. Object m1(){

       return new Object(); 

    }

    void m2(){

       String s = (String) m1();

    }

Assume that method m2 is invoked.
 

Select 1 option

A. ClassCastException

ArrayIndexOutOfBoundsException

StackOverflowError
 


B. ClassCastException

ArrayIndexOutOfBoundsException

SecurityException
 


C. No Exception Will Be Thrown

SecurityException

Will Not Compile
 


D. StackOverflowError

NullPointerException

No Exception Will Be Thrown
 


E. StackOverflowError

ArrayIndexOutOfBoundsException

ClassCastException
 


F. StackOverflowError

NullPointerException

NullPointerException
 


G. SecurityException

NullPointerException

No Exception Will Be Thrown
 


H. StackOverflowError

NullPointerException

ClassCastException
 


 
Check Answer
 



31.     QID - 2.1128 
 

What will the following code print?



  int i = 0;

  int j = 1;

  if( (i++ == 0) & (j++ == 2) ){

     i = 12;

  }

  System.out.println(i+" "+j);


 

Select 1 option

A. 1 2
 


B. 2 3
 


C. 12 2
 


D. 12 1
 


E. It will not compile.
 


 
Check Answer
 



32.     QID - 2.922 
 

In the following code, after which statement (earliest), the object originally held in s, may be garbage collected ?





1. public class TestClass{

2.   public static void main (String args[]){

3.      Student s = new Student("Vaishali", "930012");

4.      s.grade();

5.      System.out.println(s.getName());

6.      s = null;

7.      s = new Student("Vaishali", "930012");

8.      s.grade();

9.      System.out.println(s.getName());

10      s = null;

     }

   }



public class Student{

   private String name, rollNumber;

   

   public Student(String name, String rollNumber) {

      this.name = name;

      this.rollNumber = rollNumber;

   }



   //valid setter and getter for name and rollNumber follow



   public void grade() {

   }



}
 

Select 1 option

A. It will not be Garbage Collected till the end of the program.
 


B. Line 5
 


C. Line 6
 


D. Line 7
 


E. Line 10
 


 
Check Answer
 



33.     QID - 2.1319 
 

Given the following code snippet:

   int rate = 10;
   int t = 5;
   XXX amount = 1000.0;
   for(int i=0; i<t; i++){
      amount = amount*(1 - rate/100);
   }


What can XXX be?
 

Select 1 option

A. int
 


B. long
 


C. only double
 


D. double or float
 


E. float
 


 
Check Answer
 



34.     QID - 2.1385 
 

What will the following code print when compiled and run?

(Assume that MySpecialException is an unchecked exception.)



1. public class ExceptionTest {

2.    public static void main(String[] args) {

3.        try {

4.            doSomething();

5.        } catch (MySpecialException e) {

6.            System.out.println(e);

7.        }

8.    }

9.

10.    static void doSomething() {

11.        int[] array = new int[4];

12.        array[4] = 4;

13.        doSomethingElse();

14.    }

15.

16.    static void doSomethingElse() {

17.        throw new MySpecialException("Sorry, can't do something else");

18.    }

}


 

Select 1 option

A. It will not compile.
 


B. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


C. Exception in thread "main" MySpecialException: 4

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


D. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


E. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:13)

    at ExceptionTest.main(ExceptionTest.java:4)
 


 
Check Answer
 



35.     QID - 2.1410 
 

What can be added to the following Person class so that it is properly encapsulated and the code prints 29?



class Person{

    //Insert code here

}

public class Employee extends Person{

        public static void main(String[] args) {

            Employee e = new Employee();

            e.setAge(29);

            System.out.println(e.getAge());

        }

 }
 

Select 2 options

A.     private int age;

    public int getAge() {

        return age;

    }

    public void setAge(int age) {

        this.age = age;

    }


 


B.     protected int age;

    public int getAge() {

        return age;

    }

    public void setAge(int age) {

        this.age = age;

    }


 


C.     int age;

    public int getAge() {

        return age;

    }

    public void setAge(int age) {

        this.age = age;

    }


 


D.     private int age;

    private int getAge() {

        return age;

    }

    private void setAge(int age) {

        this.age = age;

    }


 


E.     private int age;

    public int getAge() {

        return age;

    }

    protected void setAge(int age) {

        this.age = age;

    }


 


 
Check Answer
 



36.     QID - 2.1308 
 

What is the result of compiling and running the following code ?



public class TestClass{

   static int si = 10;

   public static void main (String args[]){

      new TestClass();

   }

   public TestClass(){

      System.out.println(this);

   }

   public String toString(){

      return "TestClass.si = "+this.si;

   }

}


 

Select 1 option

A. The class will not compile because you cannot override toString() method.
 


B. The class will not compile as si being static, this.si is not a valid statement.
 


C. It will print TestClass@nnnnnnnn, where nnnnnnnn is the hash code of the TestClass object referred to by 'this'.
 


D. It will print TestClass.si = 10
 


E. None of the above.
 


 
Check Answer
 



37.     QID - 2.959 
 

What will the following class print ?

class Test{
   public static void main(String[] args){
      int[][] a = { { 00, 01 }, { 10, 11 } };
      int i = 99;
      try {
         a[val()][i = 1]++;
      } catch (Exception e) {
         System.out.println( i+", "+a[1][1]);
      }
   }
   static int val() throws Exception {  
     throw new Exception("unimplemented");  
   }
}


 

Select 1 option

A. 99 , 11
 


B. 1 , 11
 


C. 1 and an unknown value.
 


D. 99 and an unknown value.
 


E. It will throw an exception at Run time.
 


 
Check Answer
 



38.     QID - 2.1452 
 

Following options show the complete code listings of a file. Which of these will compile?
 

Select 2 options

A. //In file A.java

import java.io.*;

package x;

public class A{

}
 


B. //In file B.java

import java.io.*;

class A{

  public static void main() throws IOException{ }

}
 


C. //In file A.java

public class A{

   int a;

   public void m1(){

     private int b = 0;

     a = b;

   }

}
 


D. //In file A.java

public class A{

  public static void main(String[] args){

    System.out.println(new A().main);

  }   

  int main;

}
 


E. Only one of the above options is correct.
 


 
Check Answer
 



39.     QID - 2.1228 
 

What will be the result of attempting to compile and run the following class?


public class InitTest{
   static String s1 = sM1("a");{
      s1 = sM1("b");
   }
   static{
      s1 = sM1("c");
   }
   public static void main(String args[]){
      InitTest it = new InitTest();
   }
   private static String sM1(String s){
      System.out.println(s);  return s;
   }
}


 

Select 1 option

A. The program will fail to compile.
 


B. The program will compile without error and will print a, c and b in that order when run.
 


C. The program will compile without error and will print a, b and c in that order when run.
 


D. The program will compile without error and will print c, a and b in that order when run.
 


E. The program will compile without error and will print b, c and a in that order when run.
 


 
Check Answer
 



40.     QID - 2.1341 
 

What will be result of attempting to compile this class?



import java.util.*;

package test;

public class TestClass{

    public OtherClass oc = new OtherClass();

}

class OtherClass{

    int value;

}
 

Select 1 option

A. The class will fail to compile, since the class OtherClass is used before it is defined.
 


B. There is no problem with the code.
 


C. The class will fail to compile, since the class OtherClass must be defined in a file called OtherClass.java
 


D. The class will fail to compile .
 


E. None of the above.
 


 
Check Answer
 



41.     QID - 2.1164 
 

Which of the following statements will compile without any error?
 

Select 4 options

A. System.out.println("a"+'b'+63);
 


B. System.out.println("a"+63);
 


C. System.out.println('b'+new Integer(63));
 


D. String s = 'b'+63+"a";
 


E. String s = 63 + new Integer(10);
 


 
Check Answer
 



42.     QID - 2.978 
 

Given the following definition of class, which member variables are accessible from OUTSIDE the package com.enthu.qb?



package com.enthu.qb;

public class TestClass{

   int i;

   public int j;

   protected int k;

   private int l;

}
 

Select 2 options

A. Member variable i.
 


B. Member variable j.
 


C. Member variable k.
 


D. Member variable k, but only for subclasses.
 


E. Member variable l.
 


 
Check Answer
 



43.     QID - 2.1354 
 

Which of the following correctly declare a variable which can hold an array of 10 integers?
 

Select 2 options

A. int[ ] iA
 


B. int[10] iA
 


C. int iA[ ]
 


D. Object[ ] iA
 


E. Object[10] iA
 


 
Check Answer
 



44.     QID - 2.1277 
 

Which of the following statements are true?
 

Select 2 options

A. System.out.println(1 + 2 + "3"); would print 33.
 


B. System.out.println("1" + 2 + 3); would print 15.
 


C. System.out.println(4 + 1.0f); would print 5.0
 


D. System.out.println(5/4); would print 1.25
 


E. System.out.println('a' + 1 ); would print b.
 


 
Check Answer
 



45.     QID - 2.1225 
 

Which of these statements concerning the charAt() method of the String class are true?
 

Select 2 options

A. The charAt( ) method can take a char value as an argument.
 


B. The charAt( ) method returns a Character object.
 


C. The expression char ch = "12345".charAt(3) will assign 3 to ch.
 


D. The expression char ch = str.charAt(str.length()) where str is "12345", will assign 3 to ch.
 


E. The index of the first character is 0.
 


F. It throws StringIndexOutOfBoundsException if passed a value higher than or equal to the length of the string (or less than 0).
 


G. It throws ArrayIndexOutOfBoundsException if passed an value higher than or equal to the length of the string (or less than 0).
 


 
Check Answer
 



46.     QID - 2.931 
 

Consider the following classes :


class A{
    public static void sM1() {  System.out.println("In base static"); }
}
class B extends A{
Line 1 :   // public static void sM1() {  System.out.println("In sub static"); }
Line 2 :   // public  void sM1() {  System.out.println("In sub non-static"); }
}


Which of the following statements are true?
 

Select 2 options

A. class B will not compile if line 1 is uncommented.
 


B. class B will not compile if line 2 is uncommented.
 


C. class B will not compile if line 1 and 2 are both uncommented.
 


D. Only the second option is correct.
 


E. Only the third option is correct.
 


 
Check Answer
 



47.     QID - 2.882 
 

What will the following program print when run without any command line argument?


public class TestClass {
    public static void main(String[] args)  {

        boolean hasParams = (args == null ? false : true);
        if(hasParams){
            System.out.println("has params");
        }{
            System.out.println("no params");
        }
    }
}

 

Select 1 option

A. has params
 


B. has params

no params
 


C. no params
 


D. It will not compile.
 


 
Check Answer
 



48.     QID - 2.1037 
 

What will the following code print when compiled and run?


class Base{
   void methodA(){
      System.out.println("base - MethodA");
   }
}

class Sub extends Base{
   public void methodA(){
      System.out.println("sub - MethodA");
   }
   public void methodB(){
      System.out.println("sub - MethodB");
   }
   public static void main(String args[]){
      Base b=new Sub(); //1
      b.methodA(); //2
      b.methodB(); //3
   }
}


 

Select 1 option

A. sub - MethodA and sub - MethodB
 


B. base - MethodA and sub - MethodB
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


 
Check Answer
 



49.     QID - 2.1131 
 

What would be the result of attempting to compile and run the following program?



class TestClass{

   static TestClass ref;

   String[] arguments;

   public static void main(String args[]){

      ref = new TestClass();

      ref.func(args);

   }

   public void func(String[] args){

      ref.arguments = args;

   }

}
 

Select 1 option

A. The program will fail to compile, since the static method main is trying to call the non-static method func.
 


B. The program will fail to compile, since the non-static method func cannot access the static member variable ref.
 


C. The program will fail to compile, since the argument args passed to the static method main cannot be passed on to the non-static method func.
 


D. The program will fail to compile, since method func is trying to assign to the non-static member variable 'arguments' through the static member variable ref.
 


E. The program will compile and run successfully.
 


 
Check Answer
 



50.     QID - 2.1421 
 

What will the following code print when compiled and run?





public class Discounter {

    static double percent; //1

    int offset = 10, base= 50; //2

    public static double calc(double value) {

        int coupon, offset, base; //3

        if(percent <10){ //4

            coupon = 15;

            offset = 20;

            base = 10;

        }

        return coupon*offset*base*value/100; //5

    }

    public static void main(String[] args) {

        System.out.println(calc(100));

    }

}


 

Select 1 option

A. 3000
 


B. 3000.0
 


C. compilation error at //3
 


D. compilation error at //4
 


E. compilation error at //5
 


F. Exception at run time.
 


 
Check Answer
 



51.     QID - 2.1211 
 

What will be the result of attempting to compile and run the following program?



public class TestClass{

   public static void main(String args[]){

      Exception e = null;

      throw e;

   }

}
 

Select 1 option

A. The code will fail to compile.
 


B. The program will fail to compile, since it cannot throw a null.
 


C. The program will compile without error and will throw an Exception when run.
 


D. The program will compile without error and will throw java.lang.NullPointerException when run
 


E. The program will compile without error and will run and terminate without any output.
 


 
Check Answer
 



52.     QID - 2.1339 
 

What will the following code print?


  int i = 1;
  int j = i++;
  if( (i==++j) | (i++ == j) ){
    i+=j;
  }
  System.out.println(i);


 

Select 1 option

A. 3
 


B. 4
 


C. 5
 


D. 2
 


E. It will not compile.
 


 
Check Answer
 



53.     QID - 2.957 
 

What will the following program print?


public class TestClass{
  static int someInt = 10;
  public static void changeIt(int a){
    a = 20;
  }
  public static void main(String[] args){
    changeIt(someInt);
    System.out.println(someInt);
  }
}


 

Select 1 option

A. 10
 


B. 20
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



54.     QID - 2.1331 
 

Note: This question may be considered too advanced for this exam.



Which statements can be inserted at line 1 in the following code to make the program write x on the standard output when run?


public class AccessTest{
   String a = "x";
   static char b = 'x';
   String  c = "x";
   class Inner{
      String  a = "y";
      String  get(){
         String c = "temp";
         // Line 1
         return c;
      }
   }

   AccessTest() { 
     System.out.println(  new Inner().get()  ); 
   }

   public static void main(String args[]) {  new AccessTest();  }
}

 

Select 3 options

A. c = c;
 


B. c = this.a;
 


C. c = ""+AccessTest.b;
 


D. c = AccessTest.this.a;
 


E. c = ""+b;
 


 
Check Answer
 



55.     QID - 2.905 
 

Given the following line of code:



   List students = new ArrayList();



Identify the correct statement:
 

Select 1 option

A. The reference type is List and the object type is ArrayList.
 


B. The reference type is ArrayList and the object type is ArrayList.
 


C. The reference type is ArrayList and the object type is List.
 


D. The reference type is List and the object type is List.
 


 
Check Answer
 



56.     QID - 2.1307 
 

Given:



double daaa[][][] = new double[3][][];

double d = 100.0;

double[][] daa = new double[1][1];



Which of the following will not cause any problem at compile time or runtime?
 

Select 2 options

A. daaa[0] = d;
 


B. daaa[0] = daa;
 


C. daaa[0] = daa[0];
 


D. daa[1][1] = d;
 


E. daa = daaa[0];
 


 
Check Answer
 



57.     QID - 2.1194 
 

Consider the following lines of code:



   System.out.println(null + true); //1

   System.out.println(true + null); //2

   System.out.println(null + null); //3



Which of the following statements are correct?
 

Select 1 option

A. None of the 3 lines will compile.
 


B. All the 3 lines will compile and print nulltrue, truenull and nullnull respectively.
 


C. Line 1 and 2 won't compile but line 3 will print nullnull.
 


D. Line 3 won't compile but line 1 and 2 will print nulltrue and truenull respectively.
 


E. None of the above.
 


 
Check Answer
 



58.     QID - 2.1093 
 

Which statements regarding the following code are correct ?





class Base{

   void method1() throws java.io.IOException, NullPointerException{

      someMethod("arguments");

      // some I/O operations

   }

   int someMethod(String str){

      if(str == null) throw new NullPointerException();

      else return str.length();

   }

}

public class NewBase extends Base{

      void method1(){

           someMethod("args");

      }

}


 

Select 2 options

A. method1 in class NewBase does not need to specify any exceptions.
 


B. The code will not compile because RuntimeExceptions cannot be specified in the throws clause.
 


C. method1 in class NewBase must at least specify IOException in its throws clause.
 


D. method1 in class NewBase must at least specify NullPointerException in its throws clause.
 


E. There is no problem with the code.
 


 
Check Answer
 



59.     QID - 2.1026 
 

Given the class

// Filename: Test.java
public class Test{
   public static void main(String args[]){
      for(int i = 0; i< args.length; i++){
         System.out.print("  "+args[i]);
      }
   }
}


Now consider the following 3 options for running the program:

a: java Test
b: java Test param1
c: java Test param1 param2


Which of the following statements are true?
 

Select 2 options

A. The program will throw java.lang.ArrayIndexOutOfBoundsException on option a.
 


B. The program will throw java.lang.NullPointerException on option a.
 


C. The program will print Test param1 on option b.
 


D. It will print param1 param2 on option c.
 


E. It will not print anything on option a.
 


 
Check Answer
 



60.     QID - 2.1172 
 

Considering the following program, which of the options are true?



public class FinallyTest{

   public static void main(String args[]){

      try{

          if (args.length == 0) return;

          else throw new Exception("Some Exception");

      }

      catch(Exception e){

          System.out.println("Exception in Main");

      }

      finally{

          System.out.println("The end");

      }

   }

}


 

Select 2 options

A. If run with no arguments, the program will only print 'The end'.
 


B. If run with one argument, the program will only print 'The end'.
 


C. If run with one argument, the program will print 'Exception in Main' and 'The end'.
 


D. If run with one argument, the program will only print 'Exception in Main'.
 


E. If run with no arguments, the program will not print anything.
 


F. If run with no arguments, the program will generate a stack trace on the console.
 


 
Check Answer
 



61.     QID - 2.908 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        

         boolean flag  = true;

         switch (flag){

             case true : System.out.println("true");

                 default: System.out.println("false");

         }

              

    }

}
 

Select 1 option

A. It will not compile.
 


B. false
 


C. true

false
 


D. Exception at run time.
 


 
Check Answer
 



62.     QID - 2.912 
 

Which of the following methods does not return any value?
 

Select 1 option

A. public doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
 


B. public null doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
 


C. public doStuff() {

    //valid code not shown

} 
 


D. public void doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
 


E. private doStuff() {

    //valid code not shown

} 
 


 
Check Answer
 



63.     QID - 2.989 
 

Consider the following code:



public class Logger{

    private StringBuilder sb = new StringBuilder();

    

    public void logMsg(String location, String message){

    sb.append(location);

    sb.append("-");

    sb.append(message);

    }

    

    public void dumpLog(){

    System.out.println(sb.toString());

    //Empty the contents of sb here

    }

    

}



Which of the following options will empty the contents of the StringBuilder referred to by variable sb in method dumpLog()?
 

Select 1 option

A. sb.delete(0, sb.length());
 


B. sb.clear();
 


C. sb.empty();
 


D. sb.removeAll();
 


E. sb.deleteAll();
 


 
Check Answer
 



64.     QID - 2.927 
 

What will the following code print ?



class Test{

   public static void main(String[] args){

      int k = 1;

      int[] a = { 1 };

      k += (k = 4) * (k + 2);

      a[0] += (a[0] = 4) * (a[0] + 2);

      System.out.println( k + " , " + a[0]);

   }

}
 

Select 1 option

A. It will not compile.
 


B. 4 , 4
 


C. 25 , 25
 


D. 13 , 13
 


E. None of the above.
 


 
Check Answer
 



65.     QID - 2.1032 
 

What will the following code print?



public class BreakTest{
  public static void main(String[] args){
    int i = 0, j = 5;
    lab1 : for( ; ; i++){
      for( ; ; --j)  if( i >j ) break lab1;
    }
    System.out.println(" i = "+i+", j = "+j);
  }
}

 

Select 1 option

A. i = 1, j = -1
 


B. i = 1, j = 4
 


C. i = 0, j = 4
 


D. i = 0, j = -1
 


E. It will not compile.
 


 
Check Answer
 



66.     QID - 2.1376 
 

Which of the following is/are valid double values for 10 million? (A million has 6 zeros)
 

Select 1 option

A. double d = 10,000,000.0;
 


B. double d = 10-000-000;
 


C. double d = 10_000_000;
 


D. double d = 10 000 000;
 


 
Check Answer
 



67.     QID - 2.906 
 

Given:

class Triangle{
    public int base;
    public int height;
    private final double ANGLE;

    public  void setAngle(double a){  ANGLE = a;  }
    
    public static void main(String[] args) {
        Triangle t = new Triangle();
        t.setAngle(90);
    }
}


 

Select 1 option

A. the value of ANGLE will not be set to 90 by the setAngle method.
 


B. An exception will be thrown at run time.
 


C. The code will work as expected setting the value of ANGLE to 90.
 


D. The code will not compile.
 


 
Check Answer
 



68.     QID - 2.1284 
 

What will the following class print when run?
 
public class Sample{
   public static void main(String[] args)  {
     String s1 = new String("java");
     StringBuilder s2 = new StringBuilder("java");
     replaceString(s1);
     replaceStringBuilder(s2);
     System.out.println(s1 + s2);
  }
  static void replaceString(String s) {
     s = s.replace('j', 'l');
  }
  static void replaceStringBuilder(StringBuilder s) {
     s.append("c");
  }
}


 

Select 1 option

A. javajava
 


B. lavajava
 


C. javajavac
 


D. lavajavac
 


E. None of these.
 


 
Check Answer
 



69.     QID - 2.894 
 

The following are the complete contents of TestClass.java file. Which packages are automatically imported?



class TestClass{

   public static void main(String[] args){

     System.out.println("hello");

   }

}
 

Select 2 options

A. java.util
 


B. System
 


C. java.lang
 


D. java.io
 


E. String
 


F. The package with no name.
 


 
Check Answer
 



70.     QID - 2.1390 
 

What can be inserted in the code below so that it will print UP UP UP?



public class Speak {

    public static void main(String[] args) {

        Speak s = new GoodSpeak();



        INSERT CODE HERE



    }

}

class GoodSpeak extends Speak implements Tone{

    public void up(){

        System.out.println("UP UP UP");

    }

}

interface Tone{

    void up();

}
 

Select 2 options

A. ((Tone)s).up();
 


B. s.up();
 


C. ((GoodSpeak)s).up();
 


D. (GoodSpeak)s.up();
 


E. (Tone)(GoodSpeak)s.up();
 


 
Check Answer
 



71.     QID - 2.1262 
 

Consider the following code snippet ...



boolean[] b1 = new boolean[2];

boolean[] b2 = {true , false};

System.out.println( "" + (b1[0] == b2[0]) + ", "+ (b1[1] == b2[1])  );



What will it print ?
 

Select 1 option

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsError at Runtime.
 


C. false, true
 


D. true, false
 


E. It will print false, false.
 


 
Check Answer
 



72.     QID - 2.1059 
 

Identify valid for constructs...

Assume that Math.random() returns a double between 0.0 and 1.0 (not including 1.0).
 

Select 3 options

A. for(;Math.random()<0.5;){

    System.out.println("true");

}
 


B. for(;;Math.random()<0.5){

    System.out.println("true");

}
 


C. for(;;Math.random()){

    System.out.println("true");

}
 


D. for(;;){

    Math.random()<.05? break : continue;

}
 


E. for(;;){

    if(Math.random()<.05) break;

}
 


 
Check Answer
 



73.     QID - 2.889 
 

What will the following code print when run?


class A{
    String value = "test";
    A(String val){
        this.value = val;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        new A("new test").print();
    }
}

 

Select 1 option

A. test
 


B. new test
 


C. It will not compile.
 


D. It will throw an exception at run time.
 


 
Check Answer
 



74.     QID - 2.1245 
 

Consider the following class :


class Test{
   public static void main(String[] args){
      for (int i = 0; i < 10; i++) System.out.print(i + " ");  //1
      for (int i = 10; i > 0; i--) System.out.print(i + " ");  //2
      int i = 20;                  //3
      System.out.print(i + " ");   //4
   }
}


Which of the following statements are true?
 

Select 4 options

A. As such, the class will compile and print "20 " (without quotes) at the end of its output.
 


B. It will not compile if line 3 is removed.
 


C. It will not compile if line 3 is removed and placed before line 1.
 


D. It will not compile if line 4 is removed and placed before line 3.
 


E. Only Option 2, 3, and 4 are correct.
 


 
Check Answer
 



75.     QID - 2.952 
 

Which of the following lines of code that, when inserted at line 1, will make the overriding method in SubClass invoke the overridden method in BaseClass on the current object with the same parameter.


class BaseClass{
   public void print(String s) {  System.out.println("BaseClass :"+s); }
}
class SubClass extends BaseClass{
   public void print(String s){
      System.out.println("SubClass :"+s);
      // Line 1
   }
   public static void main(String args[]){
      SubClass sc = new SubClass();
      sc.print("location");
   }
}


 

Select 1 option

A. this.print(s);
 


B. super.print(s);
 


C. print(s);
 


D. BaseClass.print(s);
 


 
Check Answer
 



76.     QID - 2.1334 
 

What will the following program print when run?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[] ){ A b = new B("good bye");  }
}
class A{
   A() { this("hello", " world");  }
   A(String s) { System.out.println(s); }
   A(String s1, String s2){ this(s1 + s2); }
}
class B extends A{
   B(){ super("good bye"); };
   B(String s){ super(s, " world"); }
   B(String s1, String s2){ this(s1 + s2 + " ! "); }
}

 

Select 1 option

A. It will print "good bye".
 


B. It will print "hello world".
 


C. It will print "good bye world".
 


D. It will print "good bye" followed by "hello world".
 


E. It will print "hello world" followed by "good bye".
 


 
Check Answer
 



77.     QID - 2.1447 
 

You are writing a class named Bandwidth for an internet service provider that keeps track of number of bytes consumed by a user. The following code illustrates the expected usage of this class - 



class User{

    Bandwidth bw = new Bandwidth();

    

    public void consume(int bytesUsed){

        bw.addUsage(bytesUsed);

    }

   ... other irrelevant code    

}



class Bandwidth{

    private int totalUsage;

    private double totalBill;

    private double costPerByte;

    

   

    //add your code here



    ...other irrelevant code

}



Your goal is to implement a method addUsage (and other methods, if required) in Bandwidth class such that all the bandwidth used by a User is reflected by the totalUsage field and totalBill is always equal to totalUsage*costPerByte. Further, that a User should not be able to tamper with the totalBill value and is also not able to reduce it.



Which of the following implementation(s) accomplishes the above?
 

Select 1 option

A. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

    }

}
 


B. protected void addUsage(int bytesUsed){

       totalUsage += bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

}
 


C. private void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalUsage*costPerByte;

    }

}
 


D. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

    }

}

public void updateTotalBill(){

    totalBill = totalUsage*costPerByte;

}
 


 
Check Answer
 



Test 3 (Answered)



01.     QID - 2.1181 : Working with Inheritance 
 

What would be the result of attempting to compile and run the following code?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[]){
      B c = new C();
      System.out.println(c.max(10, 20));
   }
}
class A{
   int max(int x, int y)  { if (x>y) return x; else return y; }
}
class B extends A{
  int max(int x, int y)  {  return 2 * super.max(x, y) ; }
}
class C extends B{
  int max(int x, int y)  {  return super.max( 2*x, 2*y); }
}


 

Correct Option is :  C 

A. The code will fail to compile.
 


B. Runtime error.
 


C. The code will compile without errors and will print 80 when run.
 


D. The code will compile without errors and will print 40 when run.
 


E. The code will compile without errors and will print 20 when run.
 


Explanation: 
When the program is run, the main() method will call the max() method in C with parameters 10 and 20 because the actual object referenced by 'c' is of class C. This method will call the max() method in B with the parameters 20 and 40. The max() method in B will in turn call the max() method in A with the parameters 20 and 40. The max() method in A will return 40 to the max() method in B. The max() method in B will return 80 to the max() method in C. And finally the max() of C will return 80 in main() which will be printed out.

 
Back to Question without Answer
 



02.     QID - 2.1461 : Working with Methods - Overloading 
 

Consider the following class...

public class ParamTest {

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  public static void printSum(float a, float b){ 

      System.out.println("In float "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1.0, 2.0);

  }

}



What will be printed?
 

Correct Option is :  C 

A. In float 3
 


B. In float 3.0
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


Explanation: 
The call to printSum(1.0, 2.0) will be bound to printSum(double, double ) because 1.0 and 2.0 are double, which are exact match to double, double. 



Note that if you call printSum(1, 2) , printSum(float, float) would have been invoked instead of printSum(double, double) because a float is closer than a double to an int.



We advise you to run this program and try out various combinations. The exam has questions on this pattern.

 
Back to Question without Answer
 



03.     QID - 2.896 : Constructors 
 

Which of the following classes have a default constructor?



class A{  }

class B {  B(){ } }

class C{  C(String s){ } }


 

Correct Option is :  A 

A. A
 


B. A and B
 


C. B
 


D. C
Since class C has a constructor defined in it, the default constructor will not be provided for it by the compiler.


E. B and C
 


Explanation: 
There is only one rule regarding the "default" constructor:

The Java compiler automatically adds a constructor that takes no argument and has the same access as the class, if and only if the programmer does not define ANY constructor in the class.



In this case, the programmer has not defined any constructor for class A, hence it will have the default constructor.



For class B, the programmer has defined a constructor that is exactly same as the default constructor that would have been provided automatically. It is a matter of interpretation whether it can be called a default constructor or not.



Based on Java Language Specification section 8.8.9, quoted below, our interpretation is that class B will not get a default constructor:



(http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html )



8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor with no formal parameters and no throws clause is implicitly declared. 



If the class being declared is the primordial class Object, then the default constructor has an empty body. Otherwise, the default constructor simply invokes the superclass constructor with no arguments. 



It is a compile-time error if a default constructor is implicitly declared but the superclass does not have an accessible constructor (6.6) that takes no arguments and has no throws clause. 



It follows that if the nullary constructor of the superclass has a throws clause, then a compile-time error will occur.

 
Back to Question without Answer
 



04.     QID - 2.984 : Handling Exceptions 
 

Following is a supposedly robust method to parse an input for a float : 


public float parseFloat(String s){
   float f = 0.0f;
   try{
      f = Float.valueOf(s).floatValue();
      return f ;
   }
   catch(NumberFormatException nfe){
      System.out.println("Invalid input " + s);
      f = Float.NaN ;
      return f;
   }
   finally { System.out.println("finally");  }
   return f ;
}


Which of the following statements about the above method is/are true?
 

Correct Option is :  E 

A. If input is 0.1 then it will return 0.1 and print finally.
 


B. If input is 0x.1 then it will return Float.NaN and print Invalid input 0x.1 and finally.
 


C. If input is 1 then it will return 1.0 and print finally.
 


D. If input is 0x1 then it will return 0.0 and print Invalid input 0x1 and finally.
 


E. The code will not compile.
Note that the return statement after finally block is unreachable. Otherwise, if this line were not there, choices 1, 2, 3 are valid.


 
Back to Question without Answer
 



05.     QID - 2.1460 : Working with Methods - Overloading 
 

Consider the following class...

public class ParamTest {

  public static void printSum(int a, int b){ 

      System.out.println("In int "+(a+b));

  }

  

  public static void printSum(Integer a, Integer b){ 

      System.out.println("In Integer "+(a+b));

  }

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1, 2);

  }

}



What will be printed?
 

Correct Option is :  A 

A. In int 3
 


B. In Integer 3
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


Explanation: 
The call to printSum(1, 2) will be bound to printSum(int, int) because 1 and 2 are ints, which are exact match to int, int. 



Note that if printSum(int, int) method were not there in the code, printSum(double, double) would have been invoked instead of printSum(Integer, Integer) because widening is preferred over boxing/unboxing.



We advise you to run this program and try out various combinations. The exam has questions on this pattern.

 
Back to Question without Answer
 



06.     QID - 2.1453 : Working with Java API - Time and Date 
 

Given:

        LocalDate d1 = LocalDate.parse("2015-02-05", DateTimeFormatter.ISO_DATE);

        LocalDate d2 = LocalDate.of(2015, 2, 5);

        LocalDate d3 = LocalDate.now();

        System.out.println(d1);

        System.out.println(d2);

        System.out.println(d3);



Assuming that the current date on the system is 5th Feb, 2015, which of the following will be a part of the output?
 

Correct Option is :  F 

A. 5th Feb, 2015
 


B. 2015-02-05T00:00:00
Since LocalDate is being created (and not LocalDateTime), none of the printlns will output the time component.


C. 02/05/2015
 


D. 05/02/2015
 


E. java.time.format.DateTimeParseException
 


F. None of the above.
 


Explanation: 
All the three printlns will produce 2015-02-05.

 
Back to Question without Answer
 



07.     QID - 2.938 : Creating and Using Arrays 
 

What will the following program print? 


class Test{
   public static void main(String[] args){
      int i = 4;
      int ia[][][] = new int[i][i = 3][i];
      System.out.println( ia.length + ", " + ia[0].length+", "+ ia[0][0].length);
   }
}

 

Correct Option is :  E 

A. It will not compile.
 


B. 3, 4, 3
 


C. 3, 3, 3
 


D. 4, 3, 4
 


E. 4, 3, 3
 


Explanation: 
In an array creation expression, there may be one or more dimension expressions, each within brackets. Each dimension expression is fully evaluated before any part of any dimension expression to its right. The first dimension is calculated as 4 before the second dimension expression sets 'i' to 3.

Note that if evaluation of a dimension expression completes abruptly, no part of any dimension expression to its right will appear to have been evaluated.

 
Back to Question without Answer
 



08.     QID - 2.1465 : Working with Java API - ArrayList 
 

What will the following code snippet print?



        List s1 = new ArrayList( );

        try{

            while(true){

                s1.add("sdfa");

            }

        }catch(RuntimeException e){

            e.printStackTrace();

        }

        System.out.println(s1.size());
 

Correct Option is :  C 

A. It will not compile.
 


B. It will print a RuntimeException stack trace from the catch clause.
 


C. It will throw an error at runtime that will not be caught by the catch block.
It will throw a java.lang.OutOfMemoryError. Note that this is not a subclass of RuntimeException or even Exception. It is a subclass of java.lang.Error.


D. It will print a stack trace from the catch clause and a number depending on the memory available in the system.
 


E. It will only print a number depending on the memory available in the system.
 


 
Back to Question without Answer
 



09.     QID - 2.881 : Handling Exceptions 
 

Java's Exception mechanism helps in which of the following ways?
 

Correct Options are :  A B 

A. It allows creation of new exceptions that are custom to a particular application domain.
You can define your own exceptions based of your application business domain. For example, in a banking application, you might want to create a InsufficientFundsException. This increases code clarity as compared to having a single (or a few standard) exception class(es) and looking at the exception code to determine what happened.


B. It improves code because error handling code is clearly separated from the main program logic.
The error handling logic is put in the catch block, which makes the main flow of the program clean and easily understandable.


C. It enhances the security of the application by reporting errors in the logs.
Exception handling as such has nothing to do with the security of the application but good exception handling in an application can prevent security holes.


D. It improves the code because the exception is handled right at the place where it occured.
Just the opposite is true. It improves the code because the code does not have to include error handling code if it is not capable of handling it. It can propagate the exception up the chain and it can be handled at a somewhere at a more appropriate place.


E. It provides a vast set of standard exceptions that covers all possible exceptions.
Although it does provide a vast set of standard exceptions, they cannot cover all scenarios. But you can always create new exceptions tailored for your application.


 
Back to Question without Answer
 



10.     QID - 2.861 : Working with Java API - String, StringBuilder 
 

You want to find out whether two strings are equal or not,  in terms of the actual characters within the strings. What is the best way to do this?
 

Correct Option is :  A 

A. use String's equals method.
For example:

String x1 = "a";

String x2 = new String("a");



x1.equals(x2) will return true. Because even though x1 and x2 are pointing to different objects, the content of the objects are same, which is what String's equals method checks.



x1 == x2 will return false, because == only checks if the two references are pointing to the same object or not. In this case, they are not.


B. use String's equalsIgnoreCase method.
If you use this method, "a" will be considered equal to "A", which is not what the question is asking for.


C. Use == operator.
== checks for the equality of the references and not for the equality of the objects themselves. Therefore, this will return true only if two string references are pointing to the same String object, which is not what the question is asking for.


D. Use String's match method.
There is no method named match in String class.

There is a matches method, which checks whether the String matches a regular expression but that is beyond the scope of this exam.



public boolean matches(String regex)

Tells whether or not this string matches the given regular expression.

An invocation of this method of the form str.matches(regex) yields exactly the same result as the expression Pattern.matches(regex, str)


 
Back to Question without Answer
 



11.     QID - 2.1186 : Working with Java API - String, StringBuilder 
 

What will the following code print when compiled and run?



public class TestClass {

  public static void main(String[] args) {



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    s.append("whopper");

    sb.append("shopper");

    

    System.out.println(s);

    System.out.println(sb);

  }

}
 

Correct Option is :  D 

A. blooper and bloopershopper
 


B. blooperwhopper and bloopershopper
 


C. blooper and blooperwhoppershopper
 


D. It will not compile.
append() method does not exist in String class. It exits only in StringBuffer and StringBuilder. The value of sb will be bloopershopper though.


 
Back to Question without Answer
 



12.     QID - 2.963 : Using Loop Constructs 
 

Consider the following code snippet:



    for(int i=INT1; i<INT2; i++){

        System.out.println(i);

    }



INT1 and INT2 can be any two integers.



Which of the following will produce the same result?
 

Correct Option is :  E 

A. for(int i=INT1; i<INT2; System.out.println(++i));
Prints: 2 and 3


B. for(int i=INT1; i++<INT2; System.out.println(i));
Prints: 2 and 3


C. int i=INT1; while(i++<INT2) { System.out.println(i); }
Prints: 2 and 3


D. int i=INT1; do { System.out.println(i); }while(i++<INT2);
Prints: 1 2 and 3


E. None of these.
 


Explanation: 
In such a question it is best to take a sample data such as INT1=1 and INT2=3 and execute the loops mentally. Eliminate the wrong options. In this case, the original loop will print:

=====ORIGINAL ====

1



2



Outputs of all the options are given above (Ignoring the line breaks).



Thus, none of them is same as the original.

 
Back to Question without Answer
 



13.     QID - 2.996 : Working with Inheritance 
 

Consider the following program:


class Game {
  public void play() throws Exception   {
    System.out.println("Playing...");
  }
}

class Soccer extends Game {
   public void play(String ball)    {
      System.out.println("Playing Soccer with "+ball);      
   }
}

public class TestClass {
   public static void main(String[] args) throws Exception  {
       Game g = new Soccer();
       // 1
       Soccer s = (Soccer) g;
       // 2
   }
}


Which of the given options can be inserted at //1 and //2?
 

Correct Options are :  C D 

A. It will not compile as it is.
There is no problem with the existing code.


B. It will throw an Exception at runtime if it is run as it is.
Soccer s = (Soccer) g; is a valid because g does refer to an object of class Soccer at run time. So there will be no exception at run time.


C. g.play(); at //1 and s.play("cosco"); at //2
This is valid because g is of type Game, which has the no-args play method and s is of type Soccer, which has defined play(String ) method.


D. g.play(); at //1 and s.play(); at //2
This is valid because g is of type Game, which has the no-args play method and s is of type Soccer, which inherits that method.


E. g.play("cosco"); at //1 and s.play("cosco"); at //2
g.play("cosco") is not valid because even though the object referred to by g is of class Soccer, the reference type of g is Game, which does not have play(String ) method.


 
Back to Question without Answer
 



14.     QID - 2.1312 : Working with Methods 
 

Which of the following code fragments are valid method declarations?
 

Correct Option is :  B 

A. void method1{ }
It does not have () after method1.


B. void method2( ) { }
 


C. void method3(void){ }
The keyword void is not a valid type for a parameter.


D. method4{ }
Methods must specify a return type and '( )'. If the method does not want to return a value, it should specify void.


E. method5(void){ }
If the method does not take any parameter, it should have empty brackets instead of void.


Explanation: 
A valid method declaration MUST specify a return type, all other things are optional.

 
Back to Question without Answer
 



15.     QID - 2.1412 : Handling Exceptions 
 

Checked exceptions are meant for...
 

Correct Option is :  A 

A. exceptional conditions external to an application that a well written application should anticipate and from which it can recover.
Note that here recovery doesn't necessarily mean to keep functioning normally. It means that the program shouldn't just crash. If it absolutely cannot proceed, it should notify the user appropriately and then end gracefully.


B. exceptional conditions external to the program  that a well written program cannot anticipate but should recover from.
 


C. exceptional conditions from which recovery is difficult or impossible.
Errors are meant for this purpose.


D. exceptional situations internal to an application that the application can anticipate but cannot recover from.
Generally, if the exception is caused by problems internal to the program, a RuntimeException is used.


Explanation: 
There are multiple view points regarding checked and and unchecked exceptions. As per the official Java tutorial ( http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html ) :  If a client can reasonably be expected to recover from an exception, make it a checked exception. If a client cannot do anything to recover from the exception, make it an unchecked exception.

Here, the client basically means the caller of a method.



Another way to look at exceptions is to see the cause of the exception in terms of whether it is internal or external to the program's code. For example, an incorrectly written code may try to access a reference pointing to null, or it may try to access an array beyond its length. These are internal sources of exception. Here, using runtime exceptions is appropriate because ideally these problems should be identified while testing and should not occur when the program is ready for deployment. 



On the other hand, a program interacting with files may not be able to do its job at all if a file is not available but it should anticipate this situation. This is an external source of an exception and has nothing to do with a program's code as such. It is therefore appropriate to use a checked exception here.

 
Back to Question without Answer
 



16.     QID - 2.1402 : Using Operators and Decision Constructs 
 

What will the following program print when run?

public class Operators{



    public static int operators(){

        int x1 = -4;

        int x2 = x1--;

        int x3 = ++x2;

        if(x2 > x3){

            --x3;

        }else{

            x1++;

        }

        return x1 + x2 + x3;

    }

    public static void main(String[] args) {

        System.out.println(operators());

    }

}
 

Correct Option is :  B 

A. -9
 


B. -10
 


C. -11
 


D. -12
 


Explanation: 
You will need to work out the values of the variables at each line on your worksheet to answer such questions.

x1 is -4

x2 is (x1)-- => x2 is first assigned the value of x1 i.e. -4 and then x1 in decremented by 1 to become -5

x3  is ++(x2) => x2 becomes -3 first and  then its value i.e. -3 is assigned to x3 

x2>x3 is false so x1++  => x1 becomes -4



therefore -4 + -3 + -3 => -10.

 
Back to Question without Answer
 



17.     QID - 2.925 : Working with Java Data Types 
 

Given:


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<Double> al = new ArrayList<>();

        //INSERT CODE HERE
     }
}


What can be inserted in the above code so that it can compile without any error?
 

Correct Options are :  B C 

A. al.add(111);
You cannot box an int into a Double object.


B. System.out.println(al.indexOf(1.0));
indexOf's accepts Object as a parameter. Although 1.0 is not an object, it will be boxed into a Double object.


C. System.out.println(al.contains("string"));
 


D. Double d = al.get(al.length);
ArrayList does not have a field named length. It does have a method named size() though. So you can do:

Double d = al.get(al.size()); It will compile but will throw IndexOutOfBoundsException at run time in this case because al.size() will return 0 and al.get(0) will try to get the first element in the list.


Explanation: 
Note that al is declared as ArrayList<Double>, therefore the add method is typed to accept only a Double.

 
Back to Question without Answer
 



18.     QID - 2.857 : Using Operators and Decision Constructs 
 

Consider the following code:



public class TestClass {

  

    //define tester method here

    

    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        while(tc.tester()){

            System.out.println("running...");

        }

    }

}



Which of the following options would be a valid implementation of tester() method?
 

Correct Options are :  A B 

A.   public boolean tester(){

        return false;

    }
 


B.    public Boolean tester(){

        return false;

    }
 


C.     public tester(){

        return false;

    }
return type is missing.


D.    public int tester(){

        return 0;

    }
It is a valid method but it will not work for while(tester()) because a while condition expects a boolean or Boolean value.


E.   public String tester(){

        return "false";

    }
A string cannot be used in while condition. So it has the same problem as above.


 
Back to Question without Answer
 



19.     QID - 2.928 : Java Basics 
 

Given the following set of member declarations, which of the following is true?


 int a;    //  (1)
 static int a;    //  (2)
 int f( )   { return a; }    //  (3)
 static int f( ) { return a; }    //  (4)


 

Correct Options are :  C E 

A. Declarations (1) and (3) cannot occur in the same class definition.
 


B. Declarations (2) and (4) cannot occur in the same class definition.
A static method can refer to a static field.


C. Declarations (1) and (4) cannot occur in the same class definition.
because method f() is static and a is not.


D. Declarations (2) and (3) cannot occur in the same class definition.
 


E. Declarations (1) and (2) cannot occur in the same class definition.
variable names must be different.


Explanation: 
Local variables can have same name as member variables. The local variables will simply shadow the member variables with the same names.

Declaration (4) defines a static method that tries to access a variable named 'a' which is not locally declared.

Since the method is static, this access will only be valid if variable 'a' is declared static within the class. Therefore declarations (1) and (4) cannot occur in the same definition.

 
Back to Question without Answer
 



20.     QID - 2.1022 : Working with Java API - String, StringBuilder 
 

What will be the output of the following program (excluding the quotes)?



public class SubstringTest{

   public static void main(String args[]){

      String String = "string isa string";

      System.out.println(String.substring(3, 6));

   }

}
 

Correct Option is :  E 

A. It will not compile.
String String = "String"; is a perfectly valid syntax!


B. "ing is"
 


C. "ing isa"
 


D. "ing " (There is a space after g)
 


E. None of the above.
It will print 'ing'. (No space after 'g')


Explanation: 
Remember, indexing always starts from 0.

 "hamburger".substring(4, 8) returns "urge"

 "smiles".substring(1, 5) returns "mile"

Parameters:

beginIndex - the beginning index, inclusive.

endIndex - the ending index, exclusive.

Returns:

the specified substring.

Throws:

IndexOutOfBoundsException - if the beginIndex is negative, or endIndex is larger than the length of this String object, or beginIndex is larger than endIndex.

 
Back to Question without Answer
 



21.     QID - 2.904 : Working with Methods 
 

Given:

class Triangle{
    public int base;
    public int height;
    private static double ANGLE;

    public static double getAngle();
    
    public static void Main(String[] args) {
        System.out.println(getAngle());
    }
}


Identify the correct statements:
 

Correct Option is :  C 

A. It will not compile because it does not implement setAngle method.
There is no requirement that a class has to have a setter as well as a getter.


B. It will not compile because ANGLE cannot be private.
Any field can be made private.


C. It will not compile because getAngle() has no body.
 


D. It will not compile because ANGLE field is not initialized.
Since it is a static field, it will get a default value of 0.0.


E. It will not compile because of the name of the method Main instead of main.
A class can have a method named Main. Although, since it is not same as main, it will not be considered the standard main method that the JVM can invoke when the program is executed.


 
Back to Question without Answer
 



22.     QID - 2.1014 : Using Operators and Decision Constructs 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

     Object obj1 = new Object();

     Object obj2 = obj1;

     if( obj1.equals(obj2) ) System.out.println("true");

     else  System.out.println("false");

  }

}
 

Correct Option is :  A 

A. true
 


B. false
 


C. It will not compile.
 


D. It will compile but throw an exception at run time.
 


E. None of the above.
 


Explanation: 
Object class's equals() method just checks whether the two references are pointing to the same location or not. In this case they really are pointing to the same location because of obj2 = obj1; so it returns true.

 
Back to Question without Answer
 



23.     QID - 2.948 : Using Operators and Decision Constructs 
 

Which statements about the output of the following programs are true?


public class TestClass{
   public static void main(String args[ ] ){
      int i = 0 ;
      boolean bool1 = true;
      boolean bool2 = false;
      boolean bool  = false;
      bool = (bool2 &  method1("1"));  //1
      bool = (bool2 && method1("2"));  //2
      bool = (bool1 |  method1("3"));  //3
      bool = (bool1 || method1("4"));  //4
   }
   public static boolean method1(String str){
      System.out.println(str);
      return true;
   }
}

 

Correct Options are :  A C 

A. 1 will be the part of the output.
& (unlike &&), when used as a logical operator, does not short circuit the expression, which means it always evaluates both the operands even if the result of the whole expression can be known by just evaluating the left operand.


B. 2 will be the part of the output.
 


C. 3 will be the part of the output.
& and | (unlike && and ||), when used as logical operators, do not short circuit the expression, which means they always evaluate both the operands even if the result of the whole expression can be known by just evaluating the left operand.


D. 4 will be the part of the output.
 


E. None of the above
 


Explanation: 
& and | do not short circuit the expression. The value of all the expressions ( 1 through 4) can be determined just by looking at the first part.

&& and || do not evaluate the rest of the expression if the result of the whole expression can be known by just evaluating the left operand, so method1() is not called for 2 and 4.

 
Back to Question without Answer
 



24.     QID - 2.1347 : Handling Exceptions 
 

Consider the following code...



class MyException extends Exception {}



public class TestClass{

     public void myMethod() throws XXXX{

         throw new MyException();

     }

}



What can replace XXXX?
 

Correct Options are :  A B D 

A. MyException
 


B. Exception
Because Exception is a superclass of MyException.


C. No throws clause is necessary
It is needed because MyException is a checked exception. Any exception that extends java.lang.Exception but is not a subclass of java.lang.RuntimeException is a checked exception.


D. Throwable
Because Throwable is a super class of Exception.


E. RuntimeException
 


Explanation: 
You can use Throwable as well as Exception as both of them are super classes of MyException.

RuntimeException (and its subclasses such as NullPointerException and ArrayIndexOutOfBoundsException) is not a checked exception. So it cannot cover for MyException which is a checked exception.

You cannot use Error as well because it is not in the hierarchy of MyException, which is Object <- Throwable <- Exception <- MyException.

 
Back to Question without Answer
 



25.     QID - 2.1090 : Using Loop Constructs 
 

What is the effect of compiling and running the code shown in exhibit?


public class TestClass{
   public static void main (String args []){
      int sum = 0;
      for (int i = 0, j = 10; sum > 20; ++i, --j)      // 1
      {
         sum = sum+ i + j;
      }
      System.out.println("Sum = " + sum);
   }
}

 

Correct Option is :  B 

A. Compile time error at line 1.
 


B. It will print Sum = 0
Note that the loop condition is sum >20 and not sum <20.


C. It will print Sum = 20
Note that the loop condition is sum >20 and not sum <20.


D. Runtime error.
 


E. None of the above.
 


Explanation: 
Read the questions carefully. This is very important. Some questions are easy but you need to read them carefully.

 
Back to Question without Answer
 



26.     QID - 2.1346 : Working with Java Data Types 
 

Which of the following statements can be inserted at // 1 to make the code compile without errors?
 

public class InitTest{
   static int si = 10;
   int  i;
   final boolean bool;
   // 1
}


 

Correct Option is :  E 

A. instance { bool = true; }
you cannot put the word instance here. It is not a keyword.


B. InitTest() { si += 10; }
It is a valid constructor but does not initialize bool, which is a final variable and must be initialized either in an instance block or in a constructor.


C. { si = 5; i = bool ? 1000 : 2000;}
bool is not initialized. Therefore, it cannot be used !


D. { i = 1000; }
bool remains uninitialized.


E. { bool = (si > 5); i = 1000; }
 


Explanation: 
A final variable must be initialized when an instance is constructed, or else the code will not compile. This can be done either in an instance initializer or in EVERY constructor.

The keyword static is used to signify that a block is static initializer. If nothing is there before starting curly brace then it is an instance initializer.

 
Back to Question without Answer
 



27.     QID - 2.1092 : Working with Methods 
 

What will the following class print when compiled and run?


class Holder{
   int value = 1;
   Holder link;
   public Holder(int val){ this.value = val; }
   public static void main(String[] args){
	final Holder a = new Holder(5);
	Holder b = new Holder(10);
	a.link = b;
	b.link = setIt(a, b);
	System.out.println(a.link.value+" "+b.link.value);
   }
   
   public static Holder setIt(final Holder x, final Holder y){
       x.link = y.link;
       return x;
   }
   
}


 

Correct Option is :  E 

A. It will not compile because 'a' is final.
'a' is final is true, but that only means that a will keep pointing to the same object for the entire life of the program. The object's internal fields, however, can change.


B. It will not compile because method setIt() cannot change x.link.
Since x and y are final, the method cannot change x and y to point to some other object but it can change the objects' internal fields.


C. It will print 5, 10.
 


D. It will print 10, 10.
 


E. It will throw an exception when run.
When method setIt() executes, x.link = y.link, x.link becomes null because y.link is null so a.link.value throws NullPointerException.


 
Back to Question without Answer
 



28.     QID - 2.1217 : Working with Inheritance 
 

Consider the following classes in one file named A.java...



abstract class A{

   protected int m1(){ return 0; }

}

class B extends A{

   int m1(){ return 1; }

}



Which of the following statements are correct...
 

Correct Option is :  B 

A. The code will not compile as you cannot have more than 1 class in 1 file.
You can. But only one class can be public.


B. The code will not compile because class B does not override the method m1() correctly.
The overriding method cannot decrease the accessibility.


C. The code will not compile as A is an abstract class.
 


D. The code will not compile as A does not have any abstract method.
You need not have any 'abstract' method to make a class abstract. Putting 'abstract' keyword is enough.


E. The code will compile fine.
 


Explanation: 
The concept here is that an overriding method cannot make the overridden method more private.

The access hierarchy in increasing levels of accessibility is:

private->'no modifier'->protected->public ( public is accessible to all and private is accessible to none except itself.)

Here, class B has no modifier for m1() so it is trying to reduce the accessibility of protected to default.

'protected' means the method will be accessible to all the classes in the same package and all the subclasses (even if the subclass is in a different package).

No modifier (which is the default level) means the method will be accessible only to all the classes in the same package. (i.e. not even to the subclass if the subclass is in a different package.)

 
Back to Question without Answer
 



29.     QID - 2.1456 : Java Basics - OO Concepts 
 

Which of the following are benefits of polymorphism?
 

Correct Options are :  A D 

A. It makes the code more reusable.
 


B. It makes the code more efficient.
This option is a bit ambiguous because it is not clear which efficiency is it talking about - execution, memory, or maintenance. Our guess is that it is referring to execution efficiency. It is not true because polymorphism causes a very slight degradation due to dynamic binding at run time.


C. It protects the code by preventing extension.
Just the reverse is true. Extension is how polymorphism is achieved.


D. It makes the code more dynamic.
Polymophism allows the actual decision of which method is to be invoked to be taken at runtime based on the actual class of object. This is dynamic binding and makes the code more dynamic.


 
Back to Question without Answer
 



30.     QID - 2.1372 : Handling Exceptions 
 

Identify the exceptions that will be received when the following code snippets are executed.



1. int factorial(int n){

       if(n==1) return 1;

      else return n*factorial(n-1);

   }

Assume that it is called with a very large integer.



2. void printMe(Object[] oa){

       for(int i=0; i<=oa.length; i++)

       System.out.println(oa[i]);

    }

Assume that it is called as such: printMe(null);



3. Object m1(){

       return new Object(); 

    }

    void m2(){

       String s = (String) m1();

    }

Assume that method m2 is invoked.
 

Correct Option is :  H 

A. ClassCastException

ArrayIndexOutOfBoundsException

StackOverflowError
 


B. ClassCastException

ArrayIndexOutOfBoundsException

SecurityException
 


C. No Exception Will Be Thrown

SecurityException

Will Not Compile
 


D. StackOverflowError

NullPointerException

No Exception Will Be Thrown
 


E. StackOverflowError

ArrayIndexOutOfBoundsException

ClassCastException
 


F. StackOverflowError

NullPointerException

NullPointerException
 


G. SecurityException

NullPointerException

No Exception Will Be Thrown
 


H. StackOverflowError

NullPointerException

ClassCastException
 


Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

 
Back to Question without Answer
 



31.     QID - 2.1128 : Using Operators and Decision Constructs 
 

What will the following code print?



  int i = 0;

  int j = 1;

  if( (i++ == 0) & (j++ == 2) ){

     i = 12;

  }

  System.out.println(i+" "+j);


 

Correct Option is :  A 

A. 1 2
 


B. 2 3
 


C. 12 2
 


D. 12 1
 


E. It will not compile.
 


Explanation: 
This question is based on 2 concepts:



1. i = ++j; is not same as i = j++;

In the case of i = ++j, j is first incremented and then compared with i. While in the case of i = j++;, j is first compared with i and then incremented.



2. The | and & operators, when applied to boolean operands, ensure that both the sides are evaluated. This is opposed to || and && operators, which do not evaluate the Right Hand Side operand if the result can be known by just evaluating the Left Hand Side.



Now, let us see the values of i and j at each step:



int i = 0;

int j = 1;

if( (i++ == 0) & (j++ == 2) )    //compare i with 0 and increment i => returns true and i becomes 1. Evaluate next condition:

        //compare j with 2 and increment j => return false and j becomes 2.

        //true & false returns false so i= 12 is not executed.{

   i = 12;

}

System.out.println(i+" "+j)); //print 1 and 2



 
Back to Question without Answer
 



32.     QID - 2.922 : Working with Java Data Types - Garbage Collection 
 

In the following code, after which statement (earliest), the object originally held in s, may be garbage collected ?





1. public class TestClass{

2.   public static void main (String args[]){

3.      Student s = new Student("Vaishali", "930012");

4.      s.grade();

5.      System.out.println(s.getName());

6.      s = null;

7.      s = new Student("Vaishali", "930012");

8.      s.grade();

9.      System.out.println(s.getName());

10      s = null;

     }

   }



public class Student{

   private String name, rollNumber;

   

   public Student(String name, String rollNumber) {

      this.name = name;

      this.rollNumber = rollNumber;

   }



   //valid setter and getter for name and rollNumber follow



   public void grade() {

   }



}
 

Correct Option is :  C 

A. It will not be Garbage Collected till the end of the program.
 


B. Line 5
 


C. Line 6
 


D. Line 7
 


E. Line 10
 


Explanation: 
In this case, since there is only one reference to Student object, as soon as it is set to null, the object held by the reference is eligible for GC, here it is done at line 6.

Note that although an object is created at line 7 with same parameters, it is a different object and it will be eligible for GC after line 10.

 
Back to Question without Answer
 



33.     QID - 2.1319 : Working with Java Data Types 
 

Given the following code snippet:

   int rate = 10;
   int t = 5;
   XXX amount = 1000.0;
   for(int i=0; i<t; i++){
      amount = amount*(1 - rate/100);
   }


What can XXX be?
 

Correct Option is :  C 

A. int
 


B. long
 


C. only double
 


D. double or float
 


E. float
 


Explanation: 
There is no need for analyzing the whole code. XXX amount = 1000.0; will be valid only if XXX is double. 



Note that the options do not include wrapper classes. Otherwise, Double is also valid because of auto boxing.

 
Back to Question without Answer
 



34.     QID - 2.1385 : Handling Exceptions 
 

What will the following code print when compiled and run?

(Assume that MySpecialException is an unchecked exception.)



1. public class ExceptionTest {

2.    public static void main(String[] args) {

3.        try {

4.            doSomething();

5.        } catch (MySpecialException e) {

6.            System.out.println(e);

7.        }

8.    }

9.

10.    static void doSomething() {

11.        int[] array = new int[4];

12.        array[4] = 4;

13.        doSomethingElse();

14.    }

15.

16.    static void doSomethingElse() {

17.        throw new MySpecialException("Sorry, can't do something else");

18.    }

}


 

Correct Option is :  B 

A. It will not compile.
 


B. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


C. Exception in thread "main" MySpecialException: 4

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


D. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


E. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:13)

    at ExceptionTest.main(ExceptionTest.java:4)
 


Explanation: 
Since the length of array is only 4, you can't do array[4], because that would access the 5th element. Hence, an ArrayIndexOutOfBoundsException will be thrown at line 12. Line 13 will not even be executed.

Since the exception is not caught anywhere, it will be thrown out to the JVM, which will print the stack trace of the exception.

 
Back to Question without Answer
 



35.     QID - 2.1410 
 

What can be added to the following Person class so that it is properly encapsulated and the code prints 29?



class Person{

    //Insert code here

}

public class Employee extends Person{

        public static void main(String[] args) {

            Employee e = new Employee();

            e.setAge(29);

            System.out.println(e.getAge());

        }

 }
 

Correct Options are :  A E 

A.     private int age;

    public int getAge() {

        return age;

    }

    public void setAge(int age) {

        this.age = age;

    }


 


B.     protected int age;

    public int getAge() {

        return age;

    }

    public void setAge(int age) {

        this.age = age;

    }


protected is not a valid way to encapsulate a field because any class in a package can access the field.


C.     int age;

    public int getAge() {

        return age;

    }

    public void setAge(int age) {

        this.age = age;

    }


No access modifer to age means it has default access i.e. all the members of the package can access it. This breaks encapsulation.


D.     private int age;

    private int getAge() {

        return age;

    }

    private void setAge(int age) {

        this.age = age;

    }


If you make getAge and setAge private, you cannot call them from Employee class.


E.     private int age;

    public int getAge() {

        return age;

    }

    protected void setAge(int age) {

        this.age = age;

    }


 


Explanation: 
This is a ambiguous question because it doesn't give all the information. It really depends on the business logic of the class and the whole application whether the accessor methods (and specially the setter) should be public or protected or even private. The field should be private.

Expect such questions in the exam.

 
Back to Question without Answer
 



36.     QID - 2.1308 : Working with Inheritance 
 

What is the result of compiling and running the following code ?



public class TestClass{

   static int si = 10;

   public static void main (String args[]){

      new TestClass();

   }

   public TestClass(){

      System.out.println(this);

   }

   public String toString(){

      return "TestClass.si = "+this.si;

   }

}


 

Correct Option is :  D 

A. The class will not compile because you cannot override toString() method.
You sure can. toString() is defined as public and non-final method in Object class.


B. The class will not compile as si being static, this.si is not a valid statement.
static member can be accessed by static and non-static methods both. Non-static can only be accessed by non-static.


C. It will print TestClass@nnnnnnnn, where nnnnnnnn is the hash code of the TestClass object referred to by 'this'.
It would have been correct if toString() were not overridden. This is the behavior of the toString() provided by Object class.


D. It will print TestClass.si = 10
 


E. None of the above.
 


Explanation: 
The toString method for class Object returns a String consisting of the name of the class of which the object is an instance, the at-sign character '@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())

 
Back to Question without Answer
 



37.     QID - 2.959 : Handling Exceptions 
 

What will the following class print ?

class Test{
   public static void main(String[] args){
      int[][] a = { { 00, 01 }, { 10, 11 } };
      int i = 99;
      try {
         a[val()][i = 1]++;
      } catch (Exception e) {
         System.out.println( i+", "+a[1][1]);
      }
   }
   static int val() throws Exception {  
     throw new Exception("unimplemented");  
   }
}


 

Correct Option is :  A 

A. 99 , 11
 


B. 1 , 11
 


C. 1 and an unknown value.
 


D. 99 and an unknown value.
 


E. It will throw an exception at Run time.
 


Explanation: 
If evaluation of a dimension expression completes abruptly, no part of any dimension expression to its right will appear to have been evaluated.

Thus, while evaluating a[val()][i=1]++,  val() throws an exception and i=1 will not be executed. Therefore, i remains 99 and a[1][1] will print 11.

 
Back to Question without Answer
 



38.     QID - 2.1452 : Java Basics 
 

Following options show the complete code listings of a file. Which of these will compile?
 

Correct Options are :  B D 

A. //In file A.java

import java.io.*;

package x;

public class A{

}
The package statement, if exists, must be the first statement in a java code file. If you move it up before the import, this code will compile.


B. //In file B.java

import java.io.*;

class A{

  public static void main() throws IOException{ }

}
There is nothing wrong with this code.

1. You can have a non-public class in a file with a different name.

2. You can have a main method that doesn't take String[] as an argument. It will not make the class executable from the command line though.


C. //In file A.java

public class A{

   int a;

   public void m1(){

     private int b = 0;

     a = b;

   }

}
Access modifiers (public/private/protected) are valid only inside the scope of a class, not of a method.


D. //In file A.java

public class A{

  public static void main(String[] args){

    System.out.println(new A().main);

  }   

  int main;

}
There is nothing wrong with this code. You can have a method and a field with the same name in a class.


E. Only one of the above options is correct.
 


 
Back to Question without Answer
 



39.     QID - 2.1228 : Working with Methods 
 

What will be the result of attempting to compile and run the following class?


public class InitTest{
   static String s1 = sM1("a");{
      s1 = sM1("b");
   }
   static{
      s1 = sM1("c");
   }
   public static void main(String args[]){
      InitTest it = new InitTest();
   }
   private static String sM1(String s){
      System.out.println(s);  return s;
   }
}


 

Correct Option is :  B 

A. The program will fail to compile.
 


B. The program will compile without error and will print a, c and b in that order when run.
 


C. The program will compile without error and will print a, b and c in that order when run.
 


D. The program will compile without error and will print c, a and b in that order when run.
 


E. The program will compile without error and will print b, c and a in that order when run.
 


Explanation: 
First, static statements/blocks are called IN THE ORDER they are defined. (Hence, a and c will be printed.)

Next, instance initializer statements/blocks are called IN THE ORDER they are defined. Finally, the constructor is called. So, then it prints b.

 
Back to Question without Answer
 



40.     QID - 2.1341 : Java Basics 
 

What will be result of attempting to compile this class?



import java.util.*;

package test;

public class TestClass{

    public OtherClass oc = new OtherClass();

}

class OtherClass{

    int value;

}
 

Correct Option is :  D 

A. The class will fail to compile, since the class OtherClass is used before it is defined.
 


B. There is no problem with the code.
 


C. The class will fail to compile, since the class OtherClass must be defined in a file called OtherClass.java
This is not needed because OtherClass is not public. The class & file name must match only if the class is public.


D. The class will fail to compile .
The package declaration can never occur after an import statement.


E. None of the above.
 


Explanation: 
The order is:

package statement.

import statements

class/ interface definitions.

Important point to note here is YOU MUST READ THE QUESTIONS VERY CAREFULLY.

 
Back to Question without Answer
 



41.     QID - 2.1164 : Using Operators and Decision Constructs 
 

Which of the following statements will compile without any error?
 

Correct Options are :  A B C D 

A. System.out.println("a"+'b'+63);
Since the first operand is a String all others (one by one) will be converted to String."ab" + 63 => "ab63"


B. System.out.println("a"+63);
Since the first operand is a String all others (one by one) will be converted to String."a" + 63 => "a63"


C. System.out.println('b'+new Integer(63));
Since the first operand of + one is of numeric type, its numeric value of 98 will be used. Integer 63 will be unboxed and added to 98. Therefore, the final value will be int 161.


D. String s = 'b'+63+"a";
Since the first one is numeric type so, 'b'+63 = 161, 161+"a" = 161a.


E. String s = 63 + new Integer(10);
Since neither of the operands of + operator is a String, it will not generate a String. However, due to auto-unboxing of 10, it will generate an int value of 73.


Explanation: 
+ is overloaded such that if any one of its two operands is a String then it will convert the other operand to a String and create a new string by concatenating the two.

Therefore, in 63+"a" and "a"+63, 63 is converted to "63" and 'b' +"a" and "a"+'b', 'b' is converted to "b".

Note that in 'b'+ 63 , 'b' is promoted to an int i.e. 98 giving 161.

 
Back to Question without Answer
 



42.     QID - 2.978 : Working with Methods 
 

Given the following definition of class, which member variables are accessible from OUTSIDE the package com.enthu.qb?



package com.enthu.qb;

public class TestClass{

   int i;

   public int j;

   protected int k;

   private int l;

}
 

Correct Options are :  B D 

A. Member variable i.
No modifier means package( or default access) and is only accessible inside the package.


B. Member variable j.
public things (classes, methods and fields) are accessible from anywhere.


C. Member variable k.
Only if the accessing class is a subclass of TestClass.


D. Member variable k, but only for subclasses.
protected things (methods and fields) can be accessed from within the package and from subclasses


E. Member variable l.
private things are accessible only from the class that has it.


Explanation: 
public > protected > package (i.e. no modifier) > private

where public is least restrictive and private is most restrictive.



Remember:

protected is less restrictive than package access. So a method(or field) declared as protected will be accessible from a subclass even if the subclass is not in the same package.

The same is not true for package access.

A top level class can only have either public or no access modifier but a method or field can have all the four. Note that static, final, native and synchronized are not considered as access modifiers.

 
Back to Question without Answer
 



43.     QID - 2.1354 : Creating and Using Arrays 
 

Which of the following correctly declare a variable which can hold an array of 10 integers?
 

Correct Options are :  A C 

A. int[ ] iA
 


B. int[10] iA
Size of the array is NEVER specified on the Left Hand Side.


C. int iA[ ]
 


D. Object[ ] iA
Here, iA is an array of Objects. It cannot hold an array of integers.


E. Object[10] iA
Size of the array is NEVER specified on the LHS.


Explanation: 
Note that an array of integers IS an Object :

 Object obj = new int[]{ 1, 2, 3 }; // is valid.

But it is not an array of objects.

 Object[] o = new int[10]; // is not valid.



Difference between the placement of square brackets:

int[] i, j; //here i and j are both array of integers.

int i[], j; //here only i is an array of integers. j is just an integer.

 
Back to Question without Answer
 



44.     QID - 2.1277 : Using Operators and Decision Constructs 
 

Which of the following statements are true?
 

Correct Options are :  A C 

A. System.out.println(1 + 2 + "3"); would print 33.
operator + is left associative so evaluation of (1 + 2 + "3" ) is as follows: ( 1 + 2 ) + "3" -> 3 + "3" -> "33".


B. System.out.println("1" + 2 + 3); would print 15.
evaluation of ("1" + 2 + 3) is as follows: ("1" + 2) + 3 -> "12" + 3 -> "123".


C. System.out.println(4 + 1.0f); would print 5.0
(4 + 1.0f ) evaluates as 4.0f + 1.0f ->5.0f -> 5.0


D. System.out.println(5/4); would print 1.25
(5/4) performs integer division because both 5 and 4 are integers, resulting in the value 1.


E. System.out.println('a' + 1 ); would print b.
Both operands in the expression ( 'a' + 1 ) will be promoted to int => 97 + 1 = 98


Explanation: 
All operands of type byte, char or short are promoted AT LEAST to an int before performing mathematical operations. If one of the operands is larger than an int then the other one is promoted to the same type.

Note that System.out.println((float)5/4); will print 1.25. If you remove the explicit cast (float), it will print 1.

 
Back to Question without Answer
 



45.     QID - 2.1225 : Working with Java API - String, StringBuilder 
 

Which of these statements concerning the charAt() method of the String class are true?
 

Correct Options are :  A E 

A. The charAt( ) method can take a char value as an argument.
Yes, it can because it takes an int and char will be implicitly promoted to int.


B. The charAt( ) method returns a Character object.
It returns char.


C. The expression char ch = "12345".charAt(3) will assign 3 to ch.
It will assign 4 as indexing starts from 0.


D. The expression char ch = str.charAt(str.length()) where str is "12345", will assign 3 to ch.
It will throw IndexOutOfBoundsException as str.length() is 5 and there is no str.charAt(5);


E. The index of the first character is 0.
 


F. It throws StringIndexOutOfBoundsException if passed a value higher than or equal to the length of the string (or less than 0).
 


G. It throws ArrayIndexOutOfBoundsException if passed an value higher than or equal to the length of the string (or less than 0).
 


Explanation: 
Since indexing starts with 0, the maximum value that you can pass to charAt is length-1.



As per the API documentation for charAt, it throws IndexOutOfBoundsException if you pass an invalid value.



Both - ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException, extend IndexOutOfBoundsException and although in practice, the charAt method throws StringIndexOutOfBoundsException, it is not a valid option because the implementation is free to throw some other exception as long as it is an IndexOutOfBoundsException. There are questions in the exam on this aspect.

 
Back to Question without Answer
 



46.     QID - 2.931 : Working with Inheritance 
 

Consider the following classes :


class A{
    public static void sM1() {  System.out.println("In base static"); }
}
class B extends A{
Line 1 :   // public static void sM1() {  System.out.println("In sub static"); }
Line 2 :   // public  void sM1() {  System.out.println("In sub non-static"); }
}


Which of the following statements are true?
 

Correct Options are :  B C 

A. class B will not compile if line 1 is uncommented.
static method sM1() can be shadowed by a static method sM1() in the subclass.


B. class B will not compile if line 2 is uncommented.
static method cannot be overridden by a non-static method and vice versa


C. class B will not compile if line 1 and 2 are both uncommented.
 


D. Only the second option is correct.
 


E. Only the third option is correct.
 


Explanation: 
Another concept (although not related to this question but about static methods) is that static methods are never overridden. They are HIDDEN or SHADOWED just like static or non-static fields. For example, 

class A{
  int i = 10;
  public static void m1(){  }
  public void m2() { }
}
class B extends A{
  int i = 20;
  public static void m1() {  }
  public void m2() { }
}



Here, UNLIKE m2, m1() of B does not override m1() of A, it just shadows it, as proven by the following code:

A a  = new B();
System.out.println(a.i)  //will print 10 instead of 20
a.m1();  //will call A's m1
a.m2();  //will call B's m2 as m2() is not static and so overrides A's m2()



 
Back to Question without Answer
 



47.     QID - 2.882 : Using Operators and Decision Constructs 
 

What will the following program print when run without any command line argument?


public class TestClass {
    public static void main(String[] args)  {

        boolean hasParams = (args == null ? false : true);
        if(hasParams){
            System.out.println("has params");
        }{
            System.out.println("no params");
        }
    }
}

 

Correct Option is :  B 

A. has params
 


B. has params

no params
 


C. no params
 


D. It will not compile.
 


Explanation: 
Remember that the args array is never null. If the program is run without any arguments, args points to a String array of length 0. Therefore, hasParams will be true and it will print "has params".



Since there is no else, the subsequent code block will also be executed and it will print "no params". Note that it is not syntactically wrong to have section of code wrapped in { }.

 
Back to Question without Answer
 



48.     QID - 2.1037 : Working with Inheritance 
 

What will the following code print when compiled and run?


class Base{
   void methodA(){
      System.out.println("base - MethodA");
   }
}

class Sub extends Base{
   public void methodA(){
      System.out.println("sub - MethodA");
   }
   public void methodB(){
      System.out.println("sub - MethodB");
   }
   public static void main(String args[]){
      Base b=new Sub(); //1
      b.methodA(); //2
      b.methodB(); //3
   }
}


 

Correct Option is :  E 

A. sub - MethodA and sub - MethodB
 


B. base - MethodA and sub - MethodB
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


Explanation: 
The point to understand here is, b is declared to be a reference of class Base and methodB() is not defined in Base. So the compiler cannot accept the statement b.methodB() because it only verifies the validity of a call by looking at the declared class of the reference.

For example, the compiler is able to verify that b.methodA() is a valid call because class Base has method methodA. But it does not "bind" the call. Call binding is done at runtime by the jvm and the jvm looks for the actual class of object referenced by the variable before invoking the method.

 
Back to Question without Answer
 



49.     QID - 2.1131 : Working with Methods 
 

What would be the result of attempting to compile and run the following program?



class TestClass{

   static TestClass ref;

   String[] arguments;

   public static void main(String args[]){

      ref = new TestClass();

      ref.func(args);

   }

   public void func(String[] args){

      ref.arguments = args;

   }

}
 

Correct Option is :  E 

A. The program will fail to compile, since the static method main is trying to call the non-static method func.
The concept here is that a non-static method (i.e. an instance method) can only be called on an instance of that class. Whether the caller itself is a static method or not, is immaterial.



The main method is calling ref.func(); - this means the main method is calling a non-static method on an actual instance of the class TestClass (referred to by 'ref'). Hence, it is valid.

It is not trying calling it directly such as func() or this.func(), in which case, it would have been invalid.


B. The program will fail to compile, since the non-static method func cannot access the static member variable ref.
Non static methods can access static as well as non static methods of a class.


C. The program will fail to compile, since the argument args passed to the static method main cannot be passed on to the non-static method func.
It certainly can be.


D. The program will fail to compile, since method func is trying to assign to the non-static member variable 'arguments' through the static member variable ref.
 


E. The program will compile and run successfully.
 


 
Back to Question without Answer
 



50.     QID - 2.1421 : Working with Java Data Types 
 

What will the following code print when compiled and run?





public class Discounter {

    static double percent; //1

    int offset = 10, base= 50; //2

    public static double calc(double value) {

        int coupon, offset, base; //3

        if(percent <10){ //4

            coupon = 15;

            offset = 20;

            base = 10;

        }

        return coupon*offset*base*value/100; //5

    }

    public static void main(String[] args) {

        System.out.println(calc(100));

    }

}


 

Correct Option is :  E 

A. 3000
 


B. 3000.0
 


C. compilation error at //3
 


D. compilation error at //4
 


E. compilation error at //5
 


F. Exception at run time.
 


Explanation: 
Remember that static and instance variables are automatically assigned a value even if you don't initialize them explicitly but local variables must be initialized explicitly before they are used.



Now, observe that the calc method declares local variables coupon, offset, and base but does not assign them a value. Even though at run time, we know that since percent is 0 and is thus < 10, a value will be assigned to these variables, the compiler doesn't know this because the compiler doesn't take values of "variables" into consideration while determining the flow of control. It only considers the values of compile time constants. Therefore, as far as the compiler is concerned, coupon, offset, and base may remain uninitialized before they are used.



Having uninitialized variables itself is not a problem. So there is no compilation error at //3. However, using them before they are initialized is a problem and therefore the compiler flags an error at //5.



Had percent been defined as final ( static final double percent = 0; ), the code would work and print 3000.0.

 
Back to Question without Answer
 



51.     QID - 2.1211 : Handling Exceptions 
 

What will be the result of attempting to compile and run the following program?



public class TestClass{

   public static void main(String args[]){

      Exception e = null;

      throw e;

   }

}
 

Correct Option is :  A 

A. The code will fail to compile.
 


B. The program will fail to compile, since it cannot throw a null.
 


C. The program will compile without error and will throw an Exception when run.
 


D. The program will compile without error and will throw java.lang.NullPointerException when run
 


E. The program will compile without error and will run and terminate without any output.
 


Explanation: 
You are throwing an exception and there is no try or catch block, or a throws clause. So it will not compile. 

If you either put a try catch block or declare a throws clause for the method then it will throw a NullPointerException at run time because e is null.

A method that throws a 'checked' exception i.e. an exception that is not a subclass of Error or RuntimeException, either must declare it in throws clause or put the code that throws the exception in a try/catch block.

 
Back to Question without Answer
 



52.     QID - 2.1339 : Using Operators and Decision Constructs 
 

What will the following code print?


  int i = 1;
  int j = i++;
  if( (i==++j) | (i++ == j) ){
    i+=j;
  }
  System.out.println(i);


 

Correct Option is :  C 

A. 3
 


B. 4
 


C. 5
 


D. 2
 


E. It will not compile.
 


Explanation: 
This question is based on 2 concepts:



1. i == ++j is not same as i == j++;

In the case of i == ++j, j is first incremented and then compared with i. While in the case of i == j++;, j is first compared with i and then incremented.



2. The | operator, when applied for boolean operands, ensures that both the sides are evaluated. This is opposed to || which does not evaluate the Right Hand Side if the result can be known by just evaluating the Left Hand Side.



Now, let us see the values of i and j at each step:



int i = 1;

int j = i++; // j is assigned 1 and i is incremented to 2

if( (i==++j) | (i++ == j) )     // increment j (so j becomes 2) and compare with i => return true.

        //since it is |, evaluate next condition: compare i with 2 and increment i => i becomes 3.{

    i+=j; //i = 3+2 = 5

}

System.out.println(i); //prints 5

 
Back to Question without Answer
 



53.     QID - 2.957 : Working with Methods 
 

What will the following program print?


public class TestClass{
  static int someInt = 10;
  public static void changeIt(int a){
    a = 20;
  }
  public static void main(String[] args){
    changeIt(someInt);
    System.out.println(someInt);
  }
}


 

Correct Option is :  A 

A. 10
 


B. 20
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
In case of primitives such as an int, it is the value of the primitive that is passed. For example, in this question, when you pass someInt to changeIt method, you are actually passing the value 10 to the method, which is then assigned to method variable 'a'. In the method, you assign 20 to 'a'. However, this does not change the value contained in someInt. someInt still contains 10. Therefore, 10 is printed.



Theoretically, java supports Pass by Value for everything ( i.e. primitives as well as Objects). 



  . Primitives are always passed by value. 

  . Object "references" are passed by value. So it looks like the object is passed by reference but actually it is the value of the reference that is passed. 



        An  example: 

        Object o1 = new Object(); //Let us say, the object is stored at memory location 15000. 

        //Since o1 actually stores the address of the memory location where the object is stored, it contains 15000. 



        Now, when you call someMethod(o1); the value 15000 is passed to the method. 



        Inside the method someMethod():



        someMethod( Object localVar) { 

            /*localVar now contains 15000, which means it also points to the same memory location where the object is stored.

            Therefore, when you call a method on localVar, it will be executed on the same object.

            However, when you change the value of localVar itself, for example if you do localVar=null, 

            it then starts pointing to a different memory location. But the original variable o1 still 

            contains 15000 so it still points to the same object. */

        }

  

If you need even more detailed explanation, please check http://www.javaranch.com/campfire/StoryPassBy.jsp

 
Back to Question without Answer
 



54.     QID - 2.1331 : Working with Java Data Types 
 

Note: This question may be considered too advanced for this exam.



Which statements can be inserted at line 1 in the following code to make the program write x on the standard output when run?


public class AccessTest{
   String a = "x";
   static char b = 'x';
   String  c = "x";
   class Inner{
      String  a = "y";
      String  get(){
         String c = "temp";
         // Line 1
         return c;
      }
   }

   AccessTest() { 
     System.out.println(  new Inner().get()  ); 
   }

   public static void main(String args[]) {  new AccessTest();  }
}

 

Correct Options are :  C D E 

A. c = c;
It will reassign 'temp' to c!


B. c = this.a;
It will assign "y" to c.


C. c = ""+AccessTest.b;
Because b is static.


D. c = AccessTest.this.a;
 


E. c = ""+b;
 


 
Back to Question without Answer
 



55.     QID - 2.905 : Working with Inheritance 
 

Given the following line of code:



   List students = new ArrayList();



Identify the correct statement:
 

Correct Option is :  A 

A. The reference type is List and the object type is ArrayList.
Since you are doing new ArrayList, you are creating an object of class ArrayList. You are assigning this object to variable "students", which is declared of class List. Reference type means the declared type of the variable.


B. The reference type is ArrayList and the object type is ArrayList.
 


C. The reference type is ArrayList and the object type is List.
 


D. The reference type is List and the object type is List.
 


 
Back to Question without Answer
 



56.     QID - 2.1307 : Creating and Using Arrays 
 

Given:



double daaa[][][] = new double[3][][];

double d = 100.0;

double[][] daa = new double[1][1];



Which of the following will not cause any problem at compile time or runtime?
 

Correct Options are :  B E 

A. daaa[0] = d;
daaa[0] should be a 2 dimensional array because daaa is a 3 dimensional array.


B. daaa[0] = daa;
 


C. daaa[0] = daa[0];
daaa[0] should be a 2 dimensional array while daa[0] is a one dimensional array.


D. daa[1][1] = d;
daa[1][1] will cause an ArrayIndexOutOfBoundsException because daa's length is only 1 and the indexing starts from 0. To access the first element, you should use daa[0][0].


E. daa = daaa[0];
 


 
Back to Question without Answer
 



57.     QID - 2.1194 : Using Operators and Decision Constructs 
 

Consider the following lines of code:



   System.out.println(null + true); //1

   System.out.println(true + null); //2

   System.out.println(null + null); //3



Which of the following statements are correct?
 

Correct Option is :  A 

A. None of the 3 lines will compile.
 


B. All the 3 lines will compile and print nulltrue, truenull and nullnull respectively.
 


C. Line 1 and 2 won't compile but line 3 will print nullnull.
 


D. Line 3 won't compile but line 1 and 2 will print nulltrue and truenull respectively.
 


E. None of the above.
 


Explanation: 
Note that none of the parameters is a String so conversion to String will not happen. The following are the error messages given by the compiler.



C:\works\nbtestproject\src\TestClass.java:46: operator + cannot be applied to <nulltype>,boolean

   System.out.println(null + true); //1

C:\works\nbtestproject\src\TestClass.java:46: reference to println is ambiguous, both method println(char[]) in java.io.PrintStream and method println(java.lang.String) in java.io.PrintStream match

   System.out.println(null + true); //1

C:\works\nbtestproject\src\TestClass.java:47: operator + cannot be applied to boolean,<nulltype>

   System.out.println(true + null); //2

C:\works\nbtestproject\src\TestClass.java:47: reference to println is ambiguous, both method println(char[]) in java.io.PrintStream and method println(java.lang.String) in java.io.PrintStream match

   System.out.println(true + null); //2

C:\works\nbtestproject\src\TestClass.java:48: operator + cannot be applied to <nulltype>,<nulltype>

   System.out.println(null + null); //3

C:\works\nbtestproject\src\TestClass.java:48: reference to println is ambiguous, both method println(char[]) in java.io.PrintStream and method println(java.lang.String) in java.io.PrintStream match

   System.out.println(null + null); //3

6 errors



  If one operand expression is of type String, then string conversion is performed on the other operand to produce a String at run time. The result is a reference to a newly created String object that is the concatenation of the two Strings. The characters of the left-hand operand precede the characters of the right-hand operand in the newly created string.

  Any type may be converted to type String by string conversion.

  A value x of primitive type T is first converted to a reference value as if by giving it as an argument to an appropriate class instance creation expression e.g. if T is boolean, then use new Boolean(x) .

  toString() is defined by the primordial class Object; many classes override it, notably Boolean, Character, Integer, Long, Float, Double, and String.



Note that had there been a method like String getString() { return null; }, println( getString() + true ) etc. would have compiled fine and would have printed "nulltrue".

 
Back to Question without Answer
 



58.     QID - 2.1093 : Handling Exceptions 
 

Which statements regarding the following code are correct ?





class Base{

   void method1() throws java.io.IOException, NullPointerException{

      someMethod("arguments");

      // some I/O operations

   }

   int someMethod(String str){

      if(str == null) throw new NullPointerException();

      else return str.length();

   }

}

public class NewBase extends Base{

      void method1(){

           someMethod("args");

      }

}


 

Correct Options are :  A E 

A. method1 in class NewBase does not need to specify any exceptions.
 


B. The code will not compile because RuntimeExceptions cannot be specified in the throws clause.
Any Exception can be specified in the throws clause.


C. method1 in class NewBase must at least specify IOException in its throws clause.
 


D. method1 in class NewBase must at least specify NullPointerException in its throws clause.
This is not needed because NullPointerException is a RuntimeException.


E. There is no problem with the code.
 


Explanation: 
Overriding method only needs to specify a subset of the list of exception classes the overridden method can throw. A set of no classes is a valid subset of that list.



Remember that  NullPointerException is a subclass of RuntimeException, while IOException is a subclass of Exception.

 
Back to Question without Answer
 



59.     QID - 2.1026 : Handling Exceptions 
 

Given the class

// Filename: Test.java
public class Test{
   public static void main(String args[]){
      for(int i = 0; i< args.length; i++){
         System.out.print("  "+args[i]);
      }
   }
}


Now consider the following 3 options for running the program:

a: java Test
b: java Test param1
c: java Test param1 param2


Which of the following statements are true?
 

Correct Options are :  D E 

A. The program will throw java.lang.ArrayIndexOutOfBoundsException on option a.
 


B. The program will throw java.lang.NullPointerException on option a.
 


C. The program will print Test param1 on option b.
Unlike in C++, Name of the file is not passed in args because for a public class it is always same as the name of the class.


D. It will print param1 param2 on option c.
 


E. It will not print anything on option a.
 


Explanation: 
It will not throw NullPointerException because args[] is never null. If no argument is given (as in option a) then the length of args is 0.

 
Back to Question without Answer
 



60.     QID - 2.1172 : Handling Exceptions 
 

Considering the following program, which of the options are true?



public class FinallyTest{

   public static void main(String args[]){

      try{

          if (args.length == 0) return;

          else throw new Exception("Some Exception");

      }

      catch(Exception e){

          System.out.println("Exception in Main");

      }

      finally{

          System.out.println("The end");

      }

   }

}


 

Correct Options are :  A C 

A. If run with no arguments, the program will only print 'The end'.
 


B. If run with one argument, the program will only print 'The end'.
 


C. If run with one argument, the program will print 'Exception in Main' and 'The end'.
 


D. If run with one argument, the program will only print 'Exception in Main'.
 


E. If run with no arguments, the program will not print anything.
 


F. If run with no arguments, the program will generate a stack trace on the console.
 


Explanation: 
There are two points to understand here:

1. Even if the program is executed without any arguments, the 'args' is NOT NULL. In such case it will be initialized to an array of Strings containing zero elements.

2. The finally block is always executed, no matter how control leaves the try block. Only if, in a try or catch block, System.exit() is called then finally will not be executed.

 
Back to Question without Answer
 



61.     QID - 2.908 : Using Operators and Decision Constructs 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        

         boolean flag  = true;

         switch (flag){

             case true : System.out.println("true");

                 default: System.out.println("false");

         }

              

    }

}
 

Correct Option is :  A 

A. It will not compile.
A boolean cannot be used for a switch statement. It needs an integral type, an enum, or a String.


B. false
 


C. true

false
 


D. Exception at run time.
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



62.     QID - 2.912 : Working with Methods 
 

Which of the following methods does not return any value?
 

Correct Option is :  D 

A. public doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
It is missing the return type. Every method must have a return type specified in its declaration. 

It could be a valid constructor though if the class is named doStuff because the constructors don't return anything, not even void.


B. public null doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
null can be a return value not a return type because null is not a type.


C. public doStuff() {

    //valid code not shown

} 
This is not a valid method because there is no return type declared. Although it can be a valid constructor if the name of the class is doStuff.


D. public void doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
A method that does not return anything should declare its return type as void.

Note that this is different from constructors. A constructor also doesn't return anything but for a constructor, you don't specify any return type at all. That is how a constructor is differentiated from a regular method.


E. private doStuff() {

    //valid code not shown

} 
This is not a valid method because there is no return type declared. Although it can be a valid constructor if the name of the class is doStuff.


 
Back to Question without Answer
 



63.     QID - 2.989 : Working with Java API - String, StringBuilder 
 

Consider the following code:



public class Logger{

    private StringBuilder sb = new StringBuilder();

    

    public void logMsg(String location, String message){

    sb.append(location);

    sb.append("-");

    sb.append(message);

    }

    

    public void dumpLog(){

    System.out.println(sb.toString());

    //Empty the contents of sb here

    }

    

}



Which of the following options will empty the contents of the StringBuilder referred to by variable sb in method dumpLog()?
 

Correct Option is :  A 

A. sb.delete(0, sb.length());
 


B. sb.clear();
 


C. sb.empty();
 


D. sb.removeAll();
 


E. sb.deleteAll();
 


Explanation: 
public StringBuilder delete(int start, int end)

Removes the characters in a substring of this sequence. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. If start is equal to end, no changes are made.

Parameters:

start - The beginning index, inclusive.

end - The ending index, exclusive. 

Returns:

This object. 

Throws: 

StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than end.

 
Back to Question without Answer
 



64.     QID - 2.927 : Using Operators and Decision Constructs 
 

What will the following code print ?



class Test{

   public static void main(String[] args){

      int k = 1;

      int[] a = { 1 };

      k += (k = 4) * (k + 2);

      a[0] += (a[0] = 4) * (a[0] + 2);

      System.out.println( k + " , " + a[0]);

   }

}
 

Correct Option is :  C 

A. It will not compile.
 


B. 4 , 4
 


C. 25 , 25
 


D. 13 , 13
 


E. None of the above.
 


Explanation: 
The value 1 of k is saved by the compound assignment operator += before its right-hand operand (k = 4) * (k + 2) is evaluated. Evaluation of this right-hand operand then assigns 4 to k, calculates the value 6 for k + 2, and then multiplies 4 by 6 to get 24. This is added to the saved value 1 to get 25, which is then stored into k by the += operator. An identical analysis applies to the case that uses a[0].

  k += (k = 4) * (k + 2);

  a[0] += (a[0] = 4) * (a[0] + 2);

  k = k + (k = 4) * (k + 2);

  a[0] = a[0] + (a[0] = 4) * (a[0] + 2);

 
Back to Question without Answer
 



65.     QID - 2.1032 : Using Loop Constructs 
 

What will the following code print?



public class BreakTest{
  public static void main(String[] args){
    int i = 0, j = 5;
    lab1 : for( ; ; i++){
      for( ; ; --j)  if( i >j ) break lab1;
    }
    System.out.println(" i = "+i+", j = "+j);
  }
}

 

Correct Option is :  D 

A. i = 1, j = -1
 


B. i = 1, j = 4
 


C. i = 0, j = 4
 


D. i = 0, j = -1
 


E. It will not compile.
 


Explanation: 
The values of i and j in the inner most for loop change as follows:

i = 0 j = 5

i = 0 j = 4

i = 0 j = 3

i = 0 j = 2

i = 0 j = 1

i = 0 j = 0

i = 0 j = -1

Therefore, the final println prints i = 0, j = -1

 
Back to Question without Answer
 



66.     QID - 2.1376 : Working with Java Data Types 
 

Which of the following is/are valid double values for 10 million? (A million has 6 zeros)
 

Correct Option is :  C 

A. double d = 10,000,000.0;
Comma is not a valid character here.


B. double d = 10-000-000;
Dash (-) is not a valid character here.


C. double d = 10_000_000;
 


D. double d = 10 000 000;
 


Explanation: 
Beginning with Java 7, you can include underscores in between the digits. This helps in writing long numbers. For example, if you want to write 1 million, you can write: 1_000_000, which is easier than 1000000 for humans to interpret. 



Note that you cannot start or end a value with an underscore though. Thus, 100_ or _100 are invalid values. _100 is actually a valid variable name!



You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



67.     QID - 2.906 : Working with Methods 
 

Given:

class Triangle{
    public int base;
    public int height;
    private final double ANGLE;

    public  void setAngle(double a){  ANGLE = a;  }
    
    public static void main(String[] args) {
        Triangle t = new Triangle();
        t.setAngle(90);
    }
}


 

Correct Option is :  D 

A. the value of ANGLE will not be set to 90 by the setAngle method.
 


B. An exception will be thrown at run time.
 


C. The code will work as expected setting the value of ANGLE to 90.
 


D. The code will not compile.
 


Explanation: 
The given code has two problems:

1. If you declare a field to be final, it must be explicitly initialized by the time the creation of an object of the class is complete. So you can either initialize it immediately:

private final double ANGLE = 0;

or you can initialize it in the constructor or an instance block.



2. Since ANGLE is final, you can't change its value once it is set. Therefore the setAngle method will also not compile.

 
Back to Question without Answer
 



68.     QID - 2.1284 : Working with Java API - String, StringBuilder 
 

What will the following class print when run?
 
public class Sample{
   public static void main(String[] args)  {
     String s1 = new String("java");
     StringBuilder s2 = new StringBuilder("java");
     replaceString(s1);
     replaceStringBuilder(s2);
     System.out.println(s1 + s2);
  }
  static void replaceString(String s) {
     s = s.replace('j', 'l');
  }
  static void replaceStringBuilder(StringBuilder s) {
     s.append("c");
  }
}


 

Correct Option is :  C 

A. javajava
 


B. lavajava
 


C. javajavac
 


D. lavajavac
 


E. None of these.
 


Explanation: 
String is immutable while StringBuilder is not. So no matter what you do in replaceString() method, the original String that was passed to it will not change. On the other hand, StringBuilder methods, such as replace or append, change the StringBuilder itself. So, 'c' is appended to java in replaceStringBuilder() method.

 
Back to Question without Answer
 



69.     QID - 2.894 : Java Basics 
 

The following are the complete contents of TestClass.java file. Which packages are automatically imported?



class TestClass{

   public static void main(String[] args){

     System.out.println("hello");

   }

}
 

Correct Options are :  C F 

A. java.util
 


B. System
System is not a package. It is a class in java.lang package.


C. java.lang
 


D. java.io
 


E. String
String is a class in java.lang package.


F. The package with no name.
If there is no package statement in the source file, the class is assumed to be created in a default package that has no name. In this case, all the types created in this default package will be available to this class without any import statement.



However, note that this default package cannot be imported in classes that belong to any other package at all, not even with any sort of import statement. So for example, if you have a class named SomeClass in package test, you cannot access TestClass defined in the problem statement (as it is defined in the default package) at all because there is no way to import it.



As per JLS Section 7.5:

A type in an unnamed package has no canonical name, so the requirement for a canonical name in every kind of import declaration implies that (a) types in an unnamed package cannot be imported, and (b) static members of types in an unnamed package cannot be imported.


 
Back to Question without Answer
 



70.     QID - 2.1390 : Working with Inheritance 
 

What can be inserted in the code below so that it will print UP UP UP?



public class Speak {

    public static void main(String[] args) {

        Speak s = new GoodSpeak();



        INSERT CODE HERE



    }

}

class GoodSpeak extends Speak implements Tone{

    public void up(){

        System.out.println("UP UP UP");

    }

}

interface Tone{

    void up();

}
 

Correct Options are :  A C 

A. ((Tone)s).up();
 


B. s.up();
It will not compile because the class of reference s is Speak, which does not have the method up().


C. ((GoodSpeak)s).up();
 


D. (GoodSpeak)s.up();
Incorrect syntax. It will not compile.


E. (Tone)(GoodSpeak)s.up();
Incorrect syntax. It will not compile. The following would have been valid:

((Tone)(GoodSpeak)s).up();


 
Back to Question without Answer
 



71.     QID - 2.1262 : Creating and Using Arrays 
 

Consider the following code snippet ...



boolean[] b1 = new boolean[2];

boolean[] b2 = {true , false};

System.out.println( "" + (b1[0] == b2[0]) + ", "+ (b1[1] == b2[1])  );



What will it print ?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsError at Runtime.
 


C. false, true
 


D. true, false
 


E. It will print false, false.
 


Explanation: 
Note that whenever you create an array all of its elements are automatically given defaults values. Numeric types are initialized to 0, objects are initialized to null, and booleans to false.



So if you have, float[ ] f = new float[3]; f[0], f[1] and f[2] will all be 0.0.

if you have Object[ ] o = new String[3]; o[0], o[1] and o[2] will all be null.

In this case, b1[0] and b1[1] are false.

whereas b2[0] and b2[1] are true and false.

So the answer is false and true.

 
Back to Question without Answer
 



72.     QID - 2.1059 : Using Loop Constructs 
 

Identify valid for constructs...

Assume that Math.random() returns a double between 0.0 and 1.0 (not including 1.0).
 

Correct Options are :  A C E 

A. for(;Math.random()<0.5;){

    System.out.println("true");

}
The second expression in a for loop must return a boolean, which is happening here. So this is valid.


B. for(;;Math.random()<0.5){

    System.out.println("true");

}
Here, the first part (i.e. the init part) and the second part (i.e. the expression/condition part) part of the for loop are empty. Both are valid. (When the expression/condition part is empty, it is interpreted as true.) 



The third part (i.e. the update part) of the for loop does not allow every kind of statement. It allows only the following statements here:  Assignment, PreIncrementExpression, PreDecrementExpression, PostIncrementExpression, PostDecrementExpression, MethodInvocation, and ClassInstanceCreationExpression. Thus, Math.random()<0.5 is not valid here, and so this will not compile.


C. for(;;Math.random()){

    System.out.println("true");

}
This is a valid never ending loop that will keep printing true.


D. for(;;){

    Math.random()<.05? break : continue;

}
This is an invalid use of ? : operator. Both sides of : should return some value. Here, break and continue do not return anything. However, the following would have been valid:

for(;Math.random()<.05? true : false;){  }


E. for(;;){

    if(Math.random()<.05) break;

}
 


Explanation: 
The three parts of a for loop are independent of each other. However, there are certain rules for each part. Please go through section 14.14.1 of JLS to understand it fully.

 
Back to Question without Answer
 



73.     QID - 2.889 : Working with Methods 
 

What will the following code print when run?


class A{
    String value = "test";
    A(String val){
        this.value = val;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        new A("new test").print();
    }
}

 

Correct Option is :  C 

A. test
 


B. new test
 


C. It will not compile.
There is no method named print() defined in class A. Further, there is no such method in class Object either.

To print the contents of an object you can use toString() method that returns a String:

System.out.println(a.toString());



However, for this to print a meaningful value, class A should override the Object class's toString() method to return a meaningful String.


D. It will throw an exception at run time.
 


 
Back to Question without Answer
 



74.     QID - 2.1245 : Using Loop Constructs 
 

Consider the following class :


class Test{
   public static void main(String[] args){
      for (int i = 0; i < 10; i++) System.out.print(i + " ");  //1
      for (int i = 10; i > 0; i--) System.out.print(i + " ");  //2
      int i = 20;                  //3
      System.out.print(i + " ");   //4
   }
}


Which of the following statements are true?
 

Correct Options are :  A B C D 

A. As such, the class will compile and print "20 " (without quotes) at the end of its output.
 


B. It will not compile if line 3 is removed.
If //3 is removed, 'i' will be undefined for //4


C. It will not compile if line 3 is removed and placed before line 1.
 


D. It will not compile if line 4 is removed and placed before line 3.
 


E. Only Option 2, 3, and 4 are correct.
 


Explanation: 
The scope of a local variable declared in 'for' statement is the rest of the 'for' statement, including its own initializer. So, when line 3 is placed before line 1, there is a redeclaration of i in the first for() which is not legal.

As such, the scope of i's declared in for() is just within the 'for' blocks. So placing line 4 before line 3 will not work since 'i' is not in scope there.

 
Back to Question without Answer
 



75.     QID - 2.952 : Working with Inheritance 
 

Which of the following lines of code that, when inserted at line 1, will make the overriding method in SubClass invoke the overridden method in BaseClass on the current object with the same parameter.


class BaseClass{
   public void print(String s) {  System.out.println("BaseClass :"+s); }
}
class SubClass extends BaseClass{
   public void print(String s){
      System.out.println("SubClass :"+s);
      // Line 1
   }
   public static void main(String args[]){
      SubClass sc = new SubClass();
      sc.print("location");
   }
}


 

Correct Option is :  B 

A. this.print(s);
 


B. super.print(s);
This is the right syntax to call the base class's overridden method. However, note that there is no way to call a method if it has been overriden more than once. For example, if you make BaseClass extend from another base class SubBase, and if SubBase also has the same method, then there is no way to invoke SubBase's print method from SubClass's print method. You cannot have something like super.super.print(s);


C. print(s);
This will call the same method and will cause a recursion.


D. BaseClass.print(s);
print is not a static method.


 
Back to Question without Answer
 



76.     QID - 2.1334 : Working with Inheritance 
 

What will the following program print when run?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[] ){ A b = new B("good bye");  }
}
class A{
   A() { this("hello", " world");  }
   A(String s) { System.out.println(s); }
   A(String s1, String s2){ this(s1 + s2); }
}
class B extends A{
   B(){ super("good bye"); };
   B(String s){ super(s, " world"); }
   B(String s1, String s2){ this(s1 + s2 + " ! "); }
}

 

Correct Option is :  C 

A. It will print "good bye".
 


B. It will print "hello world".
 


C. It will print "good bye world".
 


D. It will print "good bye" followed by "hello world".
 


E. It will print "hello world" followed by "good bye".
 


Explanation: 
new B("good bye"); will call class B's one args constructor which in turn calls super(s, " world"); (i.e. class A's two args constructor) which in turn calls this(s1 + s2); (i.e. class A's one arg constructor with parameter "good bye world") which prints it.

 
Back to Question without Answer
 



77.     QID - 2.1447 : Java Basics - OO Concepts 
 

You are writing a class named Bandwidth for an internet service provider that keeps track of number of bytes consumed by a user. The following code illustrates the expected usage of this class - 



class User{

    Bandwidth bw = new Bandwidth();

    

    public void consume(int bytesUsed){

        bw.addUsage(bytesUsed);

    }

   ... other irrelevant code    

}



class Bandwidth{

    private int totalUsage;

    private double totalBill;

    private double costPerByte;

    

   

    //add your code here



    ...other irrelevant code

}



Your goal is to implement a method addUsage (and other methods, if required) in Bandwidth class such that all the bandwidth used by a User is reflected by the totalUsage field and totalBill is always equal to totalUsage*costPerByte. Further, that a User should not be able to tamper with the totalBill value and is also not able to reduce it.



Which of the following implementation(s) accomplishes the above?
 

Correct Option is :  A 

A. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

    }

}
 


B. protected void addUsage(int bytesUsed){

       totalUsage += bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

}
There is no validity check for bytesUsed argument. User will be able to tamper will the bill by suppling a negative number for bytesUsed.


C. private void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalUsage*costPerByte;

    }

}
If this method is made private, User class will not be able to access it.


D. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

    }

}

public void updateTotalBill(){

    totalBill = totalUsage*costPerByte;

}
This is not a good approach because once the User class calls addUsage() method, totalBill field will not reflect the correct amount unless User also calls updateTotalBill, which means Bandwidth class is now dependent on some other class to keep its internal state consistent with the business logic.


 
Back to Question without Answer
 



Test 4



01.     QID - 2.944 
 

Which of the following are valid code snippets appearing in a method:
 

Select 3 options

A. int a = b = c = 100;
 


B. int a, b, c; a = b = c = 100;
 


C. int a, b, c=100;
 


D. int a=100, b, c;
 


E. int a= 100 = b = c;
 


 
Check Answer
 



02.     QID - 2.1291 
 

What will be the result of attempting to compile and run class B?





class A{

   final int fi = 10;

}

public class B extends A{

   int fi = 15;

   public static void main(String[] args){

       B b = new B();

       b.fi = 20;

       System.out.println(b.fi);

       System.out.println(  (  (A) b  ).fi  );

   }

}
 

Select 1 option

A. It will not compile.
 


B. It will print 10 and then 10
 


C. It will print 20 and then 20
 


D. It will print 10 and then 20
 


E. It will print 20 and then 10
 


 
Check Answer
 



03.     QID - 2.1411 
 

What will the following code print when compiled and run?

public class DaysTest{



    static String[] days = {"monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday" };

    

    public static void main(String[] args) {

        

        int index = 0;

        for(String day : days){

            

            if(index == 3){

                break;

            }else {

                 continue;

            }

            index++;

            if(days[index].length()>3){

                days[index] = day.substring(0,3);

            }

        }

        System.out.println(days[index]);

    }

}
 

Select 1 option

A. wed
 


B. thu
 


C. fri
 


D. It will not compile.
 


E. It will throw an exception at run time.
 


 
Check Answer
 



04.     QID - 2.843 
 

Given the following declaration:



  int[][] twoD = { { 1, 2, 3} , { 4, 5, 6, 7}, { 8, 9, 10 } };



What will the following lines of code print?



System.out.println(twoD[1].length);

System.out.println(twoD[2].getClass().isArray());

System.out.println(twoD[1][2]);
 

Select 1 option

A. 4

true

6
 


B. 3

true

3
 


C. 3

false

3
 


D. 4

false

6
 


 
Check Answer
 



05.     QID - 2.1062 
 

The following code snippet will print 4.


int i1 = 1, i2 = 2, i3 = 3;
int i4 = i1 + (i2=i3 );
System.out.println(i4);


 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



06.     QID - 2.1152 
 

Which of these expressions will return true?
 

Select 4 options

A. "hello world".equals("hello world")
 


B. "HELLO world".equalsIgnoreCase("hello world")
 


C. "hello".concat(" world").trim().equals("hello world")
 


D. "hello world".compareTo("Hello world") < 0
 


E. "Hello world".toLowerCase( ).equals("hello world")
 


 
Check Answer
 



07.     QID - 2.1243 
 

Which of the following are correct ways to initialize the static variables MAX and CLASS_GUID ?


class Widget{
   static int MAX;     //1
   static final String CLASS_GUID;   // 2
   Widget(){
       //3
   }
   Widget(int k){
       //4
   }
}


 

Select 2 options

A. Modify lines //1 and //2 as : static int MAX = 111; static final String CLASS_GUID = "XYZ123";
 


B. Add the following line just after //2 :  static {  MAX = 111; CLASS_GUID = "XYZ123"; }
 


C. Add the following line just before //1 :  { MAX = 111; CLASS_GUID = "XYZ123"; }
 


D. Add the following line at //3 as well as //4 : MAX = 111; CLASS_GUID = "XYZ123";
 


E. Only option 3 is valid.
 


 
Check Answer
 



08.     QID - 2.845 
 

The options below contain the complete contents of a file.

Which of these options can be run with the following command line once compiled?

 java main
 

Select 1 option

A. //in file main.java

class main {

   public void main(String[] args) {

       System.out.println("hello");

   }

}
 


B. //in file main.java

   public static void main(String[] args) {

       System.out.println("hello");

   }
 


C. //in file main.java

public class anotherone{

}

class main {

   public static void main(String[] args) {

       System.out.println("hello");

   }

}
 


D. //in file main.java

class anothermain{

   public static void main(String[] args) {

       System.out.println("hello2");

   }

}

class main {

   public final static void main(String[] args) {

       System.out.println("hello");

   }

}


 


 
Check Answer
 



09.     QID - 2.1214 
 

Consider the following program:



public class TestClass{

  public static void main(String[] args){

    String tom = args[0];

    String dick = args[1];

    String harry = args[2];

  }

}



What will be the value of 'harry' if the program is run from the command line:

java TestClass 111 222 333
 

Select 1 option

A. 111
 


B. 222
 


C. 333
 


D. It will throw an ArrayIndexOutOfBoundsException
 


E. None of the above.
 


 
Check Answer
 



10.     QID - 2.1107 
 

Which of the following are correct about "encapsulation"?
 

Select 2 options

A. Encapsulation is same as polymorphism.
 


B. It helps make sure that clients have no accidental dependence on the choice of representation
 


C. It helps avoiding name clashes as internal variables are not visible outside.
 


D. Encapsulation makes sure that messages are sent to the right object at run time.
 


E. Encapsulation helps you inherit the properties of another class.
 


 
Check Answer
 



11.     QID - 2.992 
 

Given the following program, which statement is true?



class SomeClass{

   public static void main( String args[ ] ){

      if (args.length == 0 ){

         System.out.println("no arguments") ;

      }

      else{

         System.out.println( args.length + " arguments") ;

      }

   }

}
 

Select 1 option

A. The program will fail to compile.
 


B. The program will throw a NullPointerException when run with zero arguments.
 


C. The program will print no arguments when called with zero arguments and 1 arguments  when called with one argument.
 


D. The program will print no arguments and 2 arguments when called with zero and one arguments.
 


E. The program will print no arguments and 3 arguments when called with zero and one arguments.
 


 
Check Answer
 



12.     QID - 2.1233 
 

What will the following program print?


class Test{
    public static void main(String args[]){
        int c = 0;
        boolean flag = true;
        for(int i = 0; i < 3; i++){
            while(flag){
                c++;
                if(i>c || c>5) flag = false;
            }
        }
        System.out.println(c);
    }
}

 

Select 1 option

A. 3
 


B. 4
 


C. 5
 


D. 6
 


E. 7
 


 
Check Answer
 



13.     QID - 2.1074 
 

Consider the following class definition:


public class TestClass{
   public static void main(String[] args){  new TestClass().sayHello(); }   //1
   public static void sayHello(){ System.out.println("Static Hello World"); }  //2
   public void sayHello() { System.out.println("Hello World "); }  //3
}


What will be the result of compiling and running the class?
 

Select 1 option

A. It will print Hello World.
 


B. It will print Static Hello World.
 


C. Compilation error at line 2.
 


D. Compilation error at line 3.
 


E. Runtime Error.
 


 
Check Answer
 



14.     QID - 2.1010 
 

What will the following program print?


public class TestClass{
  public static void main(String[] args){
     for : for(int i = 0; i< 10; i++){
        for (int j = 0; j< 10; j++){
             if ( i+ j > 10 )  break for;
        }
        System.out.println( "hello");
     }
  }
}

 

Select 1 option

A. It will print hello 6 times.
 


B. It will not compile.
 


C. It will print hello 2 times.
 


D. It will print hello 5 times.
 


E. It will print hello 4 times.
 


 
Check Answer
 



15.     QID - 2.1475 
 

Given:

interface Runner {

  public void run();

}



Which of the following is/are valid lambda expression(s) that capture(s) the above interface?
 

Select 2 options

A. -> System.out.println("running...");
 


B. void -> System.out.println("running...")
 


C. () -> System.out.println("running...")
 


D. () -> { System.out.println("running..."); return; }
 


E. (void) -> System.out.println("running...")
 


F. -> System.out.println("running...")
 


 
Check Answer
 



16.     QID - 2.1036 
 

Consider the following class...



class Test{

   public static void main(String[ ] args){

      int[] a = { 1, 2, 3, 4 };

      int[] b = { 2, 3, 1, 0 };

      System.out.println( a [ (a = b)[3] ] );

   }

}



What will it print when compiled and run ?
 

Select 1 option

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException when run.
 


C. It will print 1.
 


D. It will print 3.
 


E. It will print 4
 


 
Check Answer
 



17.     QID - 2.1209 
 

Which statements concerning the following code are true?


class A{
  public A() {} // A1
  public A(String s) {  this();  System.out.println("A :"+s);  }  // A2
}

class B extends A{
  public int B(String s) {  System.out.println("B :"+s);  return 0; } // B1
}
class C extends B{
    private C(){ super(); } // C1
    public C(String s){  this();  System.out.println("C :"+s);  } // C2
    public C(int i){} // C3
}


 

Select 4 options

A. At least one of the constructors of each class is called as a result of constructing an object of class C.
 


B. Constructor at  //A2 will never be called in creation of an object of class C.
 


C. Class C can be instantiated only in two ways by users of this class.
 


D. //B1 will never be called in creation of objects of class A, B, or C.
 


E. The code will not compile.
 


 
Check Answer
 



18.     QID - 2.850 
 

Identify the correct statements about ArrayList?
 

Select 3 options

A. ArrayList extends java.util.AbstractList.
 


B. It allows you to access its elements in random order.
 


C. You must specify the class of objects you want to store in ArrayList when you declare a variable of type ArrayList.
 


D. ArrayList does not implement RandomAccess.
 


E. You can sort its elements using Collections.sort() method.
 


 
Check Answer
 



19.     QID - 2.1145 
 

Assume the following declarations:



class A{ }

class B extends A{ }

class C extends B{ }



class X{

   B getB(){ return new B(); }

}



class Y extends X{

  //method declaration here 

}



Which of the following methods can be inserted in class Y?
 

Select 2 options

A. public C getB(){ return new B(); }
 


B. protected B getB(){ return new C(); }
 


C. C getB(){ return new C(); }
 


D.  A getB(){ return new A(); }
 


 
Check Answer
 



20.     QID - 2.1424 
 

What will the following code print when compiled and run?



public class TestClass{

    

    public static void main(String[] args) {



        System.out.println(getMsg((char)10)); 



    }



    public static String getMsg(char x){

        String msg = "Input value must be ";

        msg = msg.concat("smaller than X");

        msg.replace('X', x);

        String rest = " and larger than 0";

        msg.concat(rest);

        return msg;

    }

}


 

Select 1 option

A. Input value must be smaller than X and larger than 0
 


B. Input value must be smaller than 10 and larger than 0
 


C. Input value must be smaller than X
 


D. Input value must be smaller than 10
 


 
Check Answer
 



21.     QID - 2.1478 
 

Which statements about the following code contained in BankAccount.java are correct?



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

  public String getId();

}



public class BankAccount implements PremiumAccount{

  public static void main(String[] args) {

      Account acct = new BankAccount();

      System.out.println(acct.getId());

  }



}


 

Select 1 option

A. It will print 0000 when run.
 


B. It will compile if class BankAccount provides an implementation for getId method.
 


C. It will not compile unless interface PremiumAccount is marked abstract.
 


D. It will compile if getId method in PremiumAccount is replaced with:

public String getId(){ super.getId(); }
 


E. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super.getId(); }
 


F. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super(); }
 


 
Check Answer
 



22.     QID - 2.895 
 

What two changes can you do, independent of each other, to make the following code compile:



//assume appropriate imports

class PortConnector {



    public PortConnector(int port) {

        if (Math.random() > 0.5) {

            throw new IOException();

        }



        throw new RuntimeException();

    }

}





public class TestClass {



    public static void main(String[] args) {

        try {

            PortConnector pc = new PortConnector(10);

        } catch (RuntimeException re) {

            re.printStackTrace();

        }

    }

}


 

Select 2 options

A. add throws IOException to the main method.
 


B. add throws IOException to PortConnector constructor.
 


C. add throws IOException to the main method as well as to PortConnector constructor.
 


D. Change RuntimeException to java.io.IOException.
 


E. add throws Exception to PortConnector constructor and change catch(RuntimeException re) to catch(Exception re) in the main method.
 


 
Check Answer
 



23.     QID - 2.855 
 

What will be printed when the following code is compiled and run?


public class LoadTest{
    
    public static void main(String[] args) throws Exception {
         LoadTest t = new LoadTest();
         int i = t.getLoad();
         double d = t.getLoad();
         System.out.println( i + d );
    }

    public int getLoad() {
        return 1;
    }

    public double getLoad(){ 
        return 3.0;
    }

}

 

Select 1 option

A. 13.0
 


B. 4.0
 


C. 4
 


D. The code will not compile.
 


 
Check Answer
 



24.     QID - 2.1097 
 

What will be the output of the following program?



class TestClass{

   public static void main(String[] args) throws Exception{

      try{

         amethod();

         System.out.println("try ");

      }

      catch(Exception e){

         System.out.print("catch ");

      }

      finally   {

         System.out.print("finally ");

      }

      System.out.print("out ");

   }

   public static void amethod(){ }

}


 

Select 1 option

A. try finally
 


B. try finally out
 


C. try out
 


D. catch finally out
 


E. It will not compile because amethod() does not throw any exception.
 


 
Check Answer
 



25.     QID - 2.871 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        List  al = new ArrayList(); //1
        al.add(111); //2
        System.out.println(al.get(al.size()));  //3
     }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
 


D. It will throw an exception at run time because of line //3
 


E. null.
 


 
Check Answer
 



26.     QID - 2.1261 
 

Consider the following code:


public class SubClass extends SuperClass{
     int i, j, k;
     public SubClass( int m, int n )     {  i = m ;  j = m ;  } //1
     public SubClass( int m )  {   super(m );   } //2
 }


Which of the following constructors MUST exist in SuperClass for SubClass to compile correctly?
 

Select 2 options

A. It is ok even if no explicit constructor is defined in SuperClass
 


B. public SuperClass(int a, int b)
 


C. public SuperClass(int a)
 


D. public SuperClass()
 


E. only public SuperClass(int a) is required.
 


 
Check Answer
 



27.     QID - 2.848 
 

What will the following code print when compiled and run:


public class TestClass {
    
    public static void main(String[] args){
        int k = 2;
        do{
            System.out.println(k);
        }while(--k>0);
    }
}

 

Select 1 option

A. 1
 


B. 1

0
 


C. 2

1
 


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
 


 
Check Answer
 



28.     QID - 2.1103 
 

What will be printed by the following code if it is run with command line: java TestClass -0.50 ?



public class TestClass{

    public static double getSwitch(String str){

        return Double.parseDouble(str.substring(1, str.length()-1) );

    }

    public static void main(String args []){

        switch(getSwitch(args[0])){

            case 0.0 : System.out.println("Hello");

            case 1.0 : System.out.println("World"); break;

            default : System.out.println("Good Bye");

        }

    }

}
 

Select 1 option

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. None of the above.
 


 
Check Answer
 



29.     QID - 2.832 
 

What will the following program print when run?


public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        System.out.println(ct.myValue);
        ct.showTwo(200);
        System.out.println(ct.myValue);
    }
}


 

Select 1 option

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


 
Check Answer
 



30.     QID - 2.1286 
 

Consider the following array definitions:

int[] array1, array2[];

int[][] array3;

int[] array4[], array5[];

Which of the following are valid statements?
 

Select 3 options

A. array2 = array3;
 


B. array2 = array4;
 


C. array1 = array2;
 


D. array4 = array1;
 


E. array5 = array3;
 


 
Check Answer
 



31.     QID - 2.1229 
 

Which of these array declarations and instantiations are legal?
 

Select 4 options

A. int[ ] a[ ] = new int [5][4] ;
 


B. int a[ ][ ] = new int [5][4] ;
 


C. int a[ ][ ] = new int [ ][4] ;
 


D. int[ ] a[ ] = new int[4][ ] ;
 


E. int[ ][ ] a = new int[5][4] ;
 


 
Check Answer
 



32.     QID - 2.1187 
 

Which of the following methods can be called on a String object?
 

Select 3 options

A. substring(int i)
 


B. substring(int i, int j)
 


C. substring(int i, int j, int k)
 


D. equals(Object o)
 


 
Check Answer
 



33.     QID - 2.1193 
 

Which of these statements are valid when occurring by themselves in a method?
 

Select 3 options

A. while ( ) break ;
 


B. do { break ; } while (true) ;
 


C. if (true) { break ; } (When not inside a switch block or a loop)
 


D. switch (1) { default : break; }
 


E. for ( ; true ; ) break ;
 


 
Check Answer
 



34.     QID - 2.1148 
 

What will the following code print?



public class Test{

   public int luckyNumber(int seed){

      if(seed > 10) return seed%10;

         int x = 0;

            try{

               if(seed%2 == 0) throw new Exception("No Even no.");

               else return x;

            }

            catch(Exception e){

               return 3;

            }

            finally{

               return 7;

            }

         }



        public static void main(String args[]){

           int amount = 100, seed = 6;

           switch( new Test().luckyNumber(6) ){

               case 3: amount = amount * 2;

               case 7: amount = amount * 2;

               case 6: amount = amount + amount;

               default :

           }

          System.out.println(amount);

       }

}


 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. 800
 


D. 200
 


E. 400
 


 
Check Answer
 



35.     QID - 2.1404 
 

Consider the following code:



        //INSERT CODE HERE

        a[0][0] = 1;

        a[0][1] = 2;

        



        a[1][0] = 3;

        a[1][1] = 4;

        a[1][2] = 5;

        a[1][3] = 6;

What can be inserted independently in the above code so that it will compile and run without any error or exception?
 

Select 2 options

A.         int[][] a = new int[2][];
 


B.         int[][] a = new int[2][4];
 


C.         int[][] a = new int[4][2];
 


D.         int[][] a = new int[2][];

        a[0] = new int[2];

        a[1] = new int[4];


 


E.         int[][] a = new int[4][];

        a[0] = new int[2];

        a[1] = new int[2];


 


 
Check Answer
 



36.     QID - 2.1112 
 

What will be the result of compiling and running the following program ?


class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{
    public static void main(String[] args) throws Exception{
        try{
            m2();
        }
        finally{
            m3();
        }
        catch (NewException e){}
    }

    public static void m2() throws NewException { throw new NewException(); }

    public static void m3() throws AnotherException{ throw new AnotherException(); }

}


 

Select 1 option

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



37.     QID - 2.1143 
 

Which of the given statements are correct for a method that overrides the following method:



public Set getSet(int a) {...}
 

Select 3 options

A. Its return type must be declared as Set.
 


B. It may return HashSet.

(Assume that HashSet implements Set)
 


C. It can declare any Exception in throws clause
 


D. It can declare any RuntimeException in throws clause.
 


E. It can be abstract.
 


 
Check Answer
 



38.     QID - 2.884 
 

Consider the following code snippet:



public class Test{

  void test(){

      MyClass obj = new MyClass();

      obj.name = "jack";

      // 1 insert code here

  }

}



//In MyClass.java

public class MyClass{

  int value;

  String name;

}



What can be inserted at // 1, which will make the object referred to by obj eligible for garbage collection?
 

Select 1 option

A. obj.destroy();
 


B. Runtime.getRuntime().gc();
 


C. obj = null;
 


D. obj.finalize()
 


E. obj.name = null; as well as obj = null;
 


 
Check Answer
 



39.     QID - 2.1005 
 

Consider the following code:


class A {
    public void doA(int k) throws Exception {  // 0
        for(int i=0; i< 10; i++) {
            if(i == k) throw new Exception("Index of k is "+i); // 1
        }
    }
    public void doB(boolean f) { // 2
        if(f) {
            doA(15); // 3
        }
        else return;
    }
    public static void main(String[] args) { // 4
        A a = new A();
        a.doB(args.length>0); // 5
    }
 }


Which of the following statements are correct?
 

Select 1 option

A. This will compile and run without any errors or exception.
 


B. This will compile if throws Exception is added at line //2
 


C. This will compile if throws Exception is added at line //4
 


D. This will compile if throws Exception is added at line //2 as well as //4
 


E. This will compile if  line marked // 1 is enclosed in a try - catch block.
 


 
Check Answer
 



40.     QID - 2.1246 
 

What will the following statement return?



"    hello java guru   ".trim();
 

Select 1 option

A. The line of code will not compile.
 


B. "hellojavaguru"
 


C. "hello java guru"
 


D. "hello java guru   "
 


E. None of the above
 


 
Check Answer
 



41.     QID - 2.1451 
 

Given:

public class Bandwidth{

    public int available = 0;

    public int getAvailable(){

        return available;

    }

    public Bandwidth(int quota){

        this.available = quota;

    }

    public void addMore(int more){

        available += more;

    }

    

}

and another piece of code from another class:

        Bandwidth bw = new Bandwidth(100);

        //INSERT CODE HERE

        System.out.println(bw.getAvailable());



What can be inserted in the code above so that it will print 0?
 

Select 2 options

A. bw(0);
 


B. bw.available = 0;
 


C. bw.setAvailable(0);
 


D. bw = new Bandwidth();
 


E. bw.addMore(-bw.getAvailable());
 


F. --bw.available;
 


 
Check Answer
 



42.     QID - 2.1272 
 

Which of these are NOT legal declarations within a class?
 

Select 1 option

A. static int sa ;
 


B. final Object[ ] objArr = { null } ;
 


C. abstract int t ;
 


D. abstract void format( ) ;
 


E. final static private double PI = 3.14159265358979323846 ;
 


 
Check Answer
 



43.     QID - 2.986 
 

The following method will compile and run without any problems.


public void switchTest(byte x){
   switch(x){
      case 'b':   // 1
      default :   // 2
      case -2:    // 3
      case 80:    // 4
   }
}

 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



44.     QID - 2.1445 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing "xxx-xxx-"+dddd, where dddd represents the same four digits in the original number?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Select 2 options

A. String mask = "xxx-xxx-";

mask.append(fullPhoneNumber.substring(8)); 

return mask;
 


B. return new StringBuilder("xxx-xxx-")+fullPhoneNumber.substring(8); 
 


C. return new StringBuilder(fullPhoneNumber).replace(0, 7, "xxx-xxx-").toString(); 
 


D. return "xxx-xxx-"+fullPhoneNumber.substring(8, 12);
 


 
Check Answer
 



45.     QID - 2.1366 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        while(int k = 5; k<7){

            System.out.println(k++);

        }

    }

}
 

Select 1 option

A. 5

6
 


B. 5

6

7
 


C. It will keep printing 5.
 


D. It will not compile.
 


E. It will throw an exception at run time.
 


 
Check Answer
 



46.     QID - 2.993 
 

Which is the first line that will cause compilation to fail in the following program?


// Filename: A.java
class A{
   public static void main(String args[]){
      A a = new A();
      B b = new B();
      a = b;  // 1
      b = a;  // 2
      a = (B) b; // 3
      b = (B) a; // 4
   }
}
class B extends A { }


 

Select 1 option

A. At Line 1.
 


B. At Line 2.
 


C. At Line 3.
 


D. At Line 4.
 


E. None of the above.
 


 
Check Answer
 



47.     QID - 2.1071 
 

What will be the output of the following code snippet?



int a = 1;

int[] ia = new int[10];

int b = ia[a];

int c = b + a;

System.out.println(b = c);


 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. true
 


E. false
 


 
Check Answer
 



48.     QID - 2.1083 
 

What will the following program print?




class LoopTest{
    public static void main(String args[]) {
        int counter = 0;
        outer:
        for (int i = 0; i < 3; i++) {
            middle:
            for (int j = 0; j < 3; j++) {
                inner:
                for (int k = 0; k < 3; k++) {
                    if (k - j > 0) {
                        break middle;
                    }
                    counter++;
                }
            }
        }
        System.out.println(counter);
    }
}

 

Select 1 option

A. 2
 


B. 3
 


C. 6
 


D. 7
 


E. 9
 


 
Check Answer
 



49.     QID - 2.1207 
 

Which of the following are valid code fragments:
 

Select 2 options

A. new Object[]{ "aaa", new Object(), new ArrayList(), 10};
 


B. new Object[]{ "aaa", new Object(), new ArrayList(), {} };
 


C. new Object[]{ "aaa", new Object(), new ArrayList(), new String[]{""} };
 


D. new Object[1]{ new Object() };
 


 
Check Answer
 



50.     QID - 2.1349 
 

Given a class named Test, which of these would be valid definitions for a constructor for the class?
 

Select 1 option

A. Test(Test b) { }
 


B. Test Test( ) { }
 


C. private final Test( ) { }
 


D. void Test( ) { }
 


E. public static void Test(String args[ ] ) { }
 


 
Check Answer
 



51.     QID - 2.914 
 

Consider the following code:


public static void main(String[] args) {
   int[] values = { 10, 30, 50 };
        for( int val : values ){
            int x = 0;
            while(x<values.length){
             System.out.println(x+" "+val);
              x++;
            }
        }              
    }



How many times is 2 printed out in the output?
 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. 3
 


 
Check Answer
 



52.     QID - 2.1386 
 

What can be inserted in the following code so that it will print exactly 2345 when compiled and run?



public class FlowTest {



    static int[] data = {1, 2, 3, 4, 5};



    public static void main(String[] args) {

        for (int i : data) {

            if (i < 2) {

                //insert code1 here

            }

            System.out.print(i);

            if (i == 3) {

                //insert code2 here

            }

        }

    }

}
 

Select 2 options

A. break; 

and

//nothing is required
 


B. continue; 

and

//nothing is required
 


C. continue;

and 

continue;
 


D. break;

and

continue;
 


E. break;

and

break;
 


 
Check Answer
 



53.     QID - 2.1138 
 

What will the following program print when run?



class Super{

  public String toString(){

     return "4";

  }

}

public class SubClass extends Super{

  public String toString(){

     return super.toString()+"3";

  }

  public static void main(String[] args){

    System.out.println( new SubClass() );

  }

}
 

Select 1 option

A. 43
 


B. 7
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



54.     QID - 2.1270 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      boolean b = false;
      int i = 1;
      do{
         i++ ;
      } while (b = !b);
      System.out.println( i );
   }
}

 

Select 1 option

A. The code will fail to compile, 'while' has an invalid condition expression.
 


B. It will compile but will throw an exception at runtime.
 


C. It will print 3.
 


D. It will go in an infinite loop.
 


E. It will print 1.
 


 
Check Answer
 



55.     QID - 2.1242 
 

Given:

public class TestClass{

     public static void main(String[] args){

     int i = Integer.parseInt(args[1]);

     System.out.println(args[i]);

   }

}

What will happen when you compile and run the above program using the following command line:



java TestClass 1 2
 

Select 1 option

A. It will print 1
 


B. It will print 2
 


C. It will print some junk value.
 


D. It will throw ArrayIndexOutOfBoundsException.
 


E. It will throw NumberFormatException
 


 
Check Answer
 



56.     QID - 2.1350 
 

What will the following code snippet print:

Float f = null;

try{

   f = Float.valueOf("12.3");

   String s = f.toString();

   int i = Integer.parseInt(s);

   System.out.println("i = "+i);

}

catch(Exception e){

   System.out.println("trouble : "+f);

}
 

Select 1 option

A. 12
 


B. 13
 


C. trouble : null
 


D. trouble : 12.3
 


E. trouble : 0.0
 


 
Check Answer
 



57.     QID - 2.1115 
 

Consider the following program...



class ArrayTest{

   public static void main(String[] args){

      int ia[][] = { {1, 2}, null };

      for (int i = 0; i < 2; i++)

         for (int j = 0; j < 2; j++)

            System.out.println(ia[i][j]);

   }

}



Which of the following statements are true?
 

Select 1 option

A. It will not compile.
 


B. It will throw an ArrayIndexOutOfBoundsException at Runtime.
 


C. It will throw a NullPointerException at Runtime.
 


D. It will compile and run without throwing any exceptions.
 


E. None of the above.
 


 
Check Answer
 



58.     QID - 2.862 
 

Consider the following code appearing in the same file:


class Data {
    int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}


Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Select 2 options

A. Add the following two statements:

d.x = 2;

d.y = 2;
 


B. Add the following statement:

d = new Data(2, 2);
 


C. Add the following two statements:

d.x += 1;

d.y += 1;
 


D. Add the following statement:

d = d + 1;
 


 
Check Answer
 



59.     QID - 2.1082 
 

What will be the output when the following class is compiled and run?



class ScopeTest{

   static int x = 5;

   public static void main(String[] args){

      int x  = ( x=3 ) * 4;  // 1

      System.out.println(x);

   }

}
 

Select 1 option

A. It will not compile because line //1 cannot be parsed correctly.
 


B. It will not compile because x is used before initialization.
 


C. It will not compile because there is an ambiguous reference to x.
 


D. It will print 12.
 


E. It will print 3 .
 


 
Check Answer
 



60.     QID - 2.1176 
 

Which code fragments will print the last argument given on the command line to the standard output, and exit without any output or exception stack trace if no arguments are given?


1.
 public static void main(String args[ ]){
       if (args.length != 0)   System.out.println(args[args.length-1]);
 }

2.
public static void main(String args[ ]){
       try {      System.out.println(args[args.length-1]);        }
       catch (ArrayIndexOutOfBoundsException e) {    }
}

3.
 public static void main(String args[ ]){
     int i = args.length;
     if (i != 0) System.out.println(args[i-1]);
}

4.
public static void main(String args[ ]){
    int i = args.length-1;
   if (i > 0) System.out.println(args[i]);
}

5.
 public static void main(String args[ ]){
       try { System.out.println(args[args.length-1]); }
       catch (NullPointerException e) {}
 }


 

Select 3 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


 
Check Answer
 



61.     QID - 2.1248 
 

Which of these are valid expressions to create a string of value "hello world" ?
 

Select 3 options

A. " hello world".trim()
 


B. ("hello" + new String("world"))
 


C. "hello".concat(" world")
 


D. new StringBuilder("world").insert(0, "hello ").toString();
 


E. new StringBuilder("world").append(0, "hello ").toString();
 


F. new StringBuilder("world").append("hello ", 0 , 6).toString();
 


G. new StringBuilder("world").add(0, "hello ").toString();
 


 
Check Answer
 



62.     QID - 2.979 
 

What will be the output when the following code is compiled and run?



//in file Test.java

class E1 extends Exception{ }

class E2 extends E1 { }

class Test{

   public static void main(String[] args){

      try{

         throw new E2();

      }

      catch(E1 e){

         System.out.println("E1");

      }

      catch(Exception e){

         System.out.println("E");

      }

      finally{

         System.out.println("Finally");

      }

   }

}
 

Select 1 option

A. It will not compile.
 


B. It will print E1 and Finally.
 


C. It will print E1, E and Finally.
 


D. It will print E and Finally.
 


E. It will print Finally.
 


 
Check Answer
 



63.     QID - 2.1149 
 

Given the following class definitions :


interface MyIface{};
class A {};
class B extends A implements MyIface{};
class C implements MyIface{};



and the following object instantiations: 


  A a = new A();
  B b = new B();
  C c = new C();



Which of the following assignments are legal at compile time?
 

Select 1 option

A. b = c;
 


B. c = b;
 


C. MyIface i = c;
 


D. c = (C) b;
 


E. b = a;
 


 
Check Answer
 



64.     QID - 2.1433 
 

What will the following code print when compiled and run?



import java.time.*;

import java.time.format.*;

public class DateTest{

  public static void main(String[] args){ //1

        LocalDateTime greatDay = LocalDateTime.parse("2015-01-01");//2

        String greatDayStr = greatDay.format(DateTimeFormatter.ISO_DATE_TIME); //3

        System.out.println(greatDayStr);//4

   }

}
 

Select 1 option

A. //1 will not compile because of lack of throws clause.
 


B. //2 will not compile because of invalid date string.
 


C. //2 will throw an exception at run time.
 


D. It will print 2015-01-01T00:00:00
 


E. It will print null.
 


 
Check Answer
 



65.     QID - 2.1231 
 

Given the following interface definition, which definitions are valid?



interface I1{

   void setValue(String s);

   String getValue();

}
 

Select 2 options

A. class A extends I1{

   String s;

   void setValue(String val) { s = val; }

   String getValue() { return s; }

}
 


B. interface I2 extends I1{

   void analyse();

}
 


C. abstract class B implements I1{

   int getValue(int i) { return 0; }

}
 


D. interface I3 implements I1{

   void perform_work();

}
 


 
Check Answer
 



66.     QID - 2.852 
 

What will the following code print?



System.out.println("12345".charAt(6));
 

Select 1 option

A. 5
 


B. null
 


C. -1
 


D. It will throw an ArrayIndexOutOfBoundsException.
 


E. It will throw a StringOutOfBoundsException.
 


F. It will throw an IndexOutOfBoundsException
 


 
Check Answer
 



67.     QID - 2.1008 
 

Given the following pairs of method declarations, which of the statements are true?



1.

void perform_work(int time){ }

int  perform_work(int time, int speed){ return time*speed ;}



2.

void perform_work(int time){ }

int  perform_work(int speed){return speed ;}



3.

void perform_work(int time){ }

void Perform_work(int time){ }


 

Select 2 options

A. The first pair of methods will compile correctly and overload the method 'perform_work'.
 


B. The second pair of methods will compile correctly and overload the method 'perform_work'.
 


C. The third pair of methods will compile correctly and overload the method 'perform_work'.
 


D. The second pair of methods will not compile correctly.
 


E. The third pair of methods will not compile correctly.
 


 
Check Answer
 



68.     QID - 2.1397 
 

Given:

public class CrazyMath {

    public static void main(String[] args) {

        int x = 10, y = 20;

        int dx, dy;

        try{

            dx = x % 5;

            dy =  y/dx;

        }catch(ArithmeticException ae){

            System.out.println("Caught AE");

            dx = 2;

            dy = y/dx;

        }

        x = x/dx;

        y = y/dy;

        System.out.println(dx+" "+dy);

        System.out.println(x+" "+y);

        

    }

}

What is the output?
 

Select 1 option

A. Caught AE

2 10

5 5
 


B. Caught AE

2 10

5 2
 


C. 2 10

5 2
 


D. It will not compile.
 


 
Check Answer
 



69.     QID - 2.873 
 

Which of the following are benefits of ArrayList over an array?
 

Select 1 option

A. You do not have to worry about the size of the ArrayList while appending elements.
 


B. It consumes less memory space.
 


C. You do not have to worry about thread safety.
 


D. It allows you to write type safe code.
 


 
Check Answer
 



70.     QID - 2.1254 
 

What will the following code print when run?



public class Test{

 static String j = "";

 public static void method( int i){

  try{

   if(i == 2){

     throw new Exception();

   }

   j += "1";

  }

  catch (Exception e){

   j += "2";

   return;

  }

  finally{

   j += "3";

  }

  j += "4";

 }

 public static void main(String args[]){

  method(1);

  method(2);

  System.out.println(j);

 }

}


 

Select 1 option

A. 13432
 


B. 13423
 


C. 14324
 


D. 12434
 


E. 12342
 


 
Check Answer
 



71.     QID - 2.1178 
 

Which of the following class definitions is/are legal definition(s) of a class that cannot be instantiated?


class Automobile{
   abstract void honk();  //(1)
}

abstract class Automobile{
   void honk();   //(2)
}

abstract class Automobile{
   void honk(){};   //(3)
}

abstract class Automobile{
   abstract void honk(){}   //(4)
}

abstract class Automobile{
   abstract void honk();   //(5)
}

 

Select 2 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


 
Check Answer
 



72.     QID - 2.1418 
 

Consider the following code snippet:



//INSERT LINE OF CODE HERE

  switch( condition ){

     case 1  : System.out.println("1");   break;

     case 2  : System.out.println("2");   break;

     case 3 : System.out.println("3");  break;

  }



What type can be inserted in the code above so that the above code compiles and runs as expected ?
 

Select 2 options

A. int condition;
 


B. long condition = 2;
 


C. Integer condition = new Integer("1");
 


D. String condition = "1";
 


E. short condition = new Short(1);
 


F. Byte condition = 1;
 


 
Check Answer
 



73.     QID - 2.987 
 

What will be the result of attempting to run the following program?



public class StringArrayTest{

   public static void main(String args[]){

      String[][][] arr  ={{ { "a", "b" , "c"}, { "d", "e", null } },{ {"x"}, null },{{"y"}},{ { "z","p"}, {} }

      };

      System.out.println(arr[0][1][2]);

   }

}


 

Select 1 option

A. It will throw NullPointerBoundsException.
 


B. It will throw ArrayIndexOutOfBoundsException.
 


C. It will print null.
 


D. It will run without any error but will print nothing.
 


E. None of the above.
 


 
Check Answer
 



74.     QID - 2.1438 
 

What will the following code print when compiled and run?





public class ATest {

    

    

    String global = "111";

    

    public int parse(String arg){

        int value = 0;

        try{

            String global = arg;            

            value = Integer.parseInt(global);

        }

        catch(Exception e){

            System.out.println(e.getClass());

        }

        System.out.print(global+" "+value+" ");

        return value;

    }

       public static void main(String[] args) {

          ATest ct = new ATest();

           System.out.print(ct.parse("333"));

       }

 

}


 

Select 1 option

A. 111 333 333
 


B. 333 333 333
 


C. java.lang.NumberFormatException
 


D. java.lang.Exception
 


E. Compilation fails.
 


 
Check Answer
 



75.     QID - 2.1467 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void printUsefulData(ArrayList<Data> dataList, Predicate<Data> p){

   for(Data d: dataList){

        if(p.test(d)) System.out.println(d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 3?
 

Select 2 options

A. printUsefulData(al, (Data d)-> { return d.value>2; }  );
 


B. printUsefulData(al, d-> d.value>2 );
 


C. printUsefulData(al, (d)-> return d.value>2;  );
 


D. printUsefulData(al, Data d-> d.value>2  );
 


E. printUsefulData(al, d -> d.value>2;   );
 


 
Check Answer
 



76.     QID - 2.1384 
 

Consider the following code:



public class ArrayTest {



    static int[][] table = new int[2][3];



    public static void init() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to initialize



            }

        }

    }



    public static void multiply() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to multiply



            }

        }

    }

}



Which of the following options can be used in the code above so that the init method initializes each table element to the sum of its row and column number and the multiply method just multiplies the element value by 2?
 

Select 1 option

A. table[x, y] = x+y;

and

table[x, y] = table[x, y]*2;
 


B. table[x][y] = x+y;

and

table[x][y] = table[x][y]*2;
 


C. table[[x] [y]] = x+y;

and

table[[x] [y]] = table[[x] [y]]*2;
 


D. table(x, y) = x+y;

and

table(x, y) = table(x, y)*2;
 


 
Check Answer
 



77.     QID - 2.946 
 

What will be the result of attempting to compile and run the following class?


public class TestClass{
    public static void main(String args[ ] ){
       int i = 1;
       int[] iArr = {1};
       incr(i) ;
       incr(iArr) ;
       System.out.println( "i = " + i + "  iArr[0] = " + iArr [ 0 ] ) ;
    }
    public static void incr(int   n ) { n++ ; }
    public static void incr(int[ ] n ) { n [ 0 ]++ ; }
}


 

Select 1 option

A. The code will print i = 1 iArr[0] = 1
 


B. The code will print i = 1 iArr[0] = 2
 


C. The code will print i = 2 iArr[0] = 1
 


D. The code will print i = 2 iArr[0] = 2
 


E. The code will not compile.
 


 
Check Answer
 



Test 4 (Answered)



01.     QID - 2.944 : Working with Java Data Types 
 

Which of the following are valid code snippets appearing in a method:
 

Correct Options are :  B C D 

A. int a = b = c = 100;
Chaining to use a value of a variable at the time of declaration is not allowed. Had b and c been already declared, it would have been valid. For example, the following is valid:

  int  b = 0, c = 0;

  int a = b = c = 100;

Even the following is valid:

  int  b , c;  //Not initializing b and c here.

  int a = b = c = 100; //declaring a and initializing c, b, and a at the same time.

 Notice the order of initialization of the variables - c is initialized first, b is initialized next by assigning to it the value of c. Finally, a is initialized.


B. int a, b, c; a = b = c = 100;
 


C. int a, b, c=100;
 


D. int a=100, b, c;
 


E. int a= 100 = b = c;
 


Explanation: 
Java does not allow chained initialization in declaration so option 1 and 5 are not valid.

 
Back to Question without Answer
 



02.     QID - 2.1291 : Working with Inheritance 
 

What will be the result of attempting to compile and run class B?





class A{

   final int fi = 10;

}

public class B extends A{

   int fi = 15;

   public static void main(String[] args){

       B b = new B();

       b.fi = 20;

       System.out.println(b.fi);

       System.out.println(  (  (A) b  ).fi  );

   }

}
 

Correct Option is :  E 

A. It will not compile.
 


B. It will print 10 and then 10
 


C. It will print 20 and then 20
 


D. It will print 10 and then 20
 


E. It will print 20 and then 10
 


Explanation: 
Note that a final variable can be shadowed. Here, although fi in A is final, it is shadowed by fi of B. So b.fi = 20; is valid since B's fi is not final.

 
Back to Question without Answer
 



03.     QID - 2.1411 : Using Loop Constructs 
 

What will the following code print when compiled and run?

public class DaysTest{



    static String[] days = {"monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday" };

    

    public static void main(String[] args) {

        

        int index = 0;

        for(String day : days){

            

            if(index == 3){

                break;

            }else {

                 continue;

            }

            index++;

            if(days[index].length()>3){

                days[index] = day.substring(0,3);

            }

        }

        System.out.println(days[index]);

    }

}
 

Correct Option is :  D 

A. wed
 


B. thu
 


C. fri
 


D. It will not compile.
 


E. It will throw an exception at run time.
 


Explanation: 
Notice the statement :

 if(index == 3){

                break;

            }else {

                 continue;

            }

In no situation can the control go beyond this statement in the for loop. Therefore,  rest of the statements in the for loop are unreachable and so the code will not compile.

 
Back to Question without Answer
 



04.     QID - 2.843 : Creating and Using Arrays 
 

Given the following declaration:



  int[][] twoD = { { 1, 2, 3} , { 4, 5, 6, 7}, { 8, 9, 10 } };



What will the following lines of code print?



System.out.println(twoD[1].length);

System.out.println(twoD[2].getClass().isArray());

System.out.println(twoD[1][2]);
 

Correct Option is :  A 

A. 4

true

6
 


B. 3

true

3
 


C. 3

false

3
 


D. 4

false

6
 


Explanation: 
In Java, array numbering starts from 0. So in this case, twoD is an array containing 3 other arrays.

twoD[0] is { 1, 2, 3} , twoD[1] is { 4, 5, 6, 7}, and twoD[2] is  { 8, 9, 10 }.



Thus, twoD[1].length is 4 and twoD[1][2] is the third element in { 4, 5, 6, 7}, which is 6.



In Java, arrays are just like regular Objects and arrays of different types have different class names. For example, the class name of an int[] is [I and the class name for int[][] is [[I.



For array classes, the isArray() method of a Class returns true. For example, twoD.getClass().isArray() will return true.



There are a few questions in the exam that require you to know about this.

 
Back to Question without Answer
 



05.     QID - 2.1062 : Working with Java Data Types 
 

The following code snippet will print 4.


int i1 = 1, i2 = 2, i3 = 3;
int i4 = i1 + (i2=i3 );
System.out.println(i4);


 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
First the value of i1 is evaluated (i.e. 1). Now, i2 is assigned the value of i3 i.e. i2 becomes 3. Finally i4 gets 1 +3 i.e. 4.

 
Back to Question without Answer
 



06.     QID - 2.1152 : Working with Java API - String, StringBuilder 
 

Which of these expressions will return true?
 

Correct Options are :  A B C E 

A. "hello world".equals("hello world")
 


B. "HELLO world".equalsIgnoreCase("hello world")
equalsIgnoreCase() method treats both cases (upper and lower) as same.


C. "hello".concat(" world").trim().equals("hello world")
"hello".concat(" world") will return "hello world" and trim() won't do any change because there is no space at the beginning or end of the string.


D. "hello world".compareTo("Hello world") < 0
Notice that the Strings differ at the first position. The value returned by compareTo is (Unicode value of the left hand side - Unicode value of the right hand side).



Although not required for the exam, it is good to know that for English alphabets, the unicode value of any lower case letter is always 32 more than the unicode value of the same letter in upper case. So, 'a' - 'A' or 'h' - 'H' is 32.


E. "Hello world".toLowerCase( ).equals("hello world")
toLowerCase() converts all uppercase letters to lower case.


Explanation: 
compareTo() does a lexicographical (like a dictionary) comparison. It stops at the first place where the strings have different letters.

If left hand side is bigger, it returns a positive number otherwise it returns a negative number. The value is equal to the difference of their unicode values.

If there is no difference then it returns zero. In this case,  it will return ( 'h' - 'H') which is 32.

 
Back to Question without Answer
 



07.     QID - 2.1243 : Working with Java Data Types 
 

Which of the following are correct ways to initialize the static variables MAX and CLASS_GUID ?


class Widget{
   static int MAX;     //1
   static final String CLASS_GUID;   // 2
   Widget(){
       //3
   }
   Widget(int k){
       //4
   }
}


 

Correct Options are :  A B 

A. Modify lines //1 and //2 as : static int MAX = 111; static final String CLASS_GUID = "XYZ123";
You can initialize both the variables at declaration itself.


B. Add the following line just after //2 :  static {  MAX = 111; CLASS_GUID = "XYZ123"; }
Initializing the static variables in a static block ensures that they are initialized even when no instance of the class is created.


C. Add the following line just before //1 :  { MAX = 111; CLASS_GUID = "XYZ123"; }
This is not a static initializer and so will not be executed until an instance is created.


D. Add the following line at //3 as well as //4 : MAX = 111; CLASS_GUID = "XYZ123";
This works for non-static final fields but not for static final fields.


E. Only option 3 is valid.
 


Explanation: 
The rules are:

1. static variables can be left without being explicitly initialized. (They will get default values).

2. final variables must be explicitly initialized.

Now, here CLASS_GUID is a 'static final' variable and not just final or static. As static fields can be accessed even without creating an instance of the class, it is entirely possible that this field can be accessed before even a  single instance is created. In this case, no constructor or non-static initializer had ever been called. And so, the field (as it is final and so must be initialized explicitly) remains uninitialized. This causes the compiler to complain.



Had CLASS_GUID been just a final variable, option 4 would work but as it is also static, it cannot wait till the constructor executes to be initialized.

 
Back to Question without Answer
 



08.     QID - 2.845 : Java Basics 
 

The options below contain the complete contents of a file.

Which of these options can be run with the following command line once compiled?

 java main
 

Correct Option is :  D 

A. //in file main.java

class main {

   public void main(String[] args) {

       System.out.println("hello");

   }

}
The main method should be static.


B. //in file main.java

   public static void main(String[] args) {

       System.out.println("hello");

   }
You cannot have a method on its own. It must be a part of a class.


C. //in file main.java

public class anotherone{

}

class main {

   public static void main(String[] args) {

       System.out.println("hello");

   }

}
A public class must exist in a file by the same name. So this code is invalid because anotherone is a public class but the name of the file is main. It would have been valid if the name of the file were anotherone.java.



A non public class may exist in any file. This implies that there can be only one public class in a file.


D. //in file main.java

class anothermain{

   public static void main(String[] args) {

       System.out.println("hello2");

   }

}

class main {

   public final static void main(String[] args) {

       System.out.println("hello");

   }

}


class main's main method will be executed. final is a valid modifier for the standard main method. 



Note that final means a method cannot be overridden. Although static methods can never be overridden. (they can be shadowed), making a static method final prevents the subclass from implementing the same static method.


Explanation: 
Observe that the given code does not follow the standard Java naming convention. The class names should start with a capital letter. 



There are questions in the exam that contain similar non-conventional and confusing names and that is why we have kept a few questions like that in this question bank.

 
Back to Question without Answer
 



09.     QID - 2.1214 : Java Basics 
 

Consider the following program:



public class TestClass{

  public static void main(String[] args){

    String tom = args[0];

    String dick = args[1];

    String harry = args[2];

  }

}



What will be the value of 'harry' if the program is run from the command line:

java TestClass 111 222 333
 

Correct Option is :  C 

A. 111
 


B. 222
 


C. 333
 


D. It will throw an ArrayIndexOutOfBoundsException
 


E. None of the above.
 


Explanation: 
java and classname are not part of the args array. So tom gets "111", dick gets "222" and harry gets "333".

 
Back to Question without Answer
 



10.     QID - 2.1107 : Java Basics - OO Concepts 
 

Which of the following are correct about "encapsulation"?
 

Correct Options are :  B C 

A. Encapsulation is same as polymorphism.
 


B. It helps make sure that clients have no accidental dependence on the choice of representation
 


C. It helps avoiding name clashes as internal variables are not visible outside.
 


D. Encapsulation makes sure that messages are sent to the right object at run time.
This is dynamic binding, an outcome of polymorphism.


E. Encapsulation helps you inherit the properties of another class.
 


Explanation: 
Encapsulation is the technique used to package the information in such a way as to hide what should be hidden, and make visible what is intended to be visible. In simple terms, encapsulation generally means making the data variables private and providing public accessors.

 
Back to Question without Answer
 



11.     QID - 2.992 : Java Basics 
 

Given the following program, which statement is true?



class SomeClass{

   public static void main( String args[ ] ){

      if (args.length == 0 ){

         System.out.println("no arguments") ;

      }

      else{

         System.out.println( args.length + " arguments") ;

      }

   }

}
 

Correct Option is :  C 

A. The program will fail to compile.
 


B. The program will throw a NullPointerException when run with zero arguments.
 


C. The program will print no arguments when called with zero arguments and 1 arguments  when called with one argument.
The word java and class name are not a part of the argument list.


D. The program will print no arguments and 2 arguments when called with zero and one arguments.
 


E. The program will print no arguments and 3 arguments when called with zero and one arguments.
When the program is called with no arguments, the args array will be of length zero.


Explanation: 
When the program is called with no arguments, the args array will be of length zero. Unlike in C/C++, args[0] is not the name of the program or class. This is because the name of the class is always the same as defined in the java file. So there is no need for passing its name as an argument to main method.

 
Back to Question without Answer
 



12.     QID - 2.1233 : Using Loop Constructs 
 

What will the following program print?


class Test{
    public static void main(String args[]){
        int c = 0;
        boolean flag = true;
        for(int i = 0; i < 3; i++){
            while(flag){
                c++;
                if(i>c || c>5) flag = false;
            }
        }
        System.out.println(c);
    }
}

 

Correct Option is :  D 

A. 3
 


B. 4
 


C. 5
 


D. 6
 


E. 7
 


Explanation: 
In the first iteration of for loop, the while loop keeps running till c becomes 6. Now, for all next for loop iteration, the while loop never runs as the flag is false. So final value of c is 6.

 
Back to Question without Answer
 



13.     QID - 2.1074 : Working with Methods - Overloading 
 

Consider the following class definition:


public class TestClass{
   public static void main(String[] args){  new TestClass().sayHello(); }   //1
   public static void sayHello(){ System.out.println("Static Hello World"); }  //2
   public void sayHello() { System.out.println("Hello World "); }  //3
}


What will be the result of compiling and running the class?
 

Correct Option is :  D 

A. It will print Hello World.
 


B. It will print Static Hello World.
 


C. Compilation error at line 2.
 


D. Compilation error at line 3.
It will say, method sayHello() is already defined.


E. Runtime Error.
 


Explanation: 
You cannot have two methods with the same signature (name and parameter types) in one class.

Also, even if you put one sayHello() method in other class which is a subclass of this class, it won't compile because you cannot override/hide a static method with a non static method and vice versa.

 
Back to Question without Answer
 



14.     QID - 2.1010 : Using Loop Constructs 
 

What will the following program print?


public class TestClass{
  public static void main(String[] args){
     for : for(int i = 0; i< 10; i++){
        for (int j = 0; j< 10; j++){
             if ( i+ j > 10 )  break for;
        }
        System.out.println( "hello");
     }
  }
}

 

Correct Option is :  B 

A. It will print hello 6 times.
 


B. It will not compile.
 


C. It will print hello 2 times.
 


D. It will print hello 5 times.
 


E. It will print hello 4 times.
 


Explanation: 
Note that for is a keyword and so cannot be used as a label. But you can use any other identifier as a label.

For example, The following code is valid even though String is a class name and String is also used as an identifier!

     String String = "";   //This is valid.
     String : for(int i = 0; i< 10; i++) //This is valid too!
     {
        for (int j = 0; j< 10; j++){
             if ( i+ j > 10 )  break String;
        }
       System.out.println( "hello");
      }


It will print hello 2 times.

 
Back to Question without Answer
 



15.     QID - 2.1475 : Lambda Expressions 
 

Given:

interface Runner {

  public void run();

}



Which of the following is/are valid lambda expression(s) that capture(s) the above interface?
 

Correct Options are :  C D 

A. -> System.out.println("running...");
 


B. void -> System.out.println("running...")
 


C. () -> System.out.println("running...")
 


D. () -> { System.out.println("running..."); return; }
 


E. (void) -> System.out.println("running...")
 


F. -> System.out.println("running...")
 


Explanation: 
Runner is a valid functional interface because it has exactly one abstract method. 

Since this method does not take any parameter, the parameter list part of the lambda expression must be (). Further, since it does not return anything, the body part should ideally be such that it does not return anything either. Thus, you can either use a method call that returns void or some code enclosed within { and } that does not return anything. In this case, however, since there is only one interface with one method, it is ok even if the body of the lambda expression returns a value as illustrated by the following code:





interface Runner {

  public void run();

}

public class TestClass {



   public static void main(String[] args) {

        run(() -> voidMethod()); //will invoke run(Runner ) method.

        run(() -> intMethod());//will also invoke run(Runner ) method.

    }



    public static void run(Runner x) {

        x.run();

    }



    public static void voidMethod() {

        System.out.println("voidMethod");

    }

    public static int intMethod() {

        System.out.println("intMethod");

        return 0;

    }

}





The return type of the lambda expression's body becomes important in the following code though:



interface Runner {

  public void run();

}

interface Runner2 {

  public int run();

}



public class TestClass {

    

   public static void main(String[] args) {

        run(() -> voidMethod()); //will invoke run(Runner ) method.

        run(() -> intMethod());  //will not invoke run(Runner ) method.

    }



    public static void run(Runner x) {

       System.out.println("In runner");

        x.run();

    }

    public static void run(Runner2 x) {

        System.out.println("In runner2");

        x.run();

    }



    public static void voidMethod() {

        System.out.println("voidMethod");

    }

    public static int intMethod() {

        System.out.println("intMethod");

        return 0;

    }

}



 
Back to Question without Answer
 



16.     QID - 2.1036 : Creating and Using Arrays 
 

Consider the following class...



class Test{

   public static void main(String[ ] args){

      int[] a = { 1, 2, 3, 4 };

      int[] b = { 2, 3, 1, 0 };

      System.out.println( a [ (a = b)[3] ] );

   }

}



What will it print when compiled and run ?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException when run.
 


C. It will print 1.
 


D. It will print 3.
 


E. It will print 4
 


Explanation: 
In an array access, the expression to the left of the brackets appears to be fully evaluated before any part of the expression within the brackets is evaluated.

In the expression a[(a=b)[3]], the expression a is fully evaluated before the expression (a=b)[3]; this means that the original value of a is fetched and remembered while the expression (a=b)[3] is evaluated. This array referenced by the original value of a is then subscripted by a value that is element 3 of another array (possibly the same array) that was referenced by b and is now also referenced by a. So, it is actually a[0] = 1.

Note that if evaluation of the expression to the left of the brackets completes abruptly, no part of the expression within the brackets will appear to have been evaluated.

 
Back to Question without Answer
 



17.     QID - 2.1209 : Working with Inheritance 
 

Which statements concerning the following code are true?


class A{
  public A() {} // A1
  public A(String s) {  this();  System.out.println("A :"+s);  }  // A2
}

class B extends A{
  public int B(String s) {  System.out.println("B :"+s);  return 0; } // B1
}
class C extends B{
    private C(){ super(); } // C1
    public C(String s){  this();  System.out.println("C :"+s);  } // C2
    public C(int i){} // C3
}


 

Correct Options are :  A B C D 

A. At least one of the constructors of each class is called as a result of constructing an object of class C.
To create any object one and only one constructor of that class and each of the super classes is called. (A constructor may as well delegate the construction to another constructor of the same class by calling this(...) as the first statement, just like calling a method.)


B. Constructor at  //A2 will never be called in creation of an object of class C.
Because B has no defined constructor and so a default no-argument constructor will be called, which will call the no-argument constructor of A


C. Class C can be instantiated only in two ways by users of this class.
Since one constructor is private, users of this class can use only the other two public constructors from outside this class.


D. //B1 will never be called in creation of objects of class A, B, or C.
Because //B1 is not a constructor. Note that it is returning an int. A constructor does not have any return type, not even void.


E. The code will not compile.
 


 
Back to Question without Answer
 



18.     QID - 2.850 : Working with Java API - ArrayList 
 

Identify the correct statements about ArrayList?
 

Correct Options are :  A B E 

A. ArrayList extends java.util.AbstractList.
ArrayList is a subclass of AbstractList.

java.lang.Object
 -  java.util.AbstractCollection<E>
   -    java.util.AbstractList<E>
     -      java.util.ArrayList<E>


All Implemented Interfaces: 
Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess



B. It allows you to access its elements in random order.
This is true because you can directly access any element using get(index) method. (This is unlike a LinkedList, in which you have to go through all the elements occuring before Nth element before you can access the Nth element.)


C. You must specify the class of objects you want to store in ArrayList when you declare a variable of type ArrayList.
This is not true because you can still use non-generic form. For example, instead of using

ArrayList<String> listOfStrings;

you can use:

ArrayList listOfStrings;



Of course, if you use non generic version, you will lose the compile time type checking.


D. ArrayList does not implement RandomAccess.
It does.

RandomAccess is a marker interface used by List implementations to indicate that they support fast (generally constant time) random access. The primary purpose of this interface is to allow generic algorithms to alter their behavior to provide good performance when applied to either random or sequential access lists.


E. You can sort its elements using Collections.sort() method.
An ArrayList is a List so you can use it where ever a List is required. This include Collections methods such as sort, reverse, and shuffle.


 
Back to Question without Answer
 



19.     QID - 2.1145 : Working with Inheritance 
 

Assume the following declarations:



class A{ }

class B extends A{ }

class C extends B{ }



class X{

   B getB(){ return new B(); }

}



class Y extends X{

  //method declaration here 

}



Which of the following methods can be inserted in class Y?
 

Correct Options are :  B C 

A. public C getB(){ return new B(); }
Its return type is specified as C, but it is actually returning an object of type B. Since B is NOT a C, this will not compile.


B. protected B getB(){ return new C(); }
Since C is-a B, this is valid. Also, an overriding method can be made less restrictive. protected is less restrictive than 'default' access.


C. C getB(){ return new C(); }
Covariant returns are allowed in Java 1.5, which means that an overriding method can change the return type of the overridden method to a subclass of the original return type. Here, C is a subclass of B. So this is valid.


D.  A getB(){ return new A(); }
An overriding method cannot return a superclass object of the return type defined in the overridden method. A subclass is allowed in Java 1.5.


 
Back to Question without Answer
 



20.     QID - 2.1424 : Working with Java API - String, StringBuilder 
 

What will the following code print when compiled and run?



public class TestClass{

    

    public static void main(String[] args) {



        System.out.println(getMsg((char)10)); 



    }



    public static String getMsg(char x){

        String msg = "Input value must be ";

        msg = msg.concat("smaller than X");

        msg.replace('X', x);

        String rest = " and larger than 0";

        msg.concat(rest);

        return msg;

    }

}


 

Correct Option is :  C 

A. Input value must be smaller than X and larger than 0
 


B. Input value must be smaller than 10 and larger than 0
 


C. Input value must be smaller than X
 


D. Input value must be smaller than 10
 


Explanation: 
Remember that a String once created cannot be changed. Therefore, when you call replace or concat methods on a String, a new String object is created. The old String remains as it is.

Here, the first call to concat returns a new String object containing "Input value must be smaller than X" and it is assigned back to msg. The original String referred to by msg is now lost (i.e. there is no reference to it anymore).

The first call to replace also creates a new String object but it is not assigned to any reference and is therefore lost and msg keeps pointing to the same String object. The same thing happens to the second call to concat. It create a new String object but it is not assigned back to msg, therefore, msg keeps pointing to the same object i.e.  "Input value must be smaller than X" 

 
Back to Question without Answer
 



21.     QID - 2.1478 : Working with Inheritance 
 

Which statements about the following code contained in BankAccount.java are correct?



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

  public String getId();

}



public class BankAccount implements PremiumAccount{

  public static void main(String[] args) {

      Account acct = new BankAccount();

      System.out.println(acct.getId());

  }



}


 

Correct Option is :  B 

A. It will print 0000 when run.
 


B. It will compile if class BankAccount provides an implementation for getId method.
Since interface PremiumAccount redeclares getId method as abstract, the BankAccount class must either provide an implementation for this method or be marked as abstract. 

In this case, making the class abstract will not help because of the statement - Account acct = new BankAccount();


C. It will not compile unless interface PremiumAccount is marked abstract.
Interfaces are always abstract. You can but you don't have to mark them abstract. Methods of an interface that are not marked default or static are also always abstract. You don't have to mark them as abstract.


D. It will compile if getId method in PremiumAccount is replaced with:

public String getId(){ super.getId(); }
1. You cannot provide a method body in an interface method unless you mark it as default (or static).

2. You cannot use super keyword in an interface's method to invoke a method defined in its super interface.


E. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super.getId(); }
super.methodName is a valid way to invoke a super class's method from anywhere within a subclass's method. But it works only for classes. To invoke an interface's default method, you need to use the name of that interface as well. Like this: Account.super.getId();



A class (or an interface) can invoke a default method of an interface that is explicitly mentioned in the class's implements clause (or the interface's extends clause) by using the same syntax i.e. <InterfaceName>.super.<methodName>.



However, this technique cannot be used to invoke a default method provided by an interface that is not directly implemented (or extended) by the caller. 

Here is an example:



interface A {

   default void hello() {

   }

}



interface B extends A {

   default void hello() {

       super.hello();    //This is NOT valid.

       A.super.hello();    //This is valid.

   }

}



public class TestClass implements B {

   public void hello() {

      super.hello();//This is NOT valid.

      A.super.hello(); //This is NOT valid because TestClass does not implement A directly.

      B.super.hello(); //This is valid.

   }

}




F. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super(); }
super(); is used to invoke the super class's constructor. So, if present, it can only be the first statement of a constructor. Calling super(); does not invoke the super class's method.


 
Back to Question without Answer
 



22.     QID - 2.895 : Handling Exceptions 
 

What two changes can you do, independent of each other, to make the following code compile:



//assume appropriate imports

class PortConnector {



    public PortConnector(int port) {

        if (Math.random() > 0.5) {

            throw new IOException();

        }



        throw new RuntimeException();

    }

}





public class TestClass {



    public static void main(String[] args) {

        try {

            PortConnector pc = new PortConnector(10);

        } catch (RuntimeException re) {

            re.printStackTrace();

        }

    }

}


 

Correct Options are :  C E 

A. add throws IOException to the main method.
 


B. add throws IOException to PortConnector constructor.
 


C. add throws IOException to the main method as well as to PortConnector constructor.
 


D. Change RuntimeException to java.io.IOException.
 


E. add throws Exception to PortConnector constructor and change catch(RuntimeException re) to catch(Exception re) in the main method.
 


Explanation: 
IOException is a checked exception and since the PortConnector constructor throws IOException, this exception (or its superclass) must be present in the throws clause of the constructor.



Now, the main method has two options, either catch IOException (or whatever exception PortConnector throws) in its catch block (i.e. option 5) or put that exception in its throws clause (i.e. option 3).

 
Back to Question without Answer
 



23.     QID - 2.855 : Working with Methods - Overloading 
 

What will be printed when the following code is compiled and run?


public class LoadTest{
    
    public static void main(String[] args) throws Exception {
         LoadTest t = new LoadTest();
         int i = t.getLoad();
         double d = t.getLoad();
         System.out.println( i + d );
    }

    public int getLoad() {
        return 1;
    }

    public double getLoad(){ 
        return 3.0;
    }

}

 

Correct Option is :  D 

A. 13.0
 


B. 4.0
 


C. 4
 


D. The code will not compile.
You cannot have more than one method in a class with the same signature. Method signature includes method name and the argument list but does not include return type. 

Therefore, the two getLoad() methods have the same signature and will not compile.



This shows that method overloading cannot be done on the basis of the return types.


 
Back to Question without Answer
 



24.     QID - 2.1097 : Handling Exceptions 
 

What will be the output of the following program?



class TestClass{

   public static void main(String[] args) throws Exception{

      try{

         amethod();

         System.out.println("try ");

      }

      catch(Exception e){

         System.out.print("catch ");

      }

      finally   {

         System.out.print("finally ");

      }

      System.out.print("out ");

   }

   public static void amethod(){ }

}


 

Correct Option is :  B 

A. try finally
 


B. try finally out
 


C. try out
 


D. catch finally out
 


E. It will not compile because amethod() does not throw any exception.
 


Explanation: 
Since the method amethod() does not throw any exception, try is printed and the control goes to finally which prints finally. After that out is printed.

 
Back to Question without Answer
 



25.     QID - 2.871 : Working with Java API - ArrayList 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        List  al = new ArrayList(); //1
        al.add(111); //2
        System.out.println(al.get(al.size()));  //3
     }
}

 

Correct Option is :  D 

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
Although 111 is a primitive, it will automatically be boxed into an Integer object. So there will be no exception because of this.


D. It will throw an exception at run time because of line //3
It will throw an IndexOutOfBoundsException at run time because of this line. 

The size() method of ArrayList returns the number of elements. Here, it returns 1. Since numbering in ArrayList starts with 0. al.get(1) will cause an IndexOutOfBoundsException to be thrown because only 0 is a valid index for a list of size 1.


E. null.
 


 
Back to Question without Answer
 



26.     QID - 2.1261 : Working with Inheritance 
 

Consider the following code:


public class SubClass extends SuperClass{
     int i, j, k;
     public SubClass( int m, int n )     {  i = m ;  j = m ;  } //1
     public SubClass( int m )  {   super(m );   } //2
 }


Which of the following constructors MUST exist in SuperClass for SubClass to compile correctly?
 

Correct Options are :  C D 

A. It is ok even if no explicit constructor is defined in SuperClass
The //2 will fail as it needs a constructor taking an int!


B. public SuperClass(int a, int b)
It is not used anywhere so it is not necessary.


C. public SuperClass(int a)
Because it is called in the second constructor of SubClass.


D. public SuperClass()
The default no args constructor will not be provided because SuperClass has to define one arg constructor.


E. only public SuperClass(int a) is required.
You'll have to explicitly define a no args constructor because it is needed in the first constructor of SubClass.


 
Back to Question without Answer
 



27.     QID - 2.848 : Using Loop Constructs 
 

What will the following code print when compiled and run:


public class TestClass {
    
    public static void main(String[] args){
        int k = 2;
        do{
            System.out.println(k);
        }while(--k>0);
    }
}

 

Correct Option is :  C 

A. 1
 


B. 1

0
 


C. 2

1
--k>0 implies, decrement the value of k and then compare with 0. Therefore, the loop will only execute twice, printing 2 and 1.



Had it been k-->0, it would imply, first compare k with 0, and then decrement k. In this case, the loop would execute thrice, printing 2, 1, and 0.


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
 


 
Back to Question without Answer
 



28.     QID - 2.1103 : Using Operators and Decision Constructs 
 

What will be printed by the following code if it is run with command line: java TestClass -0.50 ?



public class TestClass{

    public static double getSwitch(String str){

        return Double.parseDouble(str.substring(1, str.length()-1) );

    }

    public static void main(String args []){

        switch(getSwitch(args[0])){

            case 0.0 : System.out.println("Hello");

            case 1.0 : System.out.println("World"); break;

            default : System.out.println("Good Bye");

        }

    }

}
 

Correct Option is :  E 

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. None of the above.
 


Explanation: 
Observe that the method getSwitch() has been declared to return a double. Its return value is being used in the switch statement. Therefore, the program will not even compile because double/float/long/boolean cannot be used in a switch statement.

 
Back to Question without Answer
 



29.     QID - 2.832 : Working with Methods 
 

What will the following program print when run?


public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        System.out.println(ct.myValue);
        ct.showTwo(200);
        System.out.println(ct.myValue);
    }
}


 

Correct Option is :  C 

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


Explanation: 
There are a couple of important concepts in this question:



1. Within an instance method, you can access the current object of the same class using 'this'. Therefore, when you access this.myValue, you are accessing the instance member myValue of the ChangeTest instance.



2. If you declare a local variable (or a method parameter) with the same name as the instance field name, the local variable "shadows" the member field. Ideally, you should be able to access the member field in the method directly by using the name of the member (in this example, myValue). However, because of shadowing, when you use myValue, it refers to the local variable instead of the instance field.



Within the showOne() method, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. Ideally, you should be able to access the member field in the method directly by using the name myValue but in this case, the method parameter shadows the member field because it has the same name. So when you use myValue, you are actually using the method parameter instead of the member field.



Therefore, when you do : myValue = myValue; you are actually assigning the value contained in method parameter myValue to itself. You are not changing the member field myValue. Hence, when you do System.out.println(ct); in the next line, it prints 0.



Now, in showTwo(), you are assigning the value contained in myValue (i.e. 200) to this.myValue, which is the instance member.  Therefore, in the next line, when you print ct.myValue, it prints 200.

 
Back to Question without Answer
 



30.     QID - 2.1286 : Creating and Using Arrays 
 

Consider the following array definitions:

int[] array1, array2[];

int[][] array3;

int[] array4[], array5[];

Which of the following are valid statements?
 

Correct Options are :  A B E 

A. array2 = array3;
 


B. array2 = array4;
 


C. array1 = array2;
 


D. array4 = array1;
 


E. array5 = array3;
 


Explanation: 
There is a subtle difference between: int[] i; and int i[]; although in both the cases, i is an array of integers.

The difference is if you declare multiple variables in the same statement such as: int[] i, j; and int i[], j;, j is not of the same type in the two cases.

In the first case, j is an array of integers while in the second case, j is just an integer.

Therefore, in this question:

array1 is an array of int

array2, array3, array4, and array5  are arrays of int arrays

Therefore, option 1, 2 and 5 are valid.

 
Back to Question without Answer
 



31.     QID - 2.1229 : Creating and Using Arrays 
 

Which of these array declarations and instantiations are legal?
 

Correct Options are :  A B D E 

A. int[ ] a[ ] = new int [5][4] ;
This will create an array of length 5. Each element of this array will be an array of 4 ints.


B. int a[ ][ ] = new int [5][4] ;
This will create an array of length 5. Each element of this array will be an array of 4 ints.


C. int a[ ][ ] = new int [ ][4] ;
The statement int[ ][4] will not compile, because the dimensions must be created from left to right.


D. int[ ] a[ ] = new int[4][ ] ;
This will create an array of length 4. Each element of this array will be null. But you can assign an array of ints of any length to any of the elements. For example:

a[0] = new int[10];//valid

a[1] = new int[4];//valid

a[2] = new int[]; //invalid because you must specify the length

a[3] = new Object[] //invalid because a[3] can only refer to an array of ints.



This shows that while creating a one dimensional array, the length must be specified but while creating multidimensional arrays, the length of the last dimension can be left unspecified. Further, the length of multiple higher dimensions after the first one can also be left unspecified if none of the dimensions are specified after it. So for example,

a[][][][] = new int[4][3][3][5]; is same as a[][][][] = new int[4][][][];  (Note that the first dimension must be specified.)



Thus,  multidimensional arrays do not have to be symmetrical.


E. int[ ][ ] a = new int[5][4] ;
This will create an array of length 5. Each element of this array will be an array of 4 ints.


Explanation: 
The [] notation can be placed both before and after the variable name in an array declaration.
   int[] ia, ba;  // here ia and ba both are int arrays.
   int ia[], ba; //here only ia is int array and ba is an int.

Multidimensional arrays are created by creating arrays that can contain references to other arrays .

 
Back to Question without Answer
 



32.     QID - 2.1187 : Working with Java API - String, StringBuilder 
 

Which of the following methods can be called on a String object?
 

Correct Options are :  A B D 

A. substring(int i)
returns substring starting from i to end.


B. substring(int i, int j)
returns substring starting from i to j-1.


C. substring(int i, int j, int k)
 


D. equals(Object o)
Since Object class has this method, every java class inherits it.


 
Back to Question without Answer
 



33.     QID - 2.1193 : Using Loop Constructs 
 

Which of these statements are valid when occurring by themselves in a method?
 

Correct Options are :  B D E 

A. while ( ) break ;
The condition expression in a while header is required.


B. do { break ; } while (true) ;
 


C. if (true) { break ; } (When not inside a switch block or a loop)
You cannot have break or continue in an 'if' or 'else' block without being inside a loop. Note that the problem statement mentions, "...occuring by themselves". This implies that the given statement is not wrapped within any other block.

Note: break with a label is possible in an if/else statement without a loop:

     label: if(true){

         System.out.println("break label");

         break label; //this is valid

      }




D. switch (1) { default : break; }
You can use a constant in switch(...);


E. for ( ; true ; ) break ;
 


Explanation: 
It is not possible to break out of an if statement. But if the if statement is placed within a switch statement or a loop construct, the usage of break in option 3 would be valid.

 
Back to Question without Answer
 



34.     QID - 2.1148 : Handling Exceptions 
 

What will the following code print?



public class Test{

   public int luckyNumber(int seed){

      if(seed > 10) return seed%10;

         int x = 0;

            try{

               if(seed%2 == 0) throw new Exception("No Even no.");

               else return x;

            }

            catch(Exception e){

               return 3;

            }

            finally{

               return 7;

            }

         }



        public static void main(String args[]){

           int amount = 100, seed = 6;

           switch( new Test().luckyNumber(6) ){

               case 3: amount = amount * 2;

               case 7: amount = amount * 2;

               case 6: amount = amount + amount;

               default :

           }

          System.out.println(amount);

       }

}


 

Correct Option is :  E 

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. 800
 


D. 200
 


E. 400
 


Explanation: 
When you pass 6 to luckyNumber(), if(seed%2 == 0) throw new Exception("No Even no."); is executed and the exception is caught by the catch block where it tries to return 3; But as there is a finally associated with the try/catch block, it is executed before anything is returned. Now, as finally has return 7;, this value supersedes 3.

In fact, this method will always return 7 if seed <= 10.



Now, in the switch there is no break statement. So both -

case 7: amount = amount * 2;

and

case 6: amount = amount + amount;

are executed. so the final amount becomes 400.

 
Back to Question without Answer
 



35.     QID - 2.1404 : Creating and Using Arrays 
 

Consider the following code:



        //INSERT CODE HERE

        a[0][0] = 1;

        a[0][1] = 2;

        



        a[1][0] = 3;

        a[1][1] = 4;

        a[1][2] = 5;

        a[1][3] = 6;

What can be inserted independently in the above code so that it will compile and run without any error or exception?
 

Correct Options are :  B D 

A.         int[][] a = new int[2][];
This will instantiate only the first dimension of the array. The elements in the second dimension will be null. In other words, a will be instantiated to two elements but a[0] and a[1] will be null and so a[0][0] (and access to all other such ints) will throw a NullPointerException.


B.         int[][] a = new int[2][4];
This is correct because it will instantiate both the dimensions of the array. i.e. a will be initialized with 2 references to int arrays a[0] and a[1]. Further, the arrays pointed to by a[0] and a[1] will also be initialized with size 4.


C.         int[][] a = new int[4][2];
This will initialize a to an array of size 4 and each element of this array will be initialized to an int array of size 2. Therefore, a[0][2], a[0][3], a[1][2], and a[1][3],  will cause an ArrayIndexOutOfBoundsException to be thrown.


D.         int[][] a = new int[2][];

        a[0] = new int[2];

        a[1] = new int[4];


Observe that this creates a jagged array. i.e. the elements in the second dimension of a are not of same length. The first element in the second dimension is only of length 2 while the second element is of length 4. Since the given code doesn't need a[0][2] and a[0][3], it is ok.


E.         int[][] a = new int[4][];

        a[0] = new int[2];

        a[1] = new int[2];


In this case, a[1][2] and a[1][3] will cause an ArrayIndexOutOfBoundsException to be thrown.


 
Back to Question without Answer
 



36.     QID - 2.1112 : Handling Exceptions 
 

What will be the result of compiling and running the following program ?


class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{
    public static void main(String[] args) throws Exception{
        try{
            m2();
        }
        finally{
            m3();
        }
        catch (NewException e){}
    }

    public static void m2() throws NewException { throw new NewException(); }

    public static void m3() throws AnotherException{ throw new AnotherException(); }

}


 

Correct Option is :  D 

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
Because a catch block cannot follow a finally block!


E. None of the above.
 


Explanation: 
Syntax of try/catch/finally is:



try{

}

catch(Exception1 e) {... }

catch(Exception2 e) {... }

...

catch(ExceptionN e) {... }

finally { ...  }



With a try, either a catch and or finally or both can occur. 

A try MUST be followed by at least one catch or finally. (Unless it is a try with resources statement, which is not in scope for this exam.)



In Java 7, you can collapse the catch blocks into a single one: 



try {     

  ...

} 

catch (SQLException | IOException | RuntimeException e) {     

  //In this block, the class of the actual exception object will be whatever exception is thrown at runtime.

  //But the class of the reference e will be the closest common super class of all the exceptions in the catch block.

  //In this case, it will be java.lang.Exception because that is the most specific class that is a super class for all the three exceptions.

  e.printStackTrace(); 

} 

 
Back to Question without Answer
 



37.     QID - 2.1143 : Working with Inheritance 
 

Which of the given statements are correct for a method that overrides the following method:



public Set getSet(int a) {...}
 

Correct Options are :  B D E 

A. Its return type must be declared as Set.
Return type may also be a subclass/subinterface. So it can also return SortedSet, TreeSet, HashSet, or any other class that implements or subclasses a Set.


B. It may return HashSet.

(Assume that HashSet implements Set)
 


C. It can declare any Exception in throws clause
Since the original (overridden) method does not have any throws clause, the overriding method cannot declare any checked exceptions.


D. It can declare any RuntimeException in throws clause.
A method can throw any RuntimeException (such as a NullPointerException) even without declaring it in its throws clause.


E. It can be abstract.
Yes, you can make it abstract!! You would have to make the class as abstract as well though.


Explanation: 
To override a method in the subclass, the overriding method (i.e. the one in the subclass) MUST HAVE:

.same name

.same return type in case of primitives (a subclass is allowed for classes, this is also known as covariant return types).

.same type and order of parameters

.it may throw only those exceptions that are declared in the throws clause of the superclass's method or exceptions that are subclasses of the declared exceptions. It may also choose NOT to throw any exception.

The names of the parameter types do not matter. For example, void methodX(int i) is same as void methodX(int k)

 
Back to Question without Answer
 



38.     QID - 2.884 : Working with Java Data Types - Garbage Collection 
 

Consider the following code snippet:



public class Test{

  void test(){

      MyClass obj = new MyClass();

      obj.name = "jack";

      // 1 insert code here

  }

}



//In MyClass.java

public class MyClass{

  int value;

  String name;

}



What can be inserted at // 1, which will make the object referred to by obj eligible for garbage collection?
 

Correct Option is :  C 

A. obj.destroy();
 


B. Runtime.getRuntime().gc();
Execution of garbage collector doesn't make an object eligible for garbage collection. So even if you try to invoke the garbage collector, it will not destroy the object that is not eligible for garbage collection.

Also remember that calling System.gc() or Runtime.getRuntime().gc() will not necessarily run the garbage collector. It only requests the JVM to perform garbage collection but there is no guarantee that the JVM will do it.



By the way, System.gc() is equivalent to Runtime.getRuntime().gc().


C. obj = null;
This will make the object eligible for GC because there are no other references to it.


D. obj.finalize()
 


E. obj.name = null; as well as obj = null;
You don't need to do obj.name=null;


Explanation: 
The official exam objectives now explicitly mention Garbage collection.  All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();



Nothing can ensure that an object will definitely be destroyed by the garbage collector. You can at most make an object eligible for GC by making sure that there are no references to it.

 
Back to Question without Answer
 



39.     QID - 2.1005 : Handling Exceptions 
 

Consider the following code:


class A {
    public void doA(int k) throws Exception {  // 0
        for(int i=0; i< 10; i++) {
            if(i == k) throw new Exception("Index of k is "+i); // 1
        }
    }
    public void doB(boolean f) { // 2
        if(f) {
            doA(15); // 3
        }
        else return;
    }
    public static void main(String[] args) { // 4
        A a = new A();
        a.doB(args.length>0); // 5
    }
 }


Which of the following statements are correct?
 

Correct Option is :  D 

A. This will compile and run without any errors or exception.
 


B. This will compile if throws Exception is added at line //2
 


C. This will compile if throws Exception is added at line //4
 


D. This will compile if throws Exception is added at line //2 as well as //4
 


E. This will compile if  line marked // 1 is enclosed in a try - catch block.
Even if // 1 is enclosed in a try block, the method still has throws Exception in its declaration, which will force the caller of this method to either declare Exception in its throws clause or put the call within a try block.


Explanation: 
Any checked exceptions must either be handled using a try block or the method that generates the exception must declare that it throws that exception. 

In this case, doA() declares that it throws Exception. doB() is calling doA but it is not handling the exception generated by doA(). So, it must declare that it throws Exception. Now, the main() method is calling doB(), which generates an exception (due to a call to doA()). Therefore, main() must also either wrap the call to doB() in a try block or declare it in its throws clause.



The main(String[] args) method is the last point in your program where any unhandled checked exception can bubble up to. After that the exception is thrown to the JVM and the JVM kills the thread.

 
Back to Question without Answer
 



40.     QID - 2.1246 : Working with Java API - String, StringBuilder 
 

What will the following statement return?



"    hello java guru   ".trim();
 

Correct Option is :  C 

A. The line of code will not compile.
"    hello java guru   " is a valid String and trim() is a valid method in String class.


B. "hellojavaguru"
trim() does not remove spaces in within the string but the spaces at the beginning and at the end.


C. "hello java guru"
 


D. "hello java guru   "
It returns a string in which both the leading and trailing white space of the original string are removed.


E. None of the above
 


 
Back to Question without Answer
 



41.     QID - 2.1451 : Working with Java Data Types 
 

Given:

public class Bandwidth{

    public int available = 0;

    public int getAvailable(){

        return available;

    }

    public Bandwidth(int quota){

        this.available = quota;

    }

    public void addMore(int more){

        available += more;

    }

    

}

and another piece of code from another class:

        Bandwidth bw = new Bandwidth(100);

        //INSERT CODE HERE

        System.out.println(bw.getAvailable());



What can be inserted in the code above so that it will print 0?
 

Correct Options are :  B E 

A. bw(0);
 


B. bw.available = 0;
 


C. bw.setAvailable(0);
There is no setAvailable method in the given code so this will not compile.


D. bw = new Bandwidth();
Bandwidth class does not have a no-args constructor so this will not compile.


E. bw.addMore(-bw.getAvailable());
 


F. --bw.available;
This will just decrement bw.available by 1.


 
Back to Question without Answer
 



42.     QID - 2.1272 : Working with Java Data Types 
 

Which of these are NOT legal declarations within a class?
 

Correct Option is :  C 

A. static int sa ;
 


B. final Object[ ] objArr = { null } ;
Declares and defines an array of Objects of length 1.


C. abstract int t ;
Variables can't be declared as abstract or native.


D. abstract void format( ) ;
 


E. final static private double PI = 3.14159265358979323846 ;
 


Explanation: 
static and final are valid modifiers for both member field and method declarations within a class.

transient and volatile modifiers are only valid for member field declarations.

abstract and native are only valid for member methods.



Note: a class declaration can have only final, abstract and public as modifiers, unless it is a nested class, in which case, it can be declared private or  protected as well.

Within a method, a local variable may be declared as final.

 
Back to Question without Answer
 



43.     QID - 2.986 : Using Operators and Decision Constructs 
 

The following method will compile and run without any problems.


public void switchTest(byte x){
   switch(x){
      case 'b':   // 1
      default :   // 2
      case -2:    // 3
      case 80:    // 4
   }
}

 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
The following types can be used as a switch variable:



byte, char, short, int, String, and enums. Wrapper classes Byte, Character, Short, and Integer are allowed as well. Note that long, float, double, and boolean are not allowed. 



All the case constants should be assignable to the switch variable type. i.e. had there been a case label of 128 ( case 128 : //some code ), it would not have compiled. Because the range of a byte is from -128 to 127 and so 128 is not assignable to 'x'.



The integral value of 'b' is 98, which is less than 127 so Line //1 is fine. 



Note: Although it is not required for the exam to know the integral values of characters, it is good to know that all English letters (upper case as well as lower case) as well as 0-9 are below 127 and so are assignable to byte.

 
Back to Question without Answer
 



44.     QID - 2.1445 : Working with Java API - String, StringBuilder 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing "xxx-xxx-"+dddd, where dddd represents the same four digits in the original number?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Correct Options are :  B D 

A. String mask = "xxx-xxx-";

mask.append(fullPhoneNumber.substring(8)); 

return mask;
Remember that String class doesn't have append (and insert) method because a String cannot be mutated.


B. return new StringBuilder("xxx-xxx-")+fullPhoneNumber.substring(8); 
 


C. return new StringBuilder(fullPhoneNumber).replace(0, 7, "xxx-xxx-").toString(); 
For all of the methods in String and StringBuilder that take two int parameters for specifying a range, remember that the first index is included but the last index is not. 



For example, as in this case, the arguments given are 0 and 7, which means it will include the characters with index 0 to 6, that is, a total of 7 characters 0, 1, 2, 3, 4, 5, and 6. Therefore, this will actually produce "xxx-xxx--dddd".



The same pattern is used for almost all other methods in standard java library classes. The first index is included but the last one is not.


D. return "xxx-xxx-"+fullPhoneNumber.substring(8, 12);
This is another example where the pattern discussed above is used. The character at first index i.e. 8 is included but the last index 12 is not. In fact there is no element at the 12th index in the given string. So the characters returns by the substring will be the ones at index 8, 9, 10, and 11 of the original fullPhoneNumber.


Explanation: 
This is a simple question if you know how the various methods of StringBuilder operate. You need to go through the JavaDoc API descriptions of the methods used in this question. This is important for the exam. The following are the details for your convenience - 

--------------------------

public StringBuilder append(CharSequence s, int start, int end)

Appends a subsequence of the specified CharSequence to this sequence.

Characters of the argument s, starting at index start, are appended, in order, to the contents of this sequence up to the (exclusive) index end. The length of this sequence is increased by the value of end - start.

Let n be the length of this character sequence just prior to execution of the append method. Then the character at index k in this character sequence becomes equal to the character at index k in this sequence, if k is less than n; otherwise, it is equal to the character at index k+start-n in the argument s.

If s is null, then this method appends characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

s - the sequence to append. start - the starting index of the subsequence to be appended. end - the end index of the subsequence to be appended. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if start is negative, or start is greater than end or end is greater than s.length()



--------------------------



public StringBuilder insert(int dstOffset, CharSequence s, int start, int end)

Inserts a subsequence of the specified CharSequence into this sequence.

The subsequence of the argument s specified by start and end are inserted, in order, into this sequence at the specified destination offset, moving up any characters originally above that position. The length of this sequence is increased by end - start.

The character at index k in this sequence becomes equal to:

the character at index k in this sequence, if k is less than dstOffset

the character at index k+start-dstOffset in the argument s, if k is greater than or equal to dstOffset but is less than dstOffset+end-start

the character at index k-(end-start) in this sequence, if k is greater than or equal to dstOffset+end-start

The dstOffset argument must be greater than or equal to 0, and less than or equal to the length of this sequence.

The start argument must be nonnegative, and not greater than end.

The end argument must be greater than or equal to start, and less than or equal to the length of s.

If s is null, then this method inserts characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

dstOffset - the offset in this sequence. s - the sequence to be inserted. start - the starting index of the subsequence to be inserted. end - the end index of the subsequence to be inserted. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if dstOffset is negative or greater



--------------------------



public StringBuilder replace(int start, int end, String str)

Replaces the characters in a substring of this sequence with characters in the specified String. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. First the characters in the substring are removed and then the specified String is inserted at start. (This sequence will be lengthened to accommodate the specified String if necessary.)



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. str - String that will replace previous contents. 



Returns:

This object. 



Throws:

StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than end.



--------------------------



public String substring(int start, int end)

Returns a new String that contains a subsequence of characters currently contained in this sequence. The substring begins at the specified start and extends to the character at index end - 1.



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. 



Returns:

The new string. 



Throws:

StringIndexOutOfBoundsException - if start or end are negative or greater than length(), or start is greater than end.

 
Back to Question without Answer
 



45.     QID - 2.1366 : Using Loop Constructs 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        while(int k = 5; k<7){

            System.out.println(k++);

        }

    }

}
 

Correct Option is :  D 

A. 5

6
 


B. 5

6

7
 


C. It will keep printing 5.
 


D. It will not compile.
In Java, a while or do/while construct takes an expression that returns a boolean. But unlike a for loop, you cannot put instantiation and increment sections in the while condition.



Therefore, for(int k=5;k<7;) is valid but while(int k=5;k<7;) is not.


E. It will throw an exception at run time.
 


 
Back to Question without Answer
 



46.     QID - 2.993 : Working with Inheritance 
 

Which is the first line that will cause compilation to fail in the following program?


// Filename: A.java
class A{
   public static void main(String args[]){
      A a = new A();
      B b = new B();
      a = b;  // 1
      b = a;  // 2
      a = (B) b; // 3
      b = (B) a; // 4
   }
}
class B extends A { }


 

Correct Option is :  B 

A. At Line 1.
 


B. At Line 2.
Because 'a' is declared of class A and 'b' is of B which is a subclass of A. So an explicit cast is needed.


C. At Line 3.
 


D. At Line 4.
 


E. None of the above.
 


Explanation: 
Casting a base class to a subclass as in : b = (B) a; is also called as narrowing (as you are trying to narrow the base class object to a more specific class object) and needs explicit cast.

Casting a sub class to a base class as in: A a = b; is also called as widening and does not need any casting.



For example, consider two classes: Automobile and Car, where Car extends Automobile

Now, Automobile a = new Car(); is valid because a car is definitely an Automobile. So it does not need an explicit cast.



But, Car c = a; is not valid because 'a' is an Automobile and it may be a Car, a Truck, or a MotorCycle, so the programmer has to explicitly let the compiler know that at runtime 'a' will point to an object of class Car. Therefore, the programmer must use an explicit cast:

Car c = (Car) a;

 
Back to Question without Answer
 



47.     QID - 2.1071 : Using Operators and Decision Constructs 
 

What will be the output of the following code snippet?



int a = 1;

int[] ia = new int[10];

int b = ia[a];

int c = b + a;

System.out.println(b = c);


 

Correct Option is :  B 

A. 0
 


B. 1
 


C. 2
 


D. true
 


E. false
 


Explanation: 
1. All the elements of an array of primitives are automatically initialized by default values, which is 0 for numeric types and false for boolean.

Therefore, ia[1] is 0.

2. = is not same as ==. The statement b = c assigns c (whose value is 1) to b. which is then printed.

 
Back to Question without Answer
 



48.     QID - 2.1083 : Using Loop Constructs 
 

What will the following program print?




class LoopTest{
    public static void main(String args[]) {
        int counter = 0;
        outer:
        for (int i = 0; i < 3; i++) {
            middle:
            for (int j = 0; j < 3; j++) {
                inner:
                for (int k = 0; k < 3; k++) {
                    if (k - j > 0) {
                        break middle;
                    }
                    counter++;
                }
            }
        }
        System.out.println(counter);
    }
}

 

Correct Option is :  B 

A. 2
 


B. 3
 


C. 6
 


D. 7
 


E. 9
 


Explanation: 
To understand how this loop works let us put some extra print statements in the innermost loop:

System.out.println("i="+i+" j="+j+" k="+k);
if(k-j>0){
     System.out.println("breaking middle "+j);
     break middle;
}
counter++;


This is what it prints:

i=0 j=0 k=0
i=0 j=0 k=1
breaking middle 0
i=1 j=0 k=0
i=1 j=0 k=1
breaking middle 0
i=2 j=0 k=0
i=2 j=0 k=1
breaking middle 0
3


The key is that the middle loop is broken as soon as k-j becomes > 0. This happens on every second iteration of inner loop when k is 1 and j is 0. Now, when middle is broken inner cannot continue. So the next iteration of outer starts.

 
Back to Question without Answer
 



49.     QID - 2.1207 : Creating and Using Arrays 
 

Which of the following are valid code fragments:
 

Correct Options are :  A C 

A. new Object[]{ "aaa", new Object(), new ArrayList(), 10};
10 is a primitive and not an Object but due to auto-boxing it will be converted into an Integer object and that object will then be stored into the array of Objects.


B. new Object[]{ "aaa", new Object(), new ArrayList(), {} };
{} is not a valid way to create an Object here. However, it is valid while creating an array. For example, the following are valid:

String[] sa = { };  //assigns a valid String[] object of length 0 to sa

Object arr[][] = new Object[][] {new String[5], {} }; //assigns a valid Object[] object of length 0 to arr[1].


C. new Object[]{ "aaa", new Object(), new ArrayList(), new String[]{""} };
Every array is an Object so new String[]{""} is also an Object and can be placed in an array of objects.


D. new Object[1]{ new Object() };
You can't specify array length if you are initializing it at the same place.


Explanation: 
1. An array of objects can store Objects of any class.

2. Primitives (i.e. int, byte, char, short, boolean, long, double, and float) are NOT objects.

3. An array (of primitives as well as of objects) is an Object.

 
Back to Question without Answer
 



50.     QID - 2.1349 : Constructors 
 

Given a class named Test, which of these would be valid definitions for a constructor for the class?
 

Correct Option is :  A 

A. Test(Test b) { }
The constructor can take the same type as a parameter.


B. Test Test( ) { }
A constructor cannot return anything.


C. private final Test( ) { }
A constructor cannot be final, static or abstract.


D. void Test( ) { }
A constructor cannot return anything. Not even void.


E. public static void Test(String args[ ] ) { }
A constructor cannot be final, static or abstract.


 
Back to Question without Answer
 



51.     QID - 2.914 : Using Loop Constructs 
 

Consider the following code:


public static void main(String[] args) {
   int[] values = { 10, 30, 50 };
        for( int val : values ){
            int x = 0;
            while(x<values.length){
             System.out.println(x+" "+val);
              x++;
            }
        }              
    }



How many times is 2 printed out in the output?
 

Correct Option is :  D 

A. 0
 


B. 1
 


C. 2
 


D. 3
 


Explanation: 
This is a simple while loop nested inside a for loop. The for loop loops three times - once for each value in values array.

Since, values.length is 3, x is incremented two times for each for loop iteration before the condition x<values.length returns false.

Therefore, it prints:

0 10

1 10

2 10

0 30

1 30

2 30

0 50

1 50

2 50

 
Back to Question without Answer
 



52.     QID - 2.1386 : Using Loop Constructs 
 

What can be inserted in the following code so that it will print exactly 2345 when compiled and run?



public class FlowTest {



    static int[] data = {1, 2, 3, 4, 5};



    public static void main(String[] args) {

        for (int i : data) {

            if (i < 2) {

                //insert code1 here

            }

            System.out.print(i);

            if (i == 3) {

                //insert code2 here

            }

        }

    }

}
 

Correct Options are :  B C 

A. break; 

and

//nothing is required
 


B. continue; 

and

//nothing is required
 


C. continue;

and 

continue;
 


D. break;

and

continue;
 


E. break;

and

break;
 


Explanation: 
This is a very simple loop to follow if you know what break and continue do.

break breaks the nearest outer loop. Once a break is encountered, no further iterations of that loop will execute.

continue simply starts the next iteration of the loop. Once a continue is encountered, rest of the statements within that loop are ignored (not executed ) and the next iteration is started.

 
Back to Question without Answer
 



53.     QID - 2.1138 : Working with Inheritance 
 

What will the following program print when run?



class Super{

  public String toString(){

     return "4";

  }

}

public class SubClass extends Super{

  public String toString(){

     return super.toString()+"3";

  }

  public static void main(String[] args){

    System.out.println( new SubClass() );

  }

}
 

Correct Option is :  A 

A. 43
 


B. 7
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
This is quite simple, toString() is called on the Object of class SubClass. Subclass's toString() calls super class's toString() which returns String 4 (not an integer 4!). It then appends "3" to it.

So the final value is "43".

 
Back to Question without Answer
 



54.     QID - 2.1270 : Using Loop Constructs 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      boolean b = false;
      int i = 1;
      do{
         i++ ;
      } while (b = !b);
      System.out.println( i );
   }
}

 

Correct Option is :  C 

A. The code will fail to compile, 'while' has an invalid condition expression.
It is perfectly valid because b = !b; returns a boolean, which is what is needed for while condition.


B. It will compile but will throw an exception at runtime.
 


C. It will print 3.
The loop body is executed twice and the program will print 3.


D. It will go in an infinite loop.
 


E. It will print 1.
 


Explanation: 
Unlike the 'while(){}' loop, the 'do {} while()' loop executes at least once because the condition is checked after the iteration.

 
Back to Question without Answer
 



55.     QID - 2.1242 : Working with Java Data Types 
 

Given:

public class TestClass{

     public static void main(String[] args){

     int i = Integer.parseInt(args[1]);

     System.out.println(args[i]);

   }

}

What will happen when you compile and run the above program using the following command line:



java TestClass 1 2
 

Correct Option is :  D 

A. It will print 1
 


B. It will print 2
 


C. It will print some junk value.
 


D. It will throw ArrayIndexOutOfBoundsException.
 


E. It will throw NumberFormatException
Note: NumberFormatException extends IllegalArgumentException, which in turn extends RuntimeException.


Explanation: 
1. Arrays are indexed from 0.

2. In java, the name of the class is not the first element of args.

So, when the command line is : java TestClass 1 2, args[0] is 1 and args[1] is 2.

When you try to access args[2], It will throw an ArrayIndexOutOfBoundsException because the array length is only 2 so args[2] is out of bounds.

 
Back to Question without Answer
 



56.     QID - 2.1350 : Handling Exceptions 
 

What will the following code snippet print:

Float f = null;

try{

   f = Float.valueOf("12.3");

   String s = f.toString();

   int i = Integer.parseInt(s);

   System.out.println("i = "+i);

}

catch(Exception e){

   System.out.println("trouble : "+f);

}
 

Correct Option is :  D 

A. 12
 


B. 13
 


C. trouble : null
 


D. trouble : 12.3
 


E. trouble : 0.0
 


Explanation: 
f = Float.valueOf("12.3"); executes without any problem.

int i = Integer.parseInt(s); throws a NumberFormatException because 12.3 is not an integer.

Thus, the catch block prints trouble : 12.3

 
Back to Question without Answer
 



57.     QID - 2.1115 : Creating and Using Arrays 
 

Consider the following program...



class ArrayTest{

   public static void main(String[] args){

      int ia[][] = { {1, 2}, null };

      for (int i = 0; i < 2; i++)

         for (int j = 0; j < 2; j++)

            System.out.println(ia[i][j]);

   }

}



Which of the following statements are true?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw an ArrayIndexOutOfBoundsException at Runtime.
 


C. It will throw a NullPointerException at Runtime.
 


D. It will compile and run without throwing any exceptions.
 


E. None of the above.
 


Explanation: 
It will throw a NullPointerException for ia[1][0] because ia[1] is null.

Note that null is not same as having less number of elements in an array than expected.

If you try to access ia[2][0], it would have thrown ArrayIndexOutOfBoundsException because the length of ia is only 2 and so ia[2] tries to access an element out of that range. ia[2] is not null, it simply does not exist.

 
Back to Question without Answer
 



58.     QID - 2.862 : Working with Methods 
 

Consider the following code appearing in the same file:


class Data {
    int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}


Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Correct Options are :  A C 

A. Add the following two statements:

d.x = 2;

d.y = 2;
 


B. Add the following statement:

d = new Data(2, 2);
This will create a new Data object and will not change the original Data object referred to be d.


C. Add the following two statements:

d.x += 1;

d.y += 1;
 


D. Add the following statement:

d = d + 1;
This will not compile because Java does not allow operator overloading for user defined objects.


 
Back to Question without Answer
 



59.     QID - 2.1082 : Using Operators and Decision Constructs 
 

What will be the output when the following class is compiled and run?



class ScopeTest{

   static int x = 5;

   public static void main(String[] args){

      int x  = ( x=3 ) * 4;  // 1

      System.out.println(x);

   }

}
 

Correct Option is :  D 

A. It will not compile because line //1 cannot be parsed correctly.
 


B. It will not compile because x is used before initialization.
It is not.


C. It will not compile because there is an ambiguous reference to x.
There is no conflict for resolution of x. The local 'x' simply shadows the member variable 'x'.


D. It will print 12.
 


E. It will print 3 .
 


Explanation: 
x is first initialized by x = 3, then the value of this expression (i.e. "x = 3"), which is 3, is multiplied by 4 and is again assigned to x. So it prints 12.

 
Back to Question without Answer
 



60.     QID - 2.1176 : Using Operators and Decision Constructs 
 

Which code fragments will print the last argument given on the command line to the standard output, and exit without any output or exception stack trace if no arguments are given?


1.
 public static void main(String args[ ]){
       if (args.length != 0)   System.out.println(args[args.length-1]);
 }

2.
public static void main(String args[ ]){
       try {      System.out.println(args[args.length-1]);        }
       catch (ArrayIndexOutOfBoundsException e) {    }
}

3.
 public static void main(String args[ ]){
     int i = args.length;
     if (i != 0) System.out.println(args[i-1]);
}

4.
public static void main(String args[ ]){
    int i = args.length-1;
   if (i > 0) System.out.println(args[i]);
}

5.
 public static void main(String args[ ]){
       try { System.out.println(args[args.length-1]); }
       catch (NullPointerException e) {}
 }


 

Correct Options are :  A B C 

A. 1
 


B. 2
 


C. 3
 


D. 4
if there is only one argument, i will be 1-1 = 0. And the if condition will fail.


E. 5
 


Explanation: 
If no argument is given, a String array of length Zero is received in the main method. So, there is no NullPointerException on accessing args even if no argument is given.

Indexing in java starts from zero. So the last element will be at args.length-1.

 
Back to Question without Answer
 



61.     QID - 2.1248 : Working with Java API - String, StringBuilder 
 

Which of these are valid expressions to create a string of value "hello world" ?
 

Correct Options are :  A C D 

A. " hello world".trim()
trim() removes starting and ending spaces.


B. ("hello" + new String("world"))
It will create helloworld. No space between hello and world.


C. "hello".concat(" world")
 


D. new StringBuilder("world").insert(0, "hello ").toString();
 


E. new StringBuilder("world").append(0, "hello ").toString();
1. append adds the argument to the end.

2. It doesn't take an int as its first argument.


F. new StringBuilder("world").append("hello ", 0 , 6).toString();
There is an append method that takes two ints as shown here but the int parameters are to determine the portion of the String that is to be appended to the target. That portion will still be appended to the end of the target.


G. new StringBuilder("world").add(0, "hello ").toString();
There is no add method in StringBuilder.


Explanation: 
All the expressions are legal. String literals are String objects and can be used just like any other object.

 
Back to Question without Answer
 



62.     QID - 2.979 : Handling Exceptions 
 

What will be the output when the following code is compiled and run?



//in file Test.java

class E1 extends Exception{ }

class E2 extends E1 { }

class Test{

   public static void main(String[] args){

      try{

         throw new E2();

      }

      catch(E1 e){

         System.out.println("E1");

      }

      catch(Exception e){

         System.out.println("E");

      }

      finally{

         System.out.println("Finally");

      }

   }

}
 

Correct Option is :  B 

A. It will not compile.
 


B. It will print E1 and Finally.
 


C. It will print E1, E and Finally.
 


D. It will print E and Finally.
 


E. It will print Finally.
 


Explanation: 
Since E2 is a sub class of E1, catch(E1 e) will be able to catch exceptions of class E2. Therefore, E1 is printed. Once the exception is caught the rest of the catch blocks at the same level (that is the ones associated with the same try block) are ignored. So E is not printed. finally is always executed (except in case of System.exit()), so Finally is also printed.

 
Back to Question without Answer
 



63.     QID - 2.1149 : Working with Inheritance 
 

Given the following class definitions :


interface MyIface{};
class A {};
class B extends A implements MyIface{};
class C implements MyIface{};



and the following object instantiations: 


  A a = new A();
  B b = new B();
  C c = new C();



Which of the following assignments are legal at compile time?
 

Correct Option is :  C 

A. b = c;
There is no relation between b and c.


B. c = b;
There is no relation between b and c.


C. MyIface i = c;
Because C implements MyIFace.


D. c = (C) b;
Compiler can see that in no case can an object referred to by b can be of class c. So it is a compile time error.


E. b = a;
It will fail at compile time because a is of class A and can potentially refer to an object of class A, which cannot be assigned to b, which is a variable of class B. To make it compile, you have to put an explicit cast, which assures the compiler that a will point to an object of class B (or a subclass of B) at run time. Note that, in this case, an explicit cast can take it through the compiler but it will then fail at run time because a does not actually refer to an object of class B (or a subclass of B), so the JVM will throw a ClassCastException.


Explanation: 
The statements c = b and b = c are illegal, since neither of the classes C and B is a subclass of the other. Even though a cast is provided, the statement c = (C) b is illegal because the object referred to by b cannot ever be of type C.

 
Back to Question without Answer
 



64.     QID - 2.1433 : Working with Java API - Time and Date 
 

What will the following code print when compiled and run?



import java.time.*;

import java.time.format.*;

public class DateTest{

  public static void main(String[] args){ //1

        LocalDateTime greatDay = LocalDateTime.parse("2015-01-01");//2

        String greatDayStr = greatDay.format(DateTimeFormatter.ISO_DATE_TIME); //3

        System.out.println(greatDayStr);//4

   }

}
 

Correct Option is :  C 

A. //1 will not compile because of lack of throws clause.
Operations in the new date/time related classes throw java.time.DateTimeException, which extends from RuntimeException. Therefore, this exception is not required to be caught or declared in the throws clause.


B. //2 will not compile because of invalid date string.
The given date string does not contain a time component and so it cannot be parsed by LocalDateTime. However, this is a run time issue and not a compile time one.


C. //2 will throw an exception at run time.
It will throw a DateTimeException because it doesn't have time component.



Exception in thread "main" java.time.format.DateTimeParseException: Text '2015-01-01' could not be parsed at index 10.



A String such as 2015-01-01T17:13:50 would have worked.


D. It will print 2015-01-01T00:00:00
 


E. It will print null.
 


 
Back to Question without Answer
 



65.     QID - 2.1231 : Working with Inheritance 
 

Given the following interface definition, which definitions are valid?



interface I1{

   void setValue(String s);

   String getValue();

}
 

Correct Options are :  B C 

A. class A extends I1{

   String s;

   void setValue(String val) { s = val; }

   String getValue() { return s; }

}
Classes do not extend interfaces, they implement interfaces.


B. interface I2 extends I1{

   void analyse();

}
 


C. abstract class B implements I1{

   int getValue(int i) { return 0; }

}
 


D. interface I3 implements I1{

   void perform_work();

}
Interfaces do not implement anything, they can extend multiple interfaces.


Explanation: 
The getValue(int i) method of class B in option c, is different than the method defined in the interface because their parameters are different. Therefore, this class does not actually implement the method of the interface and that is why it needs to be declared abstract. Further, they have "default" access whereas the interface methods are always public.

 
Back to Question without Answer
 



66.     QID - 2.852 : Working with Java API - String, StringBuilder 
 

What will the following code print?



System.out.println("12345".charAt(6));
 

Correct Option is :  F 

A. 5
 


B. null
 


C. -1
 


D. It will throw an ArrayIndexOutOfBoundsException.
 


E. It will throw a StringOutOfBoundsException.
There is no such exception. The correct name is StringIndexOutOfBoundsException. But that is also not the correct answer.


F. It will throw an IndexOutOfBoundsException
As per the API documentation of this method ( http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#charAt(int) ), this method throws IndexOutOfBoundsException. Although, in practice the method throws StringIndexOutOfBoundsException, which is a subclass of IndexOutOfBoundsException, the implementation is free to throw some other subclass of IndexOutOfBoundsException. Thus, you should rely only on the published API documentation instead of what it actually throws.


Explanation: 
Since indexing starts with 0, the maximum value that you can pass to charAt is length-1.



As per the API documentation for charAt, it throws IndexOutOfBoundsException if you pass an invalid value (that is, if the index argument is negative or not less than the length of this string).



Both - ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException, extend IndexOutOfBoundsException and although in practice, the charAt method throws StringIndexOutOfBoundsException, it is not a valid option because the implementation is free to throw some other exception as long as it is an IndexOutOfBoundsException.



(There are questions on the exam on this aspect.)

 
Back to Question without Answer
 



67.     QID - 2.1008 : Working with Methods - Overloading 
 

Given the following pairs of method declarations, which of the statements are true?



1.

void perform_work(int time){ }

int  perform_work(int time, int speed){ return time*speed ;}



2.

void perform_work(int time){ }

int  perform_work(int speed){return speed ;}



3.

void perform_work(int time){ }

void Perform_work(int time){ }


 

Correct Options are :  A D 

A. The first pair of methods will compile correctly and overload the method 'perform_work'.
 


B. The second pair of methods will compile correctly and overload the method 'perform_work'.
You cannot have two methods with the same signature (i.e. same name and same parameter list) in the same class.

Note that return type and names of the parameters don't matter while determining the signature.


C. The third pair of methods will compile correctly and overload the method 'perform_work'.
 


D. The second pair of methods will not compile correctly.
 


E. The third pair of methods will not compile correctly.
Both have different names (note the capital 'P' ) and so are different methods.


Explanation: 
Overloading of a method occurs when the name of more than one methods is exactly same but the parameter lists are different.



The first and the third pairs of methods will compile correctly as they follow the above stated rule.



The second pair of methods will not compile correctly, since their method signatures are same and the compiler cannot differentiate between the two methods as it does not look for return type. Also, only name and input parameters are the part of method declaration . Names of the parameters don't matter.



Both methods in the first pair are named perform_work but have different parameter list so they overload this method name i.e. perform_work.



The method named 'perform_work' is distinct from the method named 'Perform_work', as identifiers in Java are case-sensitive.

 
Back to Question without Answer
 



68.     QID - 2.1397 : Using Operators and Decision Constructs 
 

Given:

public class CrazyMath {

    public static void main(String[] args) {

        int x = 10, y = 20;

        int dx, dy;

        try{

            dx = x % 5;

            dy =  y/dx;

        }catch(ArithmeticException ae){

            System.out.println("Caught AE");

            dx = 2;

            dy = y/dx;

        }

        x = x/dx;

        y = y/dy;

        System.out.println(dx+" "+dy);

        System.out.println(x+" "+y);

        

    }

}

What is the output?
 

Correct Option is :  B 

A. Caught AE

2 10

5 5
 


B. Caught AE

2 10

5 2
 


C. 2 10

5 2
 


D. It will not compile.
 


Explanation: 
% is the modulus operator. It returns the remainder of a division. Thus, dx = x%5 assigns 0 to dx because 5 divides 10 perfectly (no remainder).

y/dx therefore throws an ArithmeticException because of division by 0, which is caught by the catch block.

In the catch block, "Caught AE" is printed" and then dx is set to 2 and dy becomes 20/2 i.e.10

x = x/dx => x becomes 10/2 i.e. 5 and y = y/dy => becomes 20/10 i.e. 2

 
Back to Question without Answer
 



69.     QID - 2.873 : Working with Java API - ArrayList 
 

Which of the following are benefits of ArrayList over an array?
 

Correct Option is :  A 

A. You do not have to worry about the size of the ArrayList while appending elements.
An ArrayList resized dynamically at run time as per the situation. An array cannot be resized once created. This reduces the amount of boiler plate code that is required to do the same task using an array.


B. It consumes less memory space.
This is an ambiguous option because in certain situation an ArrayList may consume a little bit more memory than an array (because of additional internal data structure and pointers), while in some other situation it may consume less (when your array is only half full).


C. You do not have to worry about thread safety.
An ArrayList, just like an array is not thread safe. If you have multiple threads trying to add and remove elements from an ArrayList, you have to write additional code to ensure thread safety.


D. It allows you to write type safe code.
Since ArrayList is a generics enabled class, it helps you write type safe code. For example, if you have:

  ArrayList<String> al = new ArrayList<>();

al.add(new Integer(10)); will not compile because the compiler knows that al can only contain Strings.



However, this is not an advantage over an array because arrays are also type safe. For example, if you have:

 String[] sa = new String[10];

you cannot do sa[0] = new Integer(10); either.



But you can do Object[] oa = sa; and oa[0]  = new Integer(10); This will compile fine but will fail at runtime. This is a hole in the type safety provided by arrays.


Explanation: 
Some candidates have reported getting a similar question with ambiguous options such as "An ArrayList implements Collection API". It is anybody's guess as to what is the correct answer.

 
Back to Question without Answer
 



70.     QID - 2.1254 : Handling Exceptions 
 

What will the following code print when run?



public class Test{

 static String j = "";

 public static void method( int i){

  try{

   if(i == 2){

     throw new Exception();

   }

   j += "1";

  }

  catch (Exception e){

   j += "2";

   return;

  }

  finally{

   j += "3";

  }

  j += "4";

 }

 public static void main(String args[]){

  method(1);

  method(2);

  System.out.println(j);

 }

}


 

Correct Option is :  B 

A. 13432
 


B. 13423
 


C. 14324
 


D. 12434
 


E. 12342
 


Explanation: 
Try to follow the flow of control :

1. in method(1) : i is not 2 so, j gets "1" then finally is executed which makes j = "13" and then the last statement (j +=4) is executed which makes j = "134".

2. in method(2) : i is 2, so it goes in the if block which throws an exception. So none of the statements of try block are executed and control goes to catch which makes j = "1342", then finally makes j = "13423" and the control is returned. Note that the last statement ( j+=4) is not executed as there was an exception thrown in the try block, which cause the control to go to the catch block, which in turn has a return.

 
Back to Question without Answer
 



71.     QID - 2.1178 : Working with Inheritance 
 

Which of the following class definitions is/are legal definition(s) of a class that cannot be instantiated?


class Automobile{
   abstract void honk();  //(1)
}

abstract class Automobile{
   void honk();   //(2)
}

abstract class Automobile{
   void honk(){};   //(3)
}

abstract class Automobile{
   abstract void honk(){}   //(4)
}

abstract class Automobile{
   abstract void honk();   //(5)
}

 

Correct Options are :  C E 

A. 1
It will not compile as one of its method is abstract but the class itself is not abstract.


B. 2
It will not compile as the method doesn't have the body and also is not declared abstract.


C. 3
This is a valid abstract class although it doesn't have any abstract method.


D. 4
An abstract method cannot have a method body. {} constitutes a valid method body.


E. 5
This is a valid abstract class


Explanation: 
Here are some points to remember:



A class is uninstantiable if the class is declared abstract. 

If a method has been declared as abstract, it cannot provide an implementation (i.e. it cannot have a method body ) and the class containing that method must be declared abstract). 

If a method is not declared abstract, it must provide a method body (the class can be abstract but not necessarily so). 

If any method in a class is declared abstract, then the whole class must be declared abstract.

An class can still be made abstract even if it has no abstract method.

 
Back to Question without Answer
 



72.     QID - 2.1418 : Using Operators and Decision Constructs 
 

Consider the following code snippet:



//INSERT LINE OF CODE HERE

  switch( condition ){

     case 1  : System.out.println("1");   break;

     case 2  : System.out.println("2");   break;

     case 3 : System.out.println("3");  break;

  }



What type can be inserted in the code above so that the above code compiles and runs as expected ?
 

Correct Options are :  C F 

A. int condition;
It will not compile because condition is not initialized before it is used in the switch.


B. long condition = 2;
long, float, double, and boolean can never be used as a switch variable.


C. Integer condition = new Integer("1");
 


D. String condition = "1";
Although a String can be used in a switch statement, it will not work here because the case statements in the given code do not use Strings.


E. short condition = new Short(1);
This is almost a valid option but for the fact that 1 is an int and you can't instantiate a Short object with an int argument. It will, therefore, not compile. short condition = new Short((short)1); would have been valid.


F. Byte condition = 1;
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS.

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



73.     QID - 2.987 : Creating and Using Arrays 
 

What will be the result of attempting to run the following program?



public class StringArrayTest{

   public static void main(String args[]){

      String[][][] arr  ={{ { "a", "b" , "c"}, { "d", "e", null } },{ {"x"}, null },{{"y"}},{ { "z","p"}, {} }

      };

      System.out.println(arr[0][1][2]);

   }

}


 

Correct Option is :  C 

A. It will throw NullPointerBoundsException.
There is no such exception.


B. It will throw ArrayIndexOutOfBoundsException.
 


C. It will print null.
 


D. It will run without any error but will print nothing.
 


E. None of the above.
 


Explanation: 
arr[0][1][2] => [0] = { { "a", "b" , "c"}, { "d", "e", null } }, [1] = { "d", "e", null } and [2] = null.

So it will print null.

 
Back to Question without Answer
 



74.     QID - 2.1438 : Java Basics 
 

What will the following code print when compiled and run?





public class ATest {

    

    

    String global = "111";

    

    public int parse(String arg){

        int value = 0;

        try{

            String global = arg;            

            value = Integer.parseInt(global);

        }

        catch(Exception e){

            System.out.println(e.getClass());

        }

        System.out.print(global+" "+value+" ");

        return value;

    }

       public static void main(String[] args) {

          ATest ct = new ATest();

           System.out.print(ct.parse("333"));

       }

 

}


 

Correct Option is :  A 

A. 111 333 333
 


B. 333 333 333
 


C. java.lang.NumberFormatException
 


D. java.lang.Exception
 


E. Compilation fails.
 


Explanation: 
Observe that a new local variable named global is defined within a try block. It is accessible only within the try block. It also shadows the instance field of the same name global within the try block. It is this variable that is used in parseInt. Therefore, value is set to 333.

However, when you print global in parse method, the global defined in the try block is out of scope and the instance field named global is used. Therefore, it prints 111.



There is no exception because 333 can be parsed into an int. If you pass a string that cannot be parsed into an int to the parseInt method, it will throw a java.lang.NumberFormatException.

 
Back to Question without Answer
 



75.     QID - 2.1467 : Lambda Expressions 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void printUsefulData(ArrayList<Data> dataList, Predicate<Data> p){

   for(Data d: dataList){

        if(p.test(d)) System.out.println(d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 3?
 

Correct Options are :  A B 

A. printUsefulData(al, (Data d)-> { return d.value>2; }  );
 


B. printUsefulData(al, d-> d.value>2 );
1. Compiler already knows the parameter types, so Data can be omitted from the parameter list.

2. When there is only one parameter in the method, you can omit the brackets because the compiler can associate the -> sign with the parameter list without any ambiguity.

3. When all your method does is return the value of an expression, you can omit the curly braces, the return keyword, and the semi-colon from the method body part. Thus, instead of { return d.value>2; }, you can just write d.value>2


C. printUsefulData(al, (d)-> return d.value>2;  );
If you write return, the compiler assumes that you are writing the complete method body and so it expects the curly braces as well as the semi-colon.


D. printUsefulData(al, Data d-> d.value>2  );
If you write parameter type, the compiler assumes that you are writing the complete parameter list of the method and so it expects the brackets i.e. (Data d) instead of just Data d.


E. printUsefulData(al, d -> d.value>2;   );
The semi-colon in the method body should not be there because the line of code is not enclosed within curly braces.


Explanation: 
There is a simple trick to identify invalid lambda constructs. When you write a lambda expression for a functional interface, you are essentially providing an implementation of the method declared in that interface but in a very concise manner.  Therefore, the lambda expression code that you write must contain all the pieces of the regular method code except the ones that the compiler can easily figure out on its own such as the parameter types, return keyword, and brackets. So, in a lambda expression, just check that all the information is there and that the expression follows the basic syntax - 



(parameter list) OR single_variable_without_type -> { regular lines of code } OR just_an_expression_without_semicolon



For a complete discussion on this topic please see this short tutorial - http://enthuware.com/index.php/home/115

 
Back to Question without Answer
 



76.     QID - 2.1384 : Creating and Using Arrays 
 

Consider the following code:



public class ArrayTest {



    static int[][] table = new int[2][3];



    public static void init() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to initialize



            }

        }

    }



    public static void multiply() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to multiply



            }

        }

    }

}



Which of the following options can be used in the code above so that the init method initializes each table element to the sum of its row and column number and the multiply method just multiplies the element value by 2?
 

Correct Option is :  B 

A. table[x, y] = x+y;

and

table[x, y] = table[x, y]*2;
 


B. table[x][y] = x+y;

and

table[x][y] = table[x][y]*2;
This code snippet illustrates correct syntax for accessing array elements in a multi dimensional array. All other options are syntactically incorrect and will not compile.


C. table[[x] [y]] = x+y;

and

table[[x] [y]] = table[[x] [y]]*2;
 


D. table(x, y) = x+y;

and

table(x, y) = table(x, y)*2;
 


 
Back to Question without Answer
 



77.     QID - 2.946 : Creating and Using Arrays 
 

What will be the result of attempting to compile and run the following class?


public class TestClass{
    public static void main(String args[ ] ){
       int i = 1;
       int[] iArr = {1};
       incr(i) ;
       incr(iArr) ;
       System.out.println( "i = " + i + "  iArr[0] = " + iArr [ 0 ] ) ;
    }
    public static void incr(int   n ) { n++ ; }
    public static void incr(int[ ] n ) { n [ 0 ]++ ; }
}


 

Correct Option is :  B 

A. The code will print i = 1 iArr[0] = 1
 


B. The code will print i = 1 iArr[0] = 2
 


C. The code will print i = 2 iArr[0] = 1
 


D. The code will print i = 2 iArr[0] = 2
 


E. The code will not compile.
There is no problem with the code.


Explanation: 
Arrays are proper objects (i.e. iArr instanceof Object returns true) and Object references are passed by value (so effectively, it seems as though objects are being passed by reference).

So the value of reference of iArr is passed to the method incr(int[] i); This method changes the actual value of the int element at 0.

 
Back to Question without Answer
 



Test 5



01.     QID - 2.1276 
 

What is wrong with the following code?

class MyException extends Exception {}
public class TestClass{
   public static void main(String[] args){
      TestClass tc = new TestClass();
      try{
         tc.m1();
      }
      catch (MyException e){
         tc.m1();
      }
      finally{
         tc.m2();
      }
   }
   public void m1() throws MyException{
      throw new MyException();
   }
   public void m2() throws RuntimeException{
      throw new NullPointerException();
   }
}


 

Select 1 option

A. It will not compile because you cannot throw an exception in finally block.
 


B. It will not compile because you cannot throw an exception in catch block.
 


C. It will not compile because NullPointerException cannot be created this way.
 


D. It will not compile because of unhandled exception.
 


E. It will compile but will throw an exception when run.
 


 
Check Answer
 



02.     QID - 2.1087 
 

Which of the given lines can be inserted at //1 of the following program ?



public class TestClass{    

   public static void main(String[] args){

     short s = 9;

     //1

   }

 }
 

Select 2 options

A. Short k = new Short(9); System.out.println(k instanceof Short);
 


B. System.out.println(s instanceof Short);
 


C. Short k = 9; System.out.println( k instanceof s);
 


D. int i = 9; System.out.println(s == i);
 


E. Boolean b = s instanceof Number;
 


F. Short k = 9; Integer i = 9; System.out.println(k == i);
 


G. Integer i = 9; System.out.println( s == i );
 


 
Check Answer
 



03.     QID - 2.1180 
 

The following code snippet will not compile:



int i = 10;

System.out.println( i<20 ? out1() : out2() );



Assume that out1 and out2 methods have the following signatures: public void out1(); and public void out2();
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



04.     QID - 2.1204 
 

What will be the result of attempting to compile and run the following program?

public class TestClass{

  public static void main(String args[ ] ){

    Object a, b, c ;

    a = new String("A");

    b = new String("B");

    c = a;

    a = b;

    System.out.println(""+c);

  }

}


 

Select 1 option

A. The program will print java.lang.String@XXX, where XXX is the memory location of the object a.
 


B. The program will print A
 


C. The program will print B
 


D. The program will not compile because the type of a, b, and c  is Object.
 


E. The program will print java.lang.String@XXX, where XXX is the hash code of the object a.
 


 
Check Answer
 



05.     QID - 2.1395 
 

Given:



public class SimpleLoop {

    public static void main(String[] args) {

        int i=0, j=10;

        int count = 0;

        while (i<j) {            

            i++;

            j--;

            count++;

        }

        System.out.println(i+" "+j+" "+count);

    }

}

What is the result?
 

Select 1 option

A. 6 4 5
 


B. 6 5 5
 


C. 6 5 6
 


D. 6 4 6
 


E. 5 5 5
 


 
Check Answer
 



06.     QID - 2.1474 
 

Given:

import java.util.*;

class Data{

    int value;

    public Data(int x){ this.value = x; }

    public String toString(){ return ""+value; }

}



class MyFilter {

  public boolean test(Data d){

     return d.value == 0;

  }

}



public class TestClass{

    

   public static void filterData(ArrayList<Data> dataList, MyFilter f){

      Iterator<Data> i = dataList.iterator();

      while(i.hasNext()){

           if(f.test(i.next())){

                i.remove();

           }

       }

   }



  public static void main(String[] args) {

        ArrayList<Data> al = new ArrayList<Data>();

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(0); al.add(d);



        filterData(al, new MyFilter());  //1 



        System.out.println(al);

    }

}



How can you use a lambda expression to achieve the same result?
 

Select 1 option

A. Replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


B. Add implements java.util.function.Predicate to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


C. Add implements java.util.function.Predicate<Data> to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


D. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


E. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate<Data> in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


 
Check Answer
 



07.     QID - 2.1238 
 

What will the following code print when run without any arguments ...


public class TestClass {

    public static int m1(int i){
        return ++i;
    }
    
    public static void main(String[] args) {

        int k = m1(args.length);
        k += 3 + ++k;
        System.out.println(k);
    }

}

 

Select 1 option

A. It will throw ArrayIndexOutOfBoundsException.
 


B. It will throw NullPointerException.
 


C. 6
 


D. 5
 


E. 7
 


F. 2
 


G. None of these.
 


 
Check Answer
 



08.     QID - 2.1108 
 

What will the following program print?



class Test{

   public static void main(String args[]){

      int k = 9, s = 5;

      switch(k){

         default :

         if( k == 10) { s = s*2; }

         else{

            s = s+4;

            break;

         }

         case 7 : s = s+3;

      }

      System.out.println(s);

   }

}
 

Select 1 option

A. 5
 


B. 9
 


C. 12
 


D. It will not compile.
 


 
Check Answer
 



09.     QID - 2.1267 
 

Which of the following implementations of a max() method will correctly return the largest value?
 

Select 1 option

A.   int max(int x, int y){

     return(  if(x > y){ x; } else{ y; }  );

  }
 


B.   int max(int x, int y){

     return( if(x > y){ return x; }  else{ return y; } );

  }
 


C.   int max(int x, int y){

     switch(x < y){

        case true:

               return y;

        default :

               return x;

     };

 }
 


D. int max(int x, int y){

      if (x > y)  return x;

      return y;

}
 


E. None of the above.
 


 
Check Answer
 



10.     QID - 2.1436 
 

You have written some Java code in MyFirstClass.java file. Which of the following commands will you use to compile and run it.

(Assume that the code has no package declaration.)
 

Select 1 option

A. javac MyFirstClass.java

javar MyFirstClass
 


B. javap MyFirstClass.java

javar MyFirstClass.java
 


C. java MyFirstClass.java

java MyFirstClass.class
 


D. javac MyFirstClass.java

javar MyFirstClass.java
 


E. javac MyFirstClass.java

java MyFirstClass
 


 
Check Answer
 



11.     QID - 2.1340 
 

Given the following code, which method declarations can be inserted at line 1 without any problems?


public class OverloadTest{
    public int sum(int i1, int i2) { return i1 + i2; }
    // 1
}


 

Select 3 options

A. public int sum(int a, int b) { return a + b; }
 


B. public int sum(long i1, long i2) { return (int) i1; }
 


C. public int sum(int i1, long i2) { return (int) i2; }
 


D. public long sum(long i1, int i2) { return i1 + i2; }
 


E. public long sum(int i1, int i2) { return i1 + i2; }
 


 
Check Answer
 



12.     QID - 2.1407 
 

What will the following code print when compiled and run?



import java.util.*;

public class TestClass {

    public static void main(String[] args) throws Exception {

        List list = new ArrayList();

        list.add("val1"); //1

        list.add(2, "val2"); //2

        list.add(1, "val3"); //3

        System.out.println(list);

     }

}
 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
 


D. It will throw an exception at run time because of line //3
 


E. null
 


 
Check Answer
 



13.     QID - 2.1285 
 

Which of the following operators can be used in conjunction with a String object?
 

Select 3 options

A. +
 


B. ++
 


C. +=
 


D. .
 


E. *
 


 
Check Answer
 



14.     QID - 2.1464 
 

Given:

public class LoopTest {

    int k = 5;

    public boolean checkIt(int k){

        return k-->0?true:false;

    }

    public void printThem(){

        while(checkIt(k)){

            System.out.print(k);

        }

    }

    public static void main(String[] args) {

        new LoopTest().printThem();

    }

}

What changes should be made so that the program will print 54321?
 

Select 1 option

A. No change is necessary.
 


B. Replace System.out.print(k); with System.out.print(k--);
 


C. Replace System.out.print(k); with System.out.print(--k);
 


D. Replace while(checkIt(k)) with while(checkIt(--k)).
 


E. Replace return k-->0?true:false; with return this.k-->0?true:false;
 


 
Check Answer
 



15.     QID - 2.1009 
 

Consider the following code:


class Super { static String ID = "QBANK"; }

class Sub extends Super{
   static { System.out.print("In Sub"); }
}
public class Test{
   public static void main(String[] args){
      System.out.println(Sub.ID);
   }
}


What will be the output when class Test is run?
 

Select 1 option

A. It will print In Sub and QBANK.
 


B. It will print QBANK.
 


C. Depends on the implementation of JVM.
 


D. It will not even compile.
 


E. None of the above.
 


 
Check Answer
 



16.     QID - 2.1188 
 

What should be the return type of the following method?

public RETURNTYPE methodX( byte by){
    double d = 10.0;
    return (long) by/d*3;
}


 

Select 1 option

A. int
 


B. long
 


C. double
 


D. float
 


E. byte
 


 
Check Answer
 



17.     QID - 2.1252 
 

What will be the output when the following program is run?


public class TestClass{
    char c;
    public void m1(){
        char[ ] cA = { 'a' , 'b'};
        m2(c, cA);
        System.out.println( ( (int)c)  + "," + cA[1] );
    }
    public void m2(char c, char[ ] cA){
        c = 'b';
        cA[1] = cA[0] = 'm';
    }
    public static void main(String args[]){
        new TestClass().m1();
    }
}


 

Select 1 option

A. Compile time error.
 


B. ,m
 


C. 0,m
 


D. b,b
 


E. b,m
 


 
Check Answer
 



18.     QID - 2.1239 
 

What letters will be printed by this program?

public class ForSwitch{
    public static void main(String args[]){
        char i;
        LOOP: for (i=0;i<5;i++){
            switch(i++){
                case '0': System.out.println("A");
                case 1: System.out.println("B"); break LOOP;
                case 2: System.out.println("C"); break;
                case 3: System.out.println("D"); break;
                case 4: System.out.println("E");
                case 'E' : System.out.println("F");
            }
        }
    }
}

 

Select 2 options

A. A
 


B. B
 


C. C
 


D. D
 


E. F
 


 
Check Answer
 



19.     QID - 2.983 
 

Consider the following classes:

class A implements Runnable{ ...}

class B extends A implements Observer { ...}

(Assume that Observer has no relation to Runnable.)



and the declarations :



  A a = new A() ;

  B b = new B();



Which of the following Java code fragments will compile and execute without throwing exceptions?
 

Select 2 options

A. Object o = a; Runnable r = o;
 


B. Object o = a; Runnable r = (Runnable) o;
 


C. Object o = a; Observer ob = (Observer) o ;
 


D. Object o = b; Observer o2 = o;
 


E. Object o = b; Runnable r = (Runnable) b;
 


 
Check Answer
 



20.     QID - 2.1072 
 

What, if anything, is wrong with the following code?



//Filename: TestClass.java

class TestClass implements T1, T2{

   public void m1(){}

}

interface T1{

   int VALUE = 1;

   void m1();

}

interface T2{

   int VALUE = 2;

   void m1();

}
 

Select 1 option

A. TestClass cannot implement them both because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
 


D. The code will work fine only if m1() is removed from one of the interfaces.
 


E. None of the above.
 


 
Check Answer
 



21.     QID - 2.1167 
 

Given that SomeException is a checked exception, consider the following code:



//in file A.java

public class A{ 

   protected void m() throws SomeException{} 

}



//in file B.java

public class B extends A{ 

   public void m(){ } 

}



//in file TestClass.java

public class TestClass{

   public static void main(String[] args){

      //insert code here. //1

   }

}



Which of the following options can be inserted at //1 without resulting in any compilation or runtime errors?
 

Select 1 option

A. B b =  new A();

b.m();
 


B. A a = new B();

a.m();
 


C. A a = new B();

( ( B) a ).m();
 


D. Object o = new B();

o.m();
 


E. None of these.
 


 
Check Answer
 



22.     QID - 2.921 
 

Consider the following code:



class MyClass { }

public class TestClass{

   MyClass getMyClassObject(){

      MyClass mc = new MyClass(); //1

         return mc; //2

   }

   public static void main(String[] args){

      TestClass tc = new TestClass(); //3

      MyClass x = tc.getMyClassObject(); //4

      System.out.println("got myclass object"); //5

      x = new MyClass(); //6

      System.out.println("done"); //7

   }

}



After what line the MyClass object created at line 1 will be eligible for garbage collection?
 

Select 1 option

A. 2
 


B. 5
 


C. 6
 


D. 7
 


E. Never till the program ends.
 


 
Check Answer
 



23.     QID - 2.1175 
 

Which of the following statements will evaluate to true?
 

Select 1 option

A. "String".replace('g','G') == "String".replace('g','G')
 


B. "String".replace('g','g') == new String("String").replace('g','g')
 


C. "String".replace('g','G')=="StrinG"
 


D. "String".replace('g','g')=="String"
 


E. None of these.
 


 
Check Answer
 



24.     QID - 2.1282 
 

What, if anything, is wrong with the following code?



void test(int x){

   switch(x){

      case 1:

      case 2:

      case 0:

      default :

      case 4:

   }

}
 

Select 1 option

A. Data Type of 'x' is not valid to be used as an expression for the switch clause.
 


B. The case label 0 must precede case label 1.
 


C. Each case section must end with a break keyword.
 


D. The default label must be the last label in the switch statement.
 


E. There is nothing wrong with the code.
 


 
Check Answer
 



25.     QID - 2.1240 
 

Given:





  byte b = 1;

  char c = 1;

  short s = 1;

  int i = 1;



which of the following expressions are valid?
 

Select 3 options

A. s = b * b ;
 


B. i = b + b ;
 


C. s *= b ;
 


D. c = c + b ;
 


E. s += i ;
 


 
Check Answer
 



26.     QID - 2.1244 
 

Given the following program, which statements are true?

 

// Filename: TestClass.java

public class TestClass{

   public static void main(String args[]){

      A[] a, a1;

      B[] b;

      a = new A[10]; a1  = a;

      b =  new B[20];

      a = b;  // 1

      b = (B[]) a;  // 2

      b = (B[]) a1; // 3

   }

}

class A { }

class B extends A { }
 

Select 2 options

A. Compile time error at line 3.
 


B. The program will throw a java.lang.ClassCastException at the line labelled 2 when run.
 


C. The program will throw a java.lang.ClassCastException at the line labelled 3 when run.
 


D. The program will compile and run if the (B[ ] ) cast in the line 2 and the whole line 3 is removed.
 


E. The cast at line 2 is needed.
 


 
Check Answer
 



27.     QID - 2.1304 
 

Which of these are not part of the StringBuilder class?
 

Select 1 option

A. trim( )
 


B. ensureCapacity(int )
 


C. append(boolean)
 


D. reverse( )
 


E. setLength(int)
 


 
Check Answer
 



28.     QID - 2.1118 
 

Which of the changes given in options can be done (independent of each other) to let the following code compile and run without errors when its generateReport method is called?



class SomeClass{

   String s1 = "green mile";   // 0

   public void generateReport( int n ){

      String local;   // 1

      if( n > 0 ) local = "good";   //2

      System.out.println( s1+" = " + local );   //3

   }

}
 

Select 2 options

A. Insert after line 2 : else local = "bad";
 


B. Insert after line 2 : if(n <= 0) local = "bad";
 


C. Move line 1 and place it after line 0.
 


D. change line 1 to : final String local = "rocky";
 


E. The program already is without any errors.
 


 
Check Answer
 



29.     QID - 2.1343 
 

Consider the following class...



class TestClass{

   int x;

   public static void main(String[] args){

      // lot of code.

   }

}
 

Select 1 option

A. By declaring x as static, main can access this.x
 


B. By declaring x as public, main can access this.x
 


C. By declaring x as protected, main can access this.x
 


D. main cannot access this.x as it is declared now.
 


E. By declaring x as private, main can access this.x
 


 
Check Answer
 



30.     QID - 2.831 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
        System.out.println(this.myValue);
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
        System.out.println(this.myValue);
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        ct.showTwo(200);
    }
}


 

Select 1 option

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


 
Check Answer
 



31.     QID - 2.1313 
 

What is the result of executing the following code when the value of i is 5:





switch (i){

    default:

    case 1:

        System.out.println(1);

    case 0:

        System.out.println(0);

    case 2:

        System.out.println(2);

        break;

    case 3:

        System.out.println(3);

}




 

Select 1 option

A. It will print 1 0 2
 


B. It will print 1 0 2 3
 


C. It will print 1 0
 


D. It will print 1
 


E. Nothing will be printed.
 


 
Check Answer
 



32.     QID - 2.1099 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      int x  = 0;
      labelA:   for (int i=10; i<0; i--){
         int j = 0;
         labelB:
         while (j < 10){
            if (j > i) break labelB;
            if (i == j){
               x++;
               continue labelA;
            }
            j++;
         }
         x--;
      }
      System.out.println(x);
   }
}

 

Select 1 option

A. It will not compile.
 


B. It will go in infinite loop when run.
 


C. The program will write 10 to the standard output.
 


D. The program will write 0 to the standard output.
 


E. None of the above.
 


 
Check Answer
 



33.     QID - 2.1406 
 

What will the following code print when run?



public class Noobs {

    public void m(int a){

        System.out.println("In int ");

    }

    public void m(char c){

        System.out.println("In char ");

    }

    public static void main(String[] args) {

        Noobs n = new Noobs();

        int a = 'a';

        char c = 6;

        n.m(a);

        n.m(c);

    }

}
 

Select 1 option

A. In int

In char
 


B. In char

In int
 


C. In int

In int
 


D. In char

In char
 


E. It will not compile.
 


 
Check Answer
 



34.     QID - 2.997 
 

Consider the following class written by a novice programmer.


class Elliptical{
    public int radiusA, radiusB;
    public int sum = 100;

    public void setRadius(int r){
        if(r>99) throw new IllegalArgumentException();
        radiusA = r;
        radiusB = sum - radiusA;
        
    }
}


After some time, the requirements changed and the programmer now wants to make sure that radiusB is always (200 - radiusA) instead of (100 - radiusA) without breaking existing code that other people have written. Which of the following will accomplish his goal?
 

Select 1 option

A. Make sum = 200;
 


B. Make sum = 200 and make it private.
 


C. Make sum = 200 and make all fields (radiusA, radiusB, and sum) private.
 


D. Write another method setRadius2(int r) and set radiusB accordingly in this method.
 


E. His goal cannot be accomplished.
 


F. This class will not compile.
 


 
Check Answer
 



35.     QID - 2.1085 
 

Consider the following two classes defined in two java source files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1 <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       X x = new X();
       x.apply(LOGICID);
    }
}


What should be inserted at //1 so that Y.java can compile without any error?
 

Select 2 options

A. import static X;
 


B. import static com.foo.*;
 


C. import static com.foo.X.*;
 


D. import com.foo.*;
 


E. import com.foo.X.LOGICID;
 


 
Check Answer
 



36.     QID - 2.1251 
 

What will be the result of attempting to compile and run the following code?

public class InitClass{
   public static void main(String args[ ] ){
      InitClass obj = new InitClass(5);
   }
   int m;
   static int i1 = 5;
   static int i2 ;
   int  j = 100;
   int x;
   public InitClass(int m){
      System.out.println(i1 + "  " + i2 + "   " + x + "  " + j + "  " + m);
   }
  { j = 30; i2 = 40; }  // Instance Initializer
   static { i1++; }      // Static Initializer
}


 

Select 1 option

A. The code will fail to compile since the instance initializer tries to assign a value to a static member.
 


B. The code will fail to compile since the member variable x will be uninitialized when it is used.
 


C. The code will compile without error and will print 6 40 0 30 5 when run.
 


D. The code will compile without error and will print 5, 0, 0, 100, 5 when run.
 


E. The code will compile without error and will print 5, 40, 0, 30, 0 when run.
 


 
Check Answer
 



37.     QID - 2.1271 
 

What will be the result of attempting to compile and run the following code?

public class PromotionTest{

   public static void main(String args[]){

      int i = 5;

      float f = 5.5f;

      double d = 3.8;

      char c = 'a';

      if (i == f) c++;

      if (((int) (f + d)) == ((int) f + (int) d)) c += 2;

      System.out.println(c);

   }

}
 

Select 1 option

A. The code will fail to compile.
 


B. It will print d.
 


C. It will print c.
 


D. It will print b
 


E. It will print a.
 


 
Check Answer
 



38.     QID - 2.1170 
 

Consider the classes shown below:


class A{
   public A() { }
   public A(int i) {   System.out.println(i );    }
}
class B{
   static A s1 = new A(1);
   A a = new A(2);
   public static void main(String[] args){
      B b = new B();
      A a = new A(3);
   }
   static A s2 = new A(4);
}


Which is the correct sequence of the digits that will be printed when B is run?
 

Select 1 option

A. 1 ,2 ,3 4.
 


B. 1 ,4, 2 ,3
 


C. 3, 1, 2, 4
 


D. 2, 1, 4, 3
 


E. 2, 3, 1, 4
 


 
Check Answer
 



39.     QID - 2.1483 
 

What should be placed in the two blanks so that the following code will compile without errors:



class XXX{

    public void m() {

        throw new RuntimeException();

    }

}

class YYY extends XXX{

    public void m() throws Exception{

      throw new Exception();

    }

}

public class TestClass {

    public static void main(String[] args) {

        ______ obj = new ______();

        obj.m();

    }

}
 

Select 1 option

A. XXX and YYY
 


B. XXX and XXX
 


C. YYY and YYY
 


D. YYY and XXX
 


E. None of the options will make the code compile.
 


 
Check Answer
 



40.     QID - 2.960 
 

What will the following code print when compiled and run?


class Test{
    public static void main(String args[]){
        int c = 0;
        A: for(int i = 0; i < 2; i++){
            B: for(int j = 0; j < 2; j++){
                C: for(int k = 0; k < 3; k++){
                    c++;
                    if(k>j) break;
                }
            }
        }
        System.out.println(c);
    }
}

 

Select 1 option

A. 7
 


B. 8
 


C. 9
 


D. 10
 


E. 11
 


 
Check Answer
 



41.     QID - 2.1373 
 

Complete the following code by filling the two blanks - 

class XXX{

    public void m() throws Exception{

        throw new Exception();

    }

}

class YYY extends XXX{

    public void m(){ }

    

    public static void main(String[] args) {

        ________  obj = new ______();

        obj.m();

    }

}
 

Select 1 option

A. XXX XXX
 


B. XXX YYY
 


C. YYY XXX
 


D. YYY YYY
 


 
Check Answer
 



42.     QID - 2.1398 
 

Given:

public class FunWithArgs {

    public static void main(String[][] args) {

        System.out.println(args[0][1]);

    }

    public static void main(String[] args) {

        FunWithArgs fwa = new FunWithArgs();

        String[][] newargs = {args};

        fwa.main(newargs);

    }

}



The above program is compiled with the command line:

javac FunWithArgs.java

and then run with:

java FunWithArgs a b c



What will be the output?
 

Select 1 option

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException at run time.
 


C. It will print b
 


D. It will print null
 


 
Check Answer
 



43.     QID - 2.1309 
 

What can be inserted at //1 and //2 in the code below so that it can compile without errors:


class Doll{
    String name;
    Doll(String nm){
        this.name = nm;
    }
}

class Barbie extends Doll{
    Barbie(){
        //1 
    }
    Barbie(String nm){
        //2
    }
}
  public class TestClass {
       public static void main(String[] args) {
          Barbie b = new Barbie("mydoll");
       }
   }


 

Select 2 options

A. this("unknown"); at 1 and super(nm); at 2
 


B. super("unknown"); at 1 and super(nm); at 2
 


C. super(); at 1 and super(nm); at 2
 


D. super(); at 1 and Doll(nm); at 2
 


E. super("unknown"); at 1 and this(nm); at 2
 


F. Doll(); at 1 and Doll(nm); at 2
 


 
Check Answer
 



44.     QID - 2.1105 
 

Consider the following method...



public void ifTest(boolean flag){

   if (flag)   //1

   if (flag)   //2

   System.out.println("True False");

   else        // 3

   System.out.println("True True");

   else        // 4

   System.out.println("False False");

}



Which of the following statements are correct ?
 

Select 3 options

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


 
Check Answer
 



45.     QID - 2.1076 
 

What would be the result of compiling and running the following program?



class SomeClass{

   public static void main(String args[]){

      int size = 10;

      int[] arr = new int[size];

      for (int i = 0 ; i < size ; ++i) System.out.println(arr[i]);

   }

}
 

Select 1 option

A. The code will fail to compile, because the int[] array declaration is incorrect.
 


B. The program will compile, but will throw an IndexArrayOutOfBoundsException when run.
 


C. The program will compile and run without error, and will print nothing.
 


D. The program will compile and run without error and will print null ten times.
 


E. The program will compile and run without error and will print 0 ten times.
 


 
Check Answer
 



46.     QID - 2.1146 
 

What will the following program print?

public class TestClass{
  public static void main(String[] args){
    unsigned byte b = 0;
    b--;
    System.out.println(b);
  }
}


 

Select 1 option

A. 0
 


B. -1
 


C. 255
 


D. -128
 


E. It will not compile.
 


 
Check Answer
 



47.     QID - 2.1296 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

    String str = "111";

    boolean[] bA = new boolean[1];

    if( bA[0] ) str = "222";

    System.out.println(str);

  }

}
 

Select 1 option

A. 111
 


B. 222
 


C. It will not compile as bA[0] is uninitialized.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



48.     QID - 2.1208 
 

Given the following class definition:


class A{
  protected int i;
  A(int i) {    this.i = i;    }
 
}
// 1 : Insert code here


Which of the following would be a valid class that can be inserted at //1 ?
 

Select 2 options

A. class B {}
 


B. class B extends A {}
 


C. class B extends A {  B()  {  System.out.println("i = " + i); }  }
 


D. class B { B() {} }
 


 
Check Answer
 



49.     QID - 2.1016 
 

What will the following code snippet print?


int count = 0, sum = 0;
do{
       if(count % 3 == 0) continue;
       sum+=count;
}
while(count++ < 11);
System.out.println(sum);

 

Select 1 option

A. 49
 


B. 48
 


C. 37
 


D. 36
 


E. 38
 


 
Check Answer
 



50.     QID - 2.1442 
 

What will the following code print when compiled and run?

    

class X{

    public X(){

        System.out.println("In X");

    }

}



class Y extends X{

    public Y(){

        super();

        System.out.println("In Y");

    }

}



class Z extends Y{

    public Z(){

        System.out.println("In Z");

    }

}



public class Test {

 

    public static void main(String[] args) {

        Y y = new Z();

    }

} 
 

Select 1 option

A. It will not compile.
 


B. In X

In Y

In Z
 


C. In Z

In Y

In X
 


D. In Y

In X

In Z
 


E. In Z

In X

In Y
 


 
Check Answer
 



51.     QID - 2.1430 
 

You want to print the date that represents upcoming tuesday from now even if the current day is a tuesday. Which of the following lines of code accomplishe(s) this?
 

Select 2 options

A. System.out.println(LocalDate.now().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


B. System.out.println(LocalDate.now().with(TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAY)));
 


C. System.out.println(new LocalDate().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


D. System.out.println(new LocalDate().adjust(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


E. System.out.println(TemporalAdjusters.next(DayOfWeek.TUESDAY).adjustInto(LocalDate.now()));
 


 
Check Answer
 



52.     QID - 2.1328 
 

Consider the following classes :


interface I{
}
class A implements I{
}

class B extends A {
}

class C extends B{
}


And the following declarations:
A a = new A();
B b = new B(); 

Identify options that will compile and run without error.
 

Select 1 option

A. a = (B)(I)b;
 


B. b = (B)(I) a;
 


C. a = (I) b;
 


D. I i = (C) a;
 


 
Check Answer
 



53.     QID - 2.1250 
 

Which statements, when inserted in the code below, will cause an exception at run time?


class B {}
class B1 extends B {}
class B2 extends B {}
public class ExtendsTest{
  public static void main(String args[]){
     B b = new B();
     B1 b1 = new B1();
     B2 b2 = new B2();
     // insert statement here
  }
}

 

Select 1 option

A. b = b1;
 


B. b2 = b;
 


C. b1 = (B1) b;
 


D. b2 = (B2) b1;
 


E. b1 = (B) b1;
 


 
Check Answer
 



54.     QID - 2.1198 
 

What will be the output of the following program ?

class CorbaComponent{
    String ior;
    CorbaComponent(){ startUp("IOR"); }
    void startUp(String s){ ior  =  s; }
    void print(){ System.out.println(ior); }
}

class OrderManager extends CorbaComponent{
   OrderManager(){  }
   void startUp(String s){  ior = getIORFromURL(s);   }
   String getIORFromURL(String s){  return "URL://"+s; }
}

public class Application{
   public static void main(String args[]){ start(new OrderManager()); }
   static void start(CorbaComponent cc){ cc.print(); }
}

 

Select 1 option

A. It will throw an exception at run time.
 


B. It will print IOR
 


C. It will print URL://IOR
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



55.     QID - 2.1156 
 

What will the following class print when executed?



class Test{

    static boolean a;

    static boolean b;

    static boolean c;

    public static void main (String[] args){

        boolean bool = (a = true) || (b = true) && (c = true);

        System.out.print(a + ", " + b + ", " + c);

    }

}
 

Select 1 option

A. true, false, true
 


B. true, true, false
 


C. true, false, false
 


D. true, true, true
 


 
Check Answer
 



56.     QID - 2.1420 
 

What will the following code print when compiled and run?



        int[][] ab = { {1, 2, 3}, {4, 5} };

        for(int i=0; i<ab.length; i++){

            for(int j=0; j<ab[i].length; j++){

                System.out.print(ab[i][j]+" ");

                if(ab[i][j] == 2){

                    break;

                }

            }

            continue;

        }


 

Select 1 option

A. 1 2 3 4 5
 


B. 1 2
 


C. 1 3 4 5
 


D. 1 2 4 5
 


E. 2 3 5
 


F. It will not compile.
 


 
Check Answer
 



57.     QID - 2.1396 
 

What is the result of compiling and running the following program?



public class Learner {

    public static void main(String[] args) {

        String[] dataArr = new String[4];

        dataArr[1] = "Bill";

        dataArr[2] = "Steve";

        dataArr[3] = "Larry";

        try{

            for(String data : dataArr){

                System.out.print(data+" ");

            }

        }catch(Exception e){

            System.out.println(e.getClass());

        }

    }

}
 

Select 1 option

A. Bill Steve Larry null
 


B. Bill Steve Larry class java.lang.NullPointerException
 


C. class java.lang.Exception Bill Steve Larry
 


D. Bill Steve Larry class java.lang.Exception
 


E. null Bill Steve Larry
 


 
Check Answer
 



58.     QID - 2.1416 
 

Which of the following options will yield a Boolean wrapper object containing the value true?
 

Select 3 options

A. Boolean.parseBoolean(" true ")
 


B. Boolean.parseBoolean("true")
 


C. Boolean.valueOf(true)
 


D. Boolean.valueOf("trUE")
 


E. Boolean.TRUE
 


 
Check Answer
 



59.     QID - 2.1101 
 

Consider the following code:


class Base{
   private float f = 1.0f;
   void setF(float f1){ this.f = f1; }
}
class Base2 extends Base{
   private float f = 2.0f;
   //1
}


Which of the following options is/are valid example(s) of overriding?
 

Select 2 options

A. protected void setF(float f1){ this.f = 2*f1; }
 


B. public void setF(double f1){ this.f = (float) 2*f1; }
 


C. public void setF(float f1){ this.f = 2*f1; }
 


D. private void setF(float f1){ this.f = 2*f1; }
 


E. float setF(float f1){ this.f = 2*f1; return f;}
 


 
Check Answer
 



60.     QID - 2.970 
 

Consider the following classes...


class Car{
   public int gearRatio = 8;
   public String accelerate() {  return "Accelerate : Car";  }
}
class SportsCar extends Car{
   public int gearRatio = 9;
   public String accelerate() {  return  "Accelerate : SportsCar";  }
   public static void main(String[] args){
      Car c = new SportsCar();
      System.out.println( c.gearRatio+"  "+c.accelerate() );
   }
}


What will be printed when SportsCar is run?
 

Select 1 option

A. 8  Accelerate : Car
 


B. 9 Accelerate : Car
 


C. 8 Accelerate : SportsCar
 


D. 9 Accelerate : SportsCar
 


E. None of the above.
 


 
Check Answer
 



61.     QID - 2.1269 
 

Which of the following will not give any error at compile time and run time?
 

Select 4 options

A. if (8 == 81) {}
 


B. if (x = 3) {} // assume that x is an int
 


C. if (true) {}
 


D. if (bool = false) {}  //assume that bool is declared as a boolean
 


E. if (x == 10 ? true:false) { } // assume that x is an int
 


 
Check Answer
 



62.     QID - 2.991 
 

What can be the return type of method getSwitch so that this program compiles and runs without any problems?


public class TestClass{
   public static XXX getSwitch(int x){
      return x - 20/x + x*x;
   }
   public static void main(String args[]){
       switch( getSwitch(10) ){
          case 1 :
          case 2 :
          case 3 :
          default : break;
       }
   }
}


 

Select 1 option

A. int
 


B. float
 


C. long
 


D. double
 


E. char
 


F. byte
 


G. short
 


 
Check Answer
 



63.     QID - 2.1378 
 

What will the following code print?



public class TestClass {

    public static void main(String[] args) {



        int x = 1____3;   //1



        long y = 1_3;     //2



        float z = 3.234_567f; //3



        System.out.println(x+" "+y+" "+z);

    }

}
 

Select 1 option

A. Compilation error at //1
 


B. Compilation error at //2
 


C. Compilation error at //3
 


D. Compilation error at //1 and //3
 


E. 10003 103 3.234567
 


F. 13 13 3.234567
 


 
Check Answer
 



64.     QID - 2.1414 
 

Which of the following statements will print true when executed?
 

Select 3 options

A. System.out.println(Boolean.parseBoolean("true"));
 


B. System.out.println(new Boolean(null));
 


C. System.out.println(new Boolean());
 


D. System.out.println(new Boolean("true"));
 


E. System.out.println(new Boolean("trUE"));
 


 
Check Answer
 



65.     QID - 2.1444 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing the same number except its last four digits will be masked with xxxx?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Select 3 options

A. return new StringBuilder(fullPhoneNumber).substring(0, 8)+"xxxx";
 


B. return new StringBuilder(fullPhoneNumber).replace(8, 12, "xxxx").toString();
 


C. return new StringBuilder(fullPhoneNumber).append("xxxx", 8, 12).toString();
 


D. return new StringBuilder("xxxx").append(fullPhoneNumber, 0, 8).toString();


 


E. return new StringBuilder("xxxx").insert(0, fullPhoneNumber, 0, 8).toString();
 


 
Check Answer
 



66.     QID - 2.1458 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will compile?
 

Select 2 options

A. ArrayList<Vehicle> al1 = new ArrayList<>();

SUV s = al1.get(0);
 


B. ArrayList<Drivable> al2 = new ArrayList<>();

Car c1 = al2.get(0);
 


C. ArrayList<SUV> al3 = new ArrayList<>();

Drivable d1 = al3.get(0);
 


D. ArrayList<SUV> al4 = new ArrayList<>();

Car c2 = al4.get(0);
 


E. ArrayList<Vehicle> al5 = new ArrayList<>();

Drivable d2 = al5.get(0);
 


 
Check Answer
 



67.     QID - 2.1040 
 

What will the following class print ?



class InitTest{

   public static void main(String[] args){

      int a = 10;

      int b = 20;

      a += (a = 4);

      b = b + (b = 5);

      System.out.println(a+ ",  "+b);

   }

}
 

Select 1 option

A. It will print 8, 25
 


B. It will print 4, 5
 


C. It will print 14, 5
 


D. It will print 4, 25
 


E. It will print 14, 25
 


 
Check Answer
 



68.     QID - 2.1413 
 

What will the following code print when compiled and run?



public class TestClass{

   public static void main(String[] args){

        int[] arr = { 1, 2, 3, 4, 5, 6 };

        int counter = 0;

        for (int value : arr) {

           if (counter >= 5) {

               break;    

           } else {

            continue;    

           }

           if (value > 4) {

             arr[counter] = value + 1;    

           }    

           counter++;

        }

        System.out.println(arr[counter]);

   }



}
 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at run time.
 


C. 5
 


D. 6
 


E. 7
 


F. 8
 


 
Check Answer
 



69.     QID - 2.1011 
 

Consider the following code:


public class TestClass{
   public void method(Object o){
      System.out.println("Object Version");
   }
   public void method(java.io.FileNotFoundException s){
      System.out.println("java.io.FileNotFoundException Version");
   }
   public void method(java.io.IOException s){
      System.out.println("IOException Version");
   }
   public static void main(String args[]){
      TestClass tc = new TestClass();
      tc.method(null);
   }
}



What would be the output when the above program is compiled and run?
(Assume that FileNotFoundException is a subclass of IOException, which in turn is a subclass of Exception)
 

Select 1 option

A. It will print Object Version
 


B. It will print java.io.IOException Version
 


C. It will print java.io.FileNotFoundException Version
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


 
Check Answer
 



70.     QID - 2.1379 
 

What will the following code print?



        int value = 1,000,000; //1

        switch(value){

            case 1_000_000 : System.out.println("A million 1"); //2

                break;

            case 1000000 : System.out.println("A million 2"); //3

                break;

        }
 

Select 1 option

A. A million 1
 


B. A million 2
 


C. Compilation error because of //1
 


D. Compilation error because of //2
 


E. Compilation error because of //3
 


F. Compilation error because of //1 and //3
 


 
Check Answer
 



71.     QID - 2.1081 
 

Which of the following code snippets will print exactly 10?



1.  Object t = new Integer(106);

    int k = ((Integer) t).intValue()/10;

    System.out.println(k);



2.  System.out.println(100/9.9);



3.  System.out.println(100/10.0);



4.  System.out.println(100/10);



5.  System.out.println(3 + 100/10*2-13);
 

Select 3 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


 
Check Answer
 



72.     QID - 2.919 
 

After which line will the object created at line XXX be eligible for garbage collection?





public Object getObject(Object a) //0

   {



 Object b = new Object();  //XXX



 Object c, d = new Object(); //1

 c = b; //2

 b = a = null; //3

 return c; //4

}
 

Select 1 option

A. //2
 


B. //3
 


C. //4
 


D. Never in this method.
 


E. Cannot be determined.
 


 
Check Answer
 



73.     QID - 2.1046 
 

What will be the output of the following program:



public class TestClass{

   public static void main(String args[]){

      try{

         m1();

      }catch(IndexOutOfBoundsException e){

         System.out.println("1");

         throw new NullPointerException();

      }catch(NullPointerException e){

         System.out.println("2");

         return;

      }catch (Exception e) {

         System.out.println("3");

      }finally{

         System.out.println("4");

      }

      System.out.println("END");

   }



   static void m1(){

      System.out.println("m1 Starts");

      throw new IndexOutOfBoundsException( "Big Bang " );

   }

}


 

Select 3 options

A. The program will print m1 Starts.
 


B. The program will print m1 Starts, 1 and 4, in that order.
 


C. The program will print m1 Starts, 1 and  2, in that order.
 


D. The program will print m1 Starts, 1, 2 and 4 in that order.
 


E. END will not be printed.
 


 
Check Answer
 



74.     QID - 2.901 
 

Given:

public class Triangle{
    public int base;
    public int height;
    public double area;
    
    public Triangle(int base, int height){
        this.base = base; this.height = height;
        updateArea();
    }

    void updateArea(){
        area = base*height/2;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


The above class needs to protect an invariant on the "area" field. Which three members must have the public access modifiers removed to ensure that the invariant is maintained?
 

Select 3 options

A. the base field
 


B. the height field
 


C. the area field
 


D. the Triangle constructor
 


E. the setBase method
 


F. the setHeight method
 


 
Check Answer
 



75.     QID - 2.1342 
 

Consider that str is a local variable of class java.lang.String.

Which of the following lines of code may throw a NullPointerException in certain situations?



Or a tougher version of the question could be :

Which of the following lines of code are not an example of robust design ?
 

Select 3 options

A. if ( (str != null) | ( i == str.length() ) ) 
 


B. if ( (str == null) | ( i == str.length() ) ) 
 


C. if ( (str != null) || (i == str.length() ) )
 


D. if ( (str == null) || (i == str.length() ) )
 


 
Check Answer
 



76.     QID - 2.1310 
 

Consider the following method...


public static void ifTest(boolean flag){
   if (flag)   //1
   if (flag)   //2
   if (flag)   //3
   System.out.println("False True");
   else        //4
   System.out.println("True False");
   else        //5
   System.out.println("True True");
   else        //6
   System.out.println("False False");
}


Which of the following statements are correct ?
 

Select 2 options

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


 
Check Answer
 



77.     QID - 2.1484 
 

Given that Daylight Savings Time ends on Nov 1 at 2 AM in US/Eastern time zone, what will the following code print -



LocalDateTime ld = LocalDateTime.of(2015, Month.OCTOBER, 31, 10, 0);



ZonedDateTime date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Duration.ofDays(1));

System.out.println(date);



date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Period.ofDays(1));

System.out.println(date);



Note: This question refers to ZonedDateTime and Duration, which are not explicitly mentioned in the objectives. However, a few candidates have reported getting a similar question and so we have included it in this question bank.
 

Select 1 option

A. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]
 


B. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


C. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]


 


D. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


 
Check Answer
 



Test 5 (Answered)



01.     QID - 2.1276 : Handling Exceptions 
 

What is wrong with the following code?

class MyException extends Exception {}
public class TestClass{
   public static void main(String[] args){
      TestClass tc = new TestClass();
      try{
         tc.m1();
      }
      catch (MyException e){
         tc.m1();
      }
      finally{
         tc.m2();
      }
   }
   public void m1() throws MyException{
      throw new MyException();
   }
   public void m2() throws RuntimeException{
      throw new NullPointerException();
   }
}


 

Correct Option is :  D 

A. It will not compile because you cannot throw an exception in finally block.
You can, but then you have to declare it in the method's throws clause.


B. It will not compile because you cannot throw an exception in catch block.
You can, but then you have to declare it in the method's throws clause.


C. It will not compile because NullPointerException cannot be created this way.
It does have a no args constructor.


D. It will not compile because of unhandled exception.
 


E. It will compile but will throw an exception when run.
 


Explanation: 
The catch block is throwing a checked exception (i.e. non-RuntimeException) which must be handled by either a try catch block or declared in the throws clause of the enclosing method.

Note that finally is also throwing an exception here, but it is a RuntimeException so there is no need to handle it or declare it in the throws clause.

 
Back to Question without Answer
 



02.     QID - 2.1087 : Working with Inheritance - instanceof 
 

Which of the given lines can be inserted at //1 of the following program ?



public class TestClass{    

   public static void main(String[] args){

     short s = 9;

     //1

   }

 }
 

Correct Options are :  D G 

A. Short k = new Short(9); System.out.println(k instanceof Short);
9 is considered an int and there is no constructor in Short that takes an int.

Short s = new Short( (short) 9 ); will work.


B. System.out.println(s instanceof Short);
The left operand of instanceof MUST be an object and not a primitive.


C. Short k = 9; System.out.println( k instanceof s);
Right operand of instanceof MUST be a class name.


D. int i = 9; System.out.println(s == i);
Any two integral primitives can be compared using == operator.


E. Boolean b = s instanceof Number;
Left operand of instanceof MUST be an object and not a primitive.


F. Short k = 9; Integer i = 9; System.out.println(k == i);
This will not compile because k and i are referring to objects that have no IS-A relationship among themselves.


G. Integer i = 9; System.out.println( s == i );
 


 
Back to Question without Answer
 



03.     QID - 2.1180 : Using Operators and Decision Constructs 
 

The following code snippet will not compile:



int i = 10;

System.out.println( i<20 ? out1() : out2() );



Assume that out1 and out2 methods have the following signatures: public void out1(); and public void out2();
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
Note that it is not permitted for either the second or the third operand expression of the ? operator to be an invocation of a void method.



   If one of the operands is of type byte and the other is of type short, then the type of the conditional expression is short.

   If one of the operands is of type T where T is byte, short, or char, and the other operand is a constant expression of type int whose value is representable in type T, then the type of the conditional expression is T.

   

Otherwise, binary numeric promotion (5.6.2) is applied to the operand types, and the type of the conditional expression is the promoted type of the second and third operands.

   If one of the second and third operands is of the null type and the type of the other is a reference type, then the type of the conditional expression is that reference type.

   If the second and third operands are of different reference types, then it must be possible to convert one of the types to the other type (call this latter type T) by assignment conversion (5.2); the type of the conditional expression is T. It is a compile-time error if neither type is assignment compatible with the other type.

 
Back to Question without Answer
 



04.     QID - 2.1204 : Working with Java Data Types 
 

What will be the result of attempting to compile and run the following program?

public class TestClass{

  public static void main(String args[ ] ){

    Object a, b, c ;

    a = new String("A");

    b = new String("B");

    c = a;

    a = b;

    System.out.println(""+c);

  }

}


 

Correct Option is :  B 

A. The program will print java.lang.String@XXX, where XXX is the memory location of the object a.
 


B. The program will print A
 


C. The program will print B
 


D. The program will not compile because the type of a, b, and c  is Object.
String is an Object as well. You can always assign an object of the subclass to a super class reference without a cast.


E. The program will print java.lang.String@XXX, where XXX is the hash code of the object a.
 


Explanation: 
The variables a, b and c contain references to actual objects. Assigning to a reference only changes the reference value, and not the object pointed to by the reference. So, when c = a is executed c starts pointing to the string object containing A. and when a = b is executed, a starts pointing to the string object containing B but the object containing A still remains same and c still points to it. So the program prints A and not B.



The Object class's toString generates a string using:  getClass().getName() + '@' + Integer.toHexString(hashCode())

But in this case, String class overrides the toString() method that returns just the actual string value.

 
Back to Question without Answer
 



05.     QID - 2.1395 : Using Loop Constructs 
 

Given:



public class SimpleLoop {

    public static void main(String[] args) {

        int i=0, j=10;

        int count = 0;

        while (i<j) {            

            i++;

            j--;

            count++;

        }

        System.out.println(i+" "+j+" "+count);

    }

}

What is the result?
 

Correct Option is :  E 

A. 6 4 5
 


B. 6 5 5
 


C. 6 5 6
 


D. 6 4 6
 


E. 5 5 5
 


Explanation: 
In such type of questions, you will need to work out the values of the loop variables for every iteration (unless you can recognize the pattern) on your worksheet.

Beginning i=0, j=10, count = 0

Iteration 1: i<j is true, i becomes 1, j becomes 9, count becomes 1

Iteration 2: i<j is true, i becomes 2, j becomes 8, count becomes 2

Iteration 3: i<j is true, i becomes 3, j becomes 7, count becomes 3

Iteration 4: i<j is true, i becomes 4, j becomes 6, count becomes 4

Iteration 5: i<j is true, i becomes 5, j becomes 5, count becomes 5

Iteration 6: i<j is false so the while loop is not entered.

Print 5 5 5.

 
Back to Question without Answer
 



06.     QID - 2.1474 : Lambda Expressions 
 

Given:

import java.util.*;

class Data{

    int value;

    public Data(int x){ this.value = x; }

    public String toString(){ return ""+value; }

}



class MyFilter {

  public boolean test(Data d){

     return d.value == 0;

  }

}



public class TestClass{

    

   public static void filterData(ArrayList<Data> dataList, MyFilter f){

      Iterator<Data> i = dataList.iterator();

      while(i.hasNext()){

           if(f.test(i.next())){

                i.remove();

           }

       }

   }



  public static void main(String[] args) {

        ArrayList<Data> al = new ArrayList<Data>();

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(0); al.add(d);



        filterData(al, new MyFilter());  //1 



        System.out.println(al);

    }

}



How can you use a lambda expression to achieve the same result?
 

Correct Option is :  E 

A. Replace the line at //1 with:

filterData(al, x -> x.value==0);  
This would not work because MyFilter is not a functional interface.


B. Add implements java.util.function.Predicate to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
This would not work because MyFilter would still not be a functional interface.


C. Add implements java.util.function.Predicate<Data> to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
This would not work because MyFilter would still not be a functional interface.


D. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
Predicate is a generified interface. So you need to type it to Data before you can use this lambda expression. Otherwise, the compiler will assume that the type of x is Object and since value is not a valid field in Object class, x.value will cause a the compilation to fail.


E. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate<Data> in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


 
Back to Question without Answer
 



07.     QID - 2.1238 : Using Operators and Decision Constructs 
 

What will the following code print when run without any arguments ...


public class TestClass {

    public static int m1(int i){
        return ++i;
    }
    
    public static void main(String[] args) {

        int k = m1(args.length);
        k += 3 + ++k;
        System.out.println(k);
    }

}

 

Correct Option is :  C 

A. It will throw ArrayIndexOutOfBoundsException.
 


B. It will throw NullPointerException.
 


C. 6
 


D. 5
 


E. 7
 


F. 2
 


G. None of these.
 


Explanation: 
When the program is run without any arguments, args gets assigned a string array of size 0. So NullPointerException or ArrayIndexOutOfBoundsException are out of question. Thus, the first call becomes : 

int k = m1(0);



Follow through the code like this:

1. Method m1() uses pre-increment operation. Therefore, first i is incremented and then the new value of i is returned.

2. Thus, k gets the value of 1.



3. Expand the += operator as: 

 k = k + 3 + ++k;



This becomes (remember that k = 1 at this point): 

k = 1 + 3 + (++k) i.e.

k = 1 + 3 + 2; (at this point value of k is 2 because of ++k). But the value of Right Hand Side has not yet been assigned to k.

k = 6; 6 is assigned to k thereby overwriting the value of 2.



Therefore, the final value of k is 6.

 
Back to Question without Answer
 



08.     QID - 2.1108 : Using Operators and Decision Constructs 
 

What will the following program print?



class Test{

   public static void main(String args[]){

      int k = 9, s = 5;

      switch(k){

         default :

         if( k == 10) { s = s*2; }

         else{

            s = s+4;

            break;

         }

         case 7 : s = s+3;

      }

      System.out.println(s);

   }

}
 

Correct Option is :  B 

A. 5
 


B. 9
Since 9 does not match any of the case labels, it is accepted by default block. In this block, the else part is executed, which sets s to the value of s+4, i.e. 9. Since there is a break in the else block, case 7: is not executed.


C. 12
 


D. It will not compile.
 


 
Back to Question without Answer
 



09.     QID - 2.1267 : Using Operators and Decision Constructs 
 

Which of the following implementations of a max() method will correctly return the largest value?
 

Correct Option is :  D 

A.   int max(int x, int y){

     return(  if(x > y){ x; } else{ y; }  );

  }
The if statement does not return any value so it can not be used the way it is used in (1).


B.   int max(int x, int y){

     return( if(x > y){ return x; }  else{ return y; } );

  }
It would work if the first return and the corresponding brackets is removed.


C.   int max(int x, int y){

     switch(x < y){

        case true:

               return y;

        default :

               return x;

     };

 }
Neither the switch expression nor the case labels can be of type boolean.


D. int max(int x, int y){

      if (x > y)  return x;

      return y;

}
 


E. None of the above.
 


 
Back to Question without Answer
 



10.     QID - 2.1436 : Java Basics 
 

You have written some Java code in MyFirstClass.java file. Which of the following commands will you use to compile and run it.

(Assume that the code has no package declaration.)
 

Correct Option is :  E 

A. javac MyFirstClass.java

javar MyFirstClass
 


B. javap MyFirstClass.java

javar MyFirstClass.java
 


C. java MyFirstClass.java

java MyFirstClass.class
 


D. javac MyFirstClass.java

javar MyFirstClass.java
 


E. javac MyFirstClass.java

java MyFirstClass
 


Explanation: 
Remember that java code must be written in a file with .java extension. If you have a public class in the code, the name of the file must be same as the name of that public class. 



Compilation and execution of a Java program is two step process. You first need to compile a java file using a Java compiler. Oracle's JDK comes with a compiler. It is contained in the executable file named javac. You will find it in <jdk installation folder>/bin.



javac compiles the source code and generates bytecode in a new file with the same name as the source file but with extension .class. By default, the class file in generated in the same folder but javac is capable of placing it in a different folder if you use the -d flag. [This is just FYI and not required for the exam. -d is a very important and useful flag and we recommend that you read about it even if it is not required for the exam.]



In second step, the Java virtual machine (JVM), aka Java interpreter is invoked to execute the .class file. Oracle's JVM is contained in the executable file named java. It is also present in the same bin folder of JDK installation. It takes the fully qualified name (i.e. name including package) of the class file without extension as a argument.

 
Back to Question without Answer
 



11.     QID - 2.1340 : Working with Methods - Overloading 
 

Given the following code, which method declarations can be inserted at line 1 without any problems?


public class OverloadTest{
    public int sum(int i1, int i2) { return i1 + i2; }
    // 1
}


 

Correct Options are :  B C D 

A. public int sum(int a, int b) { return a + b; }
Will cause duplicate method. Variable names don't matter. Only their types.


B. public int sum(long i1, long i2) { return (int) i1; }
 


C. public int sum(int i1, long i2) { return (int) i2; }
 


D. public long sum(long i1, int i2) { return i1 + i2; }
 


E. public long sum(int i1, int i2) { return i1 + i2; }
Only the return type is different so the compiler will complain about having duplicate method sum.


Explanation: 
The rule is that you cannot have methods that create ambiguity for the compiler in a class. It is illegal for a class to have two methods having same name and having same type of input parameters in the same order.

Name of the input variables and return type of the method are not looked into.

1. Option 1 is wrong because, then both the methods will be same (as their method name and the class/type and order of the input parameters will be same). So this amounts to duplicate method which is not allowed.

As mentioned, name of the input parameters does not matter. Only the type of parameters and their order matters.

2. 2 is valid because the type of input parameters are different. So this is a different method and does not amount to duplication.

3 and 4 are valid for the same reason

5 is not valid because it leads to duplicate method(as their method name and the class/type and order of the input parameters will be same). Note that as mentioned in the comments, return type does not matter.

 
Back to Question without Answer
 



12.     QID - 2.1407 : Working with Java API - ArrayList 
 

What will the following code print when compiled and run?



import java.util.*;

public class TestClass {

    public static void main(String[] args) throws Exception {

        List list = new ArrayList();

        list.add("val1"); //1

        list.add(2, "val2"); //2

        list.add(1, "val3"); //3

        System.out.println(list);

     }

}
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
This line is trying to put a value in an ArrayList at index 2 (i.e. 3rd position). To be able to put a value at index 2, the ArrayList must have atleast 2 values already. Therefore, it will throw java.lang.IndexOutOfBoundsException exception.


D. It will throw an exception at run time because of line //3
 


E. null
 


 
Back to Question without Answer
 



13.     QID - 2.1285 : Working with Java API - String, StringBuilder 
 

Which of the following operators can be used in conjunction with a String object?
 

Correct Options are :  A C D 

A. +
 


B. ++
 


C. +=
 


D. .
 


E. *
 


Explanation: 
Only + is overloaded for String. a+=x is actually converted to a = a + x. so it is valid for Strings. dot (.) operator accesses members of the String object. There is only one member variable though: CASE_INSENSITIVE_ORDER. It is of type Comparator (which is an interface).

 
Back to Question without Answer
 



14.     QID - 2.1464 : Using Operators and Decision Constructs 
 

Given:

public class LoopTest {

    int k = 5;

    public boolean checkIt(int k){

        return k-->0?true:false;

    }

    public void printThem(){

        while(checkIt(k)){

            System.out.print(k);

        }

    }

    public static void main(String[] args) {

        new LoopTest().printThem();

    }

}

What changes should be made so that the program will print 54321?
 

Correct Option is :  B 

A. No change is necessary.
It will go in an infinite loop.


B. Replace System.out.print(k); with System.out.print(k--);
 


C. Replace System.out.print(k); with System.out.print(--k);
It will print 43210.


D. Replace while(checkIt(k)) with while(checkIt(--k)).
It will print 4321.


E. Replace return k-->0?true:false; with return this.k-->0?true:false;
This will print 43210.


Explanation: 
Observe that the method parameter k in checkIt shadows the instance variable k. Therefore, any changes made to k in checkIt will not affect the instance variable k. For checkIt method to access the instance variable k, you need to do this.k.



 k-->0 means, first compare the value of k with 0, and then reduce it by 1. (As opposed to --k>0, which means, first reduce the value of k by 1 and then compare with 0).



In the printThem method, k refers to the instance variable. You need to reduce it by 1 after each iteration. Therefore, System.out.print(k--); will do.

 
Back to Question without Answer
 



15.     QID - 2.1009 : Working with Inheritance 
 

Consider the following code:


class Super { static String ID = "QBANK"; }

class Sub extends Super{
   static { System.out.print("In Sub"); }
}
public class Test{
   public static void main(String[] args){
      System.out.println(Sub.ID);
   }
}


What will be the output when class Test is run?
 

Correct Option is :  B 

A. It will print In Sub and QBANK.
 


B. It will print QBANK.
 


C. Depends on the implementation of JVM.
 


D. It will not even compile.
 


E. None of the above.
 


Explanation: 
As per Section 12.4.1 given here: http://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html



A class or interface type T will be initialized immediately before the first occurrence of any one of the following:



T is a class and an instance of T is created.



T is a class and a static method declared by T is invoked.



A static field declared by T is assigned.



A static field declared by T is used and the field is not a constant variable (§4.12.4).



T is a top level class (§7.6), and an assert statement (§14.10) lexically nested within T (§8.1.3) is executed.



A reference to a static field (§8.3.1.1) causes initialization of only the class or interface that actually declares it, even though it might be referred to through the name of a subclass, a subinterface, or a class that implements an interface.



Invocation of certain reflective methods in class Class and in package java.lang.reflect also causes class or interface initialization.



A class or interface will not be initialized under any other circumstance.

 
Back to Question without Answer
 



16.     QID - 2.1188 : Working with Methods 
 

What should be the return type of the following method?

public RETURNTYPE methodX( byte by){
    double d = 10.0;
    return (long) by/d*3;
}


 

Correct Option is :  C 

A. int
 


B. long
 


C. double
 


D. float
 


E. byte
 


Explanation: 
Note that the cast (long) applies to 'by' not to the whole expression.

 ( (long) by ) / d * 3;

Now, division operation on long gives you a double. So the return type should be double.

 
Back to Question without Answer
 



17.     QID - 2.1252 : Working with Methods 
 

What will be the output when the following program is run?


public class TestClass{
    char c;
    public void m1(){
        char[ ] cA = { 'a' , 'b'};
        m2(c, cA);
        System.out.println( ( (int)c)  + "," + cA[1] );
    }
    public void m2(char c, char[ ] cA){
        c = 'b';
        cA[1] = cA[0] = 'm';
    }
    public static void main(String args[]){
        new TestClass().m1();
    }
}


 

Correct Option is :  C 

A. Compile time error.
c is an instance variable of numeric type so it will be given a default value of 0, which prints as empty space.


B. ,m
Without the cast to int, c would be printed as empty space and cA[1] is 'm'


C. 0,m
Because of the explicit cast to int in the println() call, c will be printed as 0.


D. b,b
 


E. b,m
 


Explanation: 
Note that Arrays are Objects (i.e. cA instanceof Object is true) so are effectively passed by reference. So in m1() the change in cA[1] done by m2() is reflected everywhere the array is used.

c is a primitive type and is passed by value. In method m2() the passed parameter c is different than instance variable 'c' as local variable hides the instance variable. So instance member 'c' keeps its default (i.e. 0) value.

 
Back to Question without Answer
 



18.     QID - 2.1239 : Using Operators and Decision Constructs 
 

What letters will be printed by this program?

public class ForSwitch{
    public static void main(String args[]){
        char i;
        LOOP: for (i=0;i<5;i++){
            switch(i++){
                case '0': System.out.println("A");
                case 1: System.out.println("B"); break LOOP;
                case 2: System.out.println("C"); break;
                case 3: System.out.println("D"); break;
                case 4: System.out.println("E");
                case 'E' : System.out.println("F");
            }
        }
    }
}

 

Correct Options are :  C E 

A. A
 


B. B
 


C. C
 


D. D
 


E. F
 


Explanation: 
1. Defining i as char doesn't mean that it can only hold characters (a, b, c etc). It is an integral data type which can take any +ive integer value from 0 to 2^16 -1.

2. Integer 0 or 1, 2 etc. is not same as char '0', '1' or '2' etc.

so when i is equal to 0, nothing gets printed and i is incremented to 1 (due to i++ in the switch).

 i is then incremented again by the for loop for next iteration. so i becomes 2.

when i = 2, "C" is printed and i is incremented to 3 (due to i++ in the switch) and then i is incremented to 4 by the for loop so i becomes 4.

when i = 4, "E" is printed and since there is no break, it falls through to case 'E' and "F" is printed.

i is incremented to 5  (due to i++ in the switch) and then it is again incremented to 6 by the for loop. Since i < 5 is now false, the for loop ends.

 
Back to Question without Answer
 



19.     QID - 2.983 : Working with Inheritance 
 

Consider the following classes:

class A implements Runnable{ ...}

class B extends A implements Observer { ...}

(Assume that Observer has no relation to Runnable.)



and the declarations :



  A a = new A() ;

  B b = new B();



Which of the following Java code fragments will compile and execute without throwing exceptions?
 

Correct Options are :  B E 

A. Object o = a; Runnable r = o;
The declared class of o is Object while the declared type of the target of the assignment i.e. r is Runnable. Although, at run time, o does point to a Runnable, the compiler doesn't know about it and so it can't let you assign o to r unless you assure the compiler that o will point to a Runnable object at run time. You can do so by putting an explicit cast. i.e. 

Object o = a; Runnable r = (Runnable) o;


B. Object o = a; Runnable r = (Runnable) o;
Here you are explicitly telling the compiler that o refers to an object that is Runnable.


C. Object o = a; Observer ob = (Observer) o ;
It will compile but will fail at run time as at runtime 'a' does not refer to an object that is an Observer.


D. Object o = b; Observer o2 = o;
This has the same problem as option 1.


E. Object o = b; Runnable r = (Runnable) b;
Since b is declared of a type that indirectly implements Runnable, the compiler can figure out that b will always point to an object that is assignable to a Runnable. Therefore, explicit cast is not required here. It will still work fine with the explicit cast though.


Explanation: 
Although you know that o will refer to an object that is a Runnable at runtime, the compiler doesn't know about it. That is why, you have to do: Runnable r = (Runnable) o;

You can assign a subclass object reference to superclass reference without a cast but to assign a super class object reference to a subclass (or interface) reference you need an explicit cast as in option 2.

 
Back to Question without Answer
 



20.     QID - 2.1072 : Working with Inheritance 
 

What, if anything, is wrong with the following code?



//Filename: TestClass.java

class TestClass implements T1, T2{

   public void m1(){}

}

interface T1{

   int VALUE = 1;

   void m1();

}

interface T2{

   int VALUE = 2;

   void m1();

}
 

Correct Option is :  B 

A. TestClass cannot implement them both because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
 


D. The code will work fine only if m1() is removed from one of the interfaces.
 


E. None of the above.
 


Explanation: 
Having ambiguous fields or methods does not cause any problems by itself but referring to such fields/methods in an ambiguous way will cause a compile time error. So you cannot call : System.out.println(VALUE); because it will be ambiguous (there are two VALUE definitions). But the following lines are valid :



TestClass tc = new TestClass();

System.out.println(( ( T1) tc).VALUE);



However, explicit cast is not required for calling the method m1() : ( ( T2) tc).m1();

tc.m1() is also fine because even though m1() is declared in both the interfaces, the definition to both resolves unambiguously to only one m1(), which is defined in TestClass.

 
Back to Question without Answer
 



21.     QID - 2.1167 : Handling Exceptions 
 

Given that SomeException is a checked exception, consider the following code:



//in file A.java

public class A{ 

   protected void m() throws SomeException{} 

}



//in file B.java

public class B extends A{ 

   public void m(){ } 

}



//in file TestClass.java

public class TestClass{

   public static void main(String[] args){

      //insert code here. //1

   }

}



Which of the following options can be inserted at //1 without resulting in any compilation or runtime errors?
 

Correct Option is :  C 

A. B b =  new A();

b.m();
B b = new A(); is not valid because a superclass object can never be assigned to a base class reference.


B. A a = new B();

a.m();
A's m() declares 'throws SomeException', which is a checked exception, while the main() method doesn't. So a.m() must be wrapped in a try/catch block.


C. A a = new B();

( ( B) a ).m();
Due to explicit casting of 'a' to B, the compiler knows that 'a' will point to an object of class B (or its subclass), whose method m() does not throw an exception. So there is no need for a try catch block here.


D. Object o = new B();

o.m();
Object class does not have method m(). So o.m() will not compile. You can do ( (B) o ).m();


E. None of these.
 


 
Back to Question without Answer
 



22.     QID - 2.921 : Working with Java Data Types - Garbage Collection 
 

Consider the following code:



class MyClass { }

public class TestClass{

   MyClass getMyClassObject(){

      MyClass mc = new MyClass(); //1

         return mc; //2

   }

   public static void main(String[] args){

      TestClass tc = new TestClass(); //3

      MyClass x = tc.getMyClassObject(); //4

      System.out.println("got myclass object"); //5

      x = new MyClass(); //6

      System.out.println("done"); //7

   }

}



After what line the MyClass object created at line 1 will be eligible for garbage collection?
 

Correct Option is :  C 

A. 2
 


B. 5
 


C. 6
At line 6, x starts pointing to a new MyClassObject and no reference to the original MyClass object is left.


D. 7
 


E. Never till the program ends.
 


Explanation: 
The official exam objectives now explicitly mention Garbage collection. All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();

 
Back to Question without Answer
 



23.     QID - 2.1175 : Working with Java API - String, StringBuilder 
 

Which of the following statements will evaluate to true?
 

Correct Option is :  D 

A. "String".replace('g','G') == "String".replace('g','G')
replace creates a new string object.


B. "String".replace('g','g') == new String("String").replace('g','g')
 


C. "String".replace('g','G')=="StrinG"
replace creates a new string object.


D. "String".replace('g','g')=="String"
replace returns the same object if there is no change.


E. None of these.
 


Explanation: 
There are 2 points to remember:

1. replace() method creates a new String object.

2. replace() method returns the same String object if both the parameters are same, i.e. if there is no change.

 
Back to Question without Answer
 



24.     QID - 2.1282 : Using Operators and Decision Constructs 
 

What, if anything, is wrong with the following code?



void test(int x){

   switch(x){

      case 1:

      case 2:

      case 0:

      default :

      case 4:

   }

}
 

Correct Option is :  E 

A. Data Type of 'x' is not valid to be used as an expression for the switch clause.
x is an int and int is perfectly valid. long, double, boolean, and float are not valid.


B. The case label 0 must precede case label 1.
While ordering may be important for the logic being implemented in the code, technically, any order is valid.


C. Each case section must end with a break keyword.
This is not necessary. If there is no break at the end of a case section, the control will fall through to the next case section (even if the case label doesn't match).


D. The default label must be the last label in the switch statement.
Any order of case statements is valid.


E. There is nothing wrong with the code.
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS.

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



25.     QID - 2.1240 : Using Operators and Decision Constructs 
 

Given:





  byte b = 1;

  char c = 1;

  short s = 1;

  int i = 1;



which of the following expressions are valid?
 

Correct Options are :  B C E 

A. s = b * b ;
b * b returns an int.


B. i = b + b ;
 


C. s *= b ;
All compound assignment operators internally do an explicit cast.


D. c = c + b ;
c + b returns an int


E. s += i ;
All compound assignment operators internally do an explicit cast.


Explanation: 
Remember these rules for primitive types:

1. Anything bigger than an int can NEVER be assigned to an int or anything smaller than int ( byte, char, or short) without explicit cast.

2. CONSTANT values up to int can be assigned (without cast) to variables of lesser size ( for example, short to byte) if the value is representable by the variable.( that is, if it fits into the size of the variable).

3. operands of mathematical operators are ALWAYS promoted to AT LEAST int. (i.e. for byte * byte both bytes will be first promoted to int.) and the return value will be AT LEAST int.

4. Compound assignment operators ( +=, *= etc)  have strange ways so read this carefully:



A compound assignment expression of the form E1 op= E2 is equivalent to E1 = (T)((E1) op (E2)), where T is the type of E1, except that E1 is evaluated only once. 

Note that the implied cast to type T may be either an identity conversion or a narrowing primitive conversion. 

For example, the following code is correct:



short x = 3;

x += 4.6;



and results in x having the value 7 because it is equivalent to: 



short x = 3;

x = (short)(x + 4.6);

 
Back to Question without Answer
 



26.     QID - 2.1244 : Creating and Using Arrays 
 

Given the following program, which statements are true?

 

// Filename: TestClass.java

public class TestClass{

   public static void main(String args[]){

      A[] a, a1;

      B[] b;

      a = new A[10]; a1  = a;

      b =  new B[20];

      a = b;  // 1

      b = (B[]) a;  // 2

      b = (B[]) a1; // 3

   }

}

class A { }

class B extends A { }
 

Correct Options are :  C E 

A. Compile time error at line 3.
 


B. The program will throw a java.lang.ClassCastException at the line labelled 2 when run.
 


C. The program will throw a java.lang.ClassCastException at the line labelled 3 when run.
 


D. The program will compile and run if the (B[ ] ) cast in the line 2 and the whole line 3 is removed.
 


E. The cast at line 2 is needed.
 


Explanation: 
The line //1 will be allowed during compilation, since assignment is done from a subclass reference to a superclass reference.

The cast in line //2 is needed because a superclass reference is assigned to a subclass reference variable. And this works at runtime because the object referenced to by a is actually of an array of B.

Now, the cast at line //3 tells the compiler not to worry, that I'm a good programmer and I know what I am doing and the object referenced by the super class reference (a1) will actually be of class B at run time. So there is no compile time error. But at run time, this fails because the actual object is not an array of B but is an array of A.

 
Back to Question without Answer
 



27.     QID - 2.1304 : Working with Java API - String, StringBuilder 
 

Which of these are not part of the StringBuilder class?
 

Correct Option is :  A 

A. trim( )
This method is in String class.


B. ensureCapacity(int )
Ensures that the capacity of the buffer is at least equal to the specified minimum.


C. append(boolean)
It has all sorts of overloaded append methods !!!


D. reverse( )
 


E. setLength(int)
Sets the length of this String buffer. This string buffer is altered to represent a new character sequence whose length is specified by the argument. For every nonnegative index k less than newLength, the character at index k in the new character sequence is the same as the character at index k in the old sequence if k is less than the length of the old character sequence; otherwise, it is the null character '' (\u0000). In other words, if the newLength argument is less than the current length of the string buffer, the string buffer is truncated to contain exactly the number of characters given by the newLength argument.

If the newLength argument is greater than or equal to the current length, sufficient null characters ('\u0000') are appended to the string buffer so that length becomes the newLength argument.

The newLength argument must be greater than or equal to 0.

Parameters:

newLength - the new length of the buffer.

Throws:

IndexOutOfBoundsException - if the newLength argument is negative.


 
Back to Question without Answer
 



28.     QID - 2.1118 : Working with Java Data Types 
 

Which of the changes given in options can be done (independent of each other) to let the following code compile and run without errors when its generateReport method is called?



class SomeClass{

   String s1 = "green mile";   // 0

   public void generateReport( int n ){

      String local;   // 1

      if( n > 0 ) local = "good";   //2

      System.out.println( s1+" = " + local );   //3

   }

}
 

Correct Options are :  A C 

A. Insert after line 2 : else local = "bad";
 


B. Insert after line 2 : if(n <= 0) local = "bad";
 


C. Move line 1 and place it after line 0.
 


D. change line 1 to : final String local = "rocky";
Making it final will not let //2 compile as it would then try to modify a final variable.


E. The program already is without any errors.
 


Explanation: 
The problem is that local is declared inside a method is therefore local to that method. It is called a local variable (also known as automatic variable) and it cannot be used before initialized. Further, it will not be initialized unless you initialize it explicitly because local variables are not initialized by the JVM on its own. The compiler spots the usage of such uninitialized variables and ends with an error message.



1. Making it a member variable (choice "Move line 1 and place it after line 0.") will initialize it to null.

2. Putting an else part (choice "Insert after line 2 : else local = "bad";") will ensure that it is initialized to either 'good' or 'bad'. So this also works.

Choice "Insert after line 2 : if(n <= 0) local = "bad";" doesn't work because the second 'if' will actually be another statement and is not considered as a part of first 'if'. So, compiler doesn't realize that 'local' will be initialized even though it does get initialized.

 
Back to Question without Answer
 



29.     QID - 2.1343 : Working with Methods 
 

Consider the following class...



class TestClass{

   int x;

   public static void main(String[] args){

      // lot of code.

   }

}
 

Correct Option is :  D 

A. By declaring x as static, main can access this.x
 


B. By declaring x as public, main can access this.x
 


C. By declaring x as protected, main can access this.x
 


D. main cannot access this.x as it is declared now.
Because main() is a static method. It does not have 'this'!


E. By declaring x as private, main can access this.x
 


Explanation: 
It is not possible to access x from main without making it static. Because main is a static method and only static members are accessible from static methods. There is no 'this' available in main so none of the this.x are valid.

 
Back to Question without Answer
 



30.     QID - 2.831 : Working with Methods 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
        System.out.println(this.myValue);
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
        System.out.println(this.myValue);
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        ct.showTwo(200);
    }
}


 

Correct Option is :  C 

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


Explanation: 
There are a couple of important concepts in this question:



1. Within an instance method, you can access the current object of the same class using 'this'. Therefore, when you access this.myValue, you are accessing the instance member myValue of the ChangeTest instance.



2. Within the showOne() method, there are two variables accessible with the same name myValue. If you declare a local variable (or a method parameter) with the same name as the instance field name, the local variable "shadows" the member field. One is the method parameter and another is the member field of ChangeTest object. Ideally, you should be able to access the member field in the method directly by using the name of the member (in this example, myValue). However, because of shadowing, when you use myValue, it refers to the local variable instead of the instance field.



Therefore, when you do : myValue = myValue; you are actually assigning the value contained in method parameter myValue to itself. You are not changing the member field myValue. Hence, when you do System.out.println(this.myValue); in the next line, it prints 0.





Now, in showTwo(), you are assigning the value contained in myValue (i.e. 200) to this.myValue, which is the instance member.  Therefore, in the next line, when you print this.myValue, it prints 200.

 
Back to Question without Answer
 



31.     QID - 2.1313 : Using Operators and Decision Constructs 
 

What is the result of executing the following code when the value of i is 5:





switch (i){

    default:

    case 1:

        System.out.println(1);

    case 0:

        System.out.println(0);

    case 2:

        System.out.println(2);

        break;

    case 3:

        System.out.println(3);

}




 

Correct Option is :  A 

A. It will print 1 0 2
 


B. It will print 1 0 2 3
 


C. It will print 1 0
 


D. It will print 1
 


E. Nothing will be printed.
 


Explanation: 
Here are the rules:



The type of the switch expression must be String, char, byte, short, or int (and their wrapper classes), or an enum or a compile-time error occurs. 



All of the following must be true, or a compile-time error will result:

1. Every case constant expression associated with a switch statement must be assignable (5.2) to the type of the switch Expression.

2. No two of the case constant expressions associated with a switch statement may have the same value.

3. At most one default label may be associated with the same switch statement.



Basically it looks for a matching case or if no match is found it goes to default. (If default is also not found it does nothing)

Then it executes the statements till it reaches a break or end of the switch statement.

Here, it goes to default and executes till it reaches first break. So it prints 1 0 2.





Note that the switch statement compares the String object in its expression with the expressions associated with each case label as if it were using the String.equals method; consequently, the comparison of String objects in switch statements is case sensitive. The Java compiler generates generally more efficient bytecode from switch statements that use String objects than from chained if-then-else statements.

 
Back to Question without Answer
 



32.     QID - 2.1099 : Using Loop Constructs 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      int x  = 0;
      labelA:   for (int i=10; i<0; i--){
         int j = 0;
         labelB:
         while (j < 10){
            if (j > i) break labelB;
            if (i == j){
               x++;
               continue labelA;
            }
            j++;
         }
         x--;
      }
      System.out.println(x);
   }
}

 

Correct Option is :  D 

A. It will not compile.
 


B. It will go in infinite loop when run.
 


C. The program will write 10 to the standard output.
 


D. The program will write 0 to the standard output.
 


E. None of the above.
 


Explanation: 
This is just a simple code that is meant to confuse you. 

Notice the for statement: for(int i=10; i<0; i--). i is being initialized to 10 and the test is i<0, which is false. Therefore, the control will never get inside the for loop, none of the weird code will be executed, and x will remain 0, which is what is printed.

 
Back to Question without Answer
 



33.     QID - 2.1406 : Working with Methods - Overloading 
 

What will the following code print when run?



public class Noobs {

    public void m(int a){

        System.out.println("In int ");

    }

    public void m(char c){

        System.out.println("In char ");

    }

    public static void main(String[] args) {

        Noobs n = new Noobs();

        int a = 'a';

        char c = 6;

        n.m(a);

        n.m(c);

    }

}
 

Correct Option is :  A 

A. In int

In char
 


B. In char

In int
 


C. In int

In int
 


D. In char

In char
 


E. It will not compile.
 


Explanation: 
It looks confusing but it is a simple question. Remember that whenever two methods are applicable for a method call, the one that is most specific to the argument is chosen.

In case of m(a), a is an int, which cannot be passed as a char (because an int cannot fit into a char). Therefore, only m(int) is applicable. 

In case of m(c), c is a char, which can be passed as an int as well as a char. Therefore, both the methods are applicable. However, m(char) is most specific therefore that is chosen over m(int).

 
Back to Question without Answer
 



34.     QID - 2.997 : Java Basics - OO Concepts 
 

Consider the following class written by a novice programmer.


class Elliptical{
    public int radiusA, radiusB;
    public int sum = 100;

    public void setRadius(int r){
        if(r>99) throw new IllegalArgumentException();
        radiusA = r;
        radiusB = sum - radiusA;
        
    }
}


After some time, the requirements changed and the programmer now wants to make sure that radiusB is always (200 - radiusA) instead of (100 - radiusA) without breaking existing code that other people have written. Which of the following will accomplish his goal?
 

Correct Option is :  E 

A. Make sum = 200;
 


B. Make sum = 200 and make it private.
 


C. Make sum = 200 and make all fields (radiusA, radiusB, and sum) private.
This should have been done when the class was first written.


D. Write another method setRadius2(int r) and set radiusB accordingly in this method.
 


E. His goal cannot be accomplished.
 


F. This class will not compile.
There is no problem with the code. Remember, IllegalArgumentException extends from RuntimeException and is a super class of NumberFormatException


Explanation: 
setRadius method makes sure that radiusB is set to sum - radiusA. So changing sum to 200 should do it. However, note that radiusA, radiusB, and sum are public which means that any other class can access these fields directly without going through the setRadius method. So there is no way to make sure that the value of radiusB is correctly set at all times. If you make them private now, other classes that are accessing the fields directly will break.



The class should have been coded with proper encapsulation of the fields in the first place.

 
Back to Question without Answer
 



35.     QID - 2.1085 : Java Basics 
 

Consider the following two classes defined in two java source files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1 <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       X x = new X();
       x.apply(LOGICID);
    }
}


What should be inserted at //1 so that Y.java can compile without any error?
 

Correct Options are :  C D 

A. import static X;
 


B. import static com.foo.*;
Bad syntax. com.foo is a package and you cannot import a package statically. You can only import static members of a class statically.


C. import static com.foo.X.*;
This static import is required because of Y is accessing LOGICID directly without its class name ( i.e. X.LOGICID).


D. import com.foo.*;
This is required because Y also accesses the class X : X x = new X(); If Y had only one statement, System.out.println(LOGICID); import static com.foo.X.* would suffice.


E. import com.foo.X.LOGICID;
Syntax for importing static fields is:  import static <package>.<classname>.*; or import static <package>.<classname>.<fieldname>;


 
Back to Question without Answer
 



36.     QID - 2.1251 : Working with Java Data Types 
 

What will be the result of attempting to compile and run the following code?

public class InitClass{
   public static void main(String args[ ] ){
      InitClass obj = new InitClass(5);
   }
   int m;
   static int i1 = 5;
   static int i2 ;
   int  j = 100;
   int x;
   public InitClass(int m){
      System.out.println(i1 + "  " + i2 + "   " + x + "  " + j + "  " + m);
   }
  { j = 30; i2 = 40; }  // Instance Initializer
   static { i1++; }      // Static Initializer
}


 

Correct Option is :  C 

A. The code will fail to compile since the instance initializer tries to assign a value to a static member.
 


B. The code will fail to compile since the member variable x will be uninitialized when it is used.
 


C. The code will compile without error and will print 6 40 0 30 5 when run.
 


D. The code will compile without error and will print 5, 0, 0, 100, 5 when run.
 


E. The code will compile without error and will print 5, 40, 0, 30, 0 when run.
 


Explanation: 
The value 5 is passed to the constructor to the local (automatic) variable m. So the instance variable m is shadowed. Before the body of the constructor is executed, the instance initializer is executed and assigns values 30 and 40 to variables j and i2, respectively.

A class is loaded when it is first used. For example,

class A1{
  static int i = 10;
  static { System.out.println("A1 Loaded "); }
}
public class A{
  static { System.out.println("A Loaded "); }
  public static void main(String[] args){
    System.out.println(" A should have been loaded");
    A1 a1 = null;
    System.out.println(" A1 should not have been loaded");
    System.out.println(a1.i);
  }
}



When you run it you get the output:
A Loaded
 A should have been loaded
 A1 should not have been loaded
A1 Loaded
10


Now, A should be loaded first as you are using its main method. Even though you are doing A1 a1 = null; A1 will not be loaded as it is not yet used (so the JVM figures out that it does not need to load it yet.)
When you do a1.i, you are using A1, so before you use it, it must be loaded. That's when A1 is loaded. Finally 10 is printed.

 
Back to Question without Answer
 



37.     QID - 2.1271 : Using Operators and Decision Constructs 
 

What will be the result of attempting to compile and run the following code?

public class PromotionTest{

   public static void main(String args[]){

      int i = 5;

      float f = 5.5f;

      double d = 3.8;

      char c = 'a';

      if (i == f) c++;

      if (((int) (f + d)) == ((int) f + (int) d)) c += 2;

      System.out.println(c);

   }

}
 

Correct Option is :  E 

A. The code will fail to compile.
 


B. It will print d.
 


C. It will print c.
 


D. It will print b
 


E. It will print a.
 


Explanation: 
In the case of i == f, value of i will be promoted to a float i.e. 5.0, and so it returns false.

(int)f+(int)d =  (int)5.5 + (int) 3.8 => 5 + 3 = 8

(int)(f + d) => (int) (5.5 + 3.8) => (int)(9.3) => 9, so this also return false.

So, c is not incremented at all. Hence c remains 'a'.

 
Back to Question without Answer
 



38.     QID - 2.1170 : Java Basics 
 

Consider the classes shown below:


class A{
   public A() { }
   public A(int i) {   System.out.println(i );    }
}
class B{
   static A s1 = new A(1);
   A a = new A(2);
   public static void main(String[] args){
      B b = new B();
      A a = new A(3);
   }
   static A s2 = new A(4);
}


Which is the correct sequence of the digits that will be printed when B is run?
 

Correct Option is :  B 

A. 1 ,2 ,3 4.
 


B. 1 ,4, 2 ,3
 


C. 3, 1, 2, 4
 


D. 2, 1, 4, 3
 


E. 2, 3, 1, 4
 


Explanation: 
The order of initialization of a class is:

1. All static constants, variables and blocks.(Among themselves the order is the order in which they appear in the code.)

2. All non static constants, variables and blocks.(Among themselves the order is the order in which they appear in the code.)

3. Constructor.

 
Back to Question without Answer
 



39.     QID - 2.1483 : Working with Methods - Overloading 
 

What should be placed in the two blanks so that the following code will compile without errors:



class XXX{

    public void m() {

        throw new RuntimeException();

    }

}

class YYY extends XXX{

    public void m() throws Exception{

      throw new Exception();

    }

}

public class TestClass {

    public static void main(String[] args) {

        ______ obj = new ______();

        obj.m();

    }

}
 

Correct Option is :  E 

A. XXX and YYY
 


B. XXX and XXX
 


C. YYY and YYY
 


D. YYY and XXX
 


E. None of the options will make the code compile.
Remember that an overriding method can only throw a subset of checked exceptions declared in the throws clause of the overridden method. Here, method m in XXX does not declare any checked exception in its throws clause, therefore, method m in YYY cannot declare any checked exception in its throws clause either.

Class YYY will, therefore, not compile.


 
Back to Question without Answer
 



40.     QID - 2.960 : Using Loop Constructs 
 

What will the following code print when compiled and run?


class Test{
    public static void main(String args[]){
        int c = 0;
        A: for(int i = 0; i < 2; i++){
            B: for(int j = 0; j < 2; j++){
                C: for(int k = 0; k < 3; k++){
                    c++;
                    if(k>j) break;
                }
            }
        }
        System.out.println(c);
    }
}

 

Correct Option is :  D 

A. 7
 


B. 8
 


C. 9
 


D. 10
 


E. 11
 


Explanation: 
The point to note here is that a break without any label breaks the innermost outer loop. So in this case, whenever k>j, the C loop breaks.

You should run the program and follow it step by step to understand how it progresses.

 
Back to Question without Answer
 



41.     QID - 2.1373 : Working with Methods - Overloading 
 

Complete the following code by filling the two blanks - 

class XXX{

    public void m() throws Exception{

        throw new Exception();

    }

}

class YYY extends XXX{

    public void m(){ }

    

    public static void main(String[] args) {

        ________  obj = new ______();

        obj.m();

    }

}
 

Correct Option is :  D 

A. XXX XXX
 


B. XXX YYY
 


C. YYY XXX
 


D. YYY YYY
 


Explanation: 
This question is based on two concepts - 

1. The overriding method may choose to have no throws clause even if the overridden method has a throws clause. Thus, the method m in YYY is valid.



2. Whether a call needs to be wrapped in a try/catch or whether the enclosing method requires a throws clause depends on the class of the reference and not the class of the actual object. This is because it is the compiler that checks whether a call needs to have exception handling and the compiler knows only about the declared class of a variable. It doesn't know about the actual object referred to by that variable (which is known only to JVM at run time).



Here, if you define obj of type XXX, the call obj.m() will have to be wrapped into a try/catch because main() doesn't have a throws clause. But if you define obj of class YYY, there is no need of try catch because YYY's m() does not throw an exception.

Now, if the declared class of obj is YYY, you cannot assign it an object of class XXX because XXX is a superclass of YYY. So the only option left is to do:



YYY obj = new YYY();

 
Back to Question without Answer
 



42.     QID - 2.1398 : Creating and Using Arrays 
 

Given:

public class FunWithArgs {

    public static void main(String[][] args) {

        System.out.println(args[0][1]);

    }

    public static void main(String[] args) {

        FunWithArgs fwa = new FunWithArgs();

        String[][] newargs = {args};

        fwa.main(newargs);

    }

}



The above program is compiled with the command line:

javac FunWithArgs.java

and then run with:

java FunWithArgs a b c



What will be the output?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException at run time.
 


C. It will print b
 


D. It will print null
 


Explanation: 
There is no problem with the code. The main method is just overloaded. 

When it is run, the main method with String[] will be called. This method then calls the main with String[][] with an argument { {"a", "b", "c"} } 

Thus, args[0][1] refers to "b", which is what is printed.

 
Back to Question without Answer
 



43.     QID - 2.1309 : Working with Inheritance 
 

What can be inserted at //1 and //2 in the code below so that it can compile without errors:


class Doll{
    String name;
    Doll(String nm){
        this.name = nm;
    }
}

class Barbie extends Doll{
    Barbie(){
        //1 
    }
    Barbie(String nm){
        //2
    }
}
  public class TestClass {
       public static void main(String[] args) {
          Barbie b = new Barbie("mydoll");
       }
   }


 

Correct Options are :  A B 

A. this("unknown"); at 1 and super(nm); at 2
 


B. super("unknown"); at 1 and super(nm); at 2
 


C. super(); at 1 and super(nm); at 2
super(); at 1 will not compile because super class Doll does not have a no args constructor.


D. super(); at 1 and Doll(nm); at 2
super(); at 1 will not compile because super class Doll does not have a no args constructor. Doll(nm); at 2 is an invalid syntax for calling the super class's constructor.


E. super("unknown"); at 1 and this(nm); at 2
this(nm); at 2 will not compile because it is a recursive call to the same constructor.


F. Doll(); at 1 and Doll(nm); at 2
Both are using invalid syntax for calling the super class's constructor.


Explanation: 
Since the super class Doll explicitly defines a constructor, compiler will not provide the default no-args constructor. Therefore, each of Barbie's constructors must directly or indirectly call Doll's string argument constructor, otherwise it will not compile. 

Although not relevant for this question, it is interesting to know that super(name); at //1 or //2, would not be valid because name is defined in the superclass and so it cannot be used by a subclass until super class's constructor has executed. For the same reason, this(name); cannot be used either.

 
Back to Question without Answer
 



44.     QID - 2.1105 : Using Operators and Decision Constructs 
 

Consider the following method...



public void ifTest(boolean flag){

   if (flag)   //1

   if (flag)   //2

   System.out.println("True False");

   else        // 3

   System.out.println("True True");

   else        // 4

   System.out.println("False False");

}



Which of the following statements are correct ?
 

Correct Options are :  A C D 

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


Explanation: 
Note that if and else do not cascade. They are like opening and closing braces. 

   if (flag)   //1

       if (flag)   //2

          System.out.println("True False");

       else        // 3 This closes //2

          System.out.println("True True");

   else        // 4 This closes //1

      System.out.println("False False");



So, else at //3 is associated with if at //2 and else at //4 is associated with if at //1

 
Back to Question without Answer
 



45.     QID - 2.1076 : Creating and Using Arrays 
 

What would be the result of compiling and running the following program?



class SomeClass{

   public static void main(String args[]){

      int size = 10;

      int[] arr = new int[size];

      for (int i = 0 ; i < size ; ++i) System.out.println(arr[i]);

   }

}
 

Correct Option is :  E 

A. The code will fail to compile, because the int[] array declaration is incorrect.
 


B. The program will compile, but will throw an IndexArrayOutOfBoundsException when run.
 


C. The program will compile and run without error, and will print nothing.
 


D. The program will compile and run without error and will print null ten times.
Here, all the array elements are initialized to have 0.


E. The program will compile and run without error and will print 0 ten times.
It correctly will declare and initialize an array of length 10 containing int values initialized to have 0.


Explanation: 
Elements of Arrays of primitive types are initialized to their default value ( i.e. 0 for integral types, 0.0 for float/double and false for boolean)

Elements of Arrays of non-primitive types are initialized to null.

 
Back to Question without Answer
 



46.     QID - 2.1146 : Working with Java Data Types 
 

What will the following program print?

public class TestClass{
  public static void main(String[] args){
    unsigned byte b = 0;
    b--;
    System.out.println(b);
  }
}


 

Correct Option is :  E 

A. 0
 


B. -1
 


C. 255
 


D. -128
 


E. It will not compile.
 


Explanation: 
There no unsigned keyword in java! A char can be used as an unsigned integer.

 
Back to Question without Answer
 



47.     QID - 2.1296 : Creating and Using Arrays 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

    String str = "111";

    boolean[] bA = new boolean[1];

    if( bA[0] ) str = "222";

    System.out.println(str);

  }

}
 

Correct Option is :  A 

A. 111
 


B. 222
 


C. It will not compile as bA[0] is uninitialized.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
All the arrays are initialized to contain the default values of their type. This means,

int[] iA = new int[10]; will contain 10 integers with a value of 0.

Object[] oA = new Object[10]; will contain 10 object references pointing to null.

boolean[] bA = new boolean[10] will contain 10 booleans of value false.

So, as bA[0] is false, the if condition fails and str remains 111.

 
Back to Question without Answer
 



48.     QID - 2.1208 : Working with Inheritance 
 

Given the following class definition:


class A{
  protected int i;
  A(int i) {    this.i = i;    }
 
}
// 1 : Insert code here


Which of the following would be a valid class that can be inserted at //1 ?
 

Correct Options are :  A D 

A. class B {}
 


B. class B extends A {}
Since class B does not have any constructor, the compiler will try to insert the default constructor, which will look like this:

 B(){ 

    super();  //Notice that it is trying to call the no args constructor of the super class, A.

 }

Since A doesn't have any no-args constructor, the above code will fail to compile.


C. class B extends A {  B()  {  System.out.println("i = " + i); }  }
It has the same problem as the one above.


D. class B { B() {} }
 


Explanation: 
Notice that class A does not define a no-argument constructor. Also note that the class B does not define a constructor. Thus, class B relies on the default constructor B(). Class B's default constructor looks like this:
 B() {} //It is not public because class B is not public

However, Constructors implicitly (if an explicit call to the superclass's constructor is not present) call their superclass's constructor super(). So, class B's default constructor actually looks like this:

 B(){
  super();
}



Now, since class A does not define a no-argument constructor the above code will not compile.
However, class B would be correct if changed to:


class B extends A{
  B(){
    super(1); // pass it any integer
  }
  // or
  B(int number){
    super(number);
  }
}



You could also add a no-argument constructor to class A and leave class B as is.

 
Back to Question without Answer
 



49.     QID - 2.1016 : Using Loop Constructs 
 

What will the following code snippet print?


int count = 0, sum = 0;
do{
       if(count % 3 == 0) continue;
       sum+=count;
}
while(count++ < 11);
System.out.println(sum);

 

Correct Option is :  B 

A. 49
 


B. 48
 


C. 37
 


D. 36
 


E. 38
 


Explanation: 
1. The while condition uses post increment operator, which means count is first compared with 11 (and based on this comparison a decision is made whether to execute the loop again or not) and then incremented. So when count is 10, the condition 10<11 is true (that means the loop needs to be executed again) and count is incremented to 11.



2. When count is completely divisible by 3, (i.e. when count is 0, 3, 6, 9) sum+=count; is not executed.



Thus, the result is the summation of:

1 2 4 5 7 8 10 11

 
Back to Question without Answer
 



50.     QID - 2.1442 : Constructors 
 

What will the following code print when compiled and run?

    

class X{

    public X(){

        System.out.println("In X");

    }

}



class Y extends X{

    public Y(){

        super();

        System.out.println("In Y");

    }

}



class Z extends Y{

    public Z(){

        System.out.println("In Z");

    }

}



public class Test {

 

    public static void main(String[] args) {

        Y y = new Z();

    }

} 
 

Correct Option is :  B 

A. It will not compile.
 


B. In X

In Y

In Z
 


C. In Z

In Y

In X
 


D. In Y

In X

In Z
 


E. In Z

In X

In Y
 


Explanation: 
There is no problem with the code. 



Remember that before the fields of a subclass can be initialized by a constructor, the fields of superclass have to be initialized. Therefore, a super class constructor must first execute before a subclass constructor can execute. This order of invocation of constructors goes up the chain up from the subclass that is being created up to the top most super class, which is java.lang.Object.



The explicit call to super(); in class Y is not required because the compiler puts a call to super(); anyway if you don't explicitly call either any super class constructor using super(...) or another constructor of the same class using this(...) first ( "..." refers to appropriate arguments as required for a given constructor).



The declared type of a variable is immaterial here. Only the actual class of object that is being instantiated is important. Therefore, if you instantiate class Z, Z's constructor will be invoked, but internally, that constructor will first invoke Y's constructor before executing the rest of Z's constructor. Similarly, Y's constructor will first invoke X's constructor before executing the rest of Y's constructor. Finally, X's constructor will first invoke Objects's constructor before executing the rest of X's constructor. Object class's constructor doesn't print anything so no output is generated because of that. But once that is finished, the remaining code of X constructor's is executed, which prints "In X", then the control goes back to Y's constructor, which prints, "In Y". Finally, the control goes back to Z's constructor, which prints, "In Z".

 
Back to Question without Answer
 



51.     QID - 2.1430 : Working with Java API - Time and Date 
 

You want to print the date that represents upcoming tuesday from now even if the current day is a tuesday. Which of the following lines of code accomplishe(s) this?
 

Correct Options are :  A E 

A. System.out.println(LocalDate.now().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


B. System.out.println(LocalDate.now().with(TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAY)));
This will return today's date if it is a tuesday, which is not what the question wants.


C. System.out.println(new LocalDate().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
You cannot create a LocalDate object using its constructor because it is private.


D. System.out.println(new LocalDate().adjust(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
adjust is not a valid method in LocalDate.


E. System.out.println(TemporalAdjusters.next(DayOfWeek.TUESDAY).adjustInto(LocalDate.now()));
 


Explanation: 
The JavaDoc description of java.time.temporal.TemporalAdjusters is very helpful:



Adjusters are a key tool for modifying temporal objects. They exist to externalize the process of adjustment, permitting different approaches, as per the strategy design pattern. Examples might be an adjuster that sets the date avoiding weekends, or one that sets the date to the last day of the month.

There are two equivalent ways of using a TemporalAdjuster. The first is to invoke the method on the interface directly. The second is to use Temporal.with(TemporalAdjuster):

   // these two lines are equivalent, but the second approach is recommended

   temporal = thisAdjuster.adjustInto(temporal);

   temporal = temporal.with(thisAdjuster);

 

It is recommended to use the second approach, with(TemporalAdjuster), as it is a lot clearer to read in code.

This class contains a standard set of adjusters, available as static methods. These include:

finding the first or last day of the month

finding the first day of next month

finding the first or last day of the year

finding the first day of next year

finding the first or last day-of-week within a month, such as "first Wednesday in June"

finding the next or previous day-of-week, such as "next Thursday"

 
Back to Question without Answer
 



52.     QID - 2.1328 : Working with Inheritance 
 

Consider the following classes :


interface I{
}
class A implements I{
}

class B extends A {
}

class C extends B{
}


And the following declarations:
A a = new A();
B b = new B(); 

Identify options that will compile and run without error.
 

Correct Option is :  A 

A. a = (B)(I)b;
class B does implement I because it extends A, which implements I. A reference of type I can be cast to any class at compile time. Since B is-a A, it can be assigned to a.


B. b = (B)(I) a;
This will fail at run time because a does not point to an object of class B.


C. a = (I) b;
An I is not an A. Therefore, it will not compile.


D. I i = (C) a;
It will compile because a C is-a A, which is-a I, and a reference of class A can point to an object of class C. But it will fail at runtime because a does not point to an object of class C.


 
Back to Question without Answer
 



53.     QID - 2.1250 : Working with Inheritance 
 

Which statements, when inserted in the code below, will cause an exception at run time?


class B {}
class B1 extends B {}
class B2 extends B {}
public class ExtendsTest{
  public static void main(String args[]){
     B b = new B();
     B1 b1 = new B1();
     B2 b2 = new B2();
     // insert statement here
  }
}

 

Correct Option is :  C 

A. b = b1;
There won't be a problem anytime because B1 is a B


B. b2 = b;
It fails at Compile time as an object referenced by b may not be a B2, so an explicit cast will be needed.


C. b1 = (B1) b;
It will pass at compile time but fail at run time as the actual object referenced by b is not a B1.


D. b2 = (B2) b1;
It will not compile because b1 can never point to an object of class B2.


E. b1 = (B) b1;
This won't compile. By casting b1 to B, you are telling the compiler that b1 points to an object of class B. But you are then trying to assign this reference to b1, which is of class B1. Compiler will complain against this assignment because there is no guarantee that an object of class B will also be of class B1. To be able to assign an object of class B to a reference of class B1, you need to confirm to the compiler that the reference will actually point to an object of class B1. Therefore, another cast is needed. i.e. b1 = (B1) (B) b1;


 
Back to Question without Answer
 



54.     QID - 2.1198 : Working with Inheritance 
 

What will be the output of the following program ?

class CorbaComponent{
    String ior;
    CorbaComponent(){ startUp("IOR"); }
    void startUp(String s){ ior  =  s; }
    void print(){ System.out.println(ior); }
}

class OrderManager extends CorbaComponent{
   OrderManager(){  }
   void startUp(String s){  ior = getIORFromURL(s);   }
   String getIORFromURL(String s){  return "URL://"+s; }
}

public class Application{
   public static void main(String args[]){ start(new OrderManager()); }
   static void start(CorbaComponent cc){ cc.print(); }
}

 

Correct Option is :  C 

A. It will throw an exception at run time.
 


B. It will print IOR
 


C. It will print URL://IOR
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
Observer that method startUp(String s) of CorbaComponent is overridden by the subclass OrderManager.



When an object of class OrderManager is constructed, the default no args constructor of CorbaComponent is called. This constructor calls the startUp(String s) with "IOR" as parameter. Now, there are two eligible methods which can be called - CorbaComponent's startUp and OrderManager's startUp. 



The method selection is done on the basis of the actual class of the object (which is OrderManager here). So OrderManager's startUp is called, which sets the ior variable to URL://IOR.



Unlike instance method selection, variable (and static method) selection is done on the basis of declared class of the variable and not on the actual class of object that it is referring to.

 
Back to Question without Answer
 



55.     QID - 2.1156 : Using Operators and Decision Constructs 
 

What will the following class print when executed?



class Test{

    static boolean a;

    static boolean b;

    static boolean c;

    public static void main (String[] args){

        boolean bool = (a = true) || (b = true) && (c = true);

        System.out.print(a + ", " + b + ", " + c);

    }

}
 

Correct Option is :  C 

A. true, false, true
 


B. true, true, false
 


C. true, false, false
 


D. true, true, true
 


Explanation: 
Java parses the expression from left to right. Once it realizes that the left operand of a conditional "or" operator has evaluated to true, it does not even try to evaluate the right side expression.

 
Back to Question without Answer
 



56.     QID - 2.1420 : Using Loop Constructs 
 

What will the following code print when compiled and run?



        int[][] ab = { {1, 2, 3}, {4, 5} };

        for(int i=0; i<ab.length; i++){

            for(int j=0; j<ab[i].length; j++){

                System.out.print(ab[i][j]+" ");

                if(ab[i][j] == 2){

                    break;

                }

            }

            continue;

        }


 

Correct Option is :  D 

A. 1 2 3 4 5
 


B. 1 2
 


C. 1 3 4 5
 


D. 1 2 4 5
 


E. 2 3 5
 


F. It will not compile.
 


Explanation: 
For answering such questions, it is best to use a pen and a paper and start executing the code line by line.

The i of the outer loop runs from 0 to < ab.length, which is 2. i.e. i will be 0 and then 1.

The j of the inner loop runs from 0 to < ab[i].length, which is 3 for the first iteration of the outer for loop and 2 for the second iteration of the outer for loop.

Thus, for the first iteration of the outer for loop - the inner for loop prints ab[0][0] i.e. 1 , ab[0][1] i.e. 2 and then since the if condition is satisfied, the inner loop ends and thesecond iteration of the outer for loop begins.

For the second iteration of the outer for loop - the inner for loop prints ab[1][0] i.e. 4 , ab[1][1] i.e. 5.



The continue statement in this case is redundant because there is no statement left to execute after continue in the for loop anyway.

 
Back to Question without Answer
 



57.     QID - 2.1396 : Creating and Using Arrays 
 

What is the result of compiling and running the following program?



public class Learner {

    public static void main(String[] args) {

        String[] dataArr = new String[4];

        dataArr[1] = "Bill";

        dataArr[2] = "Steve";

        dataArr[3] = "Larry";

        try{

            for(String data : dataArr){

                System.out.print(data+" ");

            }

        }catch(Exception e){

            System.out.println(e.getClass());

        }

    }

}
 

Correct Option is :  E 

A. Bill Steve Larry null
 


B. Bill Steve Larry class java.lang.NullPointerException
 


C. class java.lang.Exception Bill Steve Larry
 


D. Bill Steve Larry class java.lang.Exception
 


E. null Bill Steve Larry
 


Explanation: 
Array indexing starts with 0. The first element therefore is at dataArr[0], which is not set in this code. It is initialized by default to null. Hence, the code prints null Bill Steve Larry.

 
Back to Question without Answer
 



58.     QID - 2.1416 : Working with Java Data Types 
 

Which of the following options will yield a Boolean wrapper object containing the value true?
 

Correct Options are :  C D E 

A. Boolean.parseBoolean(" true ")
This will return false because of the extra spaces at the ends. Remember that case of the argment is ignored but spaces are not.


B. Boolean.parseBoolean("true")
Although this will return true but it is still not a valid answer because parseBoolean returns a primitive and not a Boolean wrapper object.


C. Boolean.valueOf(true)
 


D. Boolean.valueOf("trUE")
 


E. Boolean.TRUE
 


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



59.     QID - 2.1101 : Working with Inheritance 
 

Consider the following code:


class Base{
   private float f = 1.0f;
   void setF(float f1){ this.f = f1; }
}
class Base2 extends Base{
   private float f = 2.0f;
   //1
}


Which of the following options is/are valid example(s) of overriding?
 

Correct Options are :  A C 

A. protected void setF(float f1){ this.f = 2*f1; }
protected is less restrictive than default, so it is valid.


B. public void setF(double f1){ this.f = (float) 2*f1; }
Since the parameter type is different, it is overloading not overriding.


C. public void setF(float f1){ this.f = 2*f1; }
public is less restrictive than default, so it is valid.


D. private void setF(float f1){ this.f = 2*f1; }
private is more restrictive than default, so it is NOT valid.


E. float setF(float f1){ this.f = 2*f1; return f;}
return types must match.


Explanation: 
An overriding method can be made less restrictive than the overridden method. The restrictiveness of access modifiers is as follows:

private>default>protected>public (where private is most restrictive and public is least restrictive).



Note that there is no modifier named default. The absence of any access modifiers implies default access.

 
Back to Question without Answer
 



60.     QID - 2.970 : Working with Inheritance 
 

Consider the following classes...


class Car{
   public int gearRatio = 8;
   public String accelerate() {  return "Accelerate : Car";  }
}
class SportsCar extends Car{
   public int gearRatio = 9;
   public String accelerate() {  return  "Accelerate : SportsCar";  }
   public static void main(String[] args){
      Car c = new SportsCar();
      System.out.println( c.gearRatio+"  "+c.accelerate() );
   }
}


What will be printed when SportsCar is run?
 

Correct Option is :  C 

A. 8  Accelerate : Car
 


B. 9 Accelerate : Car
 


C. 8 Accelerate : SportsCar
 


D. 9 Accelerate : SportsCar
 


E. None of the above.
 


Explanation: 
The concept is : variables are hidden and methods are overridden.

Method to be executed depends on the class of the actual object the variable is referencing to. Here, c refers to object of class SportsCar so SportsCar's accelerate() is selected.

 
Back to Question without Answer
 



61.     QID - 2.1269 : Using Operators and Decision Constructs 
 

Which of the following will not give any error at compile time and run time?
 

Correct Options are :  A C D E 

A. if (8 == 81) {}
8 == 81 is a valid expression that returns false.


B. if (x = 3) {} // assume that x is an int
Because the exp. x = 3 does not return a boolean.


C. if (true) {}
 


D. if (bool = false) {}  //assume that bool is declared as a boolean
Because the expression 'bool = false' returns a boolean ( which happens to be false)


E. if (x == 10 ? true:false) { } // assume that x is an int
 


Explanation: 
All an if(...) needs is a boolean.

x = 3 is not valid because the return value of this expression is 3 which is not a boolean.

 
Back to Question without Answer
 



62.     QID - 2.991 : Using Operators and Decision Constructs 
 

What can be the return type of method getSwitch so that this program compiles and runs without any problems?


public class TestClass{
   public static XXX getSwitch(int x){
      return x - 20/x + x*x;
   }
   public static void main(String args[]){
       switch( getSwitch(10) ){
          case 1 :
          case 2 :
          case 3 :
          default : break;
       }
   }
}


 

Correct Option is :  A 

A. int
 


B. float
 


C. long
 


D. double
 


E. char
 


F. byte
 


G. short
 


Explanation: 
If you just consider the method getSwitch, any of int long float or double will do. But the return value is used in the switch statement later on. A switch condition cannot accept float, long, double, or boolean. So only int is valid.



The return type cannot be byte, short, or char because the expression x - 20/x + x*x; returns an int.

 
Back to Question without Answer
 



63.     QID - 2.1378 : Working with Java Data Types 
 

What will the following code print?



public class TestClass {

    public static void main(String[] args) {



        int x = 1____3;   //1



        long y = 1_3;     //2



        float z = 3.234_567f; //3



        System.out.println(x+" "+y+" "+z);

    }

}
 

Correct Option is :  F 

A. Compilation error at //1
 


B. Compilation error at //2
 


C. Compilation error at //3
 


D. Compilation error at //1 and //3
 


E. 10003 103 3.234567
 


F. 13 13 3.234567
The number at //1 and //2 are actually the same. Although confusing, it is legal to have multiple underscores between two digits.


Explanation: 
You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



64.     QID - 2.1414 : Working with Java Data Types 
 

Which of the following statements will print true when executed?
 

Correct Options are :  A D E 

A. System.out.println(Boolean.parseBoolean("true"));
 


B. System.out.println(new Boolean(null));
This will print false.


C. System.out.println(new Boolean());
This will not compile because Boolean class does not have a no-args constructor. Remember that no other wrapper class has a no-args constructor either. So new Integer(), or new Long() will also not compile.


D. System.out.println(new Boolean("true"));
Case of the String parameter does not matter. As long as the String equals "true" after ignoring the case, it will be parsed as true.  However, if you have extra spaces, for example, " true" or "true ", it will be parsed as false.


E. System.out.println(new Boolean("trUE"));
Case of the String parameter does not matter. As long as the String equals "true" after ignoring the case, it will be parsed as true.  However, if you have extra spaces, for example, " true" or "true ", it will be parsed as false.


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



65.     QID - 2.1444 : Working with Java API - String, StringBuilder 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing the same number except its last four digits will be masked with xxxx?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Correct Options are :  A B E 

A. return new StringBuilder(fullPhoneNumber).substring(0, 8)+"xxxx";
 


B. return new StringBuilder(fullPhoneNumber).replace(8, 12, "xxxx").toString();
 


C. return new StringBuilder(fullPhoneNumber).append("xxxx", 8, 12).toString();
This will actually throw an IndexOutOfBoundsException because the call to append will look for characters starting from index 8 to 11 in string "xxxx", which has only 4 characters.


D. return new StringBuilder("xxxx").append(fullPhoneNumber, 0, 8).toString();


This will return xxxxddd-ddd-.


E. return new StringBuilder("xxxx").insert(0, fullPhoneNumber, 0, 8).toString();
 


Explanation: 
This is a simple question if you know how the various methods of StringBuilder operate. You need to go through the JavaDoc API descriptions of the methods used in this question. This is important for the exam. The following are the details for your convenience - 

--------------------------

public StringBuilder append(CharSequence s, int start, int end)

Appends a subsequence of the specified CharSequence to this sequence.

Characters of the argument s, starting at index start, are appended, in order, to the contents of this sequence up to the (exclusive) index end. The length of this sequence is increased by the value of end - start.

Let n be the length of this character sequence just prior to execution of the append method. Then the character at index k in this character sequence becomes equal to the character at index k in this sequence, if k is less than n; otherwise, it is equal to the character at index k+start-n in the argument s.

If s is null, then this method appends characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

s - the sequence to append. start - the starting index of the subsequence to be appended. end - the end index of the subsequence to be appended. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if start is negative, or start is greater than end or end is greater than s.length()



--------------------------



public StringBuilder insert(int dstOffset, CharSequence s, int start, int end)

Inserts a subsequence of the specified CharSequence into this sequence.

The subsequence of the argument s specified by start and end are inserted, in order, into this sequence at the specified destination offset, moving up any characters originally above that position. The length of this sequence is increased by end - start.

The character at index k in this sequence becomes equal to:

the character at index k in this sequence, if k is less than dstOffset

the character at index k+start-dstOffset in the argument s, if k is greater than or equal to dstOffset but is less than dstOffset+end-start

the character at index k-(end-start) in this sequence, if k is greater than or equal to dstOffset+end-start

The dstOffset argument must be greater than or equal to 0, and less than or equal to the length of this sequence.

The start argument must be nonnegative, and not greater than end.

The end argument must be greater than or equal to start, and less than or equal to the length of s.

If s is null, then this method inserts characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

dstOffset - the offset in this sequence. s - the sequence to be inserted. start - the starting index of the subsequence to be inserted. end - the end index of the subsequence to be inserted. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if dstOffset is negative or greater



--------------------------



public StringBuilder replace(int start, int end, String str)

Replaces the characters in a substring of this sequence with characters in the specified String. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. First the characters in the substring are removed and then the specified String is inserted at start. (This sequence will be lengthened to accommodate the specified String if necessary.)



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. str - String that will replace previous contents. 



Returns:

This object. 



Throws:

StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than end.



--------------------------



public String substring(int start, int end)

Returns a new String that contains a subsequence of characters currently contained in this sequence. The substring begins at the specified start and extends to the character at index end - 1.



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. 



Returns:

The new string. 



Throws:

StringIndexOutOfBoundsException - if start or end are negative or greater than length(), or start is greater than end.

 
Back to Question without Answer
 



66.     QID - 2.1458 : Working with Java API - ArrayList 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will compile?
 

Correct Options are :  C D 

A. ArrayList<Vehicle> al1 = new ArrayList<>();

SUV s = al1.get(0);
Since a Vehicle is not an SUV, you cannot assign an instance of a Vehicle directly to a variable of type SUV without a cast.


B. ArrayList<Drivable> al2 = new ArrayList<>();

Car c1 = al2.get(0);
Since an Drivable is not a Car, you cannot assign an instance of a Drivable directly to a variable of type Car without a cast.


C. ArrayList<SUV> al3 = new ArrayList<>();

Drivable d1 = al3.get(0);
Since an SUV is-a Drivable, you can assign an instance of an SUV to a variable of type Drivable.


D. ArrayList<SUV> al4 = new ArrayList<>();

Car c2 = al4.get(0);
Since an SUV is a Car, you can assign an instance of an SUV to a variable of type Car.


E. ArrayList<Vehicle> al5 = new ArrayList<>();

Drivable d2 = al5.get(0);
Since a Vehicle is not a Drivable, you cannot assign an instance of a Vehicle to variable of type Drivable without a cast.


Explanation: 
Although generics are not included in this exam, some candidates have reported getting similar questions that incidently touch generic syntax but are not really about generics.



This question is based on your understand of is-a relationship. When class A extends or implements B directly or indirectly, you can say that A is-a B. Here, Car directly extends Vehicle and directly implements Drivable. Therefore, a Car is-a Vehicle and a Car is-a Drivable.

Similarly, an SUV is-a Car and since Car is-a Vehicle and is-a Drivable, SUV is also a Vehicle and a Drivable.



Now, the rule is that if you have a container that is known to contain A, then the elements that you take out from it are only known to be of type A. For example, if you have an ArrayList of Cars (ArrayList<Car>) and if you take out an element from it, you know for sure that it will be a Car. It could be also be an SUV but you are not sure about that. Therefore, you cannot assign that element to a variable of type SUV without a cast. But since a Car is-a Vehicle, you can assign that element to a variable of type Vehicle.

 
Back to Question without Answer
 



67.     QID - 2.1040 : Using Operators and Decision Constructs 
 

What will the following class print ?



class InitTest{

   public static void main(String[] args){

      int a = 10;

      int b = 20;

      a += (a = 4);

      b = b + (b = 5);

      System.out.println(a+ ",  "+b);

   }

}
 

Correct Option is :  E 

A. It will print 8, 25
 


B. It will print 4, 5
 


C. It will print 14, 5
 


D. It will print 4, 25
 


E. It will print 14, 25
 


Explanation: 
a += (a =4) is same as a = a + (a=4).

First, a's value of 10 is kept aside and (a=4) is evaluated. The statement (a=4) assigns 4 to a and the whole statement returns the value 4. Thus, 10 and 4 are added and assigned back to a.



Same logic applies to b = b + (b = 5); as well.

 
Back to Question without Answer
 



68.     QID - 2.1413 : Using Loop Constructs 
 

What will the following code print when compiled and run?



public class TestClass{

   public static void main(String[] args){

        int[] arr = { 1, 2, 3, 4, 5, 6 };

        int counter = 0;

        for (int value : arr) {

           if (counter >= 5) {

               break;    

           } else {

            continue;    

           }

           if (value > 4) {

             arr[counter] = value + 1;    

           }    

           counter++;

        }

        System.out.println(arr[counter]);

   }



}
 

Correct Option is :  A 

A. It will not compile.
Observe that the line  if (value > 4) { and the rest of the code in the for loop will not execute in any case. It is therefore unreachable code and the compiler will complain about it.


B. It will throw an exception at run time.
 


C. 5
 


D. 6
 


E. 7
 


F. 8
 


 
Back to Question without Answer
 



69.     QID - 2.1011 : Working with Methods - Overloading 
 

Consider the following code:


public class TestClass{
   public void method(Object o){
      System.out.println("Object Version");
   }
   public void method(java.io.FileNotFoundException s){
      System.out.println("java.io.FileNotFoundException Version");
   }
   public void method(java.io.IOException s){
      System.out.println("IOException Version");
   }
   public static void main(String args[]){
      TestClass tc = new TestClass();
      tc.method(null);
   }
}



What would be the output when the above program is compiled and run?
(Assume that FileNotFoundException is a subclass of IOException, which in turn is a subclass of Exception)
 

Correct Option is :  C 

A. It will print Object Version
 


B. It will print java.io.IOException Version
 


C. It will print java.io.FileNotFoundException Version
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


Explanation: 
The reason is quite simple, the most specific method depending upon the argument is called. Here, null can be passed to all the 3 methods but FileNotFoundException class is the subclass of IOException which in turn is the subclass of Object. So, FileNotFoundException class is the most specific class. So, this method is called.

Had there been two most specific methods, it would not even compile as the compiler will not be able to determine which method to call. For example:



public class TestClass{

   public void method(Object o){

      System.out.println("Object Version");

   }

   public void method(String s){

      System.out.println("String Version");

   }

   public void method(StringBuffer s){

      System.out.println("StringBuffer Version");

   }

   public static void main(String args[]){

      TestClass tc = new TestClass();

      tc.method(null);

   }

}





Here, null can be passed as both StringBuffer and String and none is more specific than the other. So, it will not compile.

 
Back to Question without Answer
 



70.     QID - 2.1379 : Working with Java Data Types 
 

What will the following code print?



        int value = 1,000,000; //1

        switch(value){

            case 1_000_000 : System.out.println("A million 1"); //2

                break;

            case 1000000 : System.out.println("A million 2"); //3

                break;

        }
 

Correct Option is :  F 

A. A million 1
 


B. A million 2
 


C. Compilation error because of //1
 


D. Compilation error because of //2
 


E. Compilation error because of //3
 


F. Compilation error because of //1 and //3
 


Explanation: 
1. You may use underscores (but not commas) to format a number for better code readability. So //1 is invalid. 

2. Adding underscores doesn't actually change the number. The compiler ignores the underscores. So 1_000_000 and 1000000 are actually same and you cannot have two case blocks with the same value. Therefore, the second case at //3 is invalid.



You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



71.     QID - 2.1081 : Using Operators and Decision Constructs 
 

Which of the following code snippets will print exactly 10?



1.  Object t = new Integer(106);

    int k = ((Integer) t).intValue()/10;

    System.out.println(k);



2.  System.out.println(100/9.9);



3.  System.out.println(100/10.0);



4.  System.out.println(100/10);



5.  System.out.println(3 + 100/10*2-13);
 

Correct Options are :  A D E 

A. 1
 


B. 2
Since one of the operands (9.9) is a double, it wil perform a real division and will print 10.1010101010101


C. 3
Since one of the operands (10.0) is a double, it will perform a real division and will print 10.0


D. 4
 


E. 5
 


Explanation: 
1. int k = ((Integer) t).intValue()/10;

Since both the operands of / are ints, it is a integer division. This means the resulting value is truncated (and not rounded). Therefore, the above statement will print 10 and not 11.

5. 3 + 100/10*2-13 will be parsed as: 3 + (100/10)*2-13. This is because the precedence of / and * is same (and is higher than + and -) and since the expression is evaluated from left to right, the operands are grouped on first come first served basis. [This is not the right terminology but you will be able to answer the questions if you remember this rule.]

 
Back to Question without Answer
 



72.     QID - 2.919 : Working with Java Data Types - Garbage Collection 
 

After which line will the object created at line XXX be eligible for garbage collection?





public Object getObject(Object a) //0

   {



 Object b = new Object();  //XXX



 Object c, d = new Object(); //1

 c = b; //2

 b = a = null; //3

 return c; //4

}
 

Correct Option is :  D 

A. //2
 


B. //3
 


C. //4
 


D. Never in this method.
 


E. Cannot be determined.
 


Explanation: 
Note that at line 2, c is assigned the reference of b. i.e. c starts pointing to the object created at //XXX. So even if at //3 b and a are set to null, the object is not without any reference.

Also, at //4 c is being returned. So the object referred to by c cannot be garbage collected in this method!

 
Back to Question without Answer
 



73.     QID - 2.1046 : Handling Exceptions 
 

What will be the output of the following program:



public class TestClass{

   public static void main(String args[]){

      try{

         m1();

      }catch(IndexOutOfBoundsException e){

         System.out.println("1");

         throw new NullPointerException();

      }catch(NullPointerException e){

         System.out.println("2");

         return;

      }catch (Exception e) {

         System.out.println("3");

      }finally{

         System.out.println("4");

      }

      System.out.println("END");

   }



   static void m1(){

      System.out.println("m1 Starts");

      throw new IndexOutOfBoundsException( "Big Bang " );

   }

}


 

Correct Options are :  A B E 

A. The program will print m1 Starts.
 


B. The program will print m1 Starts, 1 and 4, in that order.
 


C. The program will print m1 Starts, 1 and  2, in that order.
 


D. The program will print m1 Starts, 1, 2 and 4 in that order.
 


E. END will not be printed.
 


Explanation: 
The IndexOutOfBoundsException is handled by the first catch block. Inside this block, a new NullPointerException is thrown. As this exception is not thrown inside the try block, it will not be caught by any of the remaining catch blocks. It will actually be sent to the caller of the main() method after the finally block is executed. (Hence '4' in the output.)



The code that prints END is never reached, since the NullPointerException remains uncaught after the execution of the finally block.



At the end a stack trace for the NullPointerException will be printed.

 
Back to Question without Answer
 



74.     QID - 2.901 : Java Basics - OO Concepts 
 

Given:

public class Triangle{
    public int base;
    public int height;
    public double area;
    
    public Triangle(int base, int height){
        this.base = base; this.height = height;
        updateArea();
    }

    void updateArea(){
        area = base*height/2;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


The above class needs to protect an invariant on the "area" field. Which three members must have the public access modifiers removed to ensure that the invariant is maintained?
 

Correct Options are :  A B C 

A. the base field
 


B. the height field
 


C. the area field
 


D. the Triangle constructor
 


E. the setBase method
 


F. the setHeight method
 


Explanation: 
An invariant means a certain condition that constrains the state stored in the object. For example, in this case the value of the area field of the Triangle must always be consistent with its base and height fields. Thus, it should never have a value that is different from base*height/2. 



If you allow other classes to directly change the value of base, height, or area, using direct field access, the area field may not contain the correct area thereby breaking the invariant.



To prevent this inconsistency from happening, you need to prohibit changing the instance fields directly and instead permit the changes only through the setter method because these methods call the updateArea method and keep the area and base and height consistent.

 
Back to Question without Answer
 



75.     QID - 2.1342 : Using Operators and Decision Constructs 
 

Consider that str is a local variable of class java.lang.String.

Which of the following lines of code may throw a NullPointerException in certain situations?



Or a tougher version of the question could be :

Which of the following lines of code are not an example of robust design ?
 

Correct Options are :  A B C 

A. if ( (str != null) | ( i == str.length() ) ) 
(i == str.length()) will always be executed so if 'str' is null, then str.length() will throw a NullPointerException.


B. if ( (str == null) | ( i == str.length() ) ) 
(i == str.length()) will always be executed so if 'str' is null, then str.length() will throw a NullPointerException.


C. if ( (str != null) || (i == str.length() ) )
(i == str.length()) will only be evaluated if (str != null) is false, and (str != null) will be false if 'str' is null. So it will also throw a NullPointerException.


D. if ( (str == null) || (i == str.length() ) )
(i == str.length()) will only be evaluated if (str == null) is false, and (str == null) will be false if 'str' is NOT null. So it will NEVER throw a NullPointerException.


Explanation: 
The concept is : || and && are short circuiting operation i.e. if the value of the expression can be known by just seeing the first part then the remaining part is not evaluated while | and & will always let all the parts evaluates.

Let's break this down in two cases:



1. Say  str = null;



for a, the first part is false and str.length() throws NullPointerException because str is null.



for b, the first part of it is true but it will still evaluate the second part  and as str is null, str.length() throws NullPointerException. Had it been || instead of |, the second part would not have been evaluated and no exception would have been thrown.



for c, the first part of it is false and it will also evaluate the second part which will throw a NullPointerException as str is null.



for d, the first part is true, so the second part is not evaluated. 





2. Say,  str = "somestring"; //i.e. str is not null.



for a, the first part is true, so is the second part. No exception is thrown.  Note that second part will still be evaluated although by looking at the first part itself we can tell that the whole expression will return true.



for b, the first part is false, and the second part is also true. No exception is thrown. 



for c, first part is true, so second part is not evaluated at all. No exception is thrown. 



for d, first part is false, so it will evaluate second part. No exception is thrown as str is not null. 





It would be nice if you try to run the following program to understand the concept :

(Uncomment only one of the commented lines one by one).



public class TestClass {

   public static void main(String[] args) {

      int i = 0;

      String s = "";



      //s = null;

      if ((s != null) | ( i==s.length())) {}

      System.out.println("A");



      //s = null;

      if ((s == null) | ( i==s.length())) {}

      System.out.println("B");



      //s = null;

      if ((s != null) || (i==s.length())) {}

      System.out.println("C");



      s = null;

      if ((s == null) || (i==s.length())) {}

      System.out.println("D");

   }

}

 
Back to Question without Answer
 



76.     QID - 2.1310 : Using Operators and Decision Constructs 
 

Consider the following method...


public static void ifTest(boolean flag){
   if (flag)   //1
   if (flag)   //2
   if (flag)   //3
   System.out.println("False True");
   else        //4
   System.out.println("True False");
   else        //5
   System.out.println("True True");
   else        //6
   System.out.println("False False");
}


Which of the following statements are correct ?
 

Correct Options are :  A D 

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


Explanation: 
Look at it like this:

   if (flag)      //1
   {
       if (flag)       // 2
       {
            if (flag)        //3
            {
                  System.out.println("False True");
            }
            else            //4
            {
                  System.out.println("True False");
            }
       }
       else           //5
       {
             System.out.println("True True");
       }
   }
  else           //6
  {
        System.out.println("False False");
   }


Note that if and else do not cascade. They are like opening an closing brackets.
So, else at //4 is associated with if at //3
and else at //5 is associated with if at //2

 
Back to Question without Answer
 



77.     QID - 2.1484 : Working with Java API - Time and Date 
 

Given that Daylight Savings Time ends on Nov 1 at 2 AM in US/Eastern time zone, what will the following code print -



LocalDateTime ld = LocalDateTime.of(2015, Month.OCTOBER, 31, 10, 0);



ZonedDateTime date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Duration.ofDays(1));

System.out.println(date);



date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Period.ofDays(1));

System.out.println(date);



Note: This question refers to ZonedDateTime and Duration, which are not explicitly mentioned in the objectives. However, a few candidates have reported getting a similar question and so we have included it in this question bank.
 

Correct Option is :  B 

A. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]
 


B. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


C. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]


 


D. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


Explanation: 
Important thing to remember here is that Period is used to manipulate dates in terms of days, months, and years, while Duration is used to manipulate dates in terms of hours, minutes, and seconds. Therefore, Period doesn't mess with the time component of the date while Duration may changed the time component if the date is close to the DST  boundary.



Durations and periods differ in their treatment of daylight savings time when added to ZonedDateTime. A Duration will add an exact number of seconds, thus a duration of one day is always exactly 24 hours. By contrast, a Period will add a conceptual day, trying to maintain the local time.



For example, consider adding a period of one day and a duration of one day to 18:00 on the evening before a daylight savings gap. The Period will add the conceptual day and result in a ZonedDateTime at 18:00 the following day. By contrast, the Duration will add exactly 24 hours, resulting in a ZonedDateTime at 19:00 the following day (assuming a one hour DST gap).

 
Back to Question without Answer
 



Test 6



01.     QID - 2.1302 
 

What will be the result of attempting to compile and run the following program?

 

public class TestClass{

   public static void main(String args[ ] ){

      StringBuilder sb = new StringBuilder("12345678");

      sb.setLength(5);

      sb.setLength(10);

      System.out.println(sb.length());

   }

}
 

Select 1 option

A. It will print 5.
 


B. It will print 10.
 


C. It will print 8.
 


D. Compilation error.
 


E. None of the above.
 


 
Check Answer
 



02.     QID - 2.911 
 

Given the complete contents of TestClass.java file:


package x;
public class TestClass {
    ArrayList<String> al;
    public void init(){
        al = new ArrayList<>();
        al.add("Name 1");
        al.add("Name 2");
    }
    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.init();
        System.out.println("Size = "+tc.al.size());
    }
}



Which import statement should be added to make it compile?
 

Select 1 option

A. import java.lang.*;
 


B. import java.lang.ArrayList;
 


C. import java.util.ArrayList;
 


D. import java.collections.ArrayList;
 


E. No import is necessary.
 


 
Check Answer
 



03.     QID - 2.1485 
 

Which of the following options correctly add 1 month and 1 day to a given LocalDate -



public LocalDate process(LocalDate ld){

   //INSERT CODE HERE  

   return ld2;

}
 

Select 1 option

A. LocalDate ld2 = ld.plus(Period.ofMonths(1).ofDays(1));
 


B. LocalDate ld2 = ld.plus(new Period(0, 1, 1));
 


C. LocalDate ld2 = ld.plus(new Period(31)).plus(new Period(1));
 


D. LocalDate ld2 = ld.plus(Period.of(0, 1, 1));
 


 
Check Answer
 



04.     QID - 2.1069 
 

Which method declarations will enable a class to be run as a standalone program?
 

Select 2 options

A. static void main(String args[ ])
 


B. public void static main(String args[ ])
 


C. public static main(String[ ] argv)
 


D. final public static void main(String [ ] array)
 


E. public static void main(String args[ ])
 


 
Check Answer
 



05.     QID - 2.1345 
 

Assume that a method named 'method1' contains code which may raise a non-runtime (checked) Exception.

What is/are the possible way(s) to declare this method so that it indicates that it expects the caller to handle that exception?
 

Select 2 options

A. public void method1() throws Throwable
 


B. public void method1() throw Exception
 


C. public void method1() throw new Exception
 


D. public void method1() throws Exception
 


E. public void method1()
 


 
Check Answer
 



06.     QID - 2.1280 
 

In the following code what will be the output if 0 (integer value zero) is passed to loopTest()?


public class TestClass{
   public void loopTest(int x){
      loop: for (int i = 1; i < 5; i++){
         for (int j = 1; j < 5; j++){
            System.out.println(i);
            if (x == 0) {  continue loop;  }
            System.out.println(j);
         }
      }
   }
}

 

Select 1 option

A. The program will not compile.
 


B. It will print 1 2 3 4
 


C. It will print 1 1 2 3 4
 


D. It will print 1 1 2 2 3 3 4 4
 


E. Produces no output
 


 
Check Answer
 



07.     QID - 2.854 
 

What will be printed when the following code is compiled and run?


class A {
    public int getCode(){ return 2;}
}

class AA extends A { 
  public long getCode(){ return 3;}
}

public class TestClass {
    
    public static void main(String[] args) throws Exception {
         A a = new A();
        A aa = new AA();
        System.out.println(a.getCode()+" "+aa.getCode());
    }

    public int getCode() {
        return 1;
    }
}

 

Select 1 option

A. 2 3
 


B. 2 2
 


C. It will throw an exception at run time.
 


D. The code will not compile.
 


 
Check Answer
 



08.     QID - 2.1075 
 

Given the following source code, which of the lines that are commented out may be reinserted without introducing errors?


abstract class Bang{
 //abstract void f();  //(0)
   final    void g(){}
 //final    void h(){} //(1)
   protected static int i;
   private int j;
}

final class BigBang extends Bang{
 //BigBang(int n) { m = n; } //(2)
   public static void main(String args[]){
      Bang mc = new BigBang();
   }
   void h(){}
 //void k(){ i++; } //(3)
 //void l(){ j++; } //(4)
   int m;
}

 

Select 1 option

A. final void h( ) { } //(1)
 


B. BigBang(int n) { m = n; }  //(2)
 


C. void k( ) { i++; }   //(3)
 


D. void l( ) { j++; }  //(4)
 


E. abstract void f( ) ;  //(0)
 


 
Check Answer
 



09.     QID - 2.1174 
 

What will the following program print?



public class TestClass{

  static String str = "Hello World";

  public static void changeIt(String s){

    s = "Good bye world";

  }

  public static void main(String[] args){

    changeIt(str);

    System.out.println(str);

  }

}
 

Select 1 option

A. "Hello World"
 


B. "Good bye world"
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



10.     QID - 2.977 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 != b2){

   System.out.println("true");

} else{

   System.out.println("false");

}


 

Select 1 option

A. Compile time error.
 


B. It will print true;
 


C. It will print false;
 


D. Runtime error.
 


E. It will print nothing.
 


 
Check Answer
 



11.     QID - 2.1051 
 

Assuming that a valid integer will be passed in the command line as first argument, which statements regarding the following code are correct?



public class TestClass{

   public static void main(String args[]){

      int x = Integer.parseInt(args[0]);

      switch(x){

         case x < 5 :   System.out.println("BIG"); break;

         case x > 5 :   System.out.println("SMALL");

         default :    System.out.println("CORRECT"); break;

      }

   }

}
 

Select 1 option

A. BIG will never be followed by SMALL.
 


B. SMALL will never follow anything else.
 


C. SMALL will always be followed by CORRECT.
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


 
Check Answer
 



12.     QID - 2.864 
 

Java Exceptions is a mechanism ..
 

Select 2 options

A. for dealing with unexpected user inputs.
 


B. that you can use to determine what to do when something unexpected happens.
 


C. for logging unexpected behavior.
 


D. to ensure that the program runs even if something unexpected happens.
 


E. that the VM uses to exit the program when something unexpected happens.
 


 
Check Answer
 



13.     QID - 2.1223 
 

Consider the following hierarchy of Exception classes :



java.lang.RuntimeException

  +-------- IndexOutOfBoundsException

                  +---------ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException



Which of the following statements are correct for a method that can throw ArrayIndexOutOfBounds as well as StringIndexOutOfBounds Exceptions but does not have try catch blocks to catch the same?
 

Select 3 options

A. The method calling this method will either have to catch these 2 exceptions or declare them in its throws clause.
 


B. It is ok if it declares just throws ArrayIndexOutOfBoundsException
 


C. It must declare throws ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException
 


D. It is ok if it declares just throws IndexOutOfBoundsException
 


E. It does not need to declare any throws clause.
 


 
Check Answer
 



14.     QID - 2.1322 
 

What is meant by "encapsulation" ?
 

Select 1 option

A. There is no way to access member variable.
 


B. There are no member variables.
 


C. Member fields are declared private and public accessor/mutator methods are provided to access and change their values if needed.
 


D. Data fields are declared public and accessor methods are provided to access and change their values.
 


 
Check Answer
 



15.     QID - 2.1326 
 

What will happen when the following code is compiled and run?



class AX{

  static int[] x = new int[0];

  static{

   x[0] = 10;

  }

  public static void main(String[] args){

    AX ax = new AX();

  }

}
 

Select 1 option

A. It will throw NullPointerException at runtime.
 


B. It will throw ArrayIndexOutOfBoundsException at runtime.
 


C. It will throw ExceptionInInitializerError at runtime.
 


D. It will not compile.
 


 
Check Answer
 



16.     QID - 2.1301 
 

What is wrong with the following code written in a single file named TestClass.java?



class SomeThrowable extends Throwable { }

class MyThrowable extends SomeThrowable { }

public class TestClass{

   public static void main(String args[]) throws SomeThrowable{

      try{

         m1();

      }catch(SomeThrowable e){

         throw e;

      }finally{

         System.out.println("Done");

      }

   }

   public static void m1() throws MyThrowable{

      throw new MyThrowable();

   }

}


 

Select 1 option

A. The main declares that it throws SomeThrowable but throws MyThrowable.
 


B. You cannot have more than 2 classes in one file.
 


C. The catch block in the main method must declare that it catches MyThrowable rather than SomeThrowable.
 


D. There is nothing wrong with the code and Done will be printed.
 


 
Check Answer
 



17.     QID - 2.1294 
 

What will the code shown below print when run?

class Wrapper{
        int w = 10;
}

public class TestClass{
    
    static Wrapper changeWrapper(Wrapper w){
        w = new Wrapper();
        w.w += 9;
        return w;
    }
        
    
    public static void main(String[] args){
        Wrapper w = new Wrapper();
        w.w = 20;
        changeWrapper(w);
        w.w += 30;
        System.out.println(w.w);
        w = changeWrapper(w);
        System.out.println(w.w);
     }
}

 

Select 2 options

A. 9
 


B. 19
 


C. 30
 


D. 20
 


E. 29
 


F. 50
 


 
Check Answer
 



18.     QID - 2.913 
 

Which of the following statements about an array are correct?
 

Select 1 option

A. An array can dynamically grow in size.
 


B. Arrays can be created only for primitive types.
 


C. Every array has a built in property named 'size' which tells you the number of elements in the array.
 


D. Every array has an implicit method named 'length' which tells you the number of elements in the array.
 


E. Element indexing starts at 0.
 


 
Check Answer
 



19.     QID - 2.998 
 

What will the following program print when compiled and run?


class Game{
  public void play() throws Exception{
    System.out.println("Playing...");
  }
}

public class Soccer extends Game{
   public void play(){
      System.out.println("Playing Soccer...");      
   }
   public static void main(String[] args){
       Game g = new Soccer();
       g.play();
   }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an Exception at runtime.
 


C. Playing Soccer...
 


D. Playing...
 


E. None of these.
 


 
Check Answer
 



20.     QID - 2.840 
 

What will be the output of the following program when it is compiled and run with the command line: 



java TestClass 1 2 3



public class TestClass {

 

    public static void main(String[] args) {

        System.out.println("Values : "+args[0]+args[1]);

    }

}


 

Select 1 option

A. Values : java TestClass
 


B. Values : TestClass 1
 


C. Values : 12
 


D. Values : 23
 


E. Values : 3
 


 
Check Answer
 



21.     QID - 2.1222 
 

Consider the following class hierarchy


class A{
   public void m1() {   }
}
class B extends A{
   public void m1() {   }
}
class C extends B{
   public void m1(){
      /*  //1
      ... lot of code.
      */
   }
}

 

Select 2 options

A. You cannot access class A's m1() from class C for the same object ( i.e. this).
 


B. You can access class B's m1() using super.m1() from class C.
 


C. You can access class A's m1() using ( (A) this ).m1() from class C.
 


D. You can access class A's m1() using super.super.m1() from class C.
 


 
Check Answer
 



22.     QID - 2.1221 
 

Which of the following is illegal ?
 

Select 1 option

A. char c = 320;
 


B. float f = 320;
 


C. double d = 320;
 


D. byte b = 320;
 


E. float f = 22.0f/7.0f;
 


F. None of the above is illegal.
 


 
Check Answer
 



23.     QID - 2.1429 
 

What will the following lines of code print



java.time.LocalDate dt = java.time.LocalDate.parse("2015-01-01").minusMonths(1).minusDays(1).plusYears(1);

System.out.println(dt);


 

Select 1 option

A. Compilation error.
 


B. Exception at run time.
 


C. 2015-12-31
 


D. 2015-11-30
 


 
Check Answer
 



24.     QID - 2.1121 
 

What will the following code print?


void crazyLoop(){
  int c = 0;
  JACK: while (c < 8){
    JILL: System.out.println(c);
    if (c > 3) break JACK; else c++;
  }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


 
Check Answer
 



25.     QID - 2.1364 
 

Given the following class, which of these are valid ways of referring to the class from outside of the package com.enthu?





package com.enthu;

public class Base{

   // lot of code...

}
 

Select 2 options

A. Base
 


B. By importing the package com.* and referring to the class as enthu.Base
 


C. importing com.* is illegal.
 


D. By importing com.enthu.* and referring to the class as Base.
 


E. By referring to the class as com.enthu.Base.
 


 
Check Answer
 



26.     QID - 2.1117 
 

Given the following classes, what will be the output of compiling and running the class Truck?


class Automobile{
   public void drive() {  System.out.println("Automobile: drive");   }
}

public class Truck extends Automobile{
   public void drive() {  System.out.println("Truck: drive");   }
   public static void main (String args [ ]){
      Automobile  a = new Automobile();
      Truck t  = new Truck();
      a.drive(); //1
      t.drive(); //2
      a = t;     //3
      a.drive(); //4
   }
}



//End of Code
 

Select 1 option

A. Compiler error at line 3.
 


B. Runtime error at line 3.
 


C. It will print: 

Automobile: drive 

Truck: drive 

Automobile: drive 

in that order.
 


D. It will print: 

Automobile: drive

Truck: drive

Truck: drive 

in that order.
 


E. It will print: 

Automobile: drive

Automobile: drive

Automobile: drive

in that order.
 


 
Check Answer
 



27.     QID - 2.1432 
 

What will the following line of code print?

 System.out.println(LocalDate.of(2015, Month.JANUARY, 01).format(DateTimeFormatter.ISO_DATE_TIME));
 

Select 1 option

A. 01 Jan 2015
 


B. 01 January 2015 00:00:00
 


C. 2015-01-01
 


D. 2015-01-01T00:00:00
 


E. Exception at run time.
 


 
Check Answer
 



28.     QID - 2.1260 
 

What will be the output of the following class.





class Test{

   public static void main(String[] args){

      int j = 1;

      try{

         int i = doIt() / (j = 2);

      } catch (Exception e){

         System.out.println(" j = " + j);

      }

   }

   public static int doIt() throws Exception {  throw new Exception("FORGET IT");  }

}


 

Select 1 option

A. It will print j = 1;
 


B. It will print j = 2;
 


C. The value of j cannot be determined.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



29.     QID - 2.1234 
 

Consider the following code:



public abstract class TestClass{

    public abstract void m1();

    public abstract void m2(){

        System.out.println("hello");

    }

}



Which of the following corrections can be applied to the above code (independently) so that it compiles without any error?
 

Select 2 options

A. Replace the method body of m2() with a ; (semi-colon).
 


B. Replace the ; at the end of m1() with a method body.
 


C. Remove abstract from m2().
 


D. Remove abstract from the class declaration.
 


 
Check Answer
 



30.     QID - 2.828 
 

Consider the following code appearing in a file named TestClass.java:



class Test{ }  // 1



public class TestClass {



   public int main(String[] args)  { // 2



       double x=10, double y;  // 3



       System.out.println[]; // 4

       

        for(int k =0; k<x; k++){ } //5

        

       return 0;

   }

}



Which of the lines are invalid?
 

Select 1 option

A. // 1 and // 4
 


B. // 3 and // 4
 


C. // 2 and // 4
 


D. // 2 and // 3
 


 
Check Answer
 



31.     QID - 2.1050 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      for (i=1 ;  i<5  ; i++) continue;  //(1)
      for (i=0 ;       ; i++) break;       //(2)
      for (    ; i<5?false:true ;    );     //(3)
   }
}

 

Select 1 option

A. The code will compile without error and will terminate without problems when run.
 


B. The code will fail to compile, since the continue can't be used this way.
 


C. The code will fail to compile, since the break can't be used this way.
 


D. The code will fail to compile, since the for statement in line 2 is invalid.
 


E. The code will compile without error but will never terminate.
 


 
Check Answer
 



32.     QID - 2.856 
 

Consider the following code:



public class MyClass {



  protected int value = 10;



}



Which of the following statements are correct regarding the field value?
 

Select 1 option

A. It cannot be accessed from any other class.
 


B. It can be read but cannot be modified from any other class.
 


C. It can be modified but only from a subclass of MyClass.
 


D. It can be read and modified from any class within the same package or from any subclass of MyClass.
 


 
Check Answer
 



33.     QID - 2.994 
 

Assume that a, b, and c refer to instances of primitive wrapper classes. Which of the following statements are correct?
 

Select 2 options

A. a.equals(a) will always return true.
 


B. b.equals(c) may return false even if c.equals(b) returns true.
 


C. a.equals(b) returns same as a == b.
 


D. a.equals(b) throws an exception if they refer to instances of different classes.
 


E. a.equals(b) returns false if they refer to instances of different classes.
 


 
Check Answer
 



34.     QID - 2.1463 
 

What will the following code print?



List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

if(s1.remove("a")){

    if(s1.remove("a")){

        s1.remove("b");

    }else{

        s1.remove("c");

    }

}

System.out.println(s1);
 

Select 1 option

A. [b]
 


B. [c]
 


C. [b, c, a]
 


D. [a, b, c, a]
 


E. Exception at runtime
 


 
Check Answer
 



35.     QID - 2.1454 
 

You have been given an array of objects and you need to process this array as follows - 

1. Call a method on each object from first to last one by one.

2. Call a method on each object from last to first one by one.

3. Call a method on only those objects at even index (0, 2, 4, 6, etc.)



Which of the following are correct?
 

Select 1 option

A. Enhanced for loops can be used for all the three tasks.
 


B. Enhanced for loop can be used for only the first task. For the rest, standard for loops can be used.
 


C. Standard for loops can be used for tasks 1 and 2 but not 3.
 


D. All the tasks can be performed either by using only standard for loops or by using only enhanced for loops.
 


E. Neither standard for loops nor enhanced for loops can be used for all three tasks.
 


 
Check Answer
 



36.     QID - 2.1080 
 

Which of the following are valid declarations of the standard main method?
 

Select 2 options

A. static void main(String args[ ]) { }
 


B. public static int main(String args[ ]) {}
 


C. public static void main (String args) { }
 


D. final static public void main (String[ ] arguments ) { }
 


E. public static void main (String[ ] args) { }
 


 
Check Answer
 



37.     QID - 2.1191 
 

Which of the following code fragments will successfully initialize a two-dimensional array of chars named cA with a size such that cA[2][3] refers to a valid element?



1.

  char[][] cA = {  { 'a', 'b', 'c' },  { 'a', 'b', 'c' }   };

2.

  char cA[][] = new char[3][];

  for (int i=0; i<cA.length; i++) cA[i] = new char[4];

3.

  char cA[][] = { new char[ ]{ 'a', 'b', 'c' }  ,   new char[ ]{ 'a', 'b', 'c' }  };

4

  char cA[3][2] = new char[][] {  { 'a', 'b', 'c' },   { 'a', 'b', 'c' }   };

5.

  char[][] cA = { "1234", "1234",  "1234"  };
 

Select 1 option

A. 1, 3
 


B. 4, 5
 


C. 2, 3
 


D. 1, 2, 3
 


E. 2
 


 
Check Answer
 



38.     QID - 2.1202 
 

What would be the result of trying to compile and run the following program?

public class Test{

   int[] ia = new int[1];

   Object oA[]  = new Object[1];

   boolean bool;

   public static void main(String args[]){

      Test test = new Test();

      System.out.println(test.ia[0] + "  " + test.oA[0]+"  "+test.bool);

   }

}
 

Select 1 option

A. The program will fail to compile, because of uninitialized variable 'bool'.
 


B. The program will throw a java.lang.NullPointerException when run.
 


C. The program will print "0 null false".
 


D. The program will print "0 null true".
 


E. The program will print null and false but will print junk value for ia[0].
 


 
Check Answer
 



39.     QID - 2.839 
 

How can you fix the following code to make it compile:

import java.io.*;
class Great {
    public void doStuff() throws FileNotFoundException{
    }    
}

class Amazing extends Great { 
  public void doStuff() throws IOException, IllegalArgumentException{
  }    
}

public class TestClass {
    public static void main(String[] args) throws IOException{
        Great g = new Amazing();
        g.doStuff();
    }
}

Assume that changes suggested in a option are to be applied independent of other options.
 

Select 2 options

A. Change doStuff in Amazing to throw only IllegalArgumentException.
 


B. Change doStuff in Great to throw FileNotFoundException and IllegalArgumentException.
 


C. Change doStuff in Amazing to throw only IOException.
 


D. Change doStuff in Great to throw only IOException instead of FileNotFoundException.
 


E. Replace g.doStuff() to ((Amazing) g).doStuff().
 


 
Check Answer
 



40.     QID - 2.1111 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 == false){

   System.out.println("true");

} else{

   System.out.println("false");

}
 

Select 1 option

A. Compile time error.
 


B. It will print true
 


C. It will print false
 


D. Runtime error.
 


E. It will print nothing.
 


 
Check Answer
 



41.     QID - 2.1185 
 

What will the following code print?



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    sb.append(s.substring(4)).delete(3, 5);

    System.out.println(sb);
 

Select 1 option

A. blorbloo
 


B. bloper
 


C. bloerper
 


D. blooperper
 


E. bloo
 


 
Check Answer
 



42.     QID - 2.833 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showTwo(200);
        System.out.println(ct.myValue);
        ct.showOne(100);
        System.out.println(ct.myValue);
    }
}

 

Select 1 option

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


E. 200 followed by 200.
 


F. 200 followed by 100
 


 
Check Answer
 



43.     QID - 2.1027 
 

What will the following code print when run?


public class TestClass{	
    public static Integer wiggler(Integer x){
       Integer y = x + 10;
       x++;
       System.out.println(x);
       return y;
    }

    public static void main(String[] args){
       Integer dataWrapper = new Integer(5);
       Integer value = wiggler(dataWrapper);
       System.out.println(dataWrapper+value);
    }
}


 

Select 1 option

A. 5 and 20
 


B. 6 and 515
 


C. 6 and 20
 


D. 6 and 615
 


E. It will not compile.
 


 
Check Answer
 



44.     QID - 2.918 
 

Given:



int a = 1 + 2 + 3 * 4;

int b = 2 * 3 + 4;



int total = a + b;



What will be the value of total?
 

Select 1 option

A. 34
 


B. 38
 


C. 29
 


D. 25
 


 
Check Answer
 



45.     QID - 2.1044 
 

What will be the output if you run the following program?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0 ; j < 1 ; ++j , i++){
         System.out.println( i + " " + j );
      }
      System.out.println( i + " " + j );
   }
}

 

Select 1 option

A. 0 0 will be printed twice.
 


B. 1 1 will be printed once.
 


C. 0 1 will be printed followed by 1 2.
 


D. 0 0 will be printed followed by 1 1.
 


E. It will print 0 0 and then 0 1.
 


 
Check Answer
 



46.     QID - 2.1054 
 

What will be written to the standard output when the following program is run?



public class TrimTest{

   public static void main(String args[]){

      String blank  = " ";  // one space

      String line = blank + "hello" + blank + blank;

      line.concat("world");

      String newLine  =  line.trim();

      System.out.println((int)(line.length() + newLine.length()));

   }

}
 

Select 1 option

A. 25
 


B. 24
 


C. 23
 


D. 22
 


E. None of the above.
 


 
Check Answer
 



47.     QID - 2.1000 
 

What will the following code print when run?





public class Test {



    static String s = "";



    public static void m0(int a, int b) {

        s += a;

        m2();

        m1(b);

    }



    public static void m1(int i) {

        s += i;

    }



    public static void m2() {

        throw new NullPointerException("aa");

    }



    public static void m() {

        m0(1, 2);

        m1(3);

    }



    public static void main(String args[]) {

        try {

            m();

        } catch (Exception e) {

        }

        System.out.println(s);

    }

}


 

Select 1 option

A. 1
 


B. 12
 


C. 123
 


D. 2
 


E. It will throw exception at runtime.
 


 
Check Answer
 



48.     QID - 2.872 
 

Consider the following classes:


class A {
      public int getCode(){ return 2;}
}

class AA extends A { 
  public void doStuff() { 
  } 
}


Given the following two declarations, which of the options will compile?
   A a = null;
   AA aa = null;

 

Select 4 options

A. a = (AA)aa;
 


B. a = new AA();
 


C. aa = new A();
 


D. aa = (AA) a;
 


E. aa = a;
 


F. ((AA)a).doStuff();
 


 
Check Answer
 



49.     QID - 2.1268 
 

Which of these for statements are valid?


1. for (int i=5; i=0; i--) { }

2.  int j=5;
      for(int i=0, j+=5;  i<j ; i++) {  j--;  }

3. int i, j;
    for (j=10; i<j; j--) { i += 2; }

4. int i=10;
    for ( ; i>0 ; i--) { }

5. for (int i=0, j=10; i<j; i++, --j) {;}


 

Select 1 option

A. 1, 2
 


B. 3, 4
 


C. 1, 5
 


D. 4, 5
 


E. 5
 


 
Check Answer
 



50.     QID - 2.1151 
 

Given that TestClass is a class, how many objects and reference variables are created by the following code?



TestClass t1, t2, t3, t4;

 t1 = t2 = new TestClass();

 t3 = new TestClass();


 

Select 1 option

A. 2 objects, 3 references.
 


B. 2 objects, 4 references.
 


C. 3 objects, 2 references.
 


D. 2 objects, 2 references.
 


E. None of the above.
 


 
Check Answer
 



51.     QID - 2.1019 
 

You are modeling a class hierarchy for living things. You have a class LivingThing which has an abstract method reproduce().

Now, you want to have 2 concrete subclasses of LivingThing - Plant and Animal. Both do reproduce but the mechanisms are different. What would you do?
 

Select 1 option

A. Overload the reproduce method in Plant and Animal classes
 


B. Overload the reproduce method in LivingThing class.
 


C. Override the reproduce method in Plant and Animal classes
 


D. Either overload or override reproduce in Plant and Animal classes, it depends on the preference of the designer.
 


 
Check Answer
 



52.     QID - 2.965 
 

Consider the following program:


public class TestClass{
   public static void main(String[] args)  {     calculate(2);    }
   public static void calculate(int x){
      String val;
      switch(x){
         case 2:
         default:
         val = "def";
      }
      System.out.println(val);
   }
}


What will happen if you try to compile and run the program?
 

Select 2 options

A. It will not compile saying that variable val may not have been initialized..
 


B. It will compile and print def
 


C. As such it will not compile but it will compile if calculate(2); is replaced by calculate(3);
 


D. It will compile for any int values in calculate(...);
 


 
Check Answer
 



53.     QID - 2.1459 
 

You are asked to develop an application for a car rental company. As a part of that, you are given the following requirements - 

1. Implement three classes -  Car, SUV, and MiniVan, where the Car class is the super class of SUV as well as MiniVan.

2. Implement method int getDailyRate()  that returns the daily price of the car.

3. Implement method void printDetails() that prints the details of the car.



Which of the following definition of Car class adds a valid layer of abstraction to the class hierachy?
 

Select 1 option

A. public abstract class Car{

   public abstract int getDailyRate();

   public void printDetails(){

    // code for printing details goes here

   }

}
 


B. public abstract class Car{

   public int getDailyRate();

   public void printDetails();

}
 


C. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails();

}
 


D. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails(){

    // code for printing details goes here

   }

}
 


 
Check Answer
 



54.     QID - 2.1335 
 

Consider the code shown below:


public class TestClass{
  public static int switchTest(int k){
     int j = 1;
     switch(k){
        case 1: j++;
        case 2: j++;
        case 3: j++;
        case 4: j++;
        case 5: j++;
        default : j++;
     }
     return j + k;
  }
  public static void main(String[] args){
     System.out.println( switchTest(4) );
  }
}


What will it print when compiled and run?
 

Select 1 option

A. 5
 


B. 6
 


C. 7
 


D. 8
 


E. 9
 


 
Check Answer
 



55.     QID - 2.1381 
 

What will the following code print when compiled and run?



int [] [] array = {{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}};

int[] arr1 = array[4];

System.out.println (arr1[4][1]);

System.out.println (array[4][1]);


 

Select 1 option

A. 1

1
 


B. 1

4
 


C. 4

1
 


D. It will not compile.
 


E. It will throw ArrayIndexOutOfBoundsException at run time.
 


F. It will throw IllegalArgumentException at run time.
 


 
Check Answer
 



56.     QID - 2.1441 
 

You are writing a piece of code that determines tax rate on a given grossIncome. The tax rate is to be computed as follows - 

   If grossIncome is less than or equals to 18000, taxRate is 0.

   If grossIncome is more than 18000 but less than or equal to 36000, taxRate is 10%

   If grossIncome is more than 36000, taxRate is 20%.



Which of following code fragments do it correctly?
 

Select 3 options

A. double taxRate = grossIncome<=18000 ? 0 : (grossIncome<=36000) ? .1 : .2;
 


B. double taxRate = .2;

taxRate = grossIncome<=18000?0:.1;

taxRate = grossIncome<=36000?.1:.2;
 


C. double taxRate = 0;

if(grossIncome>36000) taxRate = .20;

if(grossIncome>18000 && grossIncome<=36000) taxRate = .10;
 


D. double taxRate = .2;

if(grossIncome>36000) {

   taxRate = .2;

}else taxRate = 0;

if(grossIncome>18000 ) {

   taxRate = .1;

}
 


E. double taxRate = 0;

taxRate = grossIncome>18000?grossIncome<=36000?.1:.2:0;
 


 
Check Answer
 



57.     QID - 2.1419 
 

Encapsulation ensures that ...
 

Select 1 option

A. classes are able to inherit functionality from other classes.
 


B. classes expose only certain fields and methods to other classes for access.
 


C. classes designate certain methods to be abstract and let them be implemented by subclasses.
 


D. a method that takes a class X object as a parameter can be passed an object of a subclass of X.
 


 
Check Answer
 



58.     QID - 2.1325 
 

What will be the result of attempting to compile and run the following class?


public class IfTest{
   public static void main(String args[]){
      if (true)
      if (false)
      System.out.println("True False");
      else
      System.out.println("True True");
   }
}

 

Select 1 option

A. The code will fail to compile because the syntax of the if statement is not correct.
 


B. The code will fail to compile because the values in the condition bracket are invalid.
 


C. The code will compile correctly and will not display anything.
 


D. The code will compile correctly and will display True True.
 


E. The code will compile correctly but will display True False
 


 
Check Answer
 



59.     QID - 2.1048 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      try{
         RuntimeException re = null;
         throw re;
      }
      catch(Exception e){
         System.out.println(e);
      }
   }
}


 

Select 1 option

A. The code will fail to compile, since RuntimeException cannot be caught by catching an Exception.
 


B. The program will fail to compile, since re is null.
 


C. The program will compile without error and will print java.lang.RuntimeException when run.
 


D. The program will compile without error and will print java.lang.NullPointerException when run.
 


E. The program will compile without error and will run and print null.
 


 
Check Answer
 



60.     QID - 2.1006 
 

What will be the result of compiling and running the following program ?



class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{

   public static void main(String [] args) throws Exception{

      try{

         m2();

      }

      finally{ m3(); }

    }

    public static void m2() throws NewException{  throw new NewException();  }

    public static void m3() throws AnotherException{  throw new AnotherException();  }

}


 

Select 1 option

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



61.     QID - 2.870 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<String> al = new ArrayList<String>();
        al.add("111");
        al.add("222");
        System.out.println(al.get(al.size()));
     }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw a NullPointerException at run time.
 


C. It will throw an IndexOutOfBoundsException at run time.
 


D. 222
 


E. null
 


 
Check Answer
 



62.     QID - 2.1066 
 

Consider the following directory structure shown in Image 1 that displays available folders and classes and the code given below.



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements must be added to the above class?
 

[image: 2.60.DirStruct] 
 
Select 2 options

A. import com.enthu.*;
 


B. import com.*.*;
 


C. import *.*.*;
 


D. import com.*;
 


E. import com.enthu.rad.*;
 


F. import all;
 


 
Check Answer
 



63.     QID - 2.1434 
 

Given the following code:



public String getDateString(LocalDateTime ldt){

   return DateTimeFormatter.ISO_ZONED_DATE_TIME.format(ldt);

}



Which of the following statements are correct?
 

Select 1 option

A. The code will compile but will always throw a DateTimeException (or its subclass) at run time.
 


B. DateTimeException must either be caught or declared in the throws clause of this method.
 


C. The method parameter type must be changed from LocalDateTime to ZonedDateTime for it to compile.
 


D. It will return the date string as per the default time zone of the system on which it is run.
 


 
Check Answer
 



64.     QID - 2.1100 
 

Consider the following class:


class TestClass{
    void probe(int... x) { System.out.println("In ..."); }  //1
    
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(long x) { System.out.println("In long"); } //3 
    
    void probe(Long x) { System.out.println("In LONG"); } //4
    
    public static void main(String[] args){
        Integer a = 4; new TestClass().probe(a); //5
        int b = 4; new TestClass().probe(b); //6
    }
}


What will it print when compiled and run?
 

Select 2 options

A. In Integer and In long
 


B. In ... and In LONG, if //2 and //3 are commented out.
 


C. In Integer and In ..., if //4 is commented out.
 


D. It will not compile, if //1, //2, and //3 are commented out.
 


E. In LONG and In long, if //1 and //2 are commented out.
 


 
Check Answer
 



65.     QID - 2.1329 
 

Which of the following method definitions will prevent overriding of that method?
 

Select 4 options

A. public final void m1()
 


B. public static void m1()
 


C. public static final void m1()
 


D. public abstract void m1()
 


E. private void m1()
 


 
Check Answer
 



66.     QID - 3.1486 
 

What will happen on running the following program?



public class DatabaseWrapper

{

  static String url = "jdbc://derby://localhost:1527//mydb";

  static DatabaseWrapper getDatabase()

  {

     System.out.println("Getting DB");

     return null;

  }

  public static void main(String[ ] args)

  {

    System.out.println( getDatabase().url );

  }

}
 

Select 1 option

A. It will print Getting DB and jdbc://derby://localhost:1527//mydb without throwing an exception.
 


B. It will throw a NullpointerException at Runtime.
 


C. It will print jdbc://derby://localhost:1527//mydb but will NOT print Getting DB.
 


D. It will print Getting DB and then throw a NullPointerException.
 


E. It will print nothing.
 


 
Check Answer
 



Test 6 (Answered)



01.     QID - 2.1302 : Working with Java API - String, StringBuilder 
 

What will be the result of attempting to compile and run the following program?

 

public class TestClass{

   public static void main(String args[ ] ){

      StringBuilder sb = new StringBuilder("12345678");

      sb.setLength(5);

      sb.setLength(10);

      System.out.println(sb.length());

   }

}
 

Correct Option is :  B 

A. It will print 5.
Although it truncates the string to length 5 but setLength(10) will append 5 spaces (actually null chars i.e. \u0000).


B. It will print 10.
 


C. It will print 8.
 


D. Compilation error.
 


E. None of the above.
The program will compile without error and will print 10 when run.


Explanation: 
If you do System.out.println(sb); it will indeed print "12345     " (without quotes) but the length will be 10.



From javadocs:



public void setLength(int newLength)

Sets the length of the character sequence. The sequence is changed to a new character sequence whose length is specified by the argument. For every nonnegative index k less than newLength, the character at index k in the new character sequence is the same as the character at index k in the old sequence if k is less than the length of the old character sequence; otherwise, it is the null character '\u0000'. In other words, if the newLength argument is less than the current length, the length is changed to the specified length.

If the newLength argument is greater than or equal to the current length, sufficient null characters ('\u0000') are appended so that length becomes the newLength argument.



The newLength argument must be greater than or equal to 0.



Parameters:

newLength - the new length

Throws:

IndexOutOfBoundsException - if the newLength argument is negative.

 
Back to Question without Answer
 



02.     QID - 2.911 : Working with Java API - ArrayList 
 

Given the complete contents of TestClass.java file:


package x;
public class TestClass {
    ArrayList<String> al;
    public void init(){
        al = new ArrayList<>();
        al.add("Name 1");
        al.add("Name 2");
    }
    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.init();
        System.out.println("Size = "+tc.al.size());
    }
}



Which import statement should be added to make it compile?
 

Correct Option is :  C 

A. import java.lang.*;
 


B. import java.lang.ArrayList;
 


C. import java.util.ArrayList;
 


D. import java.collections.ArrayList;
 


E. No import is necessary.
 


Explanation: 
Only java.lang package and the package in which the current class exists are automatically imported.

Class ArrayList is in java.util package, which is not imported automatically.



Note that classes in the default package (i.e. the package with no name) cannot be imported by classes in other (i.e. non default) packages. This is why you should not use the default package for creating classes.

 
Back to Question without Answer
 



03.     QID - 2.1485 : Working with Java API - Time and Date 
 

Which of the following options correctly add 1 month and 1 day to a given LocalDate -



public LocalDate process(LocalDate ld){

   //INSERT CODE HERE  

   return ld2;

}
 

Correct Option is :  D 

A. LocalDate ld2 = ld.plus(Period.ofMonths(1).ofDays(1));
ofXXX are static methods of Period class. Therefore, Period.ofMonths(1).ofDays(1) will give you a Period of only 1 day. The previous call to ofMonths(1) does return an instance of Period comprising 1 month but that instance is irrelevant because ofDays is a static method.


B. LocalDate ld2 = ld.plus(new Period(0, 1, 1));
None of the new date related classes have public constructors. So using new to create their instances would be invalid.


C. LocalDate ld2 = ld.plus(new Period(31)).plus(new Period(1));
None of the new date related class have public constructors. So using new to create their instances would be invalid.

Further, a month is not necessarily equal to 31 days. The number of days added to a given month depends on the month to which you are adding a month. For example, if you add 1 month to 1st January, you will get 1 February i.e. 31 days are added. But if you add 1 month to 1st February, you will still get 1 March i.e. only 28 days are added, (or if it is a leap year, 29 days).


D. LocalDate ld2 = ld.plus(Period.of(0, 1, 1));
public static Period of(int years, int months, int days)

Obtains a Period representing a number of years, months and days.

This creates an instance based on years, months and days.


 
Back to Question without Answer
 



04.     QID - 2.1069 : Java Basics 
 

Which method declarations will enable a class to be run as a standalone program?
 

Correct Options are :  D E 

A. static void main(String args[ ])
Surprisingly, it did work on some older version of Java! It is not valid though and doesn't work with Java 1.7 onwards.


B. public void static main(String args[ ])
Remember, return type (i.e. void) and method name (i.e. main) are NEVER separated. They are always together.


C. public static main(String[ ] argv)
There always has to be return type for a method. Only constructors don't have a return type.


D. final public static void main(String [ ] array)
final only means that subclasses cannot shadow (in case of static methods) or override (in case of instance methods) it.


E. public static void main(String args[ ])
 


Explanation: 
If you run the following program by changing the accessibility from public to private and protected, it may work on some versions of Java.



However, for the purpose of Java Certification exam, it should be assumed that for the JVM to execute a class using the standard main method, the accessibility of the main method must be public.



package test;

public class TestClass{

    private static void main(String args[]){

         System.out.println("hello");

    }

}



 
Back to Question without Answer
 



05.     QID - 2.1345 : Handling Exceptions 
 

Assume that a method named 'method1' contains code which may raise a non-runtime (checked) Exception.

What is/are the possible way(s) to declare this method so that it indicates that it expects the caller to handle that exception?
 

Correct Options are :  A D 

A. public void method1() throws Throwable
 


B. public void method1() throw Exception
Note that it should be 'throws' and not 'throw'


C. public void method1() throw new Exception
This is not the right syntax.


D. public void method1() throws Exception
 


E. public void method1()
Non runtime exception must be declared in the throws clause.


 
Back to Question without Answer
 



06.     QID - 2.1280 : Using Loop Constructs 
 

In the following code what will be the output if 0 (integer value zero) is passed to loopTest()?


public class TestClass{
   public void loopTest(int x){
      loop: for (int i = 1; i < 5; i++){
         for (int j = 1; j < 5; j++){
            System.out.println(i);
            if (x == 0) {  continue loop;  }
            System.out.println(j);
         }
      }
   }
}

 

Correct Option is :  B 

A. The program will not compile.
 


B. It will print 1 2 3 4
 


C. It will print 1 1 2 3 4
 


D. It will print 1 1 2 2 3 3 4 4
 


E. Produces no output
 


Explanation: 
When x is 0, the statement continue loop; is executed. Note that loop: is for the outer loop. So, only one iteration (that too not full) is performed for the inner loop.

So, the inner loop prints the value of i only once and then next iteration of outer loop starts. 'j' is never printed. So, it prints 1 2 3 4.

 
Back to Question without Answer
 



07.     QID - 2.854 : Working with Inheritance 
 

What will be printed when the following code is compiled and run?


class A {
    public int getCode(){ return 2;}
}

class AA extends A { 
  public long getCode(){ return 3;}
}

public class TestClass {
    
    public static void main(String[] args) throws Exception {
         A a = new A();
        A aa = new AA();
        System.out.println(a.getCode()+" "+aa.getCode());
    }

    public int getCode() {
        return 1;
    }
}

 

Correct Option is :  D 

A. 2 3
 


B. 2 2
 


C. It will throw an exception at run time.
 


D. The code will not compile.
Class AA is trying to override getCode() method of class A but its return type is incompatible with the A's getCode.



When the return type of the overridden method (i.e. the method in the base/super class) is a primitive, the return type of the overriding method (i.e. the method in the sub class) must match the return type of the overridden method.



In case of Objects, the base class method can have a covariant return type, which means, it can return either return the same class or a sub class object. For example, if base class method is:

   public A getA(){ ... }

a subclass can override it with:

  public AA getA(){ ... } because AA is a subclass of A.


 
Back to Question without Answer
 



08.     QID - 2.1075 : Constructors 
 

Given the following source code, which of the lines that are commented out may be reinserted without introducing errors?


abstract class Bang{
 //abstract void f();  //(0)
   final    void g(){}
 //final    void h(){} //(1)
   protected static int i;
   private int j;
}

final class BigBang extends Bang{
 //BigBang(int n) { m = n; } //(2)
   public static void main(String args[]){
      Bang mc = new BigBang();
   }
   void h(){}
 //void k(){ i++; } //(3)
 //void l(){ j++; } //(4)
   int m;
}

 

Correct Option is :  C 

A. final void h( ) { } //(1)
It will fail because BigBang will try to override a final method.


B. BigBang(int n) { m = n; }  //(2)
It will fail since BigBang will no longer have a default constructor that is used in the main( ) method.


C. void k( ) { i++; }   //(3)
 


D. void l( ) { j++; }  //(4)
It will fail since the method will try to access a private member 'j' of the superclass.


E. abstract void f( ) ;  //(0)
If this line is inserted, then either the class BigBang will have to be declared abstract or it has to implement method f().


Explanation: 
Default constructor (having no arguments) is automatically created only if the class does not define any constructors. So as soon as //2 is inserted the default constructor will not be created.

 
Back to Question without Answer
 



09.     QID - 2.1174 : Working with Java API - String, StringBuilder 
 

What will the following program print?



public class TestClass{

  static String str = "Hello World";

  public static void changeIt(String s){

    s = "Good bye world";

  }

  public static void main(String[] args){

    changeIt(str);

    System.out.println(str);

  }

}
 

Correct Option is :  A 

A. "Hello World"
 


B. "Good bye world"
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
Theoretically, java supports Pass by Value for everything ( i.e. primitives as well as Objects). 



  . Primitives are always passed by value. 

  . Object "references" are passed by value. So it looks like the object is passed by reference but actually it is the value of the reference that is passed. 



        An  example: 

        Object o1 = new Object(); //Let us say, the object is stored at memory location 15000. 

        //Since o1 actually stores the address of the memory location where the object is stored, it contains 15000. 



        Now, when you call someMethod(o1); the value 15000 is passed to the method. 



        Inside the method someMethod():



        someMethod( Object localVar) { 

            /*localVar now contains 15000, which means it also points to the same memory location where the object is stored.

            Therefore, when you call a method on localVar, it will be executed on the same object.

            However, when you change the value of localVar itself, for example if you do localVar=null, 

            it then starts pointing to a different memory location. But the original variable o1 still 

            contains 15000 so it still points to the same object. */

        }

  

This is what happens in the this question.

In the method changeIt(...) you are giving a new value to the local variable but the original reference remains the same. 

If you need even more detailed explanation, please check http://www.javaranch.com/campfire/StoryPassBy.jsp

 
Back to Question without Answer
 



10.     QID - 2.977 : Using Operators and Decision Constructs 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 != b2){

   System.out.println("true");

} else{

   System.out.println("false");

}


 

Correct Option is :  C 

A. Compile time error.
 


B. It will print true;
 


C. It will print false;
 


D. Runtime error.
 


E. It will print nothing.
 


Explanation: 
All an if() needs is a boolean. Now, b1 != b2 returns false which is a boolean and so the expression becomes b2 = false.  It returns false which is again a boolean. So there is no error and it prints false.

Remember that every expression has a return value (which is actually the Left Hand Side of the expression). For example, The value of the expressing i = 10 , is 10 (an int).

 
Back to Question without Answer
 



11.     QID - 2.1051 : Using Operators and Decision Constructs 
 

Assuming that a valid integer will be passed in the command line as first argument, which statements regarding the following code are correct?



public class TestClass{

   public static void main(String args[]){

      int x = Integer.parseInt(args[0]);

      switch(x){

         case x < 5 :   System.out.println("BIG"); break;

         case x > 5 :   System.out.println("SMALL");

         default :    System.out.println("CORRECT"); break;

      }

   }

}
 

Correct Option is :  D 

A. BIG will never be followed by SMALL.
 


B. SMALL will never follow anything else.
 


C. SMALL will always be followed by CORRECT.
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


Explanation: 
It will say the following when compiled:



TestClass.java: incompatible types

found   : boolean

required: int

case x < 5 :        System.out.println("BIG"); break;





TestClass.java: incompatible types

found   : boolean

required: int

case x > 5 :        System.out.println("SMALL");



This is because the type of the case labels must be consistent with the type of the switch condition. Here, switch condition is an int, so the case label values must be assignable to the switch condition variable. The expression x<5 is of type boolean, which cannot be assigned it x (since it is an int).



Further, the expression in a switch statement must be of the type char, byte, short, int, Character, Byte, Short, Integer, String, or an enum. It cannot be a boolean. This is another reason the given code will not compile.



Further more, the expression in case must generate a constant value. Here, the value of the expression x<5 is not constant. It is variable. So it is invalid.

 
Back to Question without Answer
 



12.     QID - 2.864 : Handling Exceptions 
 

Java Exceptions is a mechanism ..
 

Correct Options are :  B C 

A. for dealing with unexpected user inputs.
 


B. that you can use to determine what to do when something unexpected happens.
Exceptions provide the means to separate the details of what to do when something out of the ordinary happens from the main logic of a program.

Once you get an exception, you can catch it and in the catch block you can determine what actions should be taken based on the situation. Thus, the actions that you have to take under exceptional circumstances are isolated from the main flow of the program and improves clarity of the code.


C. for logging unexpected behavior.
once you catch an exception, you can log the details.


D. to ensure that the program runs even if something unexpected happens.
While it is possible to keep the program "running", in case of an exception, that is not what exceptions mechanism is meant for. Exceptions provide the means to separate the details of what to do when something out of the ordinary happens from the main logic of a program.


E. that the VM uses to exit the program when something unexpected happens.
 


Explanation: 
The actual exam contains several questions on exceptions that contain vague statements. It is not possible to determine what exactly is meant by a particular option and so our answers are based on our interpretation of the options. To answer such questions, we recommend you to go through the following trail that explains the exceptions from Oracle's perspective:

http://docs.oracle.com/javase/tutorial/essential/exceptions/

 
Back to Question without Answer
 



13.     QID - 2.1223 : Handling Exceptions 
 

Consider the following hierarchy of Exception classes :



java.lang.RuntimeException

  +-------- IndexOutOfBoundsException

                  +---------ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException



Which of the following statements are correct for a method that can throw ArrayIndexOutOfBounds as well as StringIndexOutOfBounds Exceptions but does not have try catch blocks to catch the same?
 

Correct Options are :  B D E 

A. The method calling this method will either have to catch these 2 exceptions or declare them in its throws clause.
 


B. It is ok if it declares just throws ArrayIndexOutOfBoundsException
 


C. It must declare throws ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException
 


D. It is ok if it declares just throws IndexOutOfBoundsException
 


E. It does not need to declare any throws clause.
 


Explanation: 
Note that both the exceptions are RuntimeExceptions so there is no need to catch these. But it is ok even if the method declares them explicitly.

 
Back to Question without Answer
 



14.     QID - 2.1322 : Java Basics - OO Concepts 
 

What is meant by "encapsulation" ?
 

Correct Option is :  C 

A. There is no way to access member variable.
 


B. There are no member variables.
 


C. Member fields are declared private and public accessor/mutator methods are provided to access and change their values if needed.
 


D. Data fields are declared public and accessor methods are provided to access and change their values.
 


Explanation: 
Encapsulation is one of the 4 fundamentals of OOP (Object Oriented Programming). 



Encapsulation means that the internal representation of an object is generally hidden from view outside of the object's definition. Typically, only the object's own methods can directly inspect or manipulate its fields. Some languages like Smalltalk and Ruby only allow access via object methods, but most others (e.g. C++ or Java) offer the programmer a degree of control over what is hidden, typically via keywords like public and private.



Hiding the internals of the object protects its integrity by preventing users from setting the internal data of the component into an invalid or inconsistent state. A benefit of encapsulation is that it can reduce system complexity, and thus increases robustness, by allowing the developer to limit the interdependencies between software components.

 
Back to Question without Answer
 



15.     QID - 2.1326 : Creating and Using Arrays 
 

What will happen when the following code is compiled and run?



class AX{

  static int[] x = new int[0];

  static{

   x[0] = 10;

  }

  public static void main(String[] args){

    AX ax = new AX();

  }

}
 

Correct Option is :  C 

A. It will throw NullPointerException at runtime.
 


B. It will throw ArrayIndexOutOfBoundsException at runtime.
 


C. It will throw ExceptionInInitializerError at runtime.
The following is the output when the program is run:

java.lang.ExceptionInInitializerError

Caused by: java.lang.ArrayIndexOutOfBoundsException: 0

        at AX.<clinit>(SM.java:6)

Exception in thread "main" 

Java Result: 1



Note that the program ends with ExceptionInInitializerError because any exception thrown in a static block is wrapped into ExceptionInInitializerError and then that ExceptionInInitializerError is thrown. Remember that a static or instance initializer can only throw a RuntimeException. If you try to throw a checked exception from a static or instance initializer block to the outside, the code will not compile.


D. It will not compile.
 


Explanation: 
Even though the line x[0] = 10; will throw java.lang.ArrayIndexOutOfBoundsException, JVM will wrap it and rethrow java.lang.ExceptionInInitializerError.

 
Back to Question without Answer
 



16.     QID - 2.1301 : Handling Exceptions 
 

What is wrong with the following code written in a single file named TestClass.java?



class SomeThrowable extends Throwable { }

class MyThrowable extends SomeThrowable { }

public class TestClass{

   public static void main(String args[]) throws SomeThrowable{

      try{

         m1();

      }catch(SomeThrowable e){

         throw e;

      }finally{

         System.out.println("Done");

      }

   }

   public static void m1() throws MyThrowable{

      throw new MyThrowable();

   }

}


 

Correct Option is :  D 

A. The main declares that it throws SomeThrowable but throws MyThrowable.
That's OK. You can put a Super class in the throws clause and then you can throw any subclass exception.


B. You cannot have more than 2 classes in one file.
You sure can. The only limitation is you can have only one top level public class in a file.


C. The catch block in the main method must declare that it catches MyThrowable rather than SomeThrowable.
You can catch a subclass exception in the catch clause that catches a super class.


D. There is nothing wrong with the code and Done will be printed.
Done will be followed by an exception. Finally is always executed (Only exception is System.exit();)


 
Back to Question without Answer
 



17.     QID - 2.1294 : Working with Methods 
 

What will the code shown below print when run?

class Wrapper{
        int w = 10;
}

public class TestClass{
    
    static Wrapper changeWrapper(Wrapper w){
        w = new Wrapper();
        w.w += 9;
        return w;
    }
        
    
    public static void main(String[] args){
        Wrapper w = new Wrapper();
        w.w = 20;
        changeWrapper(w);
        w.w += 30;
        System.out.println(w.w);
        w = changeWrapper(w);
        System.out.println(w.w);
     }
}

 

Correct Options are :  B F 

A. 9
 


B. 19
 


C. 30
 


D. 20
 


E. 29
 


F. 50
 


Explanation: 
Remember that when you pass an object in a method, only its reference is passed by value. So when changeWrapper() does w = new Wrapper(); and then w.w +=9; it does not affect the original wrapper object that was passed to this method. Therefore, it prints 50.



Calling w = changeWrapper(w); replaces the original Wrapper object with the one created in the changeWrapper(w); method. Therefore, in the second print statement, it prints 19.

 
Back to Question without Answer
 



18.     QID - 2.913 : Creating and Using Arrays 
 

Which of the following statements about an array are correct?
 

Correct Option is :  E 

A. An array can dynamically grow in size.
Arrays cannot grow in size once created. ArrayLists can do that.


B. Arrays can be created only for primitive types.
You can have arrays for objects also. For example:

Object[] objArray = new Object[4];

String[] arrayOfStrings = { "a", "b" };


C. Every array has a built in property named 'size' which tells you the number of elements in the array.
It is named length and not size. ArrayList has a method named size() that returns the number of elements in the ArrayList.



String[] sa = { "a", "b" };

int k = sa.length; //k will be assigned a value of 2.



ArrayList al = new ArrayList();

int k = al.size(); //k will be assigned a value of 0.


D. Every array has an implicit method named 'length' which tells you the number of elements in the array.
 


E. Element indexing starts at 0.
 


 
Back to Question without Answer
 



19.     QID - 2.998 : Working with Inheritance 
 

What will the following program print when compiled and run?


class Game{
  public void play() throws Exception{
    System.out.println("Playing...");
  }
}

public class Soccer extends Game{
   public void play(){
      System.out.println("Playing Soccer...");      
   }
   public static void main(String[] args){
       Game g = new Soccer();
       g.play();
   }
}

 

Correct Option is :  A 

A. It will not compile.
 


B. It will throw an Exception at runtime.
 


C. Playing Soccer...
 


D. Playing...
 


E. None of these.
 


Explanation: 
Observe that play() in Game declares Exception in its throws clause. Further, class Soccer overrides the play() method without any throws clause. This is valid because a list of no exception is a valid subset of a list of exceptions thrown by the superclass method. 

Now, even though the actual object referred to by 'g' is of class Soccer, the class of the variable g is of class Game. Therefore, at compile time, compiler assumes that g.play() might throw an exception, because Game's play method declares it, and thus expects this call to be either wrapped in a try-catch or the main method to have a throws clause for the main() method.

 
Back to Question without Answer
 



20.     QID - 2.840 : Java Basics 
 

What will be the output of the following program when it is compiled and run with the command line: 



java TestClass 1 2 3



public class TestClass {

 

    public static void main(String[] args) {

        System.out.println("Values : "+args[0]+args[1]);

    }

}


 

Correct Option is :  C 

A. Values : java TestClass
 


B. Values : TestClass 1
 


C. Values : 12
 


D. Values : 23
 


E. Values : 3
 


Explanation: 
In Java, command line arguments are passed into the program using the String[] parameter to the main method. The String array contains actual parameters and does not include java and the name of the class. 



Therefore, in this case, args will point to an array of Strings with 3 elements - "1", "2", and "3". The program prints out only args[0] and args[1], which are 1 and 2.

 
Back to Question without Answer
 



21.     QID - 2.1222 : Working with Inheritance 
 

Consider the following class hierarchy


class A{
   public void m1() {   }
}
class B extends A{
   public void m1() {   }
}
class C extends B{
   public void m1(){
      /*  //1
      ... lot of code.
      */
   }
}

 

Correct Options are :  A B 

A. You cannot access class A's m1() from class C for the same object ( i.e. this).
 


B. You can access class B's m1() using super.m1() from class C.
 


C. You can access class A's m1() using ( (A) this ).m1() from class C.
Note that selection of method to be executed depends upon the actual object class. So no matter what you do, in class C you can only access C's m1() even by casting this to B or A. So, this option will not work.


D. You can access class A's m1() using super.super.m1() from class C.
 


Explanation: 
super.super is an invalid construct. So, there is no way you can access m1() of A from C.

 
Back to Question without Answer
 



22.     QID - 2.1221 : Working with Java Data Types 
 

Which of the following is illegal ?
 

Correct Option is :  D 

A. char c = 320;
This is valid because 320 is below the maximum value that a char can take, which is 2^16 -1. Remember that char can take only positive values.


B. float f = 320;
320 is an int and any valid int can be assigned to a float or a double variable without a cast. Note that f = 320.0 is not valid as 320.0 would be a double and a double can only be assigned to a double without a cast.


C. double d = 320;
This is valid because any valid int can be assigned to a double or even a float without any cast.


D. byte b = 320;
320 cannot fit into a byte so you must cast it.: byte b = (byte) 320;


E. float f = 22.0f/7.0f;
Since both the operands of / are floats, it will result in a float, which can be assigned to f. 

If you have, 22.0f/7.0, then it would not compile because 7.0 is a double and so 22.0f/7.0 will return a double, which cannot be assigned to a float.


F. None of the above is illegal.
 


 
Back to Question without Answer
 



23.     QID - 2.1429 : Working with Java API - Time and Date 
 

What will the following lines of code print



java.time.LocalDate dt = java.time.LocalDate.parse("2015-01-01").minusMonths(1).minusDays(1).plusYears(1);

System.out.println(dt);


 

Correct Option is :  D 

A. Compilation error.
 


B. Exception at run time.
 


C. 2015-12-31
 


D. 2015-11-30
The numbering for days and months starts with 1. Rest is simple math.


Explanation: 
Observe that most of the methods of LocalDate (as well as LocalTime and LocalDateTime) return an object of the same class. This allows you to chain the calls as done in this question. However, these  methods return a new object. They don't modify the object on which the method is called.

 
Back to Question without Answer
 



24.     QID - 2.1121 : Using Loop Constructs 
 

What will the following code print?


void crazyLoop(){
  int c = 0;
  JACK: while (c < 8){
    JILL: System.out.println(c);
    if (c > 3) break JACK; else c++;
  }
}

 

Correct Option is :  E 

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


Explanation: 
This is a straight forward loop that contains a labelled break statement. A labelled break breaks out of the loop that is marked with the given label. Therefore, a labelled break is used to break out from deeply nested loops to the outer loops. Here, there is only one nested loop so the break; and break JACK; are same, but consider the following code:

    public static void crazyLoop(){
      int c = 0;
      JACK: while (c < 8){
        JILL: System.out.println("c = "+c);
        for(int k = 0; k<c; k++){
            System.out.println(" k = "+k+" c = "+c);
            if (c > 3) break JACK; 
        }
        c++;
      }
    }


This code prints:

c = 0
c = 1
  k = 0 c = 1
c = 2
  k = 0 c = 2
  k = 1 c = 2
c = 3
  k = 0 c = 3
  k = 1 c = 3
  k = 2 c = 3
c = 4
  k = 0 c = 4


As you can see, in this case, break JACK; will break out from the outer most loop (the while loop). If break JACK; is replaced by break; it will print:

c = 0
c = 1
  k = 0 c = 1
c = 2
  k = 0 c = 2
  k = 1 c = 2
c = 3
  k = 0 c = 3
  k = 1 c = 3
  k = 2 c = 3
c = 4
  k = 0 c = 4
c = 5
  k = 0 c = 5
c = 6
  k = 0 c = 6
c = 7
  k = 0 c = 7


This shows that a break without a label only breaks out of the current loop.

 
Back to Question without Answer
 



25.     QID - 2.1364 : Java Basics 
 

Given the following class, which of these are valid ways of referring to the class from outside of the package com.enthu?





package com.enthu;

public class Base{

   // lot of code...

}
 

Correct Options are :  D E 

A. Base
Only if you import the whole package containing the class or import the class first.


B. By importing the package com.* and referring to the class as enthu.Base
package 'com' does not contain Base.


C. importing com.* is illegal.
It is perfectly legal but will not help here.


D. By importing com.enthu.* and referring to the class as Base.
 


E. By referring to the class as com.enthu.Base.
 


Explanation: 
A class or interface can be referred to by using its fully qualified name or its simple name.

Using the fully qualified name will always work, but to use the simple name either the class must be in the same package or it has to be imported.

By importing com.enthu.* all the classes from the package will be imported and can be referred to using simple names.

Importing com.* will not import the subpackage enthu. It will only import the classes in package com.

 
Back to Question without Answer
 



26.     QID - 2.1117 : Working with Inheritance 
 

Given the following classes, what will be the output of compiling and running the class Truck?


class Automobile{
   public void drive() {  System.out.println("Automobile: drive");   }
}

public class Truck extends Automobile{
   public void drive() {  System.out.println("Truck: drive");   }
   public static void main (String args [ ]){
      Automobile  a = new Automobile();
      Truck t  = new Truck();
      a.drive(); //1
      t.drive(); //2
      a = t;     //3
      a.drive(); //4
   }
}



//End of Code
 

Correct Option is :  D 

A. Compiler error at line 3.
 


B. Runtime error at line 3.
 


C. It will print: 

Automobile: drive 

Truck: drive 

Automobile: drive 

in that order.
 


D. It will print: 

Automobile: drive

Truck: drive

Truck: drive 

in that order.
 


E. It will print: 

Automobile: drive

Automobile: drive

Automobile: drive

in that order.
 


Explanation: 
Since Truck is a subclass of Automobile, a = t will be valid at compile time as well at runtime. But a cast is needed to make t = (Truck) a; work. This will be ok at compile time but if at run time 'a' does not refer to an object of class Truck, a ClassCastException will be thrown. Now, method to be executed is decided at run time and it depends on the actual class of object referred to by the variable. Here, at line 4, variable a refers to an object of class Truck. So Truck's drive() will be called which prints Truck: drive. This is polymorphism in action!

 
Back to Question without Answer
 



27.     QID - 2.1432 : Working with Java API - Time and Date 
 

What will the following line of code print?

 System.out.println(LocalDate.of(2015, Month.JANUARY, 01).format(DateTimeFormatter.ISO_DATE_TIME));
 

Correct Option is :  E 

A. 01 Jan 2015
 


B. 01 January 2015 00:00:00
 


C. 2015-01-01
 


D. 2015-01-01T00:00:00
 


E. Exception at run time.
Observe that you are creating a LocalDate and not a LocalDateTime. LocalDate doesn't have time component and therefore, you cannot format it with a formatter that expects time component such as DateTimeFormatter.ISO_DATE_TIME. 

Thus, it will print java.time.temporal.UnsupportedTemporalTypeException: Unsupported field: HourOfDay exception message.



If you use DateTimeFormatter.ISO_DATE, it will print 2015-01-01

.



Also, remember that a LocalDateTime object can be formatted using a DateTimeFormatter.ISO_DATE though.


 
Back to Question without Answer
 



28.     QID - 2.1260 : Handling Exceptions 
 

What will be the output of the following class.





class Test{

   public static void main(String[] args){

      int j = 1;

      try{

         int i = doIt() / (j = 2);

      } catch (Exception e){

         System.out.println(" j = " + j);

      }

   }

   public static int doIt() throws Exception {  throw new Exception("FORGET IT");  }

}


 

Correct Option is :  A 

A. It will print j = 1;
 


B. It will print j = 2;
 


C. The value of j cannot be determined.
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
If evaluation of the left-hand operand of a binary operator completes abruptly, no part of the right-hand operand appears to have been evaluated.

So, as doIt() throws exception, j = 2 never gets executed.

 
Back to Question without Answer
 



29.     QID - 2.1234 : Working with Inheritance 
 

Consider the following code:



public abstract class TestClass{

    public abstract void m1();

    public abstract void m2(){

        System.out.println("hello");

    }

}



Which of the following corrections can be applied to the above code (independently) so that it compiles without any error?
 

Correct Options are :  A C 

A. Replace the method body of m2() with a ; (semi-colon).
 


B. Replace the ; at the end of m1() with a method body.
 


C. Remove abstract from m2().
A method that has a body cannot be abstract. In other words, an abstract method cannot have a body. So either remove the method body (as in m1()) or remove abstract keyword.


D. Remove abstract from the class declaration.
 


 
Back to Question without Answer
 



30.     QID - 2.828 : Java Basics 
 

Consider the following code appearing in a file named TestClass.java:



class Test{ }  // 1



public class TestClass {



   public int main(String[] args)  { // 2



       double x=10, double y;  // 3



       System.out.println[]; // 4

       

        for(int k =0; k<x; k++){ } //5

        

       return 0;

   }

}



Which of the lines are invalid?
 

Correct Option is :  B 

A. // 1 and // 4
 


B. // 3 and // 4
 


C. // 2 and // 4
 


D. // 2 and // 3
 


Explanation: 
// 1 is valid because it is a valid code that declares a class.



// 2 is a valid declaration of a method named main. Although, it is not a correct declaration for the standard main method that can be used to execute the class, but it is a valid method nevertheless.



// 3 is invalid syntax. It can be written as either double x=10; double y;  or double x=10, y; 

Note that even though x is a double and 10 is an int, it is valid because 10 will automatically be converted to a double. The reverse would not be valid i.e. int x = 10.0; will be invalid. 

You need a cast for that: int x = (int) 10.0;



//4 is invalid because println is not a class name. So you cannot create an array of it. println is a method. So it should be written as System.out.println();



//5 is a valid declaration of a for loop.

 
Back to Question without Answer
 



31.     QID - 2.1050 : Using Loop Constructs 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      for (i=1 ;  i<5  ; i++) continue;  //(1)
      for (i=0 ;       ; i++) break;       //(2)
      for (    ; i<5?false:true ;    );     //(3)
   }
}

 

Correct Option is :  A 

A. The code will compile without error and will terminate without problems when run.
 


B. The code will fail to compile, since the continue can't be used this way.
 


C. The code will fail to compile, since the break can't be used this way.
 


D. The code will fail to compile, since the for statement in line 2 is invalid.
 


E. The code will compile without error but will never terminate.
the condition part is 'false' so the control will never go inside the loop.


Explanation: 
A continue statement can occur in and only in a for, while or do-while loop. A continue statement means: Forget about the rest of the statements in the loop and start the next iteration. 

So, 

for (i=1 ;  i<5  ; i++) continue; just increments the value of i up to 5 because of i++.



for (i=0 ;       ; i++) break; iterates only once because of the break so the value of i becomes 0.



for (    ; i<5?false:true ;    ); never iterates because i is less than 5 (it is 0 because of //2) and the condition expression is false!



At the end of the code, the value of i is 0.

 
Back to Question without Answer
 



32.     QID - 2.856 : Working with Methods 
 

Consider the following code:



public class MyClass {



  protected int value = 10;



}



Which of the following statements are correct regarding the field value?
 

Correct Option is :  D 

A. It cannot be accessed from any other class.
 


B. It can be read but cannot be modified from any other class.
 


C. It can be modified but only from a subclass of MyClass.
It can also be modified from any class defined in the same package.


D. It can be read and modified from any class within the same package or from any subclass of MyClass.
 


 
Back to Question without Answer
 



33.     QID - 2.994 : Working with Java Data Types 
 

Assume that a, b, and c refer to instances of primitive wrapper classes. Which of the following statements are correct?
 

Correct Options are :  A E 

A. a.equals(a) will always return true.
 


B. b.equals(c) may return false even if c.equals(b) returns true.
 


C. a.equals(b) returns same as a == b.
The wrapper classes's equals() method overrides Object's equals() method to compare the actual value instead of the reference.


D. a.equals(b) throws an exception if they refer to instances of different classes.
It returns false in such a case.


E. a.equals(b) returns false if they refer to instances of different classes.
 


Explanation: 
Equals method of a primitive wrapper class ( e.g. java.lang.Integer, Double, Float etc) are

 1. symmetric => a.equals(b) returns same as b.equals(a)

 2. transitive => if a.equals(b) and b.equals(c) return true, then a.equals(c) returns true.

 3. reflexive => a.equals(a) return true.



For example, the following code for the equals method on Integer explains how it works:

public boolean equals(Object obj) {

   if (obj instanceof Integer) {

       return value == ((Integer)obj).intValue();

   }

   return false;

}

 
Back to Question without Answer
 



34.     QID - 2.1463 : Working with Java API - ArrayList 
 

What will the following code print?



List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

if(s1.remove("a")){

    if(s1.remove("a")){

        s1.remove("b");

    }else{

        s1.remove("c");

    }

}

System.out.println(s1);
 

Correct Option is :  B 

A. [b]
 


B. [c]
 


C. [b, c, a]
 


D. [a, b, c, a]
 


E. Exception at runtime
 


Explanation: 
ArrayList's remove(Object ) method removes the first occurence of the given element and returns true if found. It does not remove all occurences of the element. In this case, the first call to s1.remove("a"); will remove only the first "a" and return true, the second call to remove("a") will remove the second "a" and return true. Finally, the call to remove("b") will remove "b". Therefore, only "c" will be left in the list.



The JavaDoc API description of this method is important for the exam - 



public boolean remove(Object o)

Removes the first occurrence of the specified element from this list, if it is present (optional operation). If this list does not contain the element, it is unchanged. More formally, removes the element with the lowest index i such that (o==null ? get(i)==null : o.equals(get(i))) (if such an element exists). Returns true if this list contained the specified element (or equivalently, if this list changed as a result of the call).

 
Back to Question without Answer
 



35.     QID - 2.1454 : Using Loop Constructs 
 

You have been given an array of objects and you need to process this array as follows - 

1. Call a method on each object from first to last one by one.

2. Call a method on each object from last to first one by one.

3. Call a method on only those objects at even index (0, 2, 4, 6, etc.)



Which of the following are correct?
 

Correct Option is :  B 

A. Enhanced for loops can be used for all the three tasks.
 


B. Enhanced for loop can be used for only the first task. For the rest, standard for loops can be used.
 


C. Standard for loops can be used for tasks 1 and 2 but not 3.
 


D. All the tasks can be performed either by using only standard for loops or by using only enhanced for loops.
 


E. Neither standard for loops nor enhanced for loops can be used for all three tasks.
 


Explanation: 
The enhanced for loop is tailor made for processing each element of a collection (or an array) in order. Most importantly, it does not give you an iterating variable that you can manipulate and that makes it impossible to change the order or to skip an element. Therefore, tasks 2 and 3 cannot be done by an enhanced for loop.



The standard for loop is very flexible. It can do pretty much anything. Here is how you can do task 2 and 3 using a standard for loop - 



//processing in reverse

for(int i=arr.length-1; i>=0; i--){

  arr[i].m1(); 

}



//processing alternate

for(int i=0; i<arr.length; i=i+2){

  arr[i].m1(); 

}

 
Back to Question without Answer
 



36.     QID - 2.1080 : Java Basics 
 

Which of the following are valid declarations of the standard main method?
 

Correct Options are :  D E 

A. static void main(String args[ ]) { }
Although practically correct but for the purpose of this exam you should not select this option because the method is not declared public.


B. public static int main(String args[ ]) {}
This method returns an 'int' instead of 'void'.


C. public static void main (String args) { }
The method takes only one String instead of String[].


D. final static public void main (String[ ] arguments ) { }
 


E. public static void main (String[ ] args) { }
 


Explanation: 
A valid declaration of "the" main() method must be public and static, should return void, and should take a single array of Strings as a parameter.



The order of the static and public keywords is irrelevant. But the return type should always come just before the method name.



Applying final to the method does not change the method signature.



In some versions of JDK, even a private or protected main() method works from command line. However, for the purpose of Java Certification exam, it should be assumed that for the JVM to execute a class using the standard main method, the accessibility of the main method must be public.

 
Back to Question without Answer
 



37.     QID - 2.1191 : Creating and Using Arrays 
 

Which of the following code fragments will successfully initialize a two-dimensional array of chars named cA with a size such that cA[2][3] refers to a valid element?



1.

  char[][] cA = {  { 'a', 'b', 'c' },  { 'a', 'b', 'c' }   };

2.

  char cA[][] = new char[3][];

  for (int i=0; i<cA.length; i++) cA[i] = new char[4];

3.

  char cA[][] = { new char[ ]{ 'a', 'b', 'c' }  ,   new char[ ]{ 'a', 'b', 'c' }  };

4

  char cA[3][2] = new char[][] {  { 'a', 'b', 'c' },   { 'a', 'b', 'c' }   };

5.

  char[][] cA = { "1234", "1234",  "1234"  };
 

Correct Option is :  E 

A. 1, 3
 


B. 4, 5
 


C. 2, 3
 


D. 1, 2, 3
 


E. 2
 


Explanation: 
1 and 3 declare a two dimensional array alright but they create the array of size 2, 3. And cA[2][3] means we need an array of

size 3, 4 because the numbering starts from 0.

4 : You cannot put array size information on left hand side of equals sign.

5 : This is a one dimensional array and that too of strings. Note that a java String is not equivalent to 1 dimensional array of chars.

This leaves us with only one choice 2.

 
Back to Question without Answer
 



38.     QID - 2.1202 : Creating and Using Arrays 
 

What would be the result of trying to compile and run the following program?

public class Test{

   int[] ia = new int[1];

   Object oA[]  = new Object[1];

   boolean bool;

   public static void main(String args[]){

      Test test = new Test();

      System.out.println(test.ia[0] + "  " + test.oA[0]+"  "+test.bool);

   }

}
 

Correct Option is :  C 

A. The program will fail to compile, because of uninitialized variable 'bool'.
No, All the instance variables are initialized by default values.


B. The program will throw a java.lang.NullPointerException when run.
No reason for this at all.


C. The program will print "0 null false".
 


D. The program will print "0 null true".
All the variables, including the array elements, will be initialized to their default values.


E. The program will print null and false but will print junk value for ia[0].
All the elements of the arrays of primitives are initialized to default values.


Explanation: 
Following are the default values that instance variables are initialized with if not initialized explicitly:

  types (byte, short, char, int, long, float, double) to 0 ( or 0.0 ).

All Object types to null.

boolean to false.

 
Back to Question without Answer
 



39.     QID - 2.839 : Working with Inheritance 
 

How can you fix the following code to make it compile:

import java.io.*;
class Great {
    public void doStuff() throws FileNotFoundException{
    }    
}

class Amazing extends Great { 
  public void doStuff() throws IOException, IllegalArgumentException{
  }    
}

public class TestClass {
    public static void main(String[] args) throws IOException{
        Great g = new Amazing();
        g.doStuff();
    }
}

Assume that changes suggested in a option are to be applied independent of other options.
 

Correct Options are :  A D 

A. Change doStuff in Amazing to throw only IllegalArgumentException.
IllegalArgumentException extends from RuntimeException. So you don't have to worry about it at least at compile time. You may or may not declare it in the throws clause. The caller doesn't have to catch it anyway.

The overriding method in the subclass is free to not throw any checked exception at all even if the overridden method throws a checked exception. No exception is a valid subset of exceptions thrown by the overridden method.


B. Change doStuff in Great to throw FileNotFoundException and IllegalArgumentException.
 


C. Change doStuff in Amazing to throw only IOException.
 


D. Change doStuff in Great to throw only IOException instead of FileNotFoundException.
 


E. Replace g.doStuff() to ((Amazing) g).doStuff().
 


Explanation: 
The rule is that an overriding method cannot throw an exception that is a super class of the exception thrown by the overridden method. 



Now, FileNotFoundException is a subclass of IOException. Therefore, Amazing's doStuff() cannot throw IOException if the base class's doStuff throws only FileNotFoundException. 



Think of it this way:



FileNotFoundException fne = new IOException(); // Will this work? No, because an IOException is NOT a FileNotFoundException.

IOException ioe = new FileNotFoundException(); // Will this work? Yes, because a FileNotFoundException is an IOException.



Therefore, overriding method must not throw an exception that cannot be assigned to a variable whose class is the class of the overridden method's exception.

 
Back to Question without Answer
 



40.     QID - 2.1111 : Using Operators and Decision Constructs 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 == false){

   System.out.println("true");

} else{

   System.out.println("false");

}
 

Correct Option is :  B 

A. Compile time error.
 


B. It will print true
 


C. It will print false
 


D. Runtime error.
 


E. It will print nothing.
 


Explanation: 
All that if() needs is a boolean, now b1 == false returns true, which is a boolean and since b2 = true is an expression and every expression has a return value (which is the Left Hand Side of the expression), it returns true, which is again a boolean.



FYI: the return value of expression  i = 10;  is 10 (an int).

 
Back to Question without Answer
 



41.     QID - 2.1185 : Working with Java API - String, StringBuilder 
 

What will the following code print?



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    sb.append(s.substring(4)).delete(3, 5);

    System.out.println(sb);
 

Correct Option is :  C 

A. blorbloo
 


B. bloper
 


C. bloerper
s.substring(4) => "blooper".substring(4) => per

sb.append(s.substring(4)).delete(3, 5); => "blooperper".delete(3, 5) => bloerper


D. blooperper
 


E. bloo
 


Explanation: 
Please read the following description of substring method of String and delete method of StringBuilder:



public String substring(int beginIndex)

  Returns a new string that is a substring of this string. The substring begins with the character at the specified index and extends to the end of this string. 

Examples: 

 "unhappy".substring(2) returns "happy"

 "Harbison".substring(3) returns "bison"

 "emptiness".substring(9) returns "" (an empty string)





public StringBuilder delete(int start, int end)

  Removes the characters in a substring of this sequence. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. If start is equal to end, no changes are made.

 
Back to Question without Answer
 



42.     QID - 2.833 : Working with Methods 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showTwo(200);
        System.out.println(ct.myValue);
        ct.showOne(100);
        System.out.println(ct.myValue);
    }
}

 

Correct Option is :  E 

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


E. 200 followed by 200.
 


F. 200 followed by 100
 


Explanation: 
There are a couple of important concepts in this question:



1. Within an instance method, you can access the current object of the same class using 'this'. Therefore, when you access this.myValue, you are accessing the instance member myValue of the ChangeTest instance.



2. If you declare a local variable (or a method parameter) with the same name as the instance field name, the local variable "shadows" the member field. Ideally, you should be able to access the member field in the method directly by using the name of the member (in this example, myValue). However, because of shadowing, when you use myValue, it refers to the local variable instead of the instance field.



In showTwo method, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. Ideally, you should be able to access the member field in the method directly by using the name myValue but in this case, the method parameter shadows the member field because it has the same name.  So by doing this.myValue, you are changing the instance variable myValue by assigning it the value contained in local variable myValue, which is 200. So in the next line when you print ct.myValue, it prints 200.



Now, in the showOne method also, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. So when you use myValue, you are actually using the method parameter instead of the member field.



Therefore, when you do : myValue = myValue; you are actually assigning the value contained in method parameter myValue to itself. You are not changing the member field myValue. Hence, when you do System.out.println(ct.myValue); in the next line, it still prints 200.

 
Back to Question without Answer
 



43.     QID - 2.1027 : Working with Java Data Types 
 

What will the following code print when run?


public class TestClass{	
    public static Integer wiggler(Integer x){
       Integer y = x + 10;
       x++;
       System.out.println(x);
       return y;
    }

    public static void main(String[] args){
       Integer dataWrapper = new Integer(5);
       Integer value = wiggler(dataWrapper);
       System.out.println(dataWrapper+value);
    }
}


 

Correct Option is :  C 

A. 5 and 20
 


B. 6 and 515
 


C. 6 and 20
 


D. 6 and 615
 


E. It will not compile.
 


Explanation: 
1. Wrapper objects are always immutable. Therefore, when dataWrapper is passed into wiggler() method, it is never changed even when x++; is executed. However, x, which was pointing to the same object as dataWrapper, is assigned a new Integer object (different from dataWrapper) containing 6.



2. If both the operands of the + operator are numeric, it adds the two operands. Here, the two operands are Integer 5 and Integer 15, so it unboxes them, adds them, and prints 20.

 
Back to Question without Answer
 



44.     QID - 2.918 : Using Operators and Decision Constructs 
 

Given:



int a = 1 + 2 + 3 * 4;

int b = 2 * 3 + 4;



int total = a + b;



What will be the value of total?
 

Correct Option is :  D 

A. 34
 


B. 38
 


C. 29
 


D. 25
Multiplication has more precedence than addition. So this will be evaluated as:

int a = 1 + 2 + (3 * 4); 

3+12

15



int b = 2 * 3 + 4;

6+4

10



So, total = 25


Explanation: 
You may get a few very simple questions about operator preference. Simple school math trick of BODMAS can be used to evaluate the expressions.



B Brackets first 

O Orders (i.e. Powers and Square Roots, etc.) 

DM Division and Multiplication (left-to-right) 

AS Addition and Subtraction (left-to-right)

 
Back to Question without Answer
 



45.     QID - 2.1044 : Using Loop Constructs 
 

What will be the output if you run the following program?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0 ; j < 1 ; ++j , i++){
         System.out.println( i + " " + j );
      }
      System.out.println( i + " " + j );
   }
}

 

Correct Option is :  D 

A. 0 0 will be printed twice.
 


B. 1 1 will be printed once.
 


C. 0 1 will be printed followed by 1 2.
 


D. 0 0 will be printed followed by 1 1.
 


E. It will print 0 0 and then 0 1.
 


Explanation: 
j will be less than 1 for only the first iteration. So, first it will print 0, 0. Next, i and j are incremented.

  Because j is not less than 1 at the start of the loop, the condition fails and it comes out of the loop. Finally, it will print 1,1.

 
Back to Question without Answer
 



46.     QID - 2.1054 : Working with Java API - String, StringBuilder 
 

What will be written to the standard output when the following program is run?



public class TrimTest{

   public static void main(String args[]){

      String blank  = " ";  // one space

      String line = blank + "hello" + blank + blank;

      line.concat("world");

      String newLine  =  line.trim();

      System.out.println((int)(line.length() + newLine.length()));

   }

}
 

Correct Option is :  E 

A. 25
 


B. 24
 


C. 23
 


D. 22
 


E. None of the above.
It will print 13 !!!


Explanation: 
Note that line.concat("world") does not change line itself. It creates a new String object containing " hello  world" but it is lost because there is no reference to it.

Similarly, calling trim() does not change the object itself.

So the answer is 8 + 5 = 13 !

 
Back to Question without Answer
 



47.     QID - 2.1000 : Handling Exceptions 
 

What will the following code print when run?





public class Test {



    static String s = "";



    public static void m0(int a, int b) {

        s += a;

        m2();

        m1(b);

    }



    public static void m1(int i) {

        s += i;

    }



    public static void m2() {

        throw new NullPointerException("aa");

    }



    public static void m() {

        m0(1, 2);

        m1(3);

    }



    public static void main(String args[]) {

        try {

            m();

        } catch (Exception e) {

        }

        System.out.println(s);

    }

}


 

Correct Option is :  A 

A. 1
 


B. 12
 


C. 123
 


D. 2
 


E. It will throw exception at runtime.
 


Explanation: 
Try to follow the control flow:



1. m() calls m0(1, 2). 

2. m0(1, 2) first executes s += 1 (so s is now 1) and then calls m2(). 

3. Now, m2() throws an exception which is not caught by m2() so it is propagated back to m0(1, 2). Since, within m0 method, the call to m2() is not wrapped in a try catch block, this exception further propagates up to m(). ( The next line in m0(1, 2), which is m1(2), is not executed ). 

4. Again, m() also does not have the try catch block so the same exception is further propagated up to the main() method. (The next line in m(), which is a call to m1(3) is not called). 

4. In main method, the call to m() is wrapped in a try catch block and so the exception is handled here. 

5. Finally, s stays as "1".



The point to note here is that if you do not catch an exception, it is propagated up the stack of method calls until it is handled. If nobody handles it, the JVM handles that exception and kills the thread. If that thread is the only user thread running, the program ends.

 
Back to Question without Answer
 



48.     QID - 2.872 : Working with Inheritance 
 

Consider the following classes:


class A {
      public int getCode(){ return 2;}
}

class AA extends A { 
  public void doStuff() { 
  } 
}


Given the following two declarations, which of the options will compile?
   A a = null;
   AA aa = null;

 

Correct Options are :  A B D F 

A. a = (AA)aa;
 


B. a = new AA();
 


C. aa = new A();
 


D. aa = (AA) a;
a is declared as a reference of class A and therefore, at run time, it is possible for a to point to an object of class AA (because A is a super class of AA). 

Hence, the compiler will not complain. Although if a does not point to an object of class AA at run time, a ClassCastException will be thrown.


E. aa = a;
A cast is required because the compiler needs to be assured that at run time a will point to an object of class AA.


F. ((AA)a).doStuff();
Once you cast a to AA, you can call methods defined in AA. Of course, if a does not point to an object of class AA at runtime, a ClassCastException will be thrown.

In this particular case, a NullPointerException will be thrown because a points to null and a null can be cast to any class.


 
Back to Question without Answer
 



49.     QID - 2.1268 : Using Loop Constructs 
 

Which of these for statements are valid?


1. for (int i=5; i=0; i--) { }

2.  int j=5;
      for(int i=0, j+=5;  i<j ; i++) {  j--;  }

3. int i, j;
    for (j=10; i<j; j--) { i += 2; }

4. int i=10;
    for ( ; i>0 ; i--) { }

5. for (int i=0, j=10; i<j; i++, --j) {;}


 

Correct Option is :  D 

A. 1, 2
 


B. 3, 4
 


C. 1, 5
1 is not valid.


D. 4, 5
 


E. 5
 


Explanation: 
No 1.

uses '=' instead of '==' for condition which is invalid. The loop condition must be of type boolean.



No 2.

uses 'j +=5'. Now, this statement is preceded by 'int i=0,' and that means we are trying to declare variable j. But it is already declared before the for loop. If we remove the int in the initialization part and declare i before the loop then it will work. But if we remove the statement int j = 5; it will not work because compiler will try to do j = j+5 and you can't use the variable before it is initialized. Although the compiler gives a message 'Invalid declaration' for j += 5, it really means the above mentioned thing.



No 3. i is uninitialized.



No 4. is valid. It contains empty initialization part.



No 5.

This is perfectly valid. You can have any number of comma separated statements in initialization and incrementation part. The condition part must contain a single expression that returns a boolean.

All a for loop needs is two semi colons :-

for( ; ; ) {} This is a valid for loop that never ends. A more concise form for the same is : for( ; ; );

 
Back to Question without Answer
 



50.     QID - 2.1151 : Working with Java Data Types 
 

Given that TestClass is a class, how many objects and reference variables are created by the following code?



TestClass t1, t2, t3, t4;

 t1 = t2 = new TestClass();

 t3 = new TestClass();


 

Correct Option is :  B 

A. 2 objects, 3 references.
 


B. 2 objects, 4 references.
two news => two objects. t1, t2, t3, t4 => 4 references.


C. 3 objects, 2 references.
 


D. 2 objects, 2 references.
 


E. None of the above.
 


Explanation: 
A declared reference variable exists regardless of whether a reference value (i.e. an object) has been assigned to it or not.

 
Back to Question without Answer
 



51.     QID - 2.1019 : Working with Inheritance 
 

You are modeling a class hierarchy for living things. You have a class LivingThing which has an abstract method reproduce().

Now, you want to have 2 concrete subclasses of LivingThing - Plant and Animal. Both do reproduce but the mechanisms are different. What would you do?
 

Correct Option is :  C 

A. Overload the reproduce method in Plant and Animal classes
 


B. Overload the reproduce method in LivingThing class.
 


C. Override the reproduce method in Plant and Animal classes
 


D. Either overload or override reproduce in Plant and Animal classes, it depends on the preference of the designer.
 


Explanation: 
This kind of scenario where the subclass HAS the behavior of the base class but implements it in a different way is called as overriding. Here, both Plant and Animal reproduce, so they have the behavior of the base class but they do it differently, so you have to override the base class method in their code. Inheritance is always involved in overriding.

Overloading is quite different, when you want to do similar (not same) things but the inputs are different then you overload a method. For example, you may have two add methods:

add(int i1, int i2) and add(ComplexNo c1, ComplexNo c2). Here both are doing similar things (that is why both are named as add) but inputs are different. Both are two entirely different methods and there is no inheritance involved.

 
Back to Question without Answer
 



52.     QID - 2.965 : Using Operators and Decision Constructs 
 

Consider the following program:


public class TestClass{
   public static void main(String[] args)  {     calculate(2);    }
   public static void calculate(int x){
      String val;
      switch(x){
         case 2:
         default:
         val = "def";
      }
      System.out.println(val);
   }
}


What will happen if you try to compile and run the program?
 

Correct Options are :  B D 

A. It will not compile saying that variable val may not have been initialized..
 


B. It will compile and print def
 


C. As such it will not compile but it will compile if calculate(2); is replaced by calculate(3);
 


D. It will compile for any int values in calculate(...);
 


Explanation: 
When you try to access a local variable, the compiler makes sure that it is initialized in all the cases. If it finds that there is a case in which it may not be initialized then it flags an error. For example:



int i;

if( somecondition) i = 20;

int k = i;



Here, if some condition returns false, then i remains uninitialized hence the compiler flags an error.

In the given question:

As there is no break after case 2, val will always be initialized in the switch block. So it will compile and run fine.

Note that it will not compile if break is placed after case 2 because the compiler will figure out that in certain cases val may be left uninitialized.

 
Back to Question without Answer
 



53.     QID - 2.1459 : Java Basics - OO Concepts 
 

You are asked to develop an application for a car rental company. As a part of that, you are given the following requirements - 

1. Implement three classes -  Car, SUV, and MiniVan, where the Car class is the super class of SUV as well as MiniVan.

2. Implement method int getDailyRate()  that returns the daily price of the car.

3. Implement method void printDetails() that prints the details of the car.



Which of the following definition of Car class adds a valid layer of abstraction to the class hierachy?
 

Correct Option is :  C 

A. public abstract class Car{

   public abstract int getDailyRate();

   public void printDetails(){

    // code for printing details goes here

   }

}
Since Car class does not know the details of SUV and MiniVan, you can't provide the code for them in this class. Therefore, you should make this method abstract.


B. public abstract class Car{

   public int getDailyRate();

   public void printDetails();

}
This is invalid because of the lack of abstract keyword on the methods. This will not compile and is, therefore, an obviously wrong answer.


C. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails();

}
As per the given information, Car could be an abstract class with two methods. You need to make these two methods abstract so that concrete classes such as SUV and MiniVan will be forced to provide appropriate implementations of these methods.


D. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails(){

    // code for printing details goes here

   }

}
A method that has code cannot be abstract and vice-versa. This will not compile and is, therefore, an obviously wrong answer.


Explanation: 
The problem statement is very ambiguous and there are multiple valid implementations. You will need to draw clues from the options and select the best option by eliminating options that are obviously wrong. Expect such questions in the exam.

 
Back to Question without Answer
 



54.     QID - 2.1335 : Using Operators and Decision Constructs 
 

Consider the code shown below:


public class TestClass{
  public static int switchTest(int k){
     int j = 1;
     switch(k){
        case 1: j++;
        case 2: j++;
        case 3: j++;
        case 4: j++;
        case 5: j++;
        default : j++;
     }
     return j + k;
  }
  public static void main(String[] args){
     System.out.println( switchTest(4) );
  }
}


What will it print when compiled and run?
 

Correct Option is :  D 

A. 5
 


B. 6
 


C. 7
 


D. 8
 


E. 9
 


Explanation: 
The control in the case falls through till reaches the break statement.

Here, switch(4) will take the control to case 4:.

Now since there is no break statement, all the statements till the end will be executed. So j will be incremented 3 time making it 4. finally 4 + 4 i.e. 8 will be returned.

 
Back to Question without Answer
 



55.     QID - 2.1381 : Creating and Using Arrays 
 

What will the following code print when compiled and run?



int [] [] array = {{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}};

int[] arr1 = array[4];

System.out.println (arr1[4][1]);

System.out.println (array[4][1]);


 

Correct Option is :  D 

A. 1

1
 


B. 1

4
 


C. 4

1
 


D. It will not compile.
arr1 is an array of one dimension. But arr1[4][1] is trying to access it as a two dimensional array. This will, therefore, not compile.


E. It will throw ArrayIndexOutOfBoundsException at run time.
 


F. It will throw IllegalArgumentException at run time.
 


 
Back to Question without Answer
 



56.     QID - 2.1441 : Using Operators and Decision Constructs 
 

You are writing a piece of code that determines tax rate on a given grossIncome. The tax rate is to be computed as follows - 

   If grossIncome is less than or equals to 18000, taxRate is 0.

   If grossIncome is more than 18000 but less than or equal to 36000, taxRate is 10%

   If grossIncome is more than 36000, taxRate is 20%.



Which of following code fragments do it correctly?
 

Correct Options are :  A C E 

A. double taxRate = grossIncome<=18000 ? 0 : (grossIncome<=36000) ? .1 : .2;
 


B. double taxRate = .2;

taxRate = grossIncome<=18000?0:.1;

taxRate = grossIncome<=36000?.1:.2;
It will assign .1 to taxRate even if grossIncome is less than 18000.


C. double taxRate = 0;

if(grossIncome>36000) taxRate = .20;

if(grossIncome>18000 && grossIncome<=36000) taxRate = .10;
 


D. double taxRate = .2;

if(grossIncome>36000) {

   taxRate = .2;

}else taxRate = 0;

if(grossIncome>18000 ) {

   taxRate = .1;

}
This will assign .1 to taxRate even if grossIncome is greater than 36000.


E. double taxRate = 0;

taxRate = grossIncome>18000?grossIncome<=36000?.1:.2:0;
 


Explanation: 
This question is assigned a rating of tough only because it is a bit time consuming to check each option. Otherwise, it is quite easy to figure out what each option is doing. You may expect such questions in the exam.

 
Back to Question without Answer
 



57.     QID - 2.1419 : Java Basics - OO Concepts 
 

Encapsulation ensures that ...
 

Correct Option is :  B 

A. classes are able to inherit functionality from other classes.
 


B. classes expose only certain fields and methods to other classes for access.
 


C. classes designate certain methods to be abstract and let them be implemented by subclasses.
 


D. a method that takes a class X object as a parameter can be passed an object of a subclass of X.
 


 
Back to Question without Answer
 



58.     QID - 2.1325 : Using Operators and Decision Constructs 
 

What will be the result of attempting to compile and run the following class?


public class IfTest{
   public static void main(String args[]){
      if (true)
      if (false)
      System.out.println("True False");
      else
      System.out.println("True True");
   }
}

 

Correct Option is :  D 

A. The code will fail to compile because the syntax of the if statement is not correct.
It is perfectly valid.


B. The code will fail to compile because the values in the condition bracket are invalid.
Any expression that returns a boolean is valid. false and true are valid expressions that return boolean.


C. The code will compile correctly and will not display anything.
 


D. The code will compile correctly and will display True True.
 


E. The code will compile correctly but will display True False
 


Explanation: 
This code can be rewritten as follows:

public class IfTest{
    public static void main(String args[]) {
        if (true) {
            if (false) {
                System.out.println("True False");
            } else {
                System.out.println("True True");
            }
        }
    }
}


Notice how the last "else" is associated with the last "if" and not the first "if". Now, the first if condition returns true so the next 'if' will be executed. In the second 'if' the condition returns false so the else part will be evaluated which prints 'True True'.

 
Back to Question without Answer
 



59.     QID - 2.1048 : Handling Exceptions 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      try{
         RuntimeException re = null;
         throw re;
      }
      catch(Exception e){
         System.out.println(e);
      }
   }
}


 

Correct Option is :  D 

A. The code will fail to compile, since RuntimeException cannot be caught by catching an Exception.
RuntimeException can be caught by catch(Exception e) statement because RuntimeException is a subclass of Exception.


B. The program will fail to compile, since re is null.
 


C. The program will compile without error and will print java.lang.RuntimeException when run.
 


D. The program will compile without error and will print java.lang.NullPointerException when run.
A NullPointerException will be thrown if the expression given to the throw statement results in a null pointer.


E. The program will compile without error and will run and print null.
 


Explanation: 
The try block generates NullPointerException which will be caught by the catch block.

 
Back to Question without Answer
 



60.     QID - 2.1006 : Handling Exceptions 
 

What will be the result of compiling and running the following program ?



class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{

   public static void main(String [] args) throws Exception{

      try{

         m2();

      }

      finally{ m3(); }

    }

    public static void m2() throws NewException{  throw new NewException();  }

    public static void m3() throws AnotherException{  throw new AnotherException();  }

}


 

Correct Option is :  A 

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
m2() throws NewException, which is not caught anywhere. But before exiting out of the main method, finally must be executed. Since finally throw AnotherException (due to a call to m3() ), the NewException thrown in the try block ( due to call to m2() ) is ignored and AnotherException is thrown from the main method.

 
Back to Question without Answer
 



61.     QID - 2.870 : Working with Java API - ArrayList 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<String> al = new ArrayList<String>();
        al.add("111");
        al.add("222");
        System.out.println(al.get(al.size()));
     }
}

 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw a NullPointerException at run time.
 


C. It will throw an IndexOutOfBoundsException at run time.
size() method of ArrayList returns the number of elements. Here, it returns 2. Since numbering in ArrayList starts with 0. al.get(2) will cause an IndexOutOfBoundsException to be thrown because only 0 and 1 are valid indexes for a list of size 2.


D. 222
 


E. null
 


 
Back to Question without Answer
 



62.     QID - 2.1066 : Java Basics 
 

Consider the following directory structure shown in Image 1 that displays available folders and classes and the code given below.



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements must be added to the above class?
 

[image: 2.60.DirStruct] 
 
Correct Options are :  D E 

A. import com.enthu.*;
This is not required because the code is not using any class from this package.


B. import com.*.*;
Bad Syntax. You can only import one package (i.e. all classes in that package) using a * or one class in an import statement.


C. import *.*.*;
Bad syntax.


D. import com.*;
This is required because the code is using Helper.class, which exists in com package.


E. import com.enthu.rad.*;
This is required because the code is using Stock.class, which exists in com.enthu.rad package.


F. import all;
 


Explanation: 
Since the given class does not have any package declaration, it belongs to the default package and therefore it must import com.Helper and com.enthu.rad.Stock classes.

 
Back to Question without Answer
 



63.     QID - 2.1434 : Working with Java API - Time and Date 
 

Given the following code:



public String getDateString(LocalDateTime ldt){

   return DateTimeFormatter.ISO_ZONED_DATE_TIME.format(ldt);

}



Which of the following statements are correct?
 

Correct Option is :  A 

A. The code will compile but will always throw a DateTimeException (or its subclass) at run time.
Note that LocalDateTime class does not contain Zone information but ISO_ZONED_DATE_TIME requires it. Thus, it will throw the following exception:



Exception in thread "main" java.time.temporal.UnsupportedTemporalTypeException: Unsupported field: OffsetSeconds



UnsupportedTemporalTypeException extends DateTimeException.


B. DateTimeException must either be caught or declared in the throws clause of this method.
DateTimeException extends RuntimeException, so it need not be caught or declared in the throws clause.


C. The method parameter type must be changed from LocalDateTime to ZonedDateTime for it to compile.
Although it is true that this code will never work at runtime, it will compile fine as it is.


D. It will return the date string as per the default time zone of the system on which it is run.
 


 
Back to Question without Answer
 



64.     QID - 2.1100 : Working with Methods - Overloading 
 

Consider the following class:


class TestClass{
    void probe(int... x) { System.out.println("In ..."); }  //1
    
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(long x) { System.out.println("In long"); } //3 
    
    void probe(Long x) { System.out.println("In LONG"); } //4
    
    public static void main(String[] args){
        Integer a = 4; new TestClass().probe(a); //5
        int b = 4; new TestClass().probe(b); //6
    }
}


What will it print when compiled and run?
 

Correct Options are :  A D 

A. In Integer and In long
 


B. In ... and In LONG, if //2 and //3 are commented out.
 


C. In Integer and In ..., if //4 is commented out.
 


D. It will not compile, if //1, //2, and //3 are commented out.
 


E. In LONG and In long, if //1 and //2 are commented out.
 


Explanation: 
To answer this type of questions, you need to know the following rules:



1. The compiler always tries to choose the most specific method available with least number of modifications to the arguments.



2. Java designers have decided that old code should work exactly as it used to work before boxing-unboxing functionality became available. 



3. Widening is preferred to boxing/unboxing (because of rule 2), which in turn, is preferred over var-args.





Thus, 

1. 

probe(Integer) will be bound to probe(Integer) (exact match). If that is not available, it will be bound to probe(long), and then with probe(int...) in that order of preference.

probe(long) is preferred over probe(int...) because unboxing an Integer gives an int and in pre 1.5 code probe(long) is compatible with an int (Rule 2).



It is never bound to probe(Long ) because Integer and Long are different object types and there is no IS-A relation between them. (This holds true for any two wrapper classes).

It could, however, be bound to probe(Object ) (if it existed), because Integer IS-A Object.



2.

probe(int) is bound to probe(long) (because of Rule 2) , then to probe(Integer ) because boxing an int qives you an Integer, which matches exactly to probe(Integer), and then to probe(int...).



It is never bound to probe(Long ) because int is not compatible with Long.



We advise you to run this program and try out various combinations. The exam has questions on this pattern but they are not this tough. If you have a basic understanding, you should be ok.

 
Back to Question without Answer
 



65.     QID - 2.1329 : Working with Inheritance 
 

Which of the following method definitions will prevent overriding of that method?
 

Correct Options are :  A B C E 

A. public final void m1()
final methods cannot be overridden. That is the purpose of final keyword.


B. public static void m1()
 


C. public static final void m1()
Keep in mind that static methods are not overridden, they are shadowed.


D. public abstract void m1()
 


E. private void m1()
private methods are not inherited at all so there is no question of overriding a private method.


 
Back to Question without Answer
 



66.     QID - 3.1486 : Working with Methods 
 

What will happen on running the following program?



public class DatabaseWrapper

{

  static String url = "jdbc://derby://localhost:1527//mydb";

  static DatabaseWrapper getDatabase()

  {

     System.out.println("Getting DB");

     return null;

  }

  public static void main(String[ ] args)

  {

    System.out.println( getDatabase().url );

  }

}
 

Correct Option is :  A 

A. It will print Getting DB and jdbc://derby://localhost:1527//mydb without throwing an exception.
 


B. It will throw a NullpointerException at Runtime.
 


C. It will print jdbc://derby://localhost:1527//mydb but will NOT print Getting DB.
 


D. It will print Getting DB and then throw a NullPointerException.
 


E. It will print nothing.
 


Explanation: 
This question demonstrates that a null reference may be used to access a class (static) variable without causing an exception .

Note the method signature. It returns a reference to an object of class DatabaseWrapper. Thus, getDatabase().url means we are accessing url field of the object returned by the method. Now, since the class of the object returned by the method is DatabaseWrapper and the field url is a static field of the class, the compiler creates the instruction for the JVM to access this field directly using the class reference instead of the object reference returned by the method at runtime. Thus, the JVM does not need to depend on the actual object returned by the method at run time to access url. So even if the method returns null at run time, it doesn't matter because the JVM doesn't even access the reference returned by the method.

 
Back to Question without Answer
 



Last Day Test (Unique)
Take this test when you are all done with your preparation and are ready for the actual exam.
Questions in this test are completely unique in the sense that these are not included in "Practice Tests" or "Objective-wise Tests".



01.     QID - 2.846 
 

Consider the following code:



public class TestClass {

    

    public static void doStuff() throws Exception{

        System.out.println("Doing stuff...");

        if(Math.random()>0.4){

            throw new Exception("Too high!");

        }

        System.out.println("Done stuff.");

    }

    

    public static void main(String[] args) throws Exception {

        doStuff();

        System.out.println("Over");    

    }

}



Which of the following are possible outputs when the above program is compiled and run?



(Assume that Math.random() returns a double between 0.0 and 1.0 not including 1.0.

Further assume that there is no mistake in the line numbers printed in the output shown in the options.)
 

Select 2 options

A. Doing stuff...
Exception in thread "main" java.lang.Exception: Too high!
	at TestClass.doStuff(TestClass.java:29)
	at TestClass.main(TestClass.java:41)

 


B. Doing stuff...
Exception in thread "main" java.lang.Exception: Too high!
	at TestClass.doStuff(TestClass.java:29)
	at TestClass.main(TestClass.java:41)
Over

 


C. Doing stuff...
Done stuff.
Over

 


D. Doing stuff...
Exception in thread "main" java.lang.Exception: Too high!
	at TestClass.doStuff(TestClass.java:29)
	at TestClass.main(TestClass.java:41)
Done stuff.

 


 
Check Answer
 



02.     QID - 2.1374 
 

Given that the bit pattern for the amount $20,000 is 100111000100000, which of the following is/are valid declarations of an int variable that contains this value?
 

Select 1 option

A. int b = (binary)100111000100000;
 


B. int b = 01001110_00100000;
 


C. int b = 0b01001110_00100000;
 


D. int b = b1001110_00100000;
 


 
Check Answer
 



03.     QID - 2.947 
 

Which line contains a valid constructor in the following class definition?


public class TestClass{
   int i, j;
   public TestClass getInstance() {  return new TestClass();    }  //1
   public void TestClass(int x, int y) {   i = x;   j = y;   }     //2
   public TestClass TestClass() {   return new TestClass();   }    //3
   public ~TestClass() {     }                     //4
}

 

Select 1 option

A. Line 1
 


B. Line 2
 


C. Line 3
 


D. Line 4
 


E. None of the above.
 


 
Check Answer
 



04.     QID - 2.1471 
 

Which of the following lambda expressions can be used to invoke a method that accepts a java.util.function.Predicate as an argument?
 

Select 2 options

A. x -> System.out.println(x)
 


B. x -> System.out.println(x);
 


C. x -> x == null
 


D. () -> true
 


E. x->true
 


 
Check Answer
 



05.     QID - 2.1321 
 

Consider the following class :


public class Parser{
   public static void main( String[] args){
       try{
           int i = 0;
           i =  Integer.parseInt( args[0] );
       }
       catch(NumberFormatException e){
          System.out.println("Problem in " + i );
       }
   }
}


What will happen if it is run with the following command line:
java Parser one

 

Select 1 option

A. It will print Problem in 0
 


B. It will throw an exception and end without printing anything.
 


C. It will not even compile.
 


D. It will not print anything if the argument is '1' instead of 'one'.
 


E. None of the above.
 


 
Check Answer
 



06.     QID - 2.1472 
 

What will the following code print when run?



import java.util.function.Predicate;

class Employee{

    int age;   //1

}



public class TestClass{



   public static boolean validateEmployee(Employee e, Predicate<Employee> p){

       return p.test(e);

   }

    

   public static void main(String[] args) {

       Employee e = new Employee(); //2

       System.out.println(validateEmployee(e, e->e.age<10000)); //3

   }

}


 

Select 1 option

A. It will fail to compile at line marked //1
 


B. It will fail to compile at line marked //2
 


C. It will fail to compile at line marked //3
 


D. It will compile fine and print true when run.
 


E. It will compile fine and print false when run.
 


 
Check Answer
 



07.     QID - 2.1169 
 

Which of the following can be used as a constructor for the class given below?



public class TestClass{

   // lots of irrelevant code 

}

(... in the options means irrelevant code that is not shown here.)
 

Select 2 options

A. public void TestClass() {...}
 


B. public TestClass() {...}
 


C. public static TestClass() {...}
 


D. public final TestClass() {...}
 


E. public TestClass(int x) { ...}
 


 
Check Answer
 



08.     QID - 2.1153 
 

What will the following program print?


public class TestClass{
  static String str;
  public static void main(String[] args){
     System.out.println(str);
  }
}


 

Select 1 option

A. It will not compile.
 


B. It will compile but throw an exception at runtime.
 


C. It will print 'null' (without quotes).
 


D. It will print nothing.
 


E. None of the above.
 


 
Check Answer
 



09.     QID - 2.1183 
 

Given the following LOCs:



   int rate = 10;

   XXX amount = 1 - rate/100*1 - rate/100;



What can XXX be?
 

Select 1 option

A. only int or long
 


B. only long or double
 


C. only double
 


D. double or float
 


E. long or double but not int or float.
 


F. int, long, float or double
 


 
Check Answer
 



10.     QID - 2.851 
 

Identify the correct statements about ArrayList?
 

Select 3 options

A. Standard JDK provides no subclasses of ArrayList.
 


B. You cannot store primitives in an ArrayList.
 


C. It allows constant time access to all its elements.
 


D. ArrayList cannot resize dynamically if you add more number of elements than its capacity.
 


E. An ArrayList is backed by an array.
 


 
Check Answer
 



11.     QID - 2.1258 
 

Consider the following code:



class Test{

  public static void main(String[] args){

    for (int i = 0; i < args.length; i++)   System.out.print(i == 0 ? args[i] : " " + args[i]);

  }

}



What will be the output when it is run using the following command:



java Test good bye friend!
 

Select 1 option

A. good bye friend!
 


B. good good good
 


C. goodgoodgood
 


D. good bye
 


E. None of the above.
 


 
Check Answer
 



12.     QID - 2.1400 
 

Given:

public class TableTest {

    static String[][] table;

    public static void main(String[] args) {

        String[] x = { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" };

        String[] y1 = { "1", "2", "3", "4", "5" };

        String[] y2 = { "a", "b", "c" };

        

        table = new String[3][];

        table[0] = x;

        table[1] = y1;

        table[2] = y2;



        //INSERT CODE HERE



    }

}

What can be inserted in the above code to make it print Sun5c?
 

Select 1 option

A. for(String[] row : table){

    System.out.print(row[row.length]);

}
 


B. int i = 0;     

for(String[] col : table){

    i++;

    if(i==col.length){

        System.out.print(table[col.length][i]);

    }

}
 


C. for(String[] row : table){

    System.out.print(row[row.length-1]);

}
 


D. for(int i=0; i<table.length-1; i++){

    int j = table[i].length-1;

    System.out.print(table[i][j]);

}
 


 
Check Answer
 



13.     QID - 2.903 
 

A java source file contains the following code:


interface I { 
  int getI(int a, int b); 
}

interface J{
    int getJ(int a, int b, int c);
}

abstract class MyIJ implements J , I { }

class MyI{ 
    int getI(int x, int y){ return x+y; }
}

interface K extends J{
    int getJ(int a, int b, int c, int d);
}


Identify the correct statements:
 

Select 1 option

A. It will fail to compile because of MyIJ
 


B. It will fail to compile because of MyIJ and K
 


C. It will fail to compile because of K
 


D. It will fail to compile because of MyI and K
 


E. It will fail to compile because of MyIJ, K, and MyI
 


F. It will compile without any error.
 


 
Check Answer
 



14.     QID - 2.1450 
 

Which of the following is correct about Java byte code?
 

Select 1 option

A. It can run on any OS and chip architecture.
 


B. It can run on any OS and chip architecture if there is a JRE available for that OS and chip architecture.
 


C. It can run only any OS and chip architecture if that platform has a JRE built for it and the Java code was compiled ON that platform.
 


D. It can run only any OS and chip architecture if that platform has a JRE built for it and the Java code was compiled FOR that platform.
 


 
Check Answer
 



15.     QID - 2.1073 
 

Which line(s) of code in the following program will cause a compilation error?

public class TestClass{
   static int value = 0; //1
   public static void main(String args[]) //2
   {
      int 2ndArgument = Integer.parseInt(args[2]); //3
      if( true == 2 > 10 ) //4  
      {
         value = -10;
      }
      else{
         value =  2ndArgument;
      }
      for( ; value>0; value--) System.out.println("A"); //5
   }
}


 

Select 1 option

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


 
Check Answer
 



16.     QID - 2.1428 
 

Which of the following are valid ways to create a LocalDateTime?
 

Select 1 option

A. java.time.LocalDate.parse("2015-01-02");
 


B. java.time.LocalDateTime.parse("2015-01-02");
 


C. java.time.LocalDateTime.of(2015, 10, 1, 10, 10);
 


D. java.time.LocalDateTime.of(2015, "January", 1, 10, 10);
 


 
Check Answer
 



17.     QID - 2.1157 
 

What will be the result of attempting to compile and run the following code?



class SwitchTest{

   public static void main(String args[]){

      for ( int i = 0 ; i < 3 ; i++){

         boolean flag  = false;

         switch (i){

            flag  = true;

         }

         if ( flag )  System.out.println( i );

      }

   }

}
 

Select 1 option

A. It will print 0, 1 and 2.
 


B. It will not print anything.
 


C. Compilation error.
 


D. Runtime error.
 


E. None of the above.
 


 
Check Answer
 



18.     QID - 2.940 
 

Which of the statements regarding the following code are correct?





public class TestClass{

   static int a;

   int b;

   public TestClass(){

      int c;

      c = a;

      a++;

      b += c;

   }

   public static void main(String args[]) {   new TestClass();   }

}
 

Select 1 option

A. The code will fail to compile because the constructor is trying to access static members.
 


B. The code will fail to compile because the constructor is trying to use static member variable a before it has been initialized.
 


C. The code will fail to compile because the constructor is trying to use member variable b before it has been initialized.
 


D. The code will fail to compile because the constructor is trying to use local variable c before it has been initialized.
 


E. The code will compile and run without any problem.
 


 
Check Answer
 



19.     QID - 2.1408 
 

What will the following lines of code print?



        System.out.println(1 + 5 < 3 + 7);

        System.out.println( (2 + 2) >= 2 + 3);
 

Select 1 option

A. They will not compile.
 


B. 1false10

false
 


C. true

false
 


D. false

false
 


 
Check Answer
 



20.     QID - 1.926 
 

Consider the following class...


class TestClass{
    void probe(Object x) { System.out.println("In Object"); } //3 

    void probe(Number x) { System.out.println("In Number"); } //2

    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        double a = 10; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Select 1 option

A. In Number
 


B. In Object
 


C. In Long
 


D. In Integer
 


E. It will not compile.
 


 
Check Answer
 



21.     QID - 2.1077 
 

What will the following program print?

public class TestClass{
  static boolean b;
  static int[] ia = new int[1];
  static char ch;
  static boolean[] ba = new boolean[1];
  public static void main(String args[]) throws Exception{
    boolean x = false;
    if( b ){
      x = ( ch == ia[ch]);
    }
    else x = ( ba[ch] = b );
    System.out.println(x+" "+ba[ch]);
  }
}


 

Select 1 option

A. true true
 


B. true false
 


C. false true
 


D. false false
 


E. It will not compile.
 


 
Check Answer
 



22.     QID - 2.899 
 

Given:


interface I { }

class A implements I{
    public String toString(){ return "in a"; }
}

class B extends A{
    public String toString(){ return "in b"; }
}


public class TestClass {

    public static void main(String[] args) {
        B b = new B();
        A a = b;
        I i = a;
        
        System.out.println(i);
        System.out.println((B)a);
        System.out.println(b);
        
    }
}


What will be printed when the above code is compiled and run?
 

Select 1 option

A. in i

in a

in b
 


B. I

A

in b
 


C. in a

in a

in b
 


D. in a

in b

in b
 


E. in b

in b

in b
 


 
Check Answer
 



23.     QID - 2.1477 
 

Which statements about the following code are correct?



interface House{

  public default String getAddress(){

     return "101 Main Str";

  }

}



interface Bungalow extends House{

  public default String getAddress(){

     return "101 Smart Str";

  }

}



class MyHouse implements Bungalow, House{



}



public class TestClass {



  public static void main(String[] args) {

    House ci = new MyHouse();  //1

    System.out.println(ci.getAddress()); //2

  }

}


 

Select 1 option

A. Code for interface House will cause compilation to fail.
 


B. Code for interface Bungalow will cause compilation to fail.
 


C. Code for class MyHouse will cause compilation to fail.
 


D. Line at //1 will cause compilation to fail.
 


E. Line at //2 will cause compilation to fail.
 


F. The code will compile successfully.
 


 
Check Answer
 



24.     QID - 2.1448 
 

Which of the following are features of Java?

(Some candidates have reported a similar question being asked with a slightly different (and ambiguous) wording - 

Which of the following are objected oriented features of Java?
 

Select 2 options

A. Object is the root class of all the classes.
 


B. Objects cannot be reused.
 


C. Objects can share behavoir with other objects.
 


D. Everything in Java is an Object.
 


 
Check Answer
 



25.     QID - 2.1045 
 

Which line, if any, will give a compile time error ?


void test(byte x){
   switch(x){
      case 'a':   // 1
      case 256:   // 2
      case 0:     // 3
      default :   // 4
      case 80:    // 5
   }
}

 

Select 1 option

A. Line 1 as 'a' is not compatible with byte.
 


B. Line 2 as 256 cannot fit into a byte.
 


C. No compile time error but a run time error at line 2.
 


D. Line 4 as the default label must be the last label in the switch statement.
 


E. There is nothing wrong with the code.
 


 
Check Answer
 



26.     QID - 2.935 
 

Consider the following class...



class TestClass{

   int i;

   public TestClass(int i) { this.i = i;  }

   public String toString(){

       if(i == 0) return null;

       else return ""+i;

   }

   public static void main(String[ ] args){

      TestClass t1 = new TestClass(0);

      TestClass t2 = new TestClass(2);

      System.out.println(t2);

      System.out.println(""+t1);

   }

}





What will be the output when the above program is run?
 

Select 1 option

A. It will throw NullPointerException when run.
 


B. It will not compile.
 


C. It will print 2 and then will throw NullPointerException.
 


D. It will print 2 and null.
 


E. None of the above.
 


 
Check Answer
 



27.     QID - 2.1293 
 

Which of the following correctly defines a method named stringProcessor that can be called by other programmers as follows: stringProcessor(str1) or stringProcessor(str1, str2) or stringProcessor(str1, str2, str3), where str1, str2, and str3 are references to Strings.
 

Select 1 option

A. public void stringProcessor(...String){

}
 


B. public void stringProcessor(String... strs){

}
 


C. public void stringProcessor(String[] strs){

}
 


D. public void stringProcessor(String a, String b, String c){

}
 


E. Three separate methods need to be written.
 


 
Check Answer
 



28.     QID - 2.1359 
 

Consider :


 class A {  public void perform_work(){}  }
 class B extends A {  public void perform_work(){}  }
 class C extends B {  public void perform_work(){}  }


How can you let perform_work() method of A to be called from an instance method in C?
 

Select 1 option

A. ( (A) this ).perform_work( );
 


B. super.perform_work( );
 


C. super.super.perform_work( );
 


D. this.super.perform_work( );
 


E. It is not possible.
 


 
Check Answer
 



29.     QID - 2.1129 
 

Consider the following class:



public class PortConnector{

   public PortConnector(int port) throws IOException{

   ...lot of valid code.

   }

   ...other valid code.

}



You want to write another class CleanConnector that extends from PortConnector. Which of the following statements should hold true for CleanConnector class?
 

Select 1 option

A. It is not possible to define CleanConnector that does not throw IOException at instantiation.
 


B. PortConnector class itself is not valid because you cannot throw any exception from a constructor.
 


C. CleanConnector's constructor cannot throw any exception other than IOException.
 


D. CleanConnector's constructor cannot throw any exception other than subclass of IOException.
 


E. CleanConnector's constructor cannot throw any exception other than superclass of IOException.
 


F. None of these.
 


 
Check Answer
 



30.     QID - 2.876 
 

Consider the following two classes (in the same package but defined in different source files):


public class Square {
    double side = 0;
    double area;

    public Square(double length){        this.side = length;    }

    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }

    double getArea() {   return area;   }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Square sq = new Square(10.0);
        sq.area = sq.getSide()*sq.getSide();
        System.out.println(sq.getArea());
    }
}


You are assigned the task of refactoring the Square class to make it better in terms of encapsulation. What changes will you make to this class?
 

Select 2 options

A. Make setSide() method private.
 


B. Make getArea() method private.
 


C. Make side and area fields private.
 


D. Make the side field private and remove the area field.
 


E. Change getArea method to:

public double getArea(){ return side*side; }
 


F. Add a setArea() method.
 


 
Check Answer
 



31.     QID - 2.1215 
 

Consider the following classes :


class A{ 
   public void mA(){ };
}

class B extends A { 
   public void mA(){ }
   public void mB() { }
}

class C extends B { 
   public void mC(){ }
}


and the following declarations:

A x = new B(); B y = new B(); B z = new C();


Which of the following calls are virtual calls?
 

Select 3 options

A. x.mA();
 


B. x.mB();
 


C. y.mA();
 


D. z.mC();
 


E. z.mB();
 


 
Check Answer
 



32.     QID - 2.1455 
 

What will the following code print?

        int x = 1;

        int y = 2;

        int z = x++;

        int a = --y;

        int b = z--;

        b += ++z;



        int answ = x>a?y>b?y:b:x>z?x:z;

        System.out.println(answ);
 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. -1
 


E. -2
 


F. 3
 


 
Check Answer
 



33.     QID - 2.1394 
 

Given:



public class SimpleLoop {

    public static void main(String[] args) {

        int i=0, j=10;

        while (i<=j) {            

            i++;

            j--;

        }

        System.out.println(i+" "+j);

    }

}

What is the result?
 

Select 1 option

A. 6 4
 


B. 6 5
 


C. 6 6
 


D. 5 3
 


E. 5 4
 


F. 5 5
 


 
Check Answer
 



34.     QID - 2.1192 
 

What will be the output of the following lines ?



 System.out.println("" +5 + 6);   //1

 System.out.println(5 + "" +6);   // 2

 System.out.println(5 + 6 +"");   // 3

 System.out.println(5 + 6);       // 4
 

Select 1 option

A. 56

56

11

11
 


B. 11

56

11

11
 


C. 56

56

56

11
 


D. 56

56

56

56
 


E. 56

56

11

56
 


 
Check Answer
 



35.     QID - 2.885 
 

Given:

//Insert code here  



   public abstract void draw();

}





//Insert code here

   public void draw(){  System.out.println("in draw..."); }

}



Which of the following lines of code can be used to complete the above code?
 

Select 2 options

A. class Shape {



and



class Circle  extends Shape {
 


B. public class Shape {



and



class Circle  extends Shape {
 


C. abstract Shape {



and



public class Circle  extends Shape {
 


D. public abstract class Shape {



and



class Circle  extends Shape {
 


E. public abstract class Shape {



and



class Circle  implements Shape {
 


F. public interface Shape {



and



class Circle  implements Shape {
 


 
Check Answer
 



36.     QID - 2.1462 
 

What will the following code print?

List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

System.out.println(s1.remove("a")+" "+s1.remove("x"));
 

Select 1 option

A. 1 0
 


B. 2 -1
 


C. 2 0
 


D. 1 -1
 


E. true false
 


 
Check Answer
 



37.     QID - 2.1393 
 

Given:



package strings;

public class StringFromChar {

    

    public static void main(String[] args) {

        String myStr = "good";

        char[] myCharArr = {'g', 'o', 'o', 'd' };

        

        String newStr = "";

        for(char ch : myCharArr){

            newStr = newStr + ch;

        }

        boolean b1 = newStr == myStr;

        boolean b2 = newStr.equals(myStr);

        

        System.out.println(b1+ " " + b2);

        

    }

}





What will it print when compiled and run?
 

Select 1 option

A. true true
 


B. true false
 


C. false true
 


D. false false
 


 
Check Answer
 



38.     QID - 2.1360 
 

Given the following code, which statements can be placed at the indicated position without causing compile and run time errors?



public class Test{

   int i1;

   static int i2;

   public void method1(){

      int i;

      // ... insert statements here

   }

}


 

Select 3 options

A. i = this.i1;
 


B. i = this.i2;
 


C. this = new Test( );
 


D. this.i = 4;
 


E. this.i1 = i2;
 


 
Check Answer
 



39.     QID - 2.907 
 

Consider the following code appearing in Eagle.java

class Bird {
    private Bird(){     }
}
class Eagle extends Bird { 
    public String name;
    public Eagle(String name){
        this.name = name;
    }
    
    public static void main(String[] args) {
        System.out.println(new Eagle("Bald Eagle").name);
    }
}


What can be done to make this code compile?
 

Select 1 option

A. Nothing, it will compile as it is.
 


B. Make Eagle class declaration public:

public class Eagle { ... }
 


C. Make the Eagle constructor private:

private Eagle(String name){ ... }
 


D. Make Bird constructor public:

public Bird() { ... }
 


E. Insert super(); as the first line in Eagle constructor:

    public Eagle(String name){

        super();

        this.name = name;

    }
 


 
Check Answer
 



40.     QID - 2.1274 
 

What will be the result of attempting to compile and run the following code?



class TestClass{

   public static void main(String args[] ){

      String str1 = "str1";

      String str2 = "str2";

      System.out.println( str1.concat(str2) );

      System.out.println(str1);

   }

}
 

Select 1 option

A. The code will fail to compile.
 


B. The program will print str1 and str1.
 


C. The program will print str1 and str1str2
 


D. The program will print str1str2 and str1
 


E. The program will print str1str2 and str1str2.
 


 
Check Answer
 



41.     QID - 2.829 
 

What will the following program print when compiled and run:



public class TestClass {

    public static void main(String[] args) {

            someMethod();

    }

    

    static void someMethod(Object parameter)  {

          System.out.println("Value is "+parameter);

    }

}
 

Select 1 option

A. It will not compile.
 


B. Value is null
 


C. Value is 
 


D. It will throw a NullPointerException at run time.
 


 
Check Answer
 



42.     QID - 2.1361 
 

The following program will print java.lang.ArithmeticException: / by zero



class Test{
   public static void main(String[] args){
      int d = 0;
      try{
         int i = 1 / (d* doIt());
      } catch (Exception e){
         System.out.println(e);
      }
   }
   public static int doIt() throws Exception{
      throw new Exception("Forget It");
   }
}

 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



43.     QID - 2.1358 
 

What will the following program print when run using the command line: java TestClass 



public class TestClass {



   public static void methodX() throws Exception { 

      throw new AssertionError();

   }  



   public static void main(String[] args) {

      try{ 

         methodX(); 

      } 

      catch(Exception e) {

        System.out.println("EXCEPTION");

      }

   }

}


 

Select 1 option

A. It will throw AssertionError out of the main method.
 


B. It will print EXCEPTION.
 


C. It will not compile because of the throws clause in methodX().
 


D. It will end without printing anything because assertions are disabled by default.
 


 
Check Answer
 



44.     QID - 2.877 
 

Consider the following two classes (in the same package but defined in different source files):

public class Square {
    double side = 0;
    double area;

    public Square(double length){        this.side = length;    }

    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }

    double getArea() {   return area;   } 
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Square sq = new Square(10.0);
        sq.area = sq.getSide()*sq.getSide();
        System.out.println(sq.getArea());
    }
}


You are assigned the task of refactoring the Square class to make it better in terms of encapsulation. What changes will you make to this class?
 

Select 4 options

A. Add a calculateArea method:



private void calculateArea(){

  this.area = this.side*this.side;

}
 


B. Make side and area fields private.
 


C. Change setSide method to:

public void setSide(double d){

 this.side = d;

 calculateArea();

}
 


D. Make the getArea method public.
 


E. Add a setArea() method:

 public void setArea(double d){ area = d; }
 


 
Check Answer
 



45.     QID - 2.950 
 

Consider the following method -



public float parseFloat( String s ){

   float f = 0.0f;

   try{

      f = Float.valueOf( s ).floatValue();

      return f ;

   }

   catch(NumberFormatException nfe){

      f = Float.NaN ;

      return f;

   }

   finally{

      f = 10.0f;

      return f;

   }

}



What will it return if the method is called with the input "0.0" ?
 

Select 1 option

A. It will not compile.
 


B. It will return 10.0
 


C. It will return Float.Nan
 


D. It will return 0.0
 


E. None of the above.
 


 
Check Answer
 



46.     QID - 2.1025 
 

Identify correct constructs.
 

Select 1 option

A. try {
  for( ;; );
}finally { }

 


B. try {
  File f = new File("c:\\a.txt");
} catch {  f = null; }

 


C. int k = 0;
try {
  k = callValidMethod();
} 
System.out.println(k);
catch {  k = -1; }

 


D. try {
  try {
     Socket s = new ServerSocket(3030);
  }catch(Exception e) { 
    s = new ServerSocket(4040);
  } 
}

 


E. try {
       s = new ServerSocket(3030); 
} 
catch(Exception t){ t.printStackTrace(); } 
catch(IOException e) { 
    s = new ServerSocket(4040);
}
catch(Throwable t){ t.printStackTrace();  }


 


F. int x = validMethod();
try {
  if(x == 5) throw new IOException();
  else if(x == 6) throw new Exception();
}finally {
 x = 8;
}
catch(Exception e){ x = 9; }

 


 
Check Answer
 



47.     QID - 2.1161 
 

What will be printed when the following program is compiled and run?


class Super{
  public int getNumber( int a){
     return 2;
  }
}
public class SubClass extends Super{
  public int getNumber( int a, char ch){
     return 4;
  }
  public static void main(String[] args){
    System.out.println( new SubClass().getNumber(4) );
  }
}


What will be printed?
 

Select 1 option

A. 4
 


B. 2
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



48.     QID - 2.1265 
 

What will the following program print?


class Test{
    public static void main(String args[]){
        int i=0, j=0;
        X1: for(i = 0; i < 3; i++){
            X2: for(j = 3; j > 0; j--){
                if(i < j) continue X1;
                else break X2;
            }
        }
        System.out.println(i+" "+j);
    }
}


 

Select 1 option

A. 0 3
 


B. 0 2
 


C. 3 0
 


D. 3 3
 


E. 2 2
 


 
Check Answer
 



49.     QID - 2.1425 
 

What will the following code print when compiled and run?



public class Test{

    static int a = 0;

    int b = 5;



    public void foo(){

        while(b>0){

            b--;

            a++;

        }

    }



    public static void main(String[] args) {

        Test p1 = new Test();

        p1.foo();

        Test p2 = new Test();

        p2.foo();



        System.out.println(p1.a+" "+p2.a);        

    }

}


 

Select 1 option

A. 0 10
 


B. 10 10
 


C. 10 0
 


D. 5 5
 


E. 0 5
 


F. 5 0
 


 
Check Answer
 



50.     QID - 2.842 
 

A new Java programmer has written the following method that takes an array of integers and sums up all the integers that are less than 100.





 public void processArray(int[] values){

        int sum = 0;

        int i = 0;

        try{

            while(values[i]<100){

                sum = sum +values[i];

                i++;

            }

        }

        catch(Exception e){ }

        System.out.println("sum = "+sum);

    }



Which of the following are best practices to improve this code?
 

Select 2 options

A. Use ArrayIndexOutOfBoundsException for the catch argument.
 


B. Use ArrayIndexOutOfBoundsException for the catch argument and add code in the catch block to log or print the exception.
 


C. Add code in the catch block to handle the exception.
 


D. Use flow control to terminate the loop.
 


 
Check Answer
 



51.     QID - 2.1024 
 

Given the following code fragment, which of the following lines would be a part of the output?

outer:
   for ( int i = 0 ; i<3 ; i++ ){
      for ( int j = 0 ; j<2 ; j++ ){
         if ( i == j ){
            continue outer;
         }
         System.out.println( "i=" + i + " , j=" + j );
      }
   }

 

Select 2 options

A. i = 1, j = 0
 


B. i = 0, j = 1
 


C. i = 1, j = 2
 


D. i = 2, j = 1
 


E. i = 2, j = 2
 


 
Check Answer
 



52.     QID - 2.1124 
 

Given the following declaration, select the correct way to get the number of elements in the array, assuming that the array has been initialized.



int[] intArr;
 

Select 1 option

A. intArr[ ].length( ) 
 


B. intArr.length( ) 
 


C. intArr.length 
 


D. intArr[ ].size( ) 
 


E. intArr.size( ) 
 


 
Check Answer
 



53.     QID - 2.1380 
 

Which of the following is/are valid instantiations and initializations of a multi dimensional array?
 

Select 2 options

A. int[][] array2D = new int[][] { { 0, 1, 2, 4} {5, 6}};
 


B. int[][][] array3D = {{0, 1}, {2, 3}, {4, 5}};
 


C. int[] array2D[] = new int [2] [2];

array2D[0] [0] = 1;

array2D[0] [1] = 2;

array2D[1] [0] = 3;


 


D. int[][] array2D = new int[][]{0, 1};
 


E. int[] arr = {1, 2};

int[][] arr2 = {arr, {1, 2}, arr};

int[][][] arr3 = {arr2};
 


 
Check Answer
 



54.     QID - 2.1377 
 

Given the following code:



public class TestClass {

    public static void main(String[] args) {

        //INSERT CODE HERE

       System.out.println(x);

    }

}



What can be inserted in the above code so that it will compile and run without any problem?
 

Select 3 options

A. double x = 0xb10_000;
 


B. float x = 0b10_000;
 


C. float x = 0b20_000;
 


D. float x = 0b10_000f;
 


E. long x = 0b10000L;
 


F. double d = 0b10_000D;
 


 
Check Answer
 



55.     QID - 2.1324 
 

What will happen when the following program is compiled and run?



public class SM{

   public String checkIt(String s){

      if(s.length() == 0 || s == null){

         return "EMPTY";

      }

      else return "NOT EMPTY";

    }

    

    public static void main(String[] args){

      SM a = new SM();

      System.out.println(a.checkIt(null));

    }

}
 

Select 1 option

A. It will print EMPTY.
 


B. It will print NOT EMPTY.
 


C. It will throw NullPointerException.
 


D. It will print EMPTY if || is replaced with |.
 


 
Check Answer
 



56.     QID - 2.865 
 

What will the following program print when compiled and run?

class Data {
    private int x = 0;
    private String y = "Y";
    public Data(int k){
        this.x = k; 
    }
    public Data(String k){
        this.y = k; 
    }    
    public void showMe(){
        System.out.println(x+y);
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        new Data(10).showMe();
        new Data("Z").showMe();
    }
}


 

Select 1 option

A. 0Z

10Y
 


B. 10Y

0Z
 


C. It will not compile.
 


D. It will throw an exception at run time.
 


 
Check Answer
 



57.     QID - 2.1479 
 

Which of these statements about interfaces are true?
 

Select 3 options

A. Interfaces are always abstract.
 


B. An interface can have static methods.
 


C. All methods in an interface are abstract although you need not declare them to be so.
 


D. Fields of an interface may be declared as transient or volatile but not synchronized.
 


E. Interfaces cannot be final.
 


F. In Java 8, interfaces allow multiple implementation inheritance through default methods.
 


 
Check Answer
 



58.     QID - 2.1021 
 

What will be the result of attempting to compile and run the following program?



public class TestClass{

   public static void main(String args[ ] ){

      String s = "hello";

      StringBuilder sb = new StringBuilder( "hello" );

      sb.reverse();

      s.reverse();

      if( s == sb.toString() )  System.out.println( "Equal" );

      else System.out.println( "Not Equal" );

   }

}
 

Select 1 option

A. Compilation error.
 


B. It will print 'Equal'.
 


C. It will print 'Not Equal'.
 


D. Runtime error.
 


E. None of the above.
 


 
Check Answer
 



59.     QID - 2.942 
 

Consider the following code to count objects and save the most recent object ...



int i = 0 ;

 Object prevObject ;

 public void saveObject(List e ){

    prevObject = e ;

    i++ ;

 }



Which of the following calls will work without throwing an exception?
 

Select 3 options

A. saveObject( new ArrayList() );
 


B. Collection c = new ArrayList(); saveObject( c );
 


C. List l = new ArrayList(); saveObject(l);
 


D. saveObject(null);
 


E. saveObject(0); //The argument is the number zero and not the letter o
 


 
Check Answer
 



60.     QID - 2.972 
 

Consider the following program :



class Test{

  public static void main(String[] args){

    short s = 10;   // 1

    char c = s;     // 2

    s = c;          // 3

  }

}



Identify the correct statements.
 

Select 2 options

A. Line 3 is not valid.
 


B. Line 2 is not valid.
 


C. It will compile because both short and char can hold 10.
 


D. None of the lines 1, 2 and 3 is valid.
 


 
Check Answer
 



61.     QID - 2.969 
 

Which of these array declarations and initializations are NOT legal?
 

Select 2 options

A. int[ ] i[ ] = { { 1, 2 }, { 1 }, { }, { 1, 2, 3 } } ; 
 


B. int i[ ] = new int[2] {1, 2} ;
 


C. int i[ ][ ] = new int[ ][ ] { {1, 2, 3}, {4, 5, 6} } ;
 


D. int i[ ][ ] = { { 1, 2 }, new int[ 2 ] } ;
 


E. int i[4] = { 1, 2, 3, 4 } ;
 


 
Check Answer
 



62.     QID - 2.1351 
 

Which of the following methods modify the object on which they are called?
 

Select 1 option

A. setValue(int, String)of java.lang.String class.
 


B. The substring(int) method of the java.lang.String class
 


C. The replace() method of the java.lang.String class.
 


D. The reverse() method of the StringBuilder class.
 


E. None of these.
 


 
Check Answer
 



63.     QID - 2.853 
 

Which line in the following code will cause the compilation to fail?



public class TestClass {

    

    public static void main(String[] args) throws Exception {

       work();                  //LINE 10

       int j = j1;               //LINE 11

       int j1 = (double) x; //LINE 12

    }

   

    public static void work() throws Exception{

        System.out.println(x); //LINE 15

    }



    static double x;    //19

}
 

Select 2 options

A. Line 10
 


B. Line 11
 


C. Line 12
 


D. Line 15
 


E. Line 19
 


 
Check Answer
 



64.     QID - 2.1278 
 

Which of the following four constructs are valid?



1. 
   switch(5)
  {
      default :
   }

2.
   switch(5)
   {
      default : break;
   }

3.
  switch(8);

4.
 int x = 0;
 switch(x){
 }


 

Select 1 option

A. 1, 3
 


B. 1, 2, 3
 


C. 3, 4
 


D. 1, 2, 4
 


E. All are valid.
 


 
Check Answer
 



65.     QID - 2.1070 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

int i1 = 2;

int i2 = 3;

if (b1 = i1 == i2){

   System.out.println("true");

} else{

   System.out.println("false");

}
 

Select 1 option

A. Compile time error.
 


B. It will print true
 


C. It will print false
 


D. Runtime error.
 


E. It will print nothing.
 


 
Check Answer
 



66.     QID - 2.1480 
 

Identify correct statements about the following code - 



interface Drink{

  default double getAlcoholPercent(){

     return 0.0;

  }

  

  static double computeAlcoholPercent(){

      return 0.0;

  }

}





interface ColdDrink extends Drink{

  String getName();

}



class CrazyDrink implements ColdDrink{

   // INSERT CODE HERE

}


 

Select 1 option

A. CrazyDrink must either implement getName or be marked abstract.
 


B. CrazyDrink must either implement getName as well as computeAlcoholPercent or be marked abstract.
 


C. CrazyDrink must either implement getName as well as getAlcoholPercent or be marked abstract.
 


D. CrazyDrink must either implement getName or be marked abstract. Further, computeAlcoholPercent must be removed from Drink.
 


 
Check Answer
 



67.     QID - 2.1096 
 

For what command line arguments will the following program print true?


class TestClass{
  
    public static void main(String[] args){
        Integer i = Integer.parseInt(args[0]);
        Integer j = i;
        i--;
        i++;
        System.out.println((i==j));
        
    }
}

 

Select 3 options

A. 0
 


B. -1
 


C. 127
 


D. -256
 


E. 256
 


F. For all the values between 0 and 255 (both included).
 


 
Check Answer
 



68.     QID - 2.1330 
 

Which of the following access control keywords can be used to enable all the subclasses to access a method defined in the base class?
 

Select 2 options

A. public
 


B. private
 


C. protected
 


D. No keyword is needed.
 


 
Check Answer
 



69.     QID - 2.1130 
 

You want to invoke the overridden method (the method in the base class) from the overriding method (the method in the derived class) named m().

Which of the following constructs which will let you do that?
 

Select 1 option

A. super.m();
 


B. super.this();
 


C. base.m();
 


D. parent.m();
 


E. super();
 


 
Check Answer
 



70.     QID - 2.1068 
 

Which of the following statements are valid ?
 

Select 2 options

A. String[ ] sa = new String[3]{ "a", "b", "c"};
 


B. String sa[ ] = { "a ", " b", "c"};
 


C. String sa = new String[ ]{"a", "b", "c"};
 


D. String sa[ ] = new String[ ]{"a", "b", "c"};
 


E. String sa[ ] = new String[ ] {"a" "b" "c"};
 


 
Check Answer
 



71.     QID - 2.976 
 

Consider the following two java files:



//in file SM.java

package x.y;

public class SM{

    public static void foo(){ };

} 





//in file TestClass.java

//insert import statement here //1

public class TestClass{

   public static void main(String[] args){

      foo();

   }

}





What should be inserted at //1 so that TestClass will compile and run?
 

Select 2 options

A. import static x.y.*;
 


B. import static x.y.SM;
 


C. import static x.y.SM.foo;
 


D. import static x.y.SM.foo();
 


E. import static x.y.SM.*;
 


 
Check Answer
 



72.     QID - 2.1446 
 

Given:



StringBuilder sb = new StringBuilder("asdf");



Which of the following code fragments will print true?
 

Select 1 option

A. String str1 = sb.toString();

String str2 = sb.toString();

System.out.println(str1 == str2);
 


B. String str1 = sb.toString();

String str2 = str1;

System.out.println(str1 == str2);
 


C. String str1 = sb.toString();

System.out.println(str1 == sb);
 


D. System.out.println(sb == new StringBuilder(sb));
 


 
Check Answer
 



73.     QID - 2.1120 
 

What will the following program snippet print?
   int i=0, j=11;
   do{
      if(i > j) { break; }
      j--;
   }while( ++i < 5);
   System.out.println(i+"  "+j);


 

Select 1 option

A. 5 5
 


B. 5 6
 


C. 6 6
 


D. 6 5
 


E. 4 5
 


 
Check Answer
 



74.     QID - 2.1210 
 

Consider the following code snippet:

void m1() throws Exception{
   try{
      // line1
   }
   catch (IOException e){
       throw new SQLException();
   }
   catch(SQLException e){
       throw new InstantiationException();
   }
   finally{
      throw new CloneNotSupportedException();   // this is not a RuntimeException.
   }
}


Which of the following statements are true?
 

Select 2 options

A. If IOException gets thrown at line1, then the whole method will end up throwing SQLException.
 


B. If IOException gets thrown at line1, then the whole method will end up throwing CloneNotSupportedException.
 


C. If IOException gets thrown at line1, then the whole method will end up throwing InstantiationException.
 


D. If no exception is thrown at line1, then the whole method will end up throwing CloneNotSupportedException.
 


E. If SQLException gets thrown at line1, then the whole method will end up throwing InstantiationException.
 


 
Check Answer
 



75.     QID - 2.923 
 

Given the following code:



class M { }

class N{

   private M m = new M();

   public void makeItNull(M pM){

      pM = null;

   }

   public void makeThisNull(){

      makeItNull(m);

   }

   public static void main(String[] args){

      N n = new N();

      n.makeThisNull();

   }

}



Which of the following statements are correct?
 

Select 1 option

A. There are no instances of M to be garbage collected till the program ends.
 


B. A call to n.makeThisNull() marks the private instance of M for garbage collection.
 


C. Setting pM = null; in makeItNull(), marks the private instance of M for garbage collection.
 


D. private members of a class become eligible for garbage collection only when the instance of the class itself becomes eligible for garbage collection.
 


 
Check Answer
 



76.     QID - 2.1182 
 

What will be the output of the following class:


public class TestClass{
  public void testRefs(String str, StringBuilder sb){
    str = str + sb.toString();
    sb.append(str);
    str = null;
    sb = null;
  }
  public static void main(String[] args){
    String s = "aaa";
    StringBuilder sb = new StringBuilder("bbb");
    new TestClass().testRefs(s, sb);
    System.out.println("s="+s+" sb="+sb);
  }
}

 

Select 1 option

A. s=aaa sb=bbb
 


B. s=null sb=null
 


C. s=aaa sb=null
 


D. s=null sb=bbbaaa
 


E. s=aaa sb=bbbaaabbb
 


 
Check Answer
 



77.     QID - 2.1065 
 

What will the following code print?



   boolean flag = true;

   if(flag = false){

      System.out.println("1");

   }else if(flag){

      System.out.println("2");

   }else if(!flag){

      System.out.println("3");

   }else    System.out.println("4");


 

Select 1 option

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. Compilation error.
 


 
Check Answer
 



Last Day Test (Unique) (Answered)
Take this test when you are all done with your preparation and are ready for the actual exam.
Questions in this test are completely unique in the sense that these are not included in "Practice Tests" or "Objective-wise Tests".



01.     QID - 2.846 : Handling Exceptions 
 

Consider the following code:



public class TestClass {

    

    public static void doStuff() throws Exception{

        System.out.println("Doing stuff...");

        if(Math.random()>0.4){

            throw new Exception("Too high!");

        }

        System.out.println("Done stuff.");

    }

    

    public static void main(String[] args) throws Exception {

        doStuff();

        System.out.println("Over");    

    }

}



Which of the following are possible outputs when the above program is compiled and run?



(Assume that Math.random() returns a double between 0.0 and 1.0 not including 1.0.

Further assume that there is no mistake in the line numbers printed in the output shown in the options.)
 

Correct Options are :  A C 

A. Doing stuff...
Exception in thread "main" java.lang.Exception: Too high!
	at TestClass.doStuff(TestClass.java:29)
	at TestClass.main(TestClass.java:41)

 


B. Doing stuff...
Exception in thread "main" java.lang.Exception: Too high!
	at TestClass.doStuff(TestClass.java:29)
	at TestClass.main(TestClass.java:41)
Over

If doStuff() throws an exception, the code after the call to doStuff() in main will not be executed and therefore, "Over" will not be printed.


C. Doing stuff...
Done stuff.
Over

 


D. Doing stuff...
Exception in thread "main" java.lang.Exception: Too high!
	at TestClass.doStuff(TestClass.java:29)
	at TestClass.main(TestClass.java:41)
Done stuff.

Once an exception is thrown in a method, the code after that exception will not be executed. Therefore, if doStuff() throws an exception, "Done stuff." will not be printed.


Explanation: 
There are only two possibilities:

1. If Math.random() generates a number more than 0.4, the if part will throw an exception. In this case, the remain code of doStuff will not be called and main() will receive an exception due to the call to doStuff. Since doStuff() is not within a try/catch block, the exception will propagate up and the remaining code in main() will not be executed either.



Since the exception is not caught anywhere in the code, it will finally reach the JVM's thread that has called the main method. This thread catches the exception and prints out the stack trace.



2. If Math.random() generates a number not more than 0.4, if part will not be executed and "Done stuff." will be printed. After the call returns in main(), "Over" will be printed as well.

 
Back to Question without Answer
 



02.     QID - 2.1374 : Working with Java Data Types 
 

Given that the bit pattern for the amount $20,000 is 100111000100000, which of the following is/are valid declarations of an int variable that contains this value?
 

Correct Option is :  C 

A. int b = (binary)100111000100000;
(binary) is invalid because binary is not a valid keyword.


B. int b = 01001110_00100000;
This is a valid piece of code but the value is not correct. Since it does not start with 0b or 0B, it will NOT be interpreted as a binary number. In fact, since it starts with 0, it will be interpreted as an octal number.


C. int b = 0b01001110_00100000;
If you want to write a value in binary, it must be prefixed with 0b or 0B.


D. int b = b1001110_00100000;
 


Explanation: 
Beginning with Java 7, you can include underscores in between the digits. This helps in writing long numbers. For example, if you want to write 1 million, you can write: 1_000_000, which is easier to interpret for humans than 1000000. 

Note that you cannot start or end a value with an underscore though. Thus, 100_ or _100 would be invalid values. _100 would actually be a valid variable name!



You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



03.     QID - 2.947 : Constructors 
 

Which line contains a valid constructor in the following class definition?


public class TestClass{
   int i, j;
   public TestClass getInstance() {  return new TestClass();    }  //1
   public void TestClass(int x, int y) {   i = x;   j = y;   }     //2
   public TestClass TestClass() {   return new TestClass();   }    //3
   public ~TestClass() {     }                     //4
}

 

Correct Option is :  E 

A. Line 1
This cannot be a constructor because even the name of the method ( getInstance ) is not same as the class name!


B. Line 2
Constructors cannot return anything. Not even void.


C. Line 3
Constructors cannot return anything. Not even void.


D. Line 4
This could have been a destructor in C++ world. And there nothing like this in java. Java has a finalize() method, which is similar to a destructor but does not work exactly as a destructor.


E. None of the above.
 


 
Back to Question without Answer
 



04.     QID - 2.1471 : Lambda Expressions 
 

Which of the following lambda expressions can be used to invoke a method that accepts a java.util.function.Predicate as an argument?
 

Correct Options are :  C E 

A. x -> System.out.println(x)
The body part of the lambda expression that is meant to capture the Predicate interface must return a boolean (because the only abstract method in this interface returns boolean) but here, it returns void.


B. x -> System.out.println(x);
1. The body part must return a boolean but this returns void.

2. This is syntactically invalid as well because of the semi-colon.


C. x -> x == null
 


D. () -> true
The implementation of Predicate interface must have a method that takes exactly one parameter. Here, the parameter list is empty.


E. x->true
 


 
Back to Question without Answer
 



05.     QID - 2.1321 : Java Basics 
 

Consider the following class :


public class Parser{
   public static void main( String[] args){
       try{
           int i = 0;
           i =  Integer.parseInt( args[0] );
       }
       catch(NumberFormatException e){
          System.out.println("Problem in " + i );
       }
   }
}


What will happen if it is run with the following command line:
java Parser one

 

Correct Option is :  C 

A. It will print Problem in 0
 


B. It will throw an exception and end without printing anything.
 


C. It will not even compile.
Because 'i' is defined in try block and so it is not visible in the catch block.


D. It will not print anything if the argument is '1' instead of 'one'.
 


E. None of the above.
 


 
Back to Question without Answer
 



06.     QID - 2.1472 : Lambda Expressions 
 

What will the following code print when run?



import java.util.function.Predicate;

class Employee{

    int age;   //1

}



public class TestClass{



   public static boolean validateEmployee(Employee e, Predicate<Employee> p){

       return p.test(e);

   }

    

   public static void main(String[] args) {

       Employee e = new Employee(); //2

       System.out.println(validateEmployee(e, e->e.age<10000)); //3

   }

}


 

Correct Option is :  C 

A. It will fail to compile at line marked //1
No problem here. age will automatically be initialized to 0 because it is an instance field of the class.


B. It will fail to compile at line marked //2
No problem here. Employee class will get a default no-args constructor because it doesn't define any constructor explicitly. Therefore, new Employee() is valid.


C. It will fail to compile at line marked //3
Remember that the parameter list part of a lambda expression declares new variables that are used in the body part of that lambda expression. However, a lambda expression does not create a new scope for variables. Therefore, you cannot reuse the local variable names that have already been used in the enclosing method to declare the variables in you lambda expression. It would be like declaring the same variable twice. 

Here, the main method has already declared a variable named e. Therefore, the parameter list part of the lambda expression must not declare another variable with the same name. You need to use another name. For example, if you change //3 to the following, it will work.



       System.out.println(validateEmployee(e, x->x.age<10000));



It would print true.


D. It will compile fine and print true when run.
 


E. It will compile fine and print false when run.
 


 
Back to Question without Answer
 



07.     QID - 2.1169 : Constructors 
 

Which of the following can be used as a constructor for the class given below?



public class TestClass{

   // lots of irrelevant code 

}

(... in the options means irrelevant code that is not shown here.)
 

Correct Options are :  B E 

A. public void TestClass() {...}
There should be no return type. Not even void.


B. public TestClass() {...}
 


C. public static TestClass() {...}
Constructors cannot be static.


D. public final TestClass() {...}
Constructors cannot be final.


E. public TestClass(int x) { ...}
 


Explanation: 
You can use only one of public protected and private.

Unlike methods, a constructor cannot be abstract, static, final, native, or synchronized. A constructor is not inherited, so there is no need to declare it final and an abstract constructor could never be implemented. A constructor is always invoked with respect to an object, so it makes no sense for a constructor to be static. There is no practical need for a constructor to be synchronized, because it would lock the object under construction, which is normally not made available to other threads until all constructors for the object have completed their work. The lack of native constructors is an arbitrary language design choice that makes it easy for an implementation of the Java Virtual Machine to verify that superclass constructors are always properly invoked during object creation.

 
Back to Question without Answer
 



08.     QID - 2.1153 : Working with Java Data Types 
 

What will the following program print?


public class TestClass{
  static String str;
  public static void main(String[] args){
     System.out.println(str);
  }
}


 

Correct Option is :  C 

A. It will not compile.
 


B. It will compile but throw an exception at runtime.
 


C. It will print 'null' (without quotes).
 


D. It will print nothing.
 


E. None of the above.
 


Explanation: 
All member fields (static and non-static) are initialized to their default values. Objects are initialized to null (String is also an object), numeric types to 0 (or 0.0 ) and boolean to false.

 
Back to Question without Answer
 



09.     QID - 2.1183 : Using Operators and Decision Constructs 
 

Given the following LOCs:



   int rate = 10;

   XXX amount = 1 - rate/100*1 - rate/100;



What can XXX be?
 

Correct Option is :  F 

A. only int or long
 


B. only long or double
 


C. only double
 


D. double or float
 


E. long or double but not int or float.
 


F. int, long, float or double
 


Explanation: 
Note that none of the terms in the expression 1 - rate/100*1 - rate/100; is double or float. They are all ints. So the result of the expression will be an int.

Since an int can be assigned to a variable of type int, long, float or double, amount can be int, long, float or double.

 
Back to Question without Answer
 



10.     QID - 2.851 : Working with Java API - ArrayList 
 

Identify the correct statements about ArrayList?
 

Correct Options are :  B C E 

A. Standard JDK provides no subclasses of ArrayList.
It does.

Direct Known Subclasses: 

AttributeList, RoleList, RoleUnresolvedList


B. You cannot store primitives in an ArrayList.
This is true because only Objects can be stored in it.


C. It allows constant time access to all its elements.
This is true because it implements java.util.RandomAccess interface, which is a marker interface that signifies that you can directly access any element of this collection. This also implies that it takes the same amount of time to access any element.



(Compare that with a LinkedList, which takes more time to access the last element than the first element.)


D. ArrayList cannot resize dynamically if you add more number of elements than its capacity.
It does resize dynamically. Compare that to an array, which cannot be resized once created.


E. An ArrayList is backed by an array.
This is true because the elements are actually stored in an array and that is why is it called an ArrayList.

(The expression "backed by an array" means that the implementation of ArrayList actually uses an array to store elements.)


Explanation: 
ArrayList is a subclass of AbstractList.



java.lang.Object

 -  java.util.AbstractCollection<E>

   -    java.util.AbstractList<E>

     -      java.util.ArrayList<E>



All Implemented Interfaces: 

Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess



Direct Known Subclasses: 

AttributeList, RoleList, RoleUnresolvedList

 
Back to Question without Answer
 



11.     QID - 2.1258 : Using Operators and Decision Constructs 
 

Consider the following code:



class Test{

  public static void main(String[] args){

    for (int i = 0; i < args.length; i++)   System.out.print(i == 0 ? args[i] : " " + args[i]);

  }

}



What will be the output when it is run using the following command:



java Test good bye friend!
 

Correct Option is :  A 

A. good bye friend!
 


B. good good good
 


C. goodgoodgood
 


D. good bye
 


E. None of the above.
 


Explanation: 
The arguments passed on the command line can be accessed using the args array. The first argument (i.e. good) is stored in args[0], second argument (i.e. bye) is stored in args[1] and so on.



Here, we are passing 3 arguments. Therefore, args.length is 3 and the for loop will run 3 times. For the first iteration, i is 0 and so the first operand of the ternary operator (?) will be returned, which is args[i]. For the next two iterations, " "+args[i] will be returned. Hence, the program will print three strings: "good", " bye", and " friend!" on the same line. 



Note that unlike in C++, program name is not the first parameter in the argument list. Java does not need to know the program name because the .class file name and the java class name are always same (for a public class). So the java code always knows the program name it is running in. So there is no need to pass the program name as the first parameter of the argument list. In C/C++, the binary file name may be anything so the code does not know what binary file it is going to end up in. That's why the program name is also sent (automatically) in parameter list.

 
Back to Question without Answer
 



12.     QID - 2.1400 : Creating and Using Arrays 
 

Given:

public class TableTest {

    static String[][] table;

    public static void main(String[] args) {

        String[] x = { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" };

        String[] y1 = { "1", "2", "3", "4", "5" };

        String[] y2 = { "a", "b", "c" };

        

        table = new String[3][];

        table[0] = x;

        table[1] = y1;

        table[2] = y2;



        //INSERT CODE HERE



    }

}

What can be inserted in the above code to make it print Sun5c?
 

Correct Option is :  C 

A. for(String[] row : table){

    System.out.print(row[row.length]);

}
Remember that since indexing starts with 0, length is always 1 greater than the last index. Therefore, row[row.length] will throw ArrayIndexOutOfBoundsException.


B. int i = 0;     

for(String[] col : table){

    i++;

    if(i==col.length){

        System.out.print(table[col.length][i]);

    }

}
 


C. for(String[] row : table){

    System.out.print(row[row.length-1]);

}
 


D. for(int i=0; i<table.length-1; i++){

    int j = table[i].length-1;

    System.out.print(table[i][j]);

}
This is almost correct. Since the for condition is i < table.length-1 It will only print Sun5 and leave out the c.


 
Back to Question without Answer
 



13.     QID - 2.903 : Working with Inheritance 
 

A java source file contains the following code:


interface I { 
  int getI(int a, int b); 
}

interface J{
    int getJ(int a, int b, int c);
}

abstract class MyIJ implements J , I { }

class MyI{ 
    int getI(int x, int y){ return x+y; }
}

interface K extends J{
    int getJ(int a, int b, int c, int d);
}


Identify the correct statements:
 

Correct Option is :  F 

A. It will fail to compile because of MyIJ
MyIJ declares that it implements interfaces I and J, but does not implement the methods declared in these interfaces. However, since MyIJ has been declared as abstract, it is valid.


B. It will fail to compile because of MyIJ and K
 


C. It will fail to compile because of K
K is a valid interface because an interface is permitted to extend another interface.


D. It will fail to compile because of MyI and K
Both are valid.


E. It will fail to compile because of MyIJ, K, and MyI
 


F. It will compile without any error.
 


 
Back to Question without Answer
 



14.     QID - 2.1450 : Java Basics - OO Concepts 
 

Which of the following is correct about Java byte code?
 

Correct Option is :  B 

A. It can run on any OS and chip architecture.
 


B. It can run on any OS and chip architecture if there is a JRE available for that OS and chip architecture.
 


C. It can run only any OS and chip architecture if that platform has a JRE built for it and the Java code was compiled ON that platform.
 


D. It can run only any OS and chip architecture if that platform has a JRE built for it and the Java code was compiled FOR that platform.
 


Explanation: 
Java byte code is basically just a set of instructions that are intepreted by a virtual machine and is independent of the actual machine and OS i.e. the platform. JRE (Java Runtime Environment) is the virtual machine that interprets the given byte code and converts it into the acutal platform understandable instructions. Therefore, all you need to run the byte code is the virtual machine (JRE) for that specific platform on which you want to run it. 



Since the byte code itself is platform independent, you can compile your java code on any platform because no matter where you compile your code, the same byte code will be produced. Therefore, you don't need a java compiler for a particular platform. You just need the JRE for that platform. Oracle provides JRE for several platforms inluding Windows and Unix.

 
Back to Question without Answer
 



15.     QID - 2.1073 : Working with Java Data Types 
 

Which line(s) of code in the following program will cause a compilation error?

public class TestClass{
   static int value = 0; //1
   public static void main(String args[]) //2
   {
      int 2ndArgument = Integer.parseInt(args[2]); //3
      if( true == 2 > 10 ) //4  
      {
         value = -10;
      }
      else{
         value =  2ndArgument;
      }
      for( ; value>0; value--) System.out.println("A"); //5
   }
}


 

Correct Option is :  C 

A. 1
 


B. 2
 


C. 3
2ndArgument is not a valid identifier name because an identifier must not start with a digit (although it can contain a digit.) An identifier may start with and contain the underscore character _.


D. 4
== has less precedence than > so true == 2 > 10 is same as true == (2 > 10) 


E. 5
 


 
Back to Question without Answer
 



16.     QID - 2.1428 : Working with Java API - Time and Date 
 

Which of the following are valid ways to create a LocalDateTime?
 

Correct Option is :  C 

A. java.time.LocalDate.parse("2015-01-02");
To create an instance of LocalDateTime, you need to use the methods in LocalDateTime class. Methods in LocalDate class create LocalDate instances. Similarly, methods in LocalTime class create LocalTime instances.


B. java.time.LocalDateTime.parse("2015-01-02");
LocalDateTime requires date as well as time. Here, you just have a date in the input so it will throw a java.time.format.DateTimeParseException.

java.time.LocalDateTime.parse("2015-01-02T17:13:50"); would be valid.


C. java.time.LocalDateTime.of(2015, 10, 1, 10, 10);
 


D. java.time.LocalDateTime.of(2015, "January", 1, 10, 10);
All parameters should be ints. For the month argument, you can either pass the numbers 1 to 12  (and not 0 to 11) or use constants such as java.time.Month.JANUARY.


 
Back to Question without Answer
 



17.     QID - 2.1157 : Using Operators and Decision Constructs 
 

What will be the result of attempting to compile and run the following code?



class SwitchTest{

   public static void main(String args[]){

      for ( int i = 0 ; i < 3 ; i++){

         boolean flag  = false;

         switch (i){

            flag  = true;

         }

         if ( flag )  System.out.println( i );

      }

   }

}
 

Correct Option is :  C 

A. It will print 0, 1 and 2.
 


B. It will not print anything.
 


C. Compilation error.
It will say 'case', 'default' or '}' expected at compile time.


D. Runtime error.
 


E. None of the above.
 


Explanation: 
You cannot have unlabeled block of code inside a switch block. Any code block must succeed a case label (or default label). Since there is no case statement in this switch block, there is no way the line flag = true; can be reached! Therefore, it will not compile.

 
Back to Question without Answer
 



18.     QID - 2.940 : Working with Methods 
 

Which of the statements regarding the following code are correct?





public class TestClass{

   static int a;

   int b;

   public TestClass(){

      int c;

      c = a;

      a++;

      b += c;

   }

   public static void main(String args[]) {   new TestClass();   }

}
 

Correct Option is :  E 

A. The code will fail to compile because the constructor is trying to access static members.
A constructor (or any other method) can access static members.


B. The code will fail to compile because the constructor is trying to use static member variable a before it has been initialized.
static fields are always initialized automatically if you do not initialize them explicitly. So are instance fields.


C. The code will fail to compile because the constructor is trying to use member variable b before it has been initialized.
 


D. The code will fail to compile because the constructor is trying to use local variable c before it has been initialized.
c is getting initialized at line 2: c = a;


E. The code will compile and run without any problem.
 


Explanation: 
All the instance or static variables are given a default values if not explicitly initialized. All numeric variable are given a value of zero or equivalent to zero (i.e. 0.0 for double or float ).

booleans are initialized to false and objects references are initialized to null.

 
Back to Question without Answer
 



19.     QID - 2.1408 : Using Operators and Decision Constructs 
 

What will the following lines of code print?



        System.out.println(1 + 5 < 3 + 7);

        System.out.println( (2 + 2) >= 2 + 3);
 

Correct Option is :  C 

A. They will not compile.
 


B. 1false10

false
 


C. true

false
 


D. false

false
 


Explanation: 
Comparison operators have lower precedence than mathematical operators. Therefore, 1 + 5 < 3 + 7 is evaluated as (1 + 5) < (3 + 7) i.e. 6<10, which prints true.

Similarly,  (2 + 2) >= 2 + 3 is evaluated as  (2 + 2) >= (2 + 3) i.e. 4>=5, which prints false.



If you have an expression,  2 + (2 >= 2) + 3, it would be tempting to answer 2true3, but actually, it would not compile because it would resolve to 2 + true + 3 and + operator is not overloaded for anything except String. Here, neither of the operands of + operator is a String.

 
Back to Question without Answer
 



20.     QID - 1.926 : Working with Methods - Overloading 
 

Consider the following class...


class TestClass{
    void probe(Object x) { System.out.println("In Object"); } //3 

    void probe(Number x) { System.out.println("In Number"); } //2

    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        double a = 10; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Correct Option is :  A 

A. In Number
 


B. In Object
 


C. In Long
 


D. In Integer
 


E. It will not compile.
 


Explanation: 
Here, we have four overloaded probe methods but there is no probe method that takes a double parameter. However, a double will be boxed into a Double and class Double extends Number. Therefore, a Double can be passed to the method that takes Number. A Double can also be passed to a method that takes Object, but Number is more specific than Object therefore probe(Number ) will be called.



We advise you to run this program and try out various combinations. The exam has questions on this pattern.

 
Back to Question without Answer
 



21.     QID - 2.1077 : Working with Java Data Types 
 

What will the following program print?

public class TestClass{
  static boolean b;
  static int[] ia = new int[1];
  static char ch;
  static boolean[] ba = new boolean[1];
  public static void main(String args[]) throws Exception{
    boolean x = false;
    if( b ){
      x = ( ch == ia[ch]);
    }
    else x = ( ba[ch] = b );
    System.out.println(x+" "+ba[ch]);
  }
}


 

Correct Option is :  D 

A. true true
 


B. true false
 


C. false true
 


D. false false
 


E. It will not compile.
 


Explanation: 
This question tests your knowledge on the default values of uninitialized primitives and object references. booleans are initialized to false, numeric types to 0 and object references to null. Elements of arrays are initialized to the default values of their types. So, elements of a boolean array are initialized to false. int, char, float to 0 and Objects to null.



In this case, b is false. So the else part of if(b) is executed.

ch is a numeric type so its value is 0. ba[0] = false assigns false to ba[0] and returns false which is assigned to x.

Finally, x and ba[0] are printed as false false.

 
Back to Question without Answer
 



22.     QID - 2.899 : Working with Inheritance 
 

Given:


interface I { }

class A implements I{
    public String toString(){ return "in a"; }
}

class B extends A{
    public String toString(){ return "in b"; }
}


public class TestClass {

    public static void main(String[] args) {
        B b = new B();
        A a = b;
        I i = a;
        
        System.out.println(i);
        System.out.println((B)a);
        System.out.println(b);
        
    }
}


What will be printed when the above code is compiled and run?
 

Correct Option is :  E 

A. in i

in a

in b
 


B. I

A

in b
 


C. in a

in a

in b
 


D. in a

in b

in b
 


E. in b

in b

in b
There is only one object created in this code and the class of that object is B. Therefore, B's toString will be called no matter what reference you use. Therefore, it is print "in b" for all the cases.


Explanation: 
If you answered this question incorrectly, you need to understand the concept of polymorphism. We suggest you to go through any book to understand it thoroughly because there are several questions in the exam on similar pattern.



In a nutshell, polymorphism means that it is always the class of the object (and not the class of the reference variable that a variable points to) that determines which method will be called at run time. The concept of polymorphism doesn't apply to private methods or static methods because these methods are never inherited.

 
Back to Question without Answer
 



23.     QID - 2.1477 : Working with Inheritance 
 

Which statements about the following code are correct?



interface House{

  public default String getAddress(){

     return "101 Main Str";

  }

}



interface Bungalow extends House{

  public default String getAddress(){

     return "101 Smart Str";

  }

}



class MyHouse implements Bungalow, House{



}



public class TestClass {



  public static void main(String[] args) {

    House ci = new MyHouse();  //1

    System.out.println(ci.getAddress()); //2

  }

}


 

Correct Option is :  F 

A. Code for interface House will cause compilation to fail.
 


B. Code for interface Bungalow will cause compilation to fail.
 


C. Code for class MyHouse will cause compilation to fail.
 


D. Line at //1 will cause compilation to fail.
 


E. Line at //2 will cause compilation to fail.
 


F. The code will compile successfully.
 


Explanation: 
There is no problem with the code. It is perfectly valid for a subinterface to override a default method of the base interface. A class that implements an interface can also override a default method.

It is valid for MyHouse to say that it implements Bungalow as well as House even though House is redundant because Bungalow is a House anyway.



It will actually print 101 Smart str.

 
Back to Question without Answer
 



24.     QID - 2.1448 : Java Basics - OO Concepts 
 

Which of the following are features of Java?

(Some candidates have reported a similar question being asked with a slightly different (and ambiguous) wording - 

Which of the following are objected oriented features of Java?
 

Correct Options are :  A C 

A. Object is the root class of all the classes.
 


B. Objects cannot be reused.
Not sure what "reuse" really means here but our guess is that it is incorrect. One can certainly call methods on the same object again and again. One can also keep a reference to an object as long as needed.


C. Objects can share behavoir with other objects.
Another very vague statement but it is probably true because two objects of two different classes may share some behavior if the two classes inherit from the same super class.


D. Everything in Java is an Object.
This is not  true because Java does have primitives as well (byte, short, char, int, long, float, double, boolean), which are not Objects.


 
Back to Question without Answer
 



25.     QID - 2.1045 : Using Operators and Decision Constructs 
 

Which line, if any, will give a compile time error ?


void test(byte x){
   switch(x){
      case 'a':   // 1
      case 256:   // 2
      case 0:     // 3
      default :   // 4
      case 80:    // 5
   }
}

 

Correct Option is :  B 

A. Line 1 as 'a' is not compatible with byte.
int value of 'a' can easily fit into a byte.


B. Line 2 as 256 cannot fit into a byte.
 


C. No compile time error but a run time error at line 2.
 


D. Line 4 as the default label must be the last label in the switch statement.
Any order of case statements is valid.


E. There is nothing wrong with the code.
 


Explanation: 
Every case constant expression in a switch block must be assignable to the type of switch expression. Meaning :

byte by = 10;
switch(by){
     case 300 :  //some code;
     case 56 :   //some code;
}


This will not compile as 300 is not assignable to 'by ' which can only hold values from -128 to 127. This gives compile time error as the compiler detects it while compiling.
The use of break keyword is not mandatory, and without it the control will simply fall through the labels of the switch statement.

 
Back to Question without Answer
 



26.     QID - 2.935 : Working with Java API - String, StringBuilder 
 

Consider the following class...



class TestClass{

   int i;

   public TestClass(int i) { this.i = i;  }

   public String toString(){

       if(i == 0) return null;

       else return ""+i;

   }

   public static void main(String[ ] args){

      TestClass t1 = new TestClass(0);

      TestClass t2 = new TestClass(2);

      System.out.println(t2);

      System.out.println(""+t1);

   }

}





What will be the output when the above program is run?
 

Correct Option is :  D 

A. It will throw NullPointerException when run.
 


B. It will not compile.
 


C. It will print 2 and then will throw NullPointerException.
 


D. It will print 2 and null.
 


E. None of the above.
 


Explanation: 
The method print()/println() of PrintStream takes an Object and prints out a String that is returned by calling String.valueOf(object), which in turn calls toString() on that object. Note that as toString() is defined in Object class, all objects in java have this method. So it prints 2 first.



The second object's toString() returns null, so it prints "null". There is no NullPointerException because no method is called on null.



Now, the other feature of print/println methods is that if they get null as input parameter, they print "null". They do not try to call toString() on null.



So, if you have, Object o = null; System.out.println(o); will print null and will not throw a NullPointerException.

 
Back to Question without Answer
 



27.     QID - 2.1293 : Working with Methods 
 

Which of the following correctly defines a method named stringProcessor that can be called by other programmers as follows: stringProcessor(str1) or stringProcessor(str1, str2) or stringProcessor(str1, str2, str3), where str1, str2, and str3 are references to Strings.
 

Correct Option is :  B 

A. public void stringProcessor(...String){

}
 


B. public void stringProcessor(String... strs){

}
 


C. public void stringProcessor(String[] strs){

}
 


D. public void stringProcessor(String a, String b, String c){

}
 


E. Three separate methods need to be written.
 


Explanation: 
To allow a method to take variable arguments of a type, you must use the ... syntax: methodName( <type>... variableName);

Remember that there can be only one vararg argument in a method. Further, the vararg argument must be the last argument. 

So this is invalid: stringProcessor( String... variableName, int age); 

but this is valid: stringProcessor(int age, String... variableName);



Though not important for this exam, it is good to know that within the method, the vararg argument is treated like an array:



public void stringProcessor(String... names){

   for (String n : names) {

       System.out.println("Hello " + n); 

   }

}

 
Back to Question without Answer
 



28.     QID - 2.1359 : Working with Inheritance 
 

Consider :


 class A {  public void perform_work(){}  }
 class B extends A {  public void perform_work(){}  }
 class C extends B {  public void perform_work(){}  }


How can you let perform_work() method of A to be called from an instance method in C?
 

Correct Option is :  E 

A. ( (A) this ).perform_work( );
 


B. super.perform_work( );
 


C. super.super.perform_work( );
 


D. this.super.perform_work( );
 


E. It is not possible.
 


Explanation: 
The method in C needs to call a method in a superclass two levels up. But super is a keyword and not an attribute so super.super.perform_work( ) strategy will not work. There is no way to go more than one level up for methods.

Remember that this problem doesn't occur for instance variables because variable are never overridden. They are shadowed. So to access any of the super class's variable, you can unshadow it using a cast. For example, ((A) c).data; This will give you the data variable defined in A even if it is shadowed in B as well as in C.

 
Back to Question without Answer
 



29.     QID - 2.1129 : Working with Inheritance 
 

Consider the following class:



public class PortConnector{

   public PortConnector(int port) throws IOException{

   ...lot of valid code.

   }

   ...other valid code.

}



You want to write another class CleanConnector that extends from PortConnector. Which of the following statements should hold true for CleanConnector class?
 

Correct Option is :  F 

A. It is not possible to define CleanConnector that does not throw IOException at instantiation.
It is possible. You can also throw a superclass of IOException from the CleanConnector's constructor. For example, the following is valid:



class CleanConnector extends PortConnector {

   public CleanConnector(int port) throws Exception {

         super(port);

   }

}


B. PortConnector class itself is not valid because you cannot throw any exception from a constructor.
A constructor is free to throw any exception.


C. CleanConnector's constructor cannot throw any exception other than IOException.
It can throw any exception but it must also throw IOException (or its super class). So the following is valid:



class CleanConnector extends PortConnector {

   public CleanConnector(int port) throws IOException, FileNotFoundException, SomeOtherCheckedException {

         super(port);

   }

}


D. CleanConnector's constructor cannot throw any exception other than subclass of IOException.
As described above, it can throw any exception but it must throw IOException (or its superclass) as well.


E. CleanConnector's constructor cannot throw any exception other than superclass of IOException.
As described above, it can throw any exception but it must throw IOException (or its superclass) as well.


F. None of these.
Observe that the rule for overriding a method is opposite to the rule for constructors. An overriding method cannot throw a superclass exception, while a constructor of a subclass cannot throw subclass exception (Assuming that the same exception or its super class is not present in the subclass constructor's throws clause). For example:



  class A{

    public A() throws IOException{ }  

    void m() throws IOException{ }

  }



  class B extends A{

    //IOException is valid here, but FileNotFoundException is invalid 

    public B() throws IOException{ }



    //FileNotFoundException is valid here, but Exception is invalid 

    void m() throws FileNotFoundException{ }

}

(Note: FileNotFoundException is a subclass of IOException, which is a subclass of Exception)

If the subclass constructor's throws clause includes the same exception or its superclass, then it can throw any other exception as well.


Explanation: 
As PortConnector has only one constructor, there is only one way to instantiate it. Now, to instantiate any subclass of PortConnector, the subclass's constructor should call super(int). But that throws IOException. And so this exception (or its super class) must be defined in the throws clause of subclass's constructor. Note that you cannot do something like:



public CleanConnector(){

   try{ super(); }catch(Exception e){} //WRONG : call to super must be first statement in constructor

}



Remember: Constructor must declare all the checked exceptions declared in the base constructor (or the super classes of the checked exceptions). They may add other exceptions as well. This behavior is exactly opposite from that of methods. The overriding method cannot throw any checked exception other than what the overridden method throws. It may throw subclasses of those exceptions as well.

 
Back to Question without Answer
 



30.     QID - 2.876 : Java Basics - OO Concepts 
 

Consider the following two classes (in the same package but defined in different source files):


public class Square {
    double side = 0;
    double area;

    public Square(double length){        this.side = length;    }

    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }

    double getArea() {   return area;   }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Square sq = new Square(10.0);
        sq.area = sq.getSide()*sq.getSide();
        System.out.println(sq.getArea());
    }
}


You are assigned the task of refactoring the Square class to make it better in terms of encapsulation. What changes will you make to this class?
 

Correct Options are :  D E 

A. Make setSide() method private.
 


B. Make getArea() method private.
It should be made public so that other classes can get the area.


C. Make side and area fields private.
There is no need to keep the area field because that would amount to duplicating the data. If you change side, the value of area will become obsolete.


D. Make the side field private and remove the area field.
 


E. Change getArea method to:

public double getArea(){ return side*side; }
 


F. Add a setArea() method.
This is not required because area is calculated using the side. So if you allow other classes to set the area, it could make side and area inconsistent with each other.


Explanation: 
There can be multiple ways to accomplish this. The exam asks you questions on the similar pattern.

The key is that your data variable should be private and the functionality that is to be exposed outside should be public. Further, your setter methods should be coded such that they don't leave the data members inconsistent with each other.

 
Back to Question without Answer
 



31.     QID - 2.1215 : Working with Inheritance 
 

Consider the following classes :


class A{ 
   public void mA(){ };
}

class B extends A { 
   public void mA(){ }
   public void mB() { }
}

class C extends B { 
   public void mC(){ }
}


and the following declarations:

A x = new B(); B y = new B(); B z = new C();


Which of the following calls are virtual calls?
 

Correct Options are :  A C E 

A. x.mA();
 


B. x.mB();
 


C. y.mA();
 


D. z.mC();
 


E. z.mB();
 


Explanation: 
A virtual call means that the call is bound to a method at run time and not at compile time. 



In Java, all non-private and non-final instance method calls are virtual. This is important because, at run time, a reference variable may point to an instance of a subclass of the class of the reference.  The compiler doesn't have the knowledge of the class of the actual object being referred to by the reference variable. If the subclass overrides the method, the call becomes polymorphic because now there are two versions of the method that can be invoked (the base class version and the subclass version). Therefore, the compiler is unable to bind the call to the method of a specific class. Only the JVM has the necessary information to bind the call.  The JVM knows the class of the actual object and it binds the call to the method of that class. This behavior is called polymorphism. 



Thus, in Java, all non-private and non-final instance method calls are potentially polymorphic because there could be multiple versions of the method eligible to be invoked. 



In this case, x.mB() is invalid call. It will not even compile because the class of x is A, which does not contain method mB(). Even though the object referred to by x is of class B which does contain mB(). z.mC() is invalid for the same reason.

 
Back to Question without Answer
 



32.     QID - 2.1455 : Using Operators and Decision Constructs 
 

What will the following code print?

        int x = 1;

        int y = 2;

        int z = x++;

        int a = --y;

        int b = z--;

        b += ++z;



        int answ = x>a?y>b?y:b:x>z?x:z;

        System.out.println(answ);
 

Correct Option is :  C 

A. 0
 


B. 1
 


C. 2
 


D. -1
 


E. -2
 


F. 3
 


Explanation: 
This is a simple but frustratingly time consuming question. Expect such questions in the exam.

For such questions, it is best to keep track of each variable on the notepad after executing each line of code.



The final values of the variables are as follows - 

x=2 y=1 z=1 a=1 b=2



The expression x>a?y>b?y:b:x>z?x:z; should be grouped as - 

x > a  ? (y>b ? y : b)  :  (x>z ? x : z);



It will, therefore, assign 2 to answ.

 
Back to Question without Answer
 



33.     QID - 2.1394 : Using Loop Constructs 
 

Given:



public class SimpleLoop {

    public static void main(String[] args) {

        int i=0, j=10;

        while (i<=j) {            

            i++;

            j--;

        }

        System.out.println(i+" "+j);

    }

}

What is the result?
 

Correct Option is :  A 

A. 6 4
 


B. 6 5
 


C. 6 6
 


D. 5 3
 


E. 5 4
 


F. 5 5
 


Explanation: 
In such type of questions, you will need to work out the values of the loop variables for every iteration (unless you can recognize the pattern) on your worksheet.

Beginning i=0, j=10

Iteration 1: i<=j is true, i becomes 1 and j becomes 9

Iteration 2: i<=j is true, i becomes 2 and j becomes 8

Iteration 3: i<=j is true, i becomes 3 and j becomes 7

Iteration 4: i<=j is true, i becomes 4 and j becomes 6

Iteration 5: i<=j is true, i becomes 5 and j becomes 5

Iteration 6: i<=j is true, i becomes 6 and j becomes 4

Iteration 7: i<=j is false so the while loop is not entered.

Print 6 and 4.

 
Back to Question without Answer
 



34.     QID - 2.1192 : Working with Java API - String, StringBuilder 
 

What will be the output of the following lines ?



 System.out.println("" +5 + 6);   //1

 System.out.println(5 + "" +6);   // 2

 System.out.println(5 + 6 +"");   // 3

 System.out.println(5 + 6);       // 4
 

Correct Option is :  A 

A. 56

56

11

11
 


B. 11

56

11

11
 


C. 56

56

56

11
 


D. 56

56

56

56
 


E. 56

56

11

56
 


Explanation: 
In line 1, "" + 5 + 6 => "5"+6 => "56"

In line 2, 5 + "" +6  => "5"+6 => "56"

In line 3, 5 + 6 +"" => 11+"" => "11"

In line 4, 5 + 6 => 11 => "11"

 
Back to Question without Answer
 



35.     QID - 2.885 : Working with Inheritance 
 

Given:

//Insert code here  



   public abstract void draw();

}





//Insert code here

   public void draw(){  System.out.println("in draw..."); }

}



Which of the following lines of code can be used to complete the above code?
 

Correct Options are :  D F 

A. class Shape {



and



class Circle  extends Shape {
Since there is an abstract method in the first class, the class must be declared abstract.


B. public class Shape {



and



class Circle  extends Shape {
 


C. abstract Shape {



and



public class Circle  extends Shape {
class keyword is missing from the first declaration.


D. public abstract class Shape {



and



class Circle  extends Shape {
 


E. public abstract class Shape {



and



class Circle  implements Shape {
You can only implement an interface not a class. So Circle implements shape is wrong.


F. public interface Shape {



and



class Circle  implements Shape {
By default all the methods of an interface are public and abstract so there is no need to explicitly specify the "abstract" keyword for the draw() method if you make Shape an interface. But it is not wrong to do so.


 
Back to Question without Answer
 



36.     QID - 2.1462 : Working with Java API - ArrayList 
 

What will the following code print?

List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

System.out.println(s1.remove("a")+" "+s1.remove("x"));
 

Correct Option is :  E 

A. 1 0
 


B. 2 -1
 


C. 2 0
 


D. 1 -1
 


E. true false
 


Explanation: 
ArrayList's remove(Object ) method returns a boolean. It returns true if the element is found in the list and false otherwise. The JavaDoc API description of this method is important for the exam - 



public boolean remove(Object o)

Removes the first occurrence of the specified element from this list, if it is present (optional operation). If this list does not contain the element, it is unchanged. More formally, removes the element with the lowest index i such that (o==null ? get(i)==null : o.equals(get(i))) (if such an element exists). Returns true if this list contained the specified element (or equivalently, if this list changed as a result of the call).



Observe that it does not remove all occurences of the element. It removes just the first one. In this case, only the first "a" will be removed.

 
Back to Question without Answer
 



37.     QID - 2.1393 : Working with Java API - String, StringBuilder 
 

Given:



package strings;

public class StringFromChar {

    

    public static void main(String[] args) {

        String myStr = "good";

        char[] myCharArr = {'g', 'o', 'o', 'd' };

        

        String newStr = "";

        for(char ch : myCharArr){

            newStr = newStr + ch;

        }

        boolean b1 = newStr == myStr;

        boolean b2 = newStr.equals(myStr);

        

        System.out.println(b1+ " " + b2);

        

    }

}





What will it print when compiled and run?
 

Correct Option is :  C 

A. true true
 


B. true false
 


C. false true
 


D. false false
 


Explanation: 
In every iteration of the loop, a new String object is created by appending the character to the existing String object. This new String object is assigned back to newStr. At the end of the loop, myStr is "good", which is why newStr.equals(myStr) prints true. Since, newStr points to a different String object than the one pointed to by myStr, newStr == myStr evaluates to false.



Had newStr been defined as String newStr = null;, the program would have printed false for newStr == myStr because both the references are pointing to two different objects, and false for newStr.equals(myStr) because newStr would then contain "nullgood".

 
Back to Question without Answer
 



38.     QID - 2.1360 : Java Basics 
 

Given the following code, which statements can be placed at the indicated position without causing compile and run time errors?



public class Test{

   int i1;

   static int i2;

   public void method1(){

      int i;

      // ... insert statements here

   }

}


 

Correct Options are :  A B E 

A. i = this.i1;
As i1 is an instance variable, it is accessible through 'this'.


B. i = this.i2;
Although 'this' is not needed to access i2, it is not an error to do so.


C. this = new Test( );
Nope, you can't change this.


D. this.i = 4;
You cannot do this.i as i is a local variable.


E. this.i1 = i2;
You are just assigning a static field's value to non-static field.


 
Back to Question without Answer
 



39.     QID - 2.907 : Working with Inheritance 
 

Consider the following code appearing in Eagle.java

class Bird {
    private Bird(){     }
}
class Eagle extends Bird { 
    public String name;
    public Eagle(String name){
        this.name = name;
    }
    
    public static void main(String[] args) {
        System.out.println(new Eagle("Bald Eagle").name);
    }
}


What can be done to make this code compile?
 

Correct Option is :  D 

A. Nothing, it will compile as it is.
 


B. Make Eagle class declaration public:

public class Eagle { ... }
 


C. Make the Eagle constructor private:

private Eagle(String name){ ... }
 


D. Make Bird constructor public:

public Bird() { ... }
 


E. Insert super(); as the first line in Eagle constructor:

    public Eagle(String name){

        super();

        this.name = name;

    }
If a subclass class constructor doesn't explicitly call the super class constructor, the compiler automatically inserts super(); as the first statement of the subclass constructor. So this option is not needed.


Explanation: 
Since the constructor of Bird is private, the subclass cannot access it and therefore, it needs to be made public. protected or default access is also valid.

 
Back to Question without Answer
 



40.     QID - 2.1274 : Working with Java API - String, StringBuilder 
 

What will be the result of attempting to compile and run the following code?



class TestClass{

   public static void main(String args[] ){

      String str1 = "str1";

      String str2 = "str2";

      System.out.println( str1.concat(str2) );

      System.out.println(str1);

   }

}
 

Correct Option is :  D 

A. The code will fail to compile.
 


B. The program will print str1 and str1.
 


C. The program will print str1 and str1str2
 


D. The program will print str1str2 and str1
str1.concat(str2) actually creates a new object that contains "str1str2". So it does not affect the object referenced by str1.


E. The program will print str1str2 and str1str2.
 


Explanation: 
Note that String objects are immutable. No matter what operation you do, the original object will remain the same and a new object will be returned. Here, the statement str1.concat(str2) creates a new String object which is printed but its reference is lost after the printing.

 
Back to Question without Answer
 



41.     QID - 2.829 : Working with Methods 
 

What will the following program print when compiled and run:



public class TestClass {

    public static void main(String[] args) {

            someMethod();

    }

    

    static void someMethod(Object parameter)  {

          System.out.println("Value is "+parameter);

    }

}
 

Correct Option is :  A 

A. It will not compile.
To call someMethod(Object parameter), you must pass exactly one parameter. So someMethod() is not a valid call to this method and the code will not compile. 

Note that parameter will not be assigned a null or default value.



However, if the method were declared to take variable number of arguments, it would have been valid to call it without any parameters. For example: 



    public static void someMethod(Object... params){

        System.out.println(params.length);

    }



In this case, calling someMethod() without any parameter will print 0. i.e. the length of params array will be 0. params will NOT be null.


B. Value is null
 


C. Value is 
 


D. It will throw a NullPointerException at run time.
 


 
Back to Question without Answer
 



42.     QID - 2.1361 : Using Operators and Decision Constructs 
 

The following program will print java.lang.ArithmeticException: / by zero



class Test{
   public static void main(String[] args){
      int d = 0;
      try{
         int i = 1 / (d* doIt());
      } catch (Exception e){
         System.out.println(e);
      }
   }
   public static int doIt() throws Exception{
      throw new Exception("Forget It");
   }
}

 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
It will print Forget It because before the division can take place doIt() will throw an exception.

 
Back to Question without Answer
 



43.     QID - 2.1358 : Handling Exceptions 
 

What will the following program print when run using the command line: java TestClass 



public class TestClass {



   public static void methodX() throws Exception { 

      throw new AssertionError();

   }  



   public static void main(String[] args) {

      try{ 

         methodX(); 

      } 

      catch(Exception e) {

        System.out.println("EXCEPTION");

      }

   }

}


 

Correct Option is :  A 

A. It will throw AssertionError out of the main method.
A subclass of Error cannot be caught using a catch block for Exception because java.lang.Error does not extend java.lang.Exception.


B. It will print EXCEPTION.
The catch block will not be able to catch the Error thrown by methodX().


C. It will not compile because of the throws clause in methodX().
The throws clause is valid even though unnecessary in this case.


D. It will end without printing anything because assertions are disabled by default.
It is true that assertions are disabled by default however, methodX is throwing an AssertionError explicitly like any other Throwable. Here, the assertion mechanism is not even used.


 
Back to Question without Answer
 



44.     QID - 2.877 : Java Basics - OO Concepts 
 

Consider the following two classes (in the same package but defined in different source files):

public class Square {
    double side = 0;
    double area;

    public Square(double length){        this.side = length;    }

    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }

    double getArea() {   return area;   } 
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Square sq = new Square(10.0);
        sq.area = sq.getSide()*sq.getSide();
        System.out.println(sq.getArea());
    }
}


You are assigned the task of refactoring the Square class to make it better in terms of encapsulation. What changes will you make to this class?
 

Correct Options are :  A B C D 

A. Add a calculateArea method:



private void calculateArea(){

  this.area = this.side*this.side;

}
 


B. Make side and area fields private.
 


C. Change setSide method to:

public void setSide(double d){

 this.side = d;

 calculateArea();

}
 


D. Make the getArea method public.
 


E. Add a setArea() method:

 public void setArea(double d){ area = d; }
This is not required because area is calculated using the side. So if you allow other classes to set the area, it could make side and area inconsistent with each other.


Explanation: 
There can be multiple ways to accomplish this. The exam asks you questions on the similar pattern.

The key is that your data variable should be private and the functionality that is to be exposed outside should be public. Further, your setter methods should be coded such that they don't leave the data members inconsistent with each other.

 
Back to Question without Answer
 



45.     QID - 2.950 : Handling Exceptions 
 

Consider the following method -



public float parseFloat( String s ){

   float f = 0.0f;

   try{

      f = Float.valueOf( s ).floatValue();

      return f ;

   }

   catch(NumberFormatException nfe){

      f = Float.NaN ;

      return f;

   }

   finally{

      f = 10.0f;

      return f;

   }

}



What will it return if the method is called with the input "0.0" ?
 

Correct Option is :  B 

A. It will not compile.
 


B. It will return 10.0
 


C. It will return Float.Nan
 


D. It will return 0.0
 


E. None of the above.
 


Explanation: 
finally block will always execute (except when there is a System.exit() in try or catch). And inside the finally block, it is setting f to 10.0. So no matter what the input is, this method will always return 10.0.

 
Back to Question without Answer
 



46.     QID - 2.1025 : Handling Exceptions 
 

Identify correct constructs.
 

Correct Option is :  A 

A. try {
  for( ;; );
}finally { }

A try block must be accompanied by either a catch block or a finally block or both.


B. try {
  File f = new File("c:\\a.txt");
} catch {  f = null; }

Invalid syntax for catch. A catch must have a exception: catch(SomeException se){  }


C. int k = 0;
try {
  k = callValidMethod();
} 
System.out.println(k);
catch {  k = -1; }

There cannot be any thing between a catch or a finally block and the closing brace of the previous try or catch block.


D. try {
  try {
     Socket s = new ServerSocket(3030);
  }catch(Exception e) { 
    s = new ServerSocket(4040);
  } 
}

The first try doesn't have any catch or finally block. Further, the variable s is not in scope in the catch block.


E. try {
       s = new ServerSocket(3030); 
} 
catch(Exception t){ t.printStackTrace(); } 
catch(IOException e) { 
    s = new ServerSocket(4040);
}
catch(Throwable t){ t.printStackTrace();  }


You can have any number of catch blocks in any order but each catch must be of a different type. Also, a catch for a subclass exception should occur before a catch block for the superclass exception. Here, IOException is placed before Throwable, which is good but Exception is placed before IOException, which is invalid and will not compile.


F. int x = validMethod();
try {
  if(x == 5) throw new IOException();
  else if(x == 6) throw new Exception();
}finally {
 x = 8;
}
catch(Exception e){ x = 9; }

finally cannot occur before any catch block.


Explanation: 
Note that a try with resources block may or may not to have any catch or finally block at all. However, try with resources is not in scope for this exam.

 
Back to Question without Answer
 



47.     QID - 2.1161 : Working with Inheritance 
 

What will be printed when the following program is compiled and run?


class Super{
  public int getNumber( int a){
     return 2;
  }
}
public class SubClass extends Super{
  public int getNumber( int a, char ch){
     return 4;
  }
  public static void main(String[] args){
    System.out.println( new SubClass().getNumber(4) );
  }
}


What will be printed?
 

Correct Option is :  B 

A. 4
 


B. 2
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
Note that the parameters of SubClass's getNumber are different than Super's getNumber. So it is not overriding it. So the super class's getNumber() will be called which returns 2.

 
Back to Question without Answer
 



48.     QID - 2.1265 : Using Loop Constructs 
 

What will the following program print?


class Test{
    public static void main(String args[]){
        int i=0, j=0;
        X1: for(i = 0; i < 3; i++){
            X2: for(j = 3; j > 0; j--){
                if(i < j) continue X1;
                else break X2;
            }
        }
        System.out.println(i+" "+j);
    }
}


 

Correct Option is :  D 

A. 0 3
 


B. 0 2
 


C. 3 0
 


D. 3 3
 


E. 2 2
 


Explanation: 
The statement:  if(i < j) continue X1; else break X2;  only makes sure that the inner loop does not iterate more than once. i.e. for each iteration of i, j only takes the value of 3 and then the j loop terminates, either because of continue X1; or because of break X2;.

Now, the point to remember here is that when the loop for(i = 0; i < 3; i++) ends, the value of i is 3 and not 2.

Similarly, if there were no statement inside inner loop, the value of j after the end of the loop would have been 0 and not 1.

 
Back to Question without Answer
 



49.     QID - 2.1425 : Working with Methods 
 

What will the following code print when compiled and run?



public class Test{

    static int a = 0;

    int b = 5;



    public void foo(){

        while(b>0){

            b--;

            a++;

        }

    }



    public static void main(String[] args) {

        Test p1 = new Test();

        p1.foo();

        Test p2 = new Test();

        p2.foo();



        System.out.println(p1.a+" "+p2.a);        

    }

}


 

Correct Option is :  B 

A. 0 10
 


B. 10 10
 


C. 10 0
 


D. 5 5
 


E. 0 5
 


F. 5 0
 


Explanation: 
The field a is static and there will be only one copy of a no matter how many instances of Test you create. Changes made to it by one instance will be reflected in the other instance as well.

But field b is an instance field. Each instance of Test will get its on copy of b. 



Therefore, when you call p1.foo() and then p2.foo(), the same field a is incremented 5 times twice and so it will print 10 10.

 
Back to Question without Answer
 



50.     QID - 2.842 : Handling Exceptions 
 

A new Java programmer has written the following method that takes an array of integers and sums up all the integers that are less than 100.





 public void processArray(int[] values){

        int sum = 0;

        int i = 0;

        try{

            while(values[i]<100){

                sum = sum +values[i];

                i++;

            }

        }

        catch(Exception e){ }

        System.out.println("sum = "+sum);

    }



Which of the following are best practices to improve this code?
 

Correct Options are :  B D 

A. Use ArrayIndexOutOfBoundsException for the catch argument.
 


B. Use ArrayIndexOutOfBoundsException for the catch argument and add code in the catch block to log or print the exception.
Empty catch blocks are a bad practice because at run time, if the exception is thrown, the program will not show any sign of the exception and may produce bad results that will be hard to debug. Therefore, it is a good practice to at least print out the exception if you don't want to do any thing upon encountering an exception.


C. Add code in the catch block to handle the exception.
There are a few questions in the exam that are difficult to interpret. In this case, for example, it is not clear what is meant by handling the exception. The catch block itself is meant to handle the exception. Once you get the exception, you can do what ever is required in the catch block.


D. Use flow control to terminate the loop.
It is considered a bad practice to use exceptions to control the flow of execution. In this case, values[i] will throw an ArrayIndexOutOfBoundsException once it goes beyond the array length and the programmer is using this fact to control the loop. Instead of doing this,  the programmer should use something like: for(int i=0; i<values.length; i++) to control the execution of the loop.


 
Back to Question without Answer
 



51.     QID - 2.1024 : Using Loop Constructs 
 

Given the following code fragment, which of the following lines would be a part of the output?

outer:
   for ( int i = 0 ; i<3 ; i++ ){
      for ( int j = 0 ; j<2 ; j++ ){
         if ( i == j ){
            continue outer;
         }
         System.out.println( "i=" + i + " , j=" + j );
      }
   }

 

Correct Options are :  A D 

A. i = 1, j = 0
 


B. i = 0, j = 1
 


C. i = 1, j = 2
 


D. i = 2, j = 1
 


E. i = 2, j = 2
 


Explanation: 
The given code prints:

i=1, j=0

i=2, j=0

i=2, j=1

The variable i iterates through the values 0, 1 and 2 in the outer loop, while j varies from 0 to 1 in the inner loop.

If the values of i and j are equal, the continue statement is executed and printing is skipped and next iteration of outer 'for' loop starts.

 
Back to Question without Answer
 



52.     QID - 2.1124 : Creating and Using Arrays 
 

Given the following declaration, select the correct way to get the number of elements in the array, assuming that the array has been initialized.



int[] intArr;
 

Correct Option is :  C 

A. intArr[ ].length( ) 
 


B. intArr.length( ) 
 


C. intArr.length 
Each array object has a member variable named public final length of type 'int' that contains the size of the array.


D. intArr[ ].size( ) 
 


E. intArr.size( ) 
 


Explanation: 
FYI, All types of arrays are objects. i.e. intArr instanceof Object is true.

 
Back to Question without Answer
 



53.     QID - 2.1380 : Creating and Using Arrays 
 

Which of the following is/are valid instantiations and initializations of a multi dimensional array?
 

Correct Options are :  C E 

A. int[][] array2D = new int[][] { { 0, 1, 2, 4} {5, 6}};
It is missing a comma between 4} and {5.

It should be: new int[][] { { 0, 1, 2, 4} , {5, 6}};


B. int[][][] array3D = {{0, 1}, {2, 3}, {4, 5}};
The right side has only two dimensions while the left has three.



It should be:

int [] [] [] array3D = { { {0, 1}, {2, 3}, {4, 5} } };


C. int[] array2D[] = new int [2] [2];

array2D[0] [0] = 1;

array2D[0] [1] = 2;

array2D[1] [0] = 3;


Notice that element [1][1] is not given a value explicitly in the code. It is given a default value of 0 automatically.


D. int[][] array2D = new int[][]{0, 1};
The right side has only one dimension while the left has two.



It should be:

int [] [] array2D = new int[][]{ {0}, {1}};


E. int[] arr = {1, 2};

int[][] arr2 = {arr, {1, 2}, arr};

int[][][] arr3 = {arr2};
 


 
Back to Question without Answer
 



54.     QID - 2.1377 : Working with Java Data Types 
 

Given the following code:



public class TestClass {

    public static void main(String[] args) {

        //INSERT CODE HERE

       System.out.println(x);

    }

}



What can be inserted in the above code so that it will compile and run without any problem?
 

Correct Options are :  A B E 

A. double x = 0xb10_000;
0x implies the following digits must be interpreted as Hexadecimal digits and b is a valid Hexadecimal digit.


B. float x = 0b10_000;
A number starting with 0b (or 0B) implies that it is written in binary. 

Since 10000 can fit into a float, an explicit cast is not required.

Note that when you specify the bit pattern using binary or hex, an explicit cast is not required even if the number specified using the bit pattern is larger than what a float can hold.


C. float x = 0b20_000;
Since it starts with 0b, that means you are writing the number in binary digits (i.e. 0 or 1). But 2 is not a valid binary digit.


D. float x = 0b10_000f;
This is invalid because the floating point suffices f, F, d, and D are used only when using decimal system and not while using binary.

However, since f is a valid digit in hexadecimal system, a hex number may end with an f although it will not be interpreted as float but as the digit f.

Thus, float x = 0x10_000f; and float x = 10_000f; are valid because they are written in hex and decimal respectively but float x = 0b10_000f;  is invalid because is written in binary.



Note that a floating point number cannot be written in Octal. Therefore, float x = 010_000f; is valid but it is not octal even though it starts with a 0. It is interpreted in decimal.


E. long x = 0b10000L;
 


F. double d = 0b10_000D;
A floating point number written in binary or hex cannot use any suffix for float. But a floating point number written in decimal can use the floating point suffices f, F, d, and D. 

Thus, float dx = 0xff; is valid but the f here is not for indicating that it is a float but is interpreted as the hex digit F.


Explanation: 
The real exam contains a few questions that test you on how to write numbers in binary. You might want to go through Section 3.10.1 and 3.10.2 of Java Language Specification to understand how this works.

 
Back to Question without Answer
 



55.     QID - 2.1324 : Using Operators and Decision Constructs 
 

What will happen when the following program is compiled and run?



public class SM{

   public String checkIt(String s){

      if(s.length() == 0 || s == null){

         return "EMPTY";

      }

      else return "NOT EMPTY";

    }

    

    public static void main(String[] args){

      SM a = new SM();

      System.out.println(a.checkIt(null));

    }

}
 

Correct Option is :  C 

A. It will print EMPTY.
 


B. It will print NOT EMPTY.
 


C. It will throw NullPointerException.
Because the first part of the expression (s.length() == 0) is trying to call a method on s, which is null. The check s == null should be done before calling a method on the reference.


D. It will print EMPTY if || is replaced with |.
In this case, replacing || with | will not make any difference because s.length() will anyway be called before checking whether s is null or not. The right expression would be:

if( s == null || s.length() == 0) { ... }

In this case, || being a short circuit expression, s.length() == 0 will not be called if s == null returns true. Hence, no NullPointerException will be thrown.


 
Back to Question without Answer
 



56.     QID - 2.865 : Working with Java Data Types 
 

What will the following program print when compiled and run?

class Data {
    private int x = 0;
    private String y = "Y";
    public Data(int k){
        this.x = k; 
    }
    public Data(String k){
        this.y = k; 
    }    
    public void showMe(){
        System.out.println(x+y);
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        new Data(10).showMe();
        new Data("Z").showMe();
    }
}


 

Correct Option is :  B 

A. 0Z

10Y
 


B. 10Y

0Z
You are creating two different Data objects in the code. The first one uses a constructor that takes an integer and the second one uses a constructor that takes a String.

Thus, when you call showMe on the first object, it prints 10Y because "Y" is the default value of y as per the given code. When you call showMe on the second object, it prints 0Z because 0 is the default value of x as per the given code.


C. It will not compile.
 


D. It will throw an exception at run time.
 


Explanation: 
Note that + operator is overloaded for String. So if you have a String as any operand for +, a new combined String will be created by concatenating the values of both the operands. Therefore, x+y will result in a String that concatenates integer x and String y.

 
Back to Question without Answer
 



57.     QID - 2.1479 : Working with Inheritance 
 

Which of these statements about interfaces are true?
 

Correct Options are :  A B E 

A. Interfaces are always abstract.
 


B. An interface can have static methods.
Java 8 allows interfaces to have static methods as well as default methods.


C. All methods in an interface are abstract although you need not declare them to be so.
An interface may have default methods. A method marked default is considered a non-abstract instance method. A non-abstract class that implements this interface doesn't necessarily have to implement a default method.


D. Fields of an interface may be declared as transient or volatile but not synchronized.
All fields of an interface are public, static, and final. Therefore, volatile, transient, and synchronized do not make sense for such fields.


E. Interfaces cannot be final.
 


F. In Java 8, interfaces allow multiple implementation inheritance through default methods.
They don't. You cannot have a class that implements two interfaces where both the interfaces contain a default method with the same signature unless the class provides an implementation for that method itself. For example, in the following code, class C will not compile:

interface I1{

  public default void m1(){

     System.out.println("in I1.m1");

  }

}

interface I2{

  public default void m1(){

     System.out.println("in I2.m1");

  }

}



class CI implements I1, I2{ //This class will not compile.

}

class C2 implements I1, I2{ //This class will compile because it provides its own implementation of m1.

  public void m1(){

     System.out.println("in C2.m1");

  }

}



You can have a class inherit a method with the same signature from an interface and a superclass though. This is allowed because the superclass's version always overrides the interface's version. The class doesn't get two implementations. It gets only the version from super class.


 
Back to Question without Answer
 



58.     QID - 2.1021 : Working with Java API - String, StringBuilder 
 

What will be the result of attempting to compile and run the following program?



public class TestClass{

   public static void main(String args[ ] ){

      String s = "hello";

      StringBuilder sb = new StringBuilder( "hello" );

      sb.reverse();

      s.reverse();

      if( s == sb.toString() )  System.out.println( "Equal" );

      else System.out.println( "Not Equal" );

   }

}
 

Correct Option is :  A 

A. Compilation error.
There is no reverse() method in String class.


B. It will print 'Equal'.
 


C. It will print 'Not Equal'.
 


D. Runtime error.
 


E. None of the above.
 


 
Back to Question without Answer
 



59.     QID - 2.942 : Working with Java API - ArrayList 
 

Consider the following code to count objects and save the most recent object ...



int i = 0 ;

 Object prevObject ;

 public void saveObject(List e ){

    prevObject = e ;

    i++ ;

 }



Which of the following calls will work without throwing an exception?
 

Correct Options are :  A C D 

A. saveObject( new ArrayList() );
Because an ArrayList is a List.


B. Collection c = new ArrayList(); saveObject( c );
saveObject() cannot accept c because c is declared of type Collection, which is a super interface of List, but the saveObject() method expects a List.


C. List l = new ArrayList(); saveObject(l);
 


D. saveObject(null);
In this case prevObj will be set to null.


E. saveObject(0); //The argument is the number zero and not the letter o
0 is an int, which means it is a primitive. So it will be boxed into an Integer object when you pass it to a method that expects an Object. However, Integer cannot be passed to a method that expects a List. Therefore, this option is not valid. Had the method been saveObject(Object obj), it would have been valid because an Integer is an Object.


 
Back to Question without Answer
 



60.     QID - 2.972 : Working with Java Data Types 
 

Consider the following program :



class Test{

  public static void main(String[] args){

    short s = 10;   // 1

    char c = s;     // 2

    s = c;          // 3

  }

}



Identify the correct statements.
 

Correct Options are :  A B 

A. Line 3 is not valid.
 


B. Line 2 is not valid.
 


C. It will compile because both short and char can hold 10.
 


D. None of the lines 1, 2 and 3 is valid.
Line 1 is valid because 10 is a constant and can fit into a short.


Explanation: 
Not all short values are valid char values, and neither are all char values valid short values, therefore compiler complains for both the lines 2 and 3. They will require an explicit cast.

 
Back to Question without Answer
 



61.     QID - 2.969 : Creating and Using Arrays 
 

Which of these array declarations and initializations are NOT legal?
 

Correct Options are :  B E 

A. int[ ] i[ ] = { { 1, 2 }, { 1 }, { }, { 1, 2, 3 } } ; 
 


B. int i[ ] = new int[2] {1, 2} ;
If you give the elements explicitly you can't give the size. So it should be just int[] { 1, 2 } or just { 1, 2 }


C. int i[ ][ ] = new int[ ][ ] { {1, 2, 3}, {4, 5, 6} } ;
 


D. int i[ ][ ] = { { 1, 2 }, new int[ 2 ] } ;
 


E. int i[4] = { 1, 2, 3, 4 } ;
You cannot specify the size on left hand side .


Explanation: 
If you explicitly specify the members then you can't give the size. So option 2 is wrong.

The size of the array is never given during the declaration of an array reference. So option 5 is wrong.

The size of an array is always associated with the array instance, not the array reference.

 
Back to Question without Answer
 



62.     QID - 2.1351 : Working with Java API - String, StringBuilder 
 

Which of the following methods modify the object on which they are called?
 

Correct Option is :  D 

A. setValue(int, String)of java.lang.String class.
There is no such method in String class.


B. The substring(int) method of the java.lang.String class
String is an immutable object. calling substring(...) returns a new different String object. It cannot change the original object.


C. The replace() method of the java.lang.String class.
String objects can never be modified once created.


D. The reverse() method of the StringBuilder class.
 


E. None of these.
 


 
Back to Question without Answer
 



63.     QID - 2.853 : Using Operators and Decision Constructs 
 

Which line in the following code will cause the compilation to fail?



public class TestClass {

    

    public static void main(String[] args) throws Exception {

       work();                  //LINE 10

       int j = j1;               //LINE 11

       int j1 = (double) x; //LINE 12

    }

   

    public static void work() throws Exception{

        System.out.println(x); //LINE 15

    }



    static double x;    //19

}
 

Correct Options are :  B C 

A. Line 10
 


B. Line 11
j1 has not been declared at this point. You cannot use a variable before it is declared. 

Note that static and instance fields are always defined before everything else. So even though x is declared after the work() method, it will be initialized before the method is actually executed.


C. Line 12
You cannot assign a double to an int without casting it to int. For example,

int j1 = (int) x; is valid.

but

int j1 = (double) (int) x; or int j1 = x; are not valid.


D. Line 15
 


E. Line 19
 


 
Back to Question without Answer
 



64.     QID - 2.1278 : Using Operators and Decision Constructs 
 

Which of the following four constructs are valid?



1. 
   switch(5)
  {
      default :
   }

2.
   switch(5)
   {
      default : break;
   }

3.
  switch(8);

4.
 int x = 0;
 switch(x){
 }


 

Correct Option is :  D 

A. 1, 3
 


B. 1, 2, 3
 


C. 3, 4
 


D. 1, 2, 4
Code 3 is invalid because a switch statement must have a body. The body may even be empty as shown in Code 4.


E. All are valid.
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



65.     QID - 2.1070 : Using Operators and Decision Constructs 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

int i1 = 2;

int i2 = 3;

if (b1 = i1 == i2){

   System.out.println("true");

} else{

   System.out.println("false");

}
 

Correct Option is :  C 

A. Compile time error.
 


B. It will print true
 


C. It will print false
 


D. Runtime error.
 


E. It will print nothing.
 


Explanation: 
The expression b1 = i1 == i2 will be evaluated as b1 = (i1 == i2) because == has higher precedence than =.

Further, all an if statement needs is a boolean. Now i1 == i2 returns false which is a boolean and since b1 = false is an expression and every expression has a return value (which is actually the Left Hand Side of the expression), it returns false which is again a boolean. Therefore, in this case, the else condition will be executed.

 
Back to Question without Answer
 



66.     QID - 2.1480 : Working with Inheritance 
 

Identify correct statements about the following code - 



interface Drink{

  default double getAlcoholPercent(){

     return 0.0;

  }

  

  static double computeAlcoholPercent(){

      return 0.0;

  }

}





interface ColdDrink extends Drink{

  String getName();

}



class CrazyDrink implements ColdDrink{

   // INSERT CODE HERE

}


 

Correct Option is :  A 

A. CrazyDrink must either implement getName or be marked abstract.
Since CrazyDrink says it implements ColdDrink, it must either implement all the abstract methods of the interface or be marked abstract.


B. CrazyDrink must either implement getName as well as computeAlcoholPercent or be marked abstract.
computeAlcoholPercent is a valid static method in Drink. It need not be implemented by CrazyDrink.


C. CrazyDrink must either implement getName as well as getAlcoholPercent or be marked abstract.
Since Drink provides a default implementation for getAlcoholPercent, CrazyDrink need not implement it.


D. CrazyDrink must either implement getName or be marked abstract. Further, computeAlcoholPercent must be removed from Drink.
There is no need to remove computeAlcoholPercent from Drink.


 
Back to Question without Answer
 



67.     QID - 2.1096 : Using Operators and Decision Constructs 
 

For what command line arguments will the following program print true?


class TestClass{
  
    public static void main(String[] args){
        Integer i = Integer.parseInt(args[0]);
        Integer j = i;
        i--;
        i++;
        System.out.println((i==j));
        
    }
}

 

Correct Options are :  A B C 

A. 0
 


B. -1
 


C. 127
 


D. -256
 


E. 256
 


F. For all the values between 0 and 255 (both included).
 


Explanation: 
All the wrapper objects are immutable. When you do i++, what actually happens is something like this:

i = Integer.valueOf( i.intValue()  + 1);  As you can see, a different Integer object is assigned back to i.



However, to save on memory, Java 'reuses' all the wrapper objects whose values fall in the following ranges:



All Boolean values (true and false)

All Byte values

All Character values from \u0000 to \u007f (i.e. 0 to 127 in decimal)

All Short and Integer values from -128 to 127

So ==  will always return true when their primitive values are the same and belong to the above list of values. 



Once catch, however, is that when you create a primitive wrapper using the new keyword, a new object is created and a cached object, even if available, is not used. For example:

Integer i = 10; //Wrapper created without using the new keyword and is, therefore, cached.

Integer j = 10; //Cached object is reused. No new object created. 

Integer k = new Integer(10); //New object is created. Cached object is not reused.

This implies that i == j is true but i == k is false.



Note that the following will not compile though:

Byte b = 1; Integer i = 1;

b == i; //Invalid because both operands are of different class.

 
Back to Question without Answer
 



68.     QID - 2.1330 : Working with Methods 
 

Which of the following access control keywords can be used to enable all the subclasses to access a method defined in the base class?
 

Correct Options are :  A C 

A. public
It will allow everybody to access the method.


B. private
It will not allow any other class to access the method.


C. protected
It will allow the subclasses (in any package) and all the classes in same package to access the method.


D. No keyword is needed.
It will allow only the classes in same package to access the method. So Subclasses outside the package will not have access.


 
Back to Question without Answer
 



69.     QID - 2.1130 : Working with Inheritance 
 

You want to invoke the overridden method (the method in the base class) from the overriding method (the method in the derived class) named m().

Which of the following constructs which will let you do that?
 

Correct Option is :  A 

A. super.m();
 


B. super.this();
 


C. base.m();
 


D. parent.m();
 


E. super();
 


Explanation: 
Note that calling super(); means you are trying to call the super class's constructor. But you can't call the super class's constructor (or its own constructor) from a method (because by the time a method gets to run, the object has already been constructed), therefore calling super(); from a method is not valid.

super(); can only be the first statement of a constructor.

 
Back to Question without Answer
 



70.     QID - 2.1068 : Creating and Using Arrays 
 

Which of the following statements are valid ?
 

Correct Options are :  B D 

A. String[ ] sa = new String[3]{ "a", "b", "c"};
You cannot specify the length of the array ( i.e. 3, here) if you are using the initializer block while declaring the array.


B. String sa[ ] = { "a ", " b", "c"};
 


C. String sa = new String[ ]{"a", "b", "c"};
here sa is not declared as array of strings but just as a String.


D. String sa[ ] = new String[ ]{"a", "b", "c"};
 


E. String sa[ ] = new String[ ] {"a" "b" "c"};
There are no commas separating the strings.


 
Back to Question without Answer
 



71.     QID - 2.976 : Java Basics 
 

Consider the following two java files:



//in file SM.java

package x.y;

public class SM{

    public static void foo(){ };

} 





//in file TestClass.java

//insert import statement here //1

public class TestClass{

   public static void main(String[] args){

      foo();

   }

}





What should be inserted at //1 so that TestClass will compile and run?
 

Correct Options are :  C E 

A. import static x.y.*;
x.y.* means all the classes in package x.y. Classes cannot be imported using "import static". You must do import x.y.* for importing class.

Further, importing a class will not give you a direct access to the members of the class. You will need to do SM.foo(), if you import SM.


B. import static x.y.SM;
x.y.SM means you are trying to import class SM that belongs to package x.y. A class cannot be imported statically.


C. import static x.y.SM.foo;
This is valid because this statement is importing the static member foo of class x.y.SM.


D. import static x.y.SM.foo();
Even though foo is a method, you cannot put () in the import statement.


E. import static x.y.SM.*;
This is valid because this statement is importing all the static members of class x.y.SM.


 
Back to Question without Answer
 



72.     QID - 2.1446 : Using Operators and Decision Constructs 
 

Given:



StringBuilder sb = new StringBuilder("asdf");



Which of the following code fragments will print true?
 

Correct Option is :  B 

A. String str1 = sb.toString();

String str2 = sb.toString();

System.out.println(str1 == str2);
StringBuilder's toString() will always return a new String object. So == will always return false in this case.


B. String str1 = sb.toString();

String str2 = str1;

System.out.println(str1 == str2);
Since str1 and str2 both point to the same String object, == will return true.


C. String str1 = sb.toString();

System.out.println(str1 == sb);
Remember that == operator can only compare two references of same or similar kind. That means, there should be at least an ancestor-child relationship between the two classes. If the two classes of objects that are being compared have no such relation to each other, == operation will not compile because the compiler knows that the two references can never point to the same object.



Here, a reference of class String can never be point to an object of class StringBuilder. Thus, it will not compile.


D. System.out.println(sb == new StringBuilder(sb));
Since the two sides of == point to two different instances of StringBuilder, this will always print false.


 
Back to Question without Answer
 



73.     QID - 2.1120 : Using Loop Constructs 
 

What will the following program snippet print?
   int i=0, j=11;
   do{
      if(i > j) { break; }
      j--;
   }while( ++i < 5);
   System.out.println(i+"  "+j);


 

Correct Option is :  B 

A. 5 5
 


B. 5 6
 


C. 6 6
 


D. 6 5
 


E. 4 5
 


Explanation: 
++i < 5 means, increment the value of i and then compare with 5.

Now, Try to work out the values of i and j at every iteration.

To start with, i=0 and j=11. At the time of evaluation of the while condition, i and j are as follows:

	j = 10 and i=1 (loop will continue because i<5) (Remember that comparison will happen AFTER increment i because it is ++i and not i++.

	j = 9 and i=2 (loop will continue because i<5).

	j = 8 and i=3 (loop will continue because i<5).

	j = 7 and i=4 (loop will continue because i<5).

	j = 6 and i=5 (loop will NOT continue because i not <5).



So it will print 5 6. (It is print i first and then j).

 
Back to Question without Answer
 



74.     QID - 2.1210 : Handling Exceptions 
 

Consider the following code snippet:

void m1() throws Exception{
   try{
      // line1
   }
   catch (IOException e){
       throw new SQLException();
   }
   catch(SQLException e){
       throw new InstantiationException();
   }
   finally{
      throw new CloneNotSupportedException();   // this is not a RuntimeException.
   }
}


Which of the following statements are true?
 

Correct Options are :  B D 

A. If IOException gets thrown at line1, then the whole method will end up throwing SQLException.
 


B. If IOException gets thrown at line1, then the whole method will end up throwing CloneNotSupportedException.
 


C. If IOException gets thrown at line1, then the whole method will end up throwing InstantiationException.
 


D. If no exception is thrown at line1, then the whole method will end up throwing CloneNotSupportedException.
 


E. If SQLException gets thrown at line1, then the whole method will end up throwing InstantiationException.
 


Explanation: 
The fundamental concepts at play here are:



1. The Exception that is thrown the last, is the Exception that is thrown by the method to the caller.

So, when no exception or any exception is thrown at line 1, the control goes to finally or some catch block. Now, even if the catch blocks throws some exception, the control goes to finally. The finally block throws CloneNotSupportedException, so the method ends up throwing CloneNotSupportedException. Other exceptions thrown by the code prior to this point are lost.



2. Exception thrown by a catch cannot be caught by the following catch blocks at the same level. So, if IOException is thrown at line 1, the control goes to first catch which throws SQLException. Now, although there is a catch for SQLException, it won't catch the exception because it is at the same level. So, the control goes to the finally and same process as explained above continues. Any exceptions thrown before this exception are lost.

 
Back to Question without Answer
 



75.     QID - 2.923 : Working with Java Data Types - Garbage Collection 
 

Given the following code:



class M { }

class N{

   private M m = new M();

   public void makeItNull(M pM){

      pM = null;

   }

   public void makeThisNull(){

      makeItNull(m);

   }

   public static void main(String[] args){

      N n = new N();

      n.makeThisNull();

   }

}



Which of the following statements are correct?
 

Correct Option is :  A 

A. There are no instances of M to be garbage collected till the program ends.
 


B. A call to n.makeThisNull() marks the private instance of M for garbage collection.
n.makeThisNull()  internally calls makeItNull(m), which sets is method parameter pM to null. However, remember that, in Java, every call is pass by value. Therefore, when makeItNull(m) is called, the value of m is passed to the method and not m itself. The method parameter pM is therefore is not same as m but a new variable that points to the same object as the one pointed to by m. It is that variable pM which is set to null. The original m still keeps pointing to the same object as it was. Therefore, the instance of M will not be marked for garbage collection.


C. Setting pM = null; in makeItNull(), marks the private instance of M for garbage collection.
pM is just a method parameter (a copy of the original reference) that is passed to makeItNull(). So setting it to null will not affect the original variable.


D. private members of a class become eligible for garbage collection only when the instance of the class itself becomes eligible for garbage collection.
This is not true. Any instance can be made eligible by setting all its references to null. For example, in the following code, the Object instance referred to by 'o', can be made eligible for garbage collection by calling setNull(), even if the instance of X itself is not eligible for garbage collection.



class X{

  Object o = new Object();

  public void setNull(){ o = null; }

}



On the other hand, if the container object becomes eligible for GC and if there are no references to the contained objects outside of the container, the contained objects also become eligible for GC. For example, in the following code, both  - the instance of X and the object instance contained inside X, will become eligible for garbage collection:



...

X x = new X();

x = null;

...


Explanation: 
The official exam objectives now explicitly mention Garbage collection. All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();

 
Back to Question without Answer
 



76.     QID - 2.1182 : Using Operators and Decision Constructs 
 

What will be the output of the following class:


public class TestClass{
  public void testRefs(String str, StringBuilder sb){
    str = str + sb.toString();
    sb.append(str);
    str = null;
    sb = null;
  }
  public static void main(String[] args){
    String s = "aaa";
    StringBuilder sb = new StringBuilder("bbb");
    new TestClass().testRefs(s, sb);
    System.out.println("s="+s+" sb="+sb);
  }
}

 

Correct Option is :  E 

A. s=aaa sb=bbb
 


B. s=null sb=null
 


C. s=aaa sb=null
 


D. s=null sb=bbbaaa
 


E. s=aaa sb=bbbaaabbb
 


Explanation: 
Always remember that Strings are immutable, you cannot change them. In this case, s refers to "aaa", and no matter what testRefs() method does, the variable s of main() will keep pointing to the same string "aaa".



StringBuilder on the other hand, is mutable. So, initially sb is pointing to a StringBuilder object containing "bbb". Its reference is passed to the testRefs() method. In that method, we change the local variable str to point to a new string "aaa"+"bbb" = "aaabbb". Then we append this to sb. Therefore sb now contains "bbbaaabbb".

Setting the local reference str and sb (in method testRefs()) to null, does not affect the variables s and sb of the main() method.

 
Back to Question without Answer
 



77.     QID - 2.1065 : Using Operators and Decision Constructs 
 

What will the following code print?



   boolean flag = true;

   if(flag = false){

      System.out.println("1");

   }else if(flag){

      System.out.println("2");

   }else if(!flag){

      System.out.println("3");

   }else    System.out.println("4");


 

Correct Option is :  C 

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. Compilation error.
 


Explanation: 
At the beginning, flag is true. In the first if, we do flag = false. Notice that it is not flag == false. It is a single =, which assigns false to flag. Thus, flag becomes false and the condition becomes false therefore 1 is not printed. In the first 'else if', again since flag is false, 2 is not printed. In second 'else if', !flag implies !false, which is true, so 3 is printed. Finally, since an else-if condition has been satisfied, the last else is not executed.

 
Back to Question without Answer
 




Objective wise Questions



Java Basics
 
Exam Objectives - 
 
Define the scope of variables 
Define the structure of a Java class
Create executable Java applications with a main method; 
run a Java program from the command line; including console output.
Import other Java packages to make them accessible in your code



01.     QID - 2.867 
 

Which of the following keywords may occur multiple times in a Java source file?
 

Select 4 options

A. import
 


B. class
 


C. private
 


D. package
 


E. public
 


 
Check Answer
 



02.     QID - 2.1230 
 

What will the following code print when run?



public class TestClass{

  public static long main(String[] args){

     System.out.println("Hello");

     return 10L;

  }

}
 

Select 1 option

A. Hello
 


B. It will not print anything.
 


C. It will not compile
 


D. It will throw an Error at runtime.
 


E. None of the above.
 


 
Check Answer
 



03.     QID - 2.828 
 

Consider the following code appearing in a file named TestClass.java:



class Test{ }  // 1



public class TestClass {



   public int main(String[] args)  { // 2



       double x=10, double y;  // 3



       System.out.println[]; // 4

       

        for(int k =0; k<x; k++){ } //5

        

       return 0;

   }

}



Which of the lines are invalid?
 

Select 1 option

A. // 1 and // 4
 


B. // 3 and // 4
 


C. // 2 and // 4
 


D. // 2 and // 3
 


 
Check Answer
 



04.     QID - 2.845 
 

The options below contain the complete contents of a file.

Which of these options can be run with the following command line once compiled?

 java main
 

Select 1 option

A. //in file main.java

class main {

   public void main(String[] args) {

       System.out.println("hello");

   }

}
 


B. //in file main.java

   public static void main(String[] args) {

       System.out.println("hello");

   }
 


C. //in file main.java

public class anotherone{

}

class main {

   public static void main(String[] args) {

       System.out.println("hello");

   }

}
 


D. //in file main.java

class anothermain{

   public static void main(String[] args) {

       System.out.println("hello2");

   }

}

class main {

   public final static void main(String[] args) {

       System.out.println("hello");

   }

}


 


 
Check Answer
 



05.     QID - 2.894 
 

The following are the complete contents of TestClass.java file. Which packages are automatically imported?



class TestClass{

   public static void main(String[] args){

     System.out.println("hello");

   }

}
 

Select 2 options

A. java.util
 


B. System
 


C. java.lang
 


D. java.io
 


E. String
 


F. The package with no name.
 


 
Check Answer
 



06.     QID - 2.1085 
 

Consider the following two classes defined in two java source files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1 <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       X x = new X();
       x.apply(LOGICID);
    }
}


What should be inserted at //1 so that Y.java can compile without any error?
 

Select 2 options

A. import static X;
 


B. import static com.foo.*;
 


C. import static com.foo.X.*;
 


D. import com.foo.*;
 


E. import com.foo.X.LOGICID;
 


 
Check Answer
 



07.     QID - 2.928 
 

Given the following set of member declarations, which of the following is true?


 int a;    //  (1)
 static int a;    //  (2)
 int f( )   { return a; }    //  (3)
 static int f( ) { return a; }    //  (4)


 

Select 2 options

A. Declarations (1) and (3) cannot occur in the same class definition.
 


B. Declarations (2) and (4) cannot occur in the same class definition.
 


C. Declarations (1) and (4) cannot occur in the same class definition.
 


D. Declarations (2) and (3) cannot occur in the same class definition.
 


E. Declarations (1) and (2) cannot occur in the same class definition.
 


 
Check Answer
 



08.     QID - 2.1341 
 

What will be result of attempting to compile this class?



import java.util.*;

package test;

public class TestClass{

    public OtherClass oc = new OtherClass();

}

class OtherClass{

    int value;

}
 

Select 1 option

A. The class will fail to compile, since the class OtherClass is used before it is defined.
 


B. There is no problem with the code.
 


C. The class will fail to compile, since the class OtherClass must be defined in a file called OtherClass.java
 


D. The class will fail to compile .
 


E. None of the above.
 


 
Check Answer
 



09.     QID - 2.1214 
 

Consider the following program:



public class TestClass{

  public static void main(String[] args){

    String tom = args[0];

    String dick = args[1];

    String harry = args[2];

  }

}



What will be the value of 'harry' if the program is run from the command line:

java TestClass 111 222 333
 

Select 1 option

A. 111
 


B. 222
 


C. 333
 


D. It will throw an ArrayIndexOutOfBoundsException
 


E. None of the above.
 


 
Check Answer
 



10.     QID - 2.915 
 

Given the following contents of two java source files:



package util.log4j;

public class Logger  { 

  public void log(String msg){

      System.out.println(msg);

  } 

}



and



package util;

public class TestClass {

    public static void main(String[] args) throws Exception {

        Logger logger = new Logger();

        logger.log("hello");

    }

}



What changes, when made independently, will enable the code to compile and run?
 

Select 2 options

A. Replace Logger logger = new Logger(); with:

log4j.Logger logger = new log4j.Logger();
 


B. Replace package util.log4j; with 

package util;
 


C. Replace Logger logger = new Logger(); with:

util.log4j.Logger logger = new util.log4j.Logger();
 


D. Remove package util.log4j; from Logger.
 


E. Add import log4j; to TestClass.
 


 
Check Answer
 



11.     QID - 2.840 
 

What will be the output of the following program when it is compiled and run with the command line: 



java TestClass 1 2 3



public class TestClass {

 

    public static void main(String[] args) {

        System.out.println("Values : "+args[0]+args[1]);

    }

}


 

Select 1 option

A. Values : java TestClass
 


B. Values : TestClass 1
 


C. Values : 12
 


D. Values : 23
 


E. Values : 3
 


 
Check Answer
 



12.     QID - 2.1436 
 

You have written some Java code in MyFirstClass.java file. Which of the following commands will you use to compile and run it.

(Assume that the code has no package declaration.)
 

Select 1 option

A. javac MyFirstClass.java

javar MyFirstClass
 


B. javap MyFirstClass.java

javar MyFirstClass.java
 


C. java MyFirstClass.java

java MyFirstClass.class
 


D. javac MyFirstClass.java

javar MyFirstClass.java
 


E. javac MyFirstClass.java

java MyFirstClass
 


 
Check Answer
 



13.     QID - 2.1063 
 

Consider the directory structure shown in Image 1 that displays available folders and classes and the code given below:



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public void store() throws IOException{

     Util.store(stock);

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements MUST be added to the above class?
 

[image: 2.60.DirStruct] 
 
Select 4 options

A. package com.enthu.rad.*;
 


B. import com.enthu.*;
 


C. package com.enthu.rad;
 


D. import com.*;
 


E. import java.io.*;
 


F. It is not required to import java.io.* or import java.io.IOException because java.io package is imported automatically.
 


 
Check Answer
 



14.     QID - 2.902 
 

Given:


class Triangle{
    public int base;
    public int height;
    public double area = 0;
    
    public Triangle(int pBase, int pHeight){
        this.base = pBase; this.height = pHeight;
        updateArea();
    }
    public void updateArea(){
        double a = base*height/2;
        area = a;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


Which variables are not accessible from anywhere within given class code except from the scope in which they are declared?
 

Select 1 option

A. base, height, area
 


B. area, b, h
 


C. base, height
 


D. b, h, a
 


 
Check Answer
 



15.     QID - 2.1170 
 

Consider the classes shown below:


class A{
   public A() { }
   public A(int i) {   System.out.println(i );    }
}
class B{
   static A s1 = new A(1);
   A a = new A(2);
   public static void main(String[] args){
      B b = new B();
      A a = new A(3);
   }
   static A s2 = new A(4);
}


Which is the correct sequence of the digits that will be printed when B is run?
 

Select 1 option

A. 1 ,2 ,3 4.
 


B. 1 ,4, 2 ,3
 


C. 3, 1, 2, 4
 


D. 2, 1, 4, 3
 


E. 2, 3, 1, 4
 


 
Check Answer
 



16.     QID - 2.1007 
 

How can you declare a method someMethod() such that an instance of the class is not needed to access it and all the members of the same package have access to it.
 

Select 3 options

A. public static void someMethod()
 


B. static void someMethod()
 


C. protected static void someMethod()
 


D. void someMethod()
 


E. protected void someMethod()
 


F. public abstract static void someMethod()
 


 
Check Answer
 



17.     QID - 2.1438 
 

What will the following code print when compiled and run?





public class ATest {

    

    

    String global = "111";

    

    public int parse(String arg){

        int value = 0;

        try{

            String global = arg;            

            value = Integer.parseInt(global);

        }

        catch(Exception e){

            System.out.println(e.getClass());

        }

        System.out.print(global+" "+value+" ");

        return value;

    }

       public static void main(String[] args) {

          ATest ct = new ATest();

           System.out.print(ct.parse("333"));

       }

 

}


 

Select 1 option

A. 111 333 333
 


B. 333 333 333
 


C. java.lang.NumberFormatException
 


D. java.lang.Exception
 


E. Compilation fails.
 


 
Check Answer
 



18.     QID - 2.1142 
 

Which of the given options should be inserted at line 1 so that the following code can compile without any errors?



package objective1;

// 1

public class StaticImports{

    

    public StaticImports(){

    out.println(MAX_VALUE);

    }

    

}
 

Select 2 options

A. import static java.lang.Integer.*;
 


B. static import java.lang.System.out;
 


C. static import Integer.MAX_VALUE;
 


D. import static java.lang.System.*;
 


E. static import java.lang.System.*;
 


 
Check Answer
 



19.     QID - 2.1423 
 

What will the following code print when compiled and run?



public class Paper {

    public String title;

    public int id;

    

    public Paper(String title, int id){

        this.title = title;

        this.id = id;

    }

    

    public static void main(String[] args) {

        Paper[] papers = { 

            new Paper("T1", 1), 

            new Paper("T2", 2),

            new Paper("T3", 3)

        };

        

        System.out.println(papers);

        System.out.println(papers[1]);

        System.out.println(papers[1].id);

    }

}
 

Select 1 option

A. papers

Paper

2
 


B. papers

T2,2

2
 


C. [LPaper;@<hashcode>

Paper

2
 


D. [LPaper;@<hashcode>

Paper@<hashcode>

2
 


 
Check Answer
 



20.     QID - 2.1437 
 

Given the following code - 

public class MyFirstClass{

  public static void main(String[] args){

     System.out.println(args[1]);

  }

}



Which of the following commands will compile and then print "hello"?
 

Select 1 option

A. javac MyFirstClass

java MyFirstClass hello hello
 


B. javac MyFirstClass.java

java MyFirstClass hello hello
 


C. javac MyFirstClass

java MyFirstClass hello
 


D. javac MyFirstClass.java

java MyFirstClass hello
 


 
Check Answer
 



21.     QID - 2.1080 
 

Which of the following are valid declarations of the standard main method?
 

Select 2 options

A. static void main(String args[ ]) { }
 


B. public static int main(String args[ ]) {}
 


C. public static void main (String args) { }
 


D. final static public void main (String[ ] arguments ) { }
 


E. public static void main (String[ ] args) { }
 


 
Check Answer
 



22.     QID - 2.1066 
 

Consider the following directory structure shown in Image 1 that displays available folders and classes and the code given below.



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements must be added to the above class?
 

[image: 2.60.DirStruct] 
 
Select 2 options

A. import com.enthu.*;
 


B. import com.*.*;
 


C. import *.*.*;
 


D. import com.*;
 


E. import com.enthu.rad.*;
 


F. import all;
 


 
Check Answer
 



23.     QID - 2.1004 
 

Which of these statements concerning the use of modifiers are true?
 

Select 1 option

A. By default (i.e. no modifier) the member is only accessible to classes in the same package and subclasses of the class.
 


B. You cannot specify visibility of local variables.
 


C. Local variable always have default accessibility.
 


D. Local variables can be declared as private.
 


E. Local variables can only be declared as public.
 


 
Check Answer
 



24.     QID - 2.933 
 

Which of the given options can be successfully inserted at line 1....



  //line 1

   public class A{

   }
 

Select 3 options

A. import java.lang.*;
 


B. package p.util;
 


C. public class MyClass{ }
 


D. abstract class MyClass{ }
 


 
Check Answer
 



25.     QID - 2.1338 
 

What is the correct parameter specification for the standard main method?
 

Select 2 options

A. void
 


B. String[ ] args
 


C. Strings args[ ]
 


D. String args
 


E. String args[ ]
 


 
Check Answer
 



26.     QID - 2.1452 
 

Following options show the complete code listings of a file. Which of these will compile?
 

Select 2 options

A. //In file A.java

import java.io.*;

package x;

public class A{

}
 


B. //In file B.java

import java.io.*;

class A{

  public static void main() throws IOException{ }

}
 


C. //In file A.java

public class A{

   int a;

   public void m1(){

     private int b = 0;

     a = b;

   }

}
 


D. //In file A.java

public class A{

  public static void main(String[] args){

    System.out.println(new A().main);

  }   

  int main;

}
 


E. Only one of the above options is correct.
 


 
Check Answer
 



27.     QID - 2.1249 
 

Consider the following class:



public class ArgsPrinter{

   public static void main(String args){

      for(int i=0; i<3; i++){

         System.out.print(args+" ");

      }

   }

}



What will be printed when the above class is run using the following command line:

java ArgsPrinter 1 2 3 4
 

Select 1 option

A. 1 2 3
 


B. ArgsPrinter 1 2 
 


C. java ArgsPrinter 1 2 
 


D. 1 1 1
 


E. None of these.
 


 
Check Answer
 



28.     QID - 2.955 
 

An instance member ...
 

Select 2 options

A. can be a variable, a constant or a method.
 


B. is a variable or a constant.
 


C. belongs to the class.
 


D. belongs to an instance of the class.
 


E. is same as a local variable.
 


 
Check Answer
 



29.     QID - 2.1079 
 

Consider the following two classes defined in two .java files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1  <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       System.out.println(X.LOGICID);
    }
}



What should be inserted at //1 so that Y.java can compile without any error?
 

Select 1 option

A. import static X;
 


B. import static com.foo.*;
 


C. import static com.foo.X.*;
 


D. import com.foo.*;
 


E. import com.foo.X.LOGICID;
 


 
Check Answer
 



30.     QID - 2.1110 
 

Which of these statements are true?
 

Select 2 options

A. A static method can call other non-static methods in the same class by using the 'this' keyword.
 


B. A class may contain both static and non-static variables and both static and non-static methods.
 


C. Each object of a class has its own copy of each non-static member variable.
 


D. Instance methods may access local variables of static methods.
 


E. All methods in a class are implicitly passed a 'this' parameter when called.
 


 
Check Answer
 



31.     QID - 2.1364 
 

Given the following class, which of these are valid ways of referring to the class from outside of the package com.enthu?





package com.enthu;

public class Base{

   // lot of code...

}
 

Select 2 options

A. Base
 


B. By importing the package com.* and referring to the class as enthu.Base
 


C. importing com.* is illegal.
 


D. By importing com.enthu.* and referring to the class as Base.
 


E. By referring to the class as com.enthu.Base.
 


 
Check Answer
 



32.     QID - 2.992 
 

Given the following program, which statement is true?



class SomeClass{

   public static void main( String args[ ] ){

      if (args.length == 0 ){

         System.out.println("no arguments") ;

      }

      else{

         System.out.println( args.length + " arguments") ;

      }

   }

}
 

Select 1 option

A. The program will fail to compile.
 


B. The program will throw a NullPointerException when run with zero arguments.
 


C. The program will print no arguments when called with zero arguments and 1 arguments  when called with one argument.
 


D. The program will print no arguments and 2 arguments when called with zero and one arguments.
 


E. The program will print no arguments and 3 arguments when called with zero and one arguments.
 


 
Check Answer
 



33.     QID - 2.1020 
 

What does the zeroth element of the string array passed to the standard main method contain?
 

Select 1 option

A. The name of the class.
 


B. The string "java".
 


C. The number of arguments.
 


D. The first argument of the argument list, if present.
 


E. None of the above.
 


 
Check Answer
 



34.     QID - 2.1069 
 

Which method declarations will enable a class to be run as a standalone program?
 

Select 2 options

A. static void main(String args[ ])
 


B. public void static main(String args[ ])
 


C. public static main(String[ ] argv)
 


D. final public static void main(String [ ] array)
 


E. public static void main(String args[ ])
 


 
Check Answer
 



35.     QID - 2.1232 
 

Which of the following lines can be inserted at line 1 to make the program run?



//line 1

public class TestClass{

  public static void main(String[] args){

     PrintWriter pw = new PrintWriter(System.out);

     OutputStreamWriter osw  =  new OutputStreamWriter( System.out );

     pw.print("hello");

  }

}



Assume that PrintWriter and OutputStreamWriter are valid classes in java.io package.
 

Select 1 option

A. import java.lang.*;
 


B. import java.io.*;
 


C. import java.io.OutputStreamWriter;
 


D. include java.io.*;
 


E. include java.lang.System;
 


 
Check Answer
 



Java Basics (Answered)



01.     QID - 2.867 : Java Basics 
 

Which of the following keywords may occur multiple times in a Java source file?
 

Correct Options are :  A B C E 

A. import
 


B. class
 


C. private
 


D. package
There can be at most one package statement in a Java source file and it must be the first statement in the file.


E. public
 


 
Back to Question without Answer
 



02.     QID - 2.1230 : Java Basics 
 

What will the following code print when run?



public class TestClass{

  public static long main(String[] args){

     System.out.println("Hello");

     return 10L;

  }

}
 

Correct Option is :  D 

A. Hello
 


B. It will not print anything.
 


C. It will not compile
 


D. It will throw an Error at runtime.
 


E. None of the above.
 


Explanation: 
When the program is run, the JVM looks for a method named main() which takes an array of Strings as input and returns nothing (i.e. the return type is void).

But in this case, it doesn't find such a method ( the given main() method is returning long!) so it throws a java.lang.NoSuchMethodError.

Note that java.lang.Error does not extend Exception class. It  extends java.lang.Throwable and so it can be "thrown".

 
Back to Question without Answer
 



03.     QID - 2.828 : Java Basics 
 

Consider the following code appearing in a file named TestClass.java:



class Test{ }  // 1



public class TestClass {



   public int main(String[] args)  { // 2



       double x=10, double y;  // 3



       System.out.println[]; // 4

       

        for(int k =0; k<x; k++){ } //5

        

       return 0;

   }

}



Which of the lines are invalid?
 

Correct Option is :  B 

A. // 1 and // 4
 


B. // 3 and // 4
 


C. // 2 and // 4
 


D. // 2 and // 3
 


Explanation: 
// 1 is valid because it is a valid code that declares a class.



// 2 is a valid declaration of a method named main. Although, it is not a correct declaration for the standard main method that can be used to execute the class, but it is a valid method nevertheless.



// 3 is invalid syntax. It can be written as either double x=10; double y;  or double x=10, y; 

Note that even though x is a double and 10 is an int, it is valid because 10 will automatically be converted to a double. The reverse would not be valid i.e. int x = 10.0; will be invalid. 

You need a cast for that: int x = (int) 10.0;



//4 is invalid because println is not a class name. So you cannot create an array of it. println is a method. So it should be written as System.out.println();



//5 is a valid declaration of a for loop.

 
Back to Question without Answer
 



04.     QID - 2.845 : Java Basics 
 

The options below contain the complete contents of a file.

Which of these options can be run with the following command line once compiled?

 java main
 

Correct Option is :  D 

A. //in file main.java

class main {

   public void main(String[] args) {

       System.out.println("hello");

   }

}
The main method should be static.


B. //in file main.java

   public static void main(String[] args) {

       System.out.println("hello");

   }
You cannot have a method on its own. It must be a part of a class.


C. //in file main.java

public class anotherone{

}

class main {

   public static void main(String[] args) {

       System.out.println("hello");

   }

}
A public class must exist in a file by the same name. So this code is invalid because anotherone is a public class but the name of the file is main. It would have been valid if the name of the file were anotherone.java.



A non public class may exist in any file. This implies that there can be only one public class in a file.


D. //in file main.java

class anothermain{

   public static void main(String[] args) {

       System.out.println("hello2");

   }

}

class main {

   public final static void main(String[] args) {

       System.out.println("hello");

   }

}


class main's main method will be executed. final is a valid modifier for the standard main method. 



Note that final means a method cannot be overridden. Although static methods can never be overridden. (they can be shadowed), making a static method final prevents the subclass from implementing the same static method.


Explanation: 
Observe that the given code does not follow the standard Java naming convention. The class names should start with a capital letter. 



There are questions in the exam that contain similar non-conventional and confusing names and that is why we have kept a few questions like that in this question bank.

 
Back to Question without Answer
 



05.     QID - 2.894 : Java Basics 
 

The following are the complete contents of TestClass.java file. Which packages are automatically imported?



class TestClass{

   public static void main(String[] args){

     System.out.println("hello");

   }

}
 

Correct Options are :  C F 

A. java.util
 


B. System
System is not a package. It is a class in java.lang package.


C. java.lang
 


D. java.io
 


E. String
String is a class in java.lang package.


F. The package with no name.
If there is no package statement in the source file, the class is assumed to be created in a default package that has no name. In this case, all the types created in this default package will be available to this class without any import statement.



However, note that this default package cannot be imported in classes that belong to any other package at all, not even with any sort of import statement. So for example, if you have a class named SomeClass in package test, you cannot access TestClass defined in the problem statement (as it is defined in the default package) at all because there is no way to import it.



As per JLS Section 7.5:

A type in an unnamed package has no canonical name, so the requirement for a canonical name in every kind of import declaration implies that (a) types in an unnamed package cannot be imported, and (b) static members of types in an unnamed package cannot be imported.


 
Back to Question without Answer
 



06.     QID - 2.1085 : Java Basics 
 

Consider the following two classes defined in two java source files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1 <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       X x = new X();
       x.apply(LOGICID);
    }
}


What should be inserted at //1 so that Y.java can compile without any error?
 

Correct Options are :  C D 

A. import static X;
 


B. import static com.foo.*;
Bad syntax. com.foo is a package and you cannot import a package statically. You can only import static members of a class statically.


C. import static com.foo.X.*;
This static import is required because of Y is accessing LOGICID directly without its class name ( i.e. X.LOGICID).


D. import com.foo.*;
This is required because Y also accesses the class X : X x = new X(); If Y had only one statement, System.out.println(LOGICID); import static com.foo.X.* would suffice.


E. import com.foo.X.LOGICID;
Syntax for importing static fields is:  import static <package>.<classname>.*; or import static <package>.<classname>.<fieldname>;


 
Back to Question without Answer
 



07.     QID - 2.928 : Java Basics 
 

Given the following set of member declarations, which of the following is true?


 int a;    //  (1)
 static int a;    //  (2)
 int f( )   { return a; }    //  (3)
 static int f( ) { return a; }    //  (4)


 

Correct Options are :  C E 

A. Declarations (1) and (3) cannot occur in the same class definition.
 


B. Declarations (2) and (4) cannot occur in the same class definition.
A static method can refer to a static field.


C. Declarations (1) and (4) cannot occur in the same class definition.
because method f() is static and a is not.


D. Declarations (2) and (3) cannot occur in the same class definition.
 


E. Declarations (1) and (2) cannot occur in the same class definition.
variable names must be different.


Explanation: 
Local variables can have same name as member variables. The local variables will simply shadow the member variables with the same names.

Declaration (4) defines a static method that tries to access a variable named 'a' which is not locally declared.

Since the method is static, this access will only be valid if variable 'a' is declared static within the class. Therefore declarations (1) and (4) cannot occur in the same definition.

 
Back to Question without Answer
 



08.     QID - 2.1341 : Java Basics 
 

What will be result of attempting to compile this class?



import java.util.*;

package test;

public class TestClass{

    public OtherClass oc = new OtherClass();

}

class OtherClass{

    int value;

}
 

Correct Option is :  D 

A. The class will fail to compile, since the class OtherClass is used before it is defined.
 


B. There is no problem with the code.
 


C. The class will fail to compile, since the class OtherClass must be defined in a file called OtherClass.java
This is not needed because OtherClass is not public. The class & file name must match only if the class is public.


D. The class will fail to compile .
The package declaration can never occur after an import statement.


E. None of the above.
 


Explanation: 
The order is:

package statement.

import statements

class/ interface definitions.

Important point to note here is YOU MUST READ THE QUESTIONS VERY CAREFULLY.

 
Back to Question without Answer
 



09.     QID - 2.1214 : Java Basics 
 

Consider the following program:



public class TestClass{

  public static void main(String[] args){

    String tom = args[0];

    String dick = args[1];

    String harry = args[2];

  }

}



What will be the value of 'harry' if the program is run from the command line:

java TestClass 111 222 333
 

Correct Option is :  C 

A. 111
 


B. 222
 


C. 333
 


D. It will throw an ArrayIndexOutOfBoundsException
 


E. None of the above.
 


Explanation: 
java and classname are not part of the args array. So tom gets "111", dick gets "222" and harry gets "333".

 
Back to Question without Answer
 



10.     QID - 2.915 : Java Basics 
 

Given the following contents of two java source files:



package util.log4j;

public class Logger  { 

  public void log(String msg){

      System.out.println(msg);

  } 

}



and



package util;

public class TestClass {

    public static void main(String[] args) throws Exception {

        Logger logger = new Logger();

        logger.log("hello");

    }

}



What changes, when made independently, will enable the code to compile and run?
 

Correct Options are :  B C 

A. Replace Logger logger = new Logger(); with:

log4j.Logger logger = new log4j.Logger();
If you are not importing a class or the package of the class, you need to use the class's fully qualified name while using it. Here, you need to use util.log4j.Logger instead of just log4j.Logger:

util.log4j.Logger logger = new util.log4j.Logger();


B. Replace package util.log4j; with 

package util;
This will put both the classes in the same package and TestClass can then directly use Logger class without importing anything.


C. Replace Logger logger = new Logger(); with:

util.log4j.Logger logger = new util.log4j.Logger();
Using a fully qualified class name always works irrespective of whether you import the package or not.  In this case, all classes of package util are available in TestClass without any import statement but Logger is in util.log4j. Therefore, the use of fully qualified class name for Logger, which is util.log4j.Logger, makes it work.


D. Remove package util.log4j; from Logger.
Remember that you can never access a class that is defined in the default package (i.e. the package with no name) from a class in any other package. So if you remove the package statement from Logger, you can't access it from util package, which is where TestClass is.


E. Add import log4j; to TestClass.
This will not help because Logger is in util.log4j package and not in log4j package.


 
Back to Question without Answer
 



11.     QID - 2.840 : Java Basics 
 

What will be the output of the following program when it is compiled and run with the command line: 



java TestClass 1 2 3



public class TestClass {

 

    public static void main(String[] args) {

        System.out.println("Values : "+args[0]+args[1]);

    }

}


 

Correct Option is :  C 

A. Values : java TestClass
 


B. Values : TestClass 1
 


C. Values : 12
 


D. Values : 23
 


E. Values : 3
 


Explanation: 
In Java, command line arguments are passed into the program using the String[] parameter to the main method. The String array contains actual parameters and does not include java and the name of the class. 



Therefore, in this case, args will point to an array of Strings with 3 elements - "1", "2", and "3". The program prints out only args[0] and args[1], which are 1 and 2.

 
Back to Question without Answer
 



12.     QID - 2.1436 : Java Basics 
 

You have written some Java code in MyFirstClass.java file. Which of the following commands will you use to compile and run it.

(Assume that the code has no package declaration.)
 

Correct Option is :  E 

A. javac MyFirstClass.java

javar MyFirstClass
 


B. javap MyFirstClass.java

javar MyFirstClass.java
 


C. java MyFirstClass.java

java MyFirstClass.class
 


D. javac MyFirstClass.java

javar MyFirstClass.java
 


E. javac MyFirstClass.java

java MyFirstClass
 


Explanation: 
Remember that java code must be written in a file with .java extension. If you have a public class in the code, the name of the file must be same as the name of that public class. 



Compilation and execution of a Java program is two step process. You first need to compile a java file using a Java compiler. Oracle's JDK comes with a compiler. It is contained in the executable file named javac. You will find it in <jdk installation folder>/bin.



javac compiles the source code and generates bytecode in a new file with the same name as the source file but with extension .class. By default, the class file in generated in the same folder but javac is capable of placing it in a different folder if you use the -d flag. [This is just FYI and not required for the exam. -d is a very important and useful flag and we recommend that you read about it even if it is not required for the exam.]



In second step, the Java virtual machine (JVM), aka Java interpreter is invoked to execute the .class file. Oracle's JVM is contained in the executable file named java. It is also present in the same bin folder of JDK installation. It takes the fully qualified name (i.e. name including package) of the class file without extension as a argument.

 
Back to Question without Answer
 



13.     QID - 2.1063 : Java Basics 
 

Consider the directory structure shown in Image 1 that displays available folders and classes and the code given below:



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public void store() throws IOException{

     Util.store(stock);

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements MUST be added to the above class?
 

[image: 2.60.DirStruct] 
 
Correct Options are :  B C D E 

A. package com.enthu.rad.*;
Bad syntax. A package statement can never have a *. It should specify the exact package name.


B. import com.enthu.*;
 


C. package com.enthu.rad;
Since there is no import statement available for com.enthu.rad package, you must put the given class in com.enthu.rad package so that it will be accessible. Classes of the same package are always available to each other.


D. import com.*;
 


E. import java.io.*;
 


F. It is not required to import java.io.* or import java.io.IOException because java.io package is imported automatically.
Since the code is using IOException, the java.io package (or just java.io.IOException class) must be imported. Only java.lang package is imported automatically.


 
Back to Question without Answer
 



14.     QID - 2.902 : Java Basics 
 

Given:


class Triangle{
    public int base;
    public int height;
    public double area = 0;
    
    public Triangle(int pBase, int pHeight){
        this.base = pBase; this.height = pHeight;
        updateArea();
    }
    public void updateArea(){
        double a = base*height/2;
        area = a;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


Which variables are not accessible from anywhere within given class code except from the scope in which they are declared?
 

Correct Option is :  D 

A. base, height, area
 


B. area, b, h
 


C. base, height
 


D. b, h, a
b and h are method parameters and are only accessible in the method setBase and setHeight respectively.

a is a local variable and is accessible only in updateArea method.



base, height, and area are instance level and can be accessed from anywhere within the class where "this" is accessible.


Explanation: 
"class level" means static fields and they can be accessed from anywhere (i.e. static as well as non-static methods) in the class (and from outside the class depending on their accessibility).

"instance level" means the instance fields and they can be accessed only from instance methods in the class.

 
Back to Question without Answer
 



15.     QID - 2.1170 : Java Basics 
 

Consider the classes shown below:


class A{
   public A() { }
   public A(int i) {   System.out.println(i );    }
}
class B{
   static A s1 = new A(1);
   A a = new A(2);
   public static void main(String[] args){
      B b = new B();
      A a = new A(3);
   }
   static A s2 = new A(4);
}


Which is the correct sequence of the digits that will be printed when B is run?
 

Correct Option is :  B 

A. 1 ,2 ,3 4.
 


B. 1 ,4, 2 ,3
 


C. 3, 1, 2, 4
 


D. 2, 1, 4, 3
 


E. 2, 3, 1, 4
 


Explanation: 
The order of initialization of a class is:

1. All static constants, variables and blocks.(Among themselves the order is the order in which they appear in the code.)

2. All non static constants, variables and blocks.(Among themselves the order is the order in which they appear in the code.)

3. Constructor.

 
Back to Question without Answer
 



16.     QID - 2.1007 : Java Basics 
 

How can you declare a method someMethod() such that an instance of the class is not needed to access it and all the members of the same package have access to it.
 

Correct Options are :  A B C 

A. public static void someMethod()
 


B. static void someMethod()
 


C. protected static void someMethod()
 


D. void someMethod()
 


E. protected void someMethod()
 


F. public abstract static void someMethod()
static methods can't be abstract.


Explanation: 
Since the question says, "...an instance of the class is not needed...", the method has to be static.

Also, as the question does not say that other packages should not have access to the method so public or protected is also correct.

 
Back to Question without Answer
 



17.     QID - 2.1438 : Java Basics 
 

What will the following code print when compiled and run?





public class ATest {

    

    

    String global = "111";

    

    public int parse(String arg){

        int value = 0;

        try{

            String global = arg;            

            value = Integer.parseInt(global);

        }

        catch(Exception e){

            System.out.println(e.getClass());

        }

        System.out.print(global+" "+value+" ");

        return value;

    }

       public static void main(String[] args) {

          ATest ct = new ATest();

           System.out.print(ct.parse("333"));

       }

 

}


 

Correct Option is :  A 

A. 111 333 333
 


B. 333 333 333
 


C. java.lang.NumberFormatException
 


D. java.lang.Exception
 


E. Compilation fails.
 


Explanation: 
Observe that a new local variable named global is defined within a try block. It is accessible only within the try block. It also shadows the instance field of the same name global within the try block. It is this variable that is used in parseInt. Therefore, value is set to 333.

However, when you print global in parse method, the global defined in the try block is out of scope and the instance field named global is used. Therefore, it prints 111.



There is no exception because 333 can be parsed into an int. If you pass a string that cannot be parsed into an int to the parseInt method, it will throw a java.lang.NumberFormatException.

 
Back to Question without Answer
 



18.     QID - 2.1142 : Java Basics 
 

Which of the given options should be inserted at line 1 so that the following code can compile without any errors?



package objective1;

// 1

public class StaticImports{

    

    public StaticImports(){

    out.println(MAX_VALUE);

    }

    

}
 

Correct Options are :  A D 

A. import static java.lang.Integer.*;
 


B. static import java.lang.System.out;
 


C. static import Integer.MAX_VALUE;
 


D. import static java.lang.System.*;
The code uses out.println instead of System.out.println. out is a static field in java.lang.System class. That is why you need to import the static fields of java.lang.System.


E. static import java.lang.System.*;
 


Explanation: 
The order of keywords for a static import must be "import static ... ".

You can either import all the static members using import static java.lang.Integer.* or one specific member using import static java.lang.Integer.MAX_VALUE;

You must specify the full package name of the class that you are importing (just like the regular import statement). So, import static Integer.*; is wrong.

 
Back to Question without Answer
 



19.     QID - 2.1423 : Java Basics 
 

What will the following code print when compiled and run?



public class Paper {

    public String title;

    public int id;

    

    public Paper(String title, int id){

        this.title = title;

        this.id = id;

    }

    

    public static void main(String[] args) {

        Paper[] papers = { 

            new Paper("T1", 1), 

            new Paper("T2", 2),

            new Paper("T3", 3)

        };

        

        System.out.println(papers);

        System.out.println(papers[1]);

        System.out.println(papers[1].id);

    }

}
 

Correct Option is :  D 

A. papers

Paper

2
 


B. papers

T2,2

2
 


C. [LPaper;@<hashcode>

Paper

2
 


D. [LPaper;@<hashcode>

Paper@<hashcode>

2
 


Explanation: 
You may find a few simple questions in the exam that expect you to know what is printed when you pass an array to System.out.print/println. All you need to know is that when the class (or the superclass) of an object does not override the toString method, Object class's toString is used, which prints the name of the class + @ sign + hash code of the object.



Now, in case of an array, the name of the class is a little complicated. The details (given here: http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName-- ) are:

The internal form of the name consists of the name of the element type preceded by one or more '[' characters representing the depth of the array nesting. The encoding of element type names is as follows:



Element Type   Encoding

boolean   Z

byte      B

char      C

class or interface   Lclassname;  <-- Observe the character L here

double   D

float       F

int          I

long       J

short     S



For example, the name of one dimensional byte array is [B. Therefore, if you pass it to print/println method, [B@<hashcode> will be printed.

The name of two dimensional byte array is [[B. Therefore, if you pass it to print/println method, [[B@<hashcode> will be printed.



Thus, in this question, the first println statement will print [LPaper;@<hashcode> and the second println will print Paper@<hashcode>, both followed by a new line, of course.

 
Back to Question without Answer
 



20.     QID - 2.1437 : Java Basics 
 

Given the following code - 

public class MyFirstClass{

  public static void main(String[] args){

     System.out.println(args[1]);

  }

}



Which of the following commands will compile and then print "hello"?
 

Correct Option is :  B 

A. javac MyFirstClass

java MyFirstClass hello hello
 


B. javac MyFirstClass.java

java MyFirstClass hello hello
Since the code is printing args[1] i.e. the second parameter, you need to specify "hello" as the second argument. The first argument is ignored by this code. If you do not specify two parameters, this code will throw ArrayIndexOutOfBoundsException because it will be trying to access the second element of an array of size 1.


C. javac MyFirstClass

java MyFirstClass hello
 


D. javac MyFirstClass.java

java MyFirstClass hello
 


 
Back to Question without Answer
 



21.     QID - 2.1080 : Java Basics 
 

Which of the following are valid declarations of the standard main method?
 

Correct Options are :  D E 

A. static void main(String args[ ]) { }
Although practically correct but for the purpose of this exam you should not select this option because the method is not declared public.


B. public static int main(String args[ ]) {}
This method returns an 'int' instead of 'void'.


C. public static void main (String args) { }
The method takes only one String instead of String[].


D. final static public void main (String[ ] arguments ) { }
 


E. public static void main (String[ ] args) { }
 


Explanation: 
A valid declaration of "the" main() method must be public and static, should return void, and should take a single array of Strings as a parameter.



The order of the static and public keywords is irrelevant. But the return type should always come just before the method name.



Applying final to the method does not change the method signature.



In some versions of JDK, even a private or protected main() method works from command line. However, for the purpose of Java Certification exam, it should be assumed that for the JVM to execute a class using the standard main method, the accessibility of the main method must be public.

 
Back to Question without Answer
 



22.     QID - 2.1066 : Java Basics 
 

Consider the following directory structure shown in Image 1 that displays available folders and classes and the code given below.



class StockQuote{

  Stock stock;

  public StockQuote(Stock s)  {

  }

  public double computePrice(){

    return Helper.getPricer(stock).price();

  }

}



Assuming that the code uses valid method calls, what statements must be added to the above class?
 

[image: 2.60.DirStruct] 
 
Correct Options are :  D E 

A. import com.enthu.*;
This is not required because the code is not using any class from this package.


B. import com.*.*;
Bad Syntax. You can only import one package (i.e. all classes in that package) using a * or one class in an import statement.


C. import *.*.*;
Bad syntax.


D. import com.*;
This is required because the code is using Helper.class, which exists in com package.


E. import com.enthu.rad.*;
This is required because the code is using Stock.class, which exists in com.enthu.rad package.


F. import all;
 


Explanation: 
Since the given class does not have any package declaration, it belongs to the default package and therefore it must import com.Helper and com.enthu.rad.Stock classes.

 
Back to Question without Answer
 



23.     QID - 2.1004 : Java Basics 
 

Which of these statements concerning the use of modifiers are true?
 

Correct Option is :  B 

A. By default (i.e. no modifier) the member is only accessible to classes in the same package and subclasses of the class.
No, the member will be accessible only within the package.


B. You cannot specify visibility of local variables.
They are always only accessible within the block in which they are declared.


C. Local variable always have default accessibility.
A local variable (aka automatic variable) means a variable declared in a method. They don't have any accessibility. They are accessible only from the block they are declared in.

Remember, they are not initialized automatically. You have to initialize them explicitly.


D. Local variables can be declared as private.
 


E. Local variables can only be declared as public.
 


Explanation: 
You cannot apply any modifier except final to a local variable. i.e. you cannot make them transient, volatile, static, public, and private.

But you can apply access modifiers (public private and protected) and final, transient, volatile, static to instance variables.

You cannot apply native and synchronized to any kind of variable.

 
Back to Question without Answer
 



24.     QID - 2.933 : Java Basics 
 

Which of the given options can be successfully inserted at line 1....



  //line 1

   public class A{

   }
 

Correct Options are :  A B D 

A. import java.lang.*;
Although this package is automatically imported, it is not an error to import it explicitly.


B. package p.util;
It is a perfectly valid package statement.


C. public class MyClass{ }
There can be only 1 "public" class within package scope in a file. You can have additional inner classes that are public though.


D. abstract class MyClass{ }
You can have more than one classes in a file but at most one of them can be public.


Explanation: 
To make a class abstract, you only need to mark it abstract as shown in Option 4. You don't necessarily need to put an abstract method in a class.

 
Back to Question without Answer
 



25.     QID - 2.1338 : Java Basics 
 

What is the correct parameter specification for the standard main method?
 

Correct Options are :  B E 

A. void
 


B. String[ ] args
 


C. Strings args[ ]
 


D. String args
 


E. String args[ ]
 


Explanation: 
There is a no difference for args whether it is defined as String[] args or String args[]. However, there is an important difference in the way it is defined as illustrated by the following:



1. String[] sa1, sa2;

Here, both - sa1 and sa2 are String arrays.



2. String sa1[], sa2;

Here, only sa1 is a String array. sa2 is just a String.

 
Back to Question without Answer
 



26.     QID - 2.1452 : Java Basics 
 

Following options show the complete code listings of a file. Which of these will compile?
 

Correct Options are :  B D 

A. //In file A.java

import java.io.*;

package x;

public class A{

}
The package statement, if exists, must be the first statement in a java code file. If you move it up before the import, this code will compile.


B. //In file B.java

import java.io.*;

class A{

  public static void main() throws IOException{ }

}
There is nothing wrong with this code.

1. You can have a non-public class in a file with a different name.

2. You can have a main method that doesn't take String[] as an argument. It will not make the class executable from the command line though.


C. //In file A.java

public class A{

   int a;

   public void m1(){

     private int b = 0;

     a = b;

   }

}
Access modifiers (public/private/protected) are valid only inside the scope of a class, not of a method.


D. //In file A.java

public class A{

  public static void main(String[] args){

    System.out.println(new A().main);

  }   

  int main;

}
There is nothing wrong with this code. You can have a method and a field with the same name in a class.


E. Only one of the above options is correct.
 


 
Back to Question without Answer
 



27.     QID - 2.1249 : Java Basics 
 

Consider the following class:



public class ArgsPrinter{

   public static void main(String args){

      for(int i=0; i<3; i++){

         System.out.print(args+" ");

      }

   }

}



What will be printed when the above class is run using the following command line:

java ArgsPrinter 1 2 3 4
 

Correct Option is :  E 

A. 1 2 3
 


B. ArgsPrinter 1 2 
 


C. java ArgsPrinter 1 2 
 


D. 1 1 1
 


E. None of these.
 


Explanation: 
To run a class from the command line, you need a main(String[] ) method that takes an array of Strings array not just a String. Therefore, an exception will be thrown at runtime saying no main(String[] ) method found. Note that String[] and String... are equivalent and so  parameter type of String... is also valid for main method. When you use String... the compiler allows you to pass any number of String arguments to that method but internally, compiler converts String... to String[]. It also wraps the arguments into a String[] and invokes the String[] method. The JVM has no idea about String.... It sees only String[].

 
Back to Question without Answer
 



28.     QID - 2.955 : Java Basics 
 

An instance member ...
 

Correct Options are :  A D 

A. can be a variable, a constant or a method.
 


B. is a variable or a constant.
 


C. belongs to the class.
 


D. belongs to an instance of the class.
 


E. is same as a local variable.
variables defined in methods are called local variables (also known as automatic variables) where as instance members are defined in the class scope.


Explanation: 
An instance member belongs to a single instance, not the class as a whole. An instance member is a member variable or a member method that belongs to a specific object instance. All non-static members are instance members.

 
Back to Question without Answer
 



29.     QID - 2.1079 : Java Basics 
 

Consider the following two classes defined in two .java files.


//in file /root/com/foo/X.java
package com.foo;
public class X{
  public static int LOGICID = 10;
  public void apply(int i){
    System.out.println("applied");
  }
}

//in file /root/com/bar/Y.java
package com.bar;
//1  <== INSERT STATEMENT(s) HERE
public class Y{
    public static void main(String[] args){
       System.out.println(X.LOGICID);
    }
}



What should be inserted at //1 so that Y.java can compile without any error?
 

Correct Option is :  D 

A. import static X;
 


B. import static com.foo.*;
Bad syntax. Package import does not use static keyword.


C. import static com.foo.X.*;
This static import, although syntactically correct, will not help here because Y is accessing class X in X.LOGICID.


D. import com.foo.*;
This is required because Y is accessing class X. static import of LOGICID is NOT required because Y is accessing LOGICID through X ( X.LOGICID). Had it been just System.out.println(LOGICID), only one import statement: import static com.foo.X.*; would have worked.


E. import com.foo.X.LOGICID;
Bad Syntax. Syntax for importing static fields is:  import static <package>.<classname>.*; or import static <package>.<classname>.<fieldname>;


 
Back to Question without Answer
 



30.     QID - 2.1110 : Java Basics 
 

Which of these statements are true?
 

Correct Options are :  B C 

A. A static method can call other non-static methods in the same class by using the 'this' keyword.
'this' reference is not available within a static method.


B. A class may contain both static and non-static variables and both static and non-static methods.
 


C. Each object of a class has its own copy of each non-static member variable.
 


D. Instance methods may access local variables of static methods.
local variables can only be accessed in the method they are defined. So you cannot access them anywhere outside that method.


E. All methods in a class are implicitly passed a 'this' parameter when called.
All non-static/instance methods in a class are implicitly passed a 'this' parameter when called.


Explanation: 
'this' is assigned a reference to the current object automatically by the JVM. Thus, within an instance method foo, calling this.foo(); is same as calling foo();



Since there is no current object available for a static method, 'this' reference is not available in static methods and therefore it can only be used within instance methods. For the same reason, static methods cannot access non static fields or methods of that class directly i.e. without a reference to an instance of that class.



Note : you can't reassign 'this' like this:

this = new Object();

 
Back to Question without Answer
 



31.     QID - 2.1364 : Java Basics 
 

Given the following class, which of these are valid ways of referring to the class from outside of the package com.enthu?





package com.enthu;

public class Base{

   // lot of code...

}
 

Correct Options are :  D E 

A. Base
Only if you import the whole package containing the class or import the class first.


B. By importing the package com.* and referring to the class as enthu.Base
package 'com' does not contain Base.


C. importing com.* is illegal.
It is perfectly legal but will not help here.


D. By importing com.enthu.* and referring to the class as Base.
 


E. By referring to the class as com.enthu.Base.
 


Explanation: 
A class or interface can be referred to by using its fully qualified name or its simple name.

Using the fully qualified name will always work, but to use the simple name either the class must be in the same package or it has to be imported.

By importing com.enthu.* all the classes from the package will be imported and can be referred to using simple names.

Importing com.* will not import the subpackage enthu. It will only import the classes in package com.

 
Back to Question without Answer
 



32.     QID - 2.992 : Java Basics 
 

Given the following program, which statement is true?



class SomeClass{

   public static void main( String args[ ] ){

      if (args.length == 0 ){

         System.out.println("no arguments") ;

      }

      else{

         System.out.println( args.length + " arguments") ;

      }

   }

}
 

Correct Option is :  C 

A. The program will fail to compile.
 


B. The program will throw a NullPointerException when run with zero arguments.
 


C. The program will print no arguments when called with zero arguments and 1 arguments  when called with one argument.
The word java and class name are not a part of the argument list.


D. The program will print no arguments and 2 arguments when called with zero and one arguments.
 


E. The program will print no arguments and 3 arguments when called with zero and one arguments.
When the program is called with no arguments, the args array will be of length zero.


Explanation: 
When the program is called with no arguments, the args array will be of length zero. Unlike in C/C++, args[0] is not the name of the program or class. This is because the name of the class is always the same as defined in the java file. So there is no need for passing its name as an argument to main method.

 
Back to Question without Answer
 



33.     QID - 2.1020 : Java Basics 
 

What does the zeroth element of the string array passed to the standard main method contain?
 

Correct Option is :  D 

A. The name of the class.
 


B. The string "java".
 


C. The number of arguments.
 


D. The first argument of the argument list, if present.
 


E. None of the above.
 


Explanation: 
Note that if no argument is passed to the program, the args parameter is NOT null but a non-null array of Strings of length zero.

 
Back to Question without Answer
 



34.     QID - 2.1069 : Java Basics 
 

Which method declarations will enable a class to be run as a standalone program?
 

Correct Options are :  D E 

A. static void main(String args[ ])
Surprisingly, it did work on some older version of Java! It is not valid though and doesn't work with Java 1.7 onwards.


B. public void static main(String args[ ])
Remember, return type (i.e. void) and method name (i.e. main) are NEVER separated. They are always together.


C. public static main(String[ ] argv)
There always has to be return type for a method. Only constructors don't have a return type.


D. final public static void main(String [ ] array)
final only means that subclasses cannot shadow (in case of static methods) or override (in case of instance methods) it.


E. public static void main(String args[ ])
 


Explanation: 
If you run the following program by changing the accessibility from public to private and protected, it may work on some versions of Java.



However, for the purpose of Java Certification exam, it should be assumed that for the JVM to execute a class using the standard main method, the accessibility of the main method must be public.



package test;

public class TestClass{

    private static void main(String args[]){

         System.out.println("hello");

    }

}



 
Back to Question without Answer
 



35.     QID - 2.1232 : Java Basics 
 

Which of the following lines can be inserted at line 1 to make the program run?



//line 1

public class TestClass{

  public static void main(String[] args){

     PrintWriter pw = new PrintWriter(System.out);

     OutputStreamWriter osw  =  new OutputStreamWriter( System.out );

     pw.print("hello");

  }

}



Assume that PrintWriter and OutputStreamWriter are valid classes in java.io package.
 

Correct Option is :  B 

A. import java.lang.*;
Although you can import java.lang package explicitly, it is not required because this package is always imported by the compiler.


B. import java.io.*;
This will make all the classes of java.io package available.


C. import java.io.OutputStreamWriter;
This will only make OutputStreamWriter available. PrintWriter will still be unavailable.


D. include java.io.*;
include is not valid keyword in Java.


E. include java.lang.System;
 


 
Back to Question without Answer
 



Java Basics - OO Concepts
 
Exam Objectives - 
 
Compare and contrast the features and components of Java such as: platform independence, object orientation, encapsulation, etc.



01.     QID - 2.1107 
 

Which of the following are correct about "encapsulation"?
 

Select 2 options

A. Encapsulation is same as polymorphism.
 


B. It helps make sure that clients have no accidental dependence on the choice of representation
 


C. It helps avoiding name clashes as internal variables are not visible outside.
 


D. Encapsulation makes sure that messages are sent to the right object at run time.
 


E. Encapsulation helps you inherit the properties of another class.
 


 
Check Answer
 



02.     QID - 2.1160 
 

Given that OurClass is a MyClass and OurClass has a YourClass object.

Which of the following options are correct?



(Assume that OurClass, MyClass, and YourClass are valid java classes.)
 

Select 2 options

A. MyClass contains a reference to OurClass
 


B. OurClass contains a reference to MyClass
 


C. MyClass contains a reference to YourClass
 


D. OurClass contains a reference to YourClass
 


E. OurClass inherits from MyClass
 


 
Check Answer
 



03.     QID - 2.1322 
 

What is meant by "encapsulation" ?
 

Select 1 option

A. There is no way to access member variable.
 


B. There are no member variables.
 


C. Member fields are declared private and public accessor/mutator methods are provided to access and change their values if needed.
 


D. Data fields are declared public and accessor methods are provided to access and change their values.
 


 
Check Answer
 



04.     QID - 2.1456 
 

Which of the following are benefits of polymorphism?
 

Select 2 options

A. It makes the code more reusable.
 


B. It makes the code more efficient.
 


C. It protects the code by preventing extension.
 


D. It makes the code more dynamic.
 


 
Check Answer
 



05.     QID - 2.1449 
 

Which of the following are features of Java?

Some candidates have reported a similar question being asked with a slightly different (and ambiguous) wording: 

Which of the following are objected oriented features of Java?
 

Select 1 option

A. Every class must have a main method so that it can be tested individually from command line.
 


B. Every class belongs to a package.
 


C. A package must have more than one class.
 


D. A class may inherit from another class.
 


 
Check Answer
 



06.     QID - 2.901 
 

Given:

public class Triangle{
    public int base;
    public int height;
    public double area;
    
    public Triangle(int base, int height){
        this.base = base; this.height = height;
        updateArea();
    }

    void updateArea(){
        area = base*height/2;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


The above class needs to protect an invariant on the "area" field. Which three members must have the public access modifiers removed to ensure that the invariant is maintained?
 

Select 3 options

A. the base field
 


B. the height field
 


C. the area field
 


D. the Triangle constructor
 


E. the setBase method
 


F. the setHeight method
 


 
Check Answer
 



07.     QID - 2.1419 
 

Encapsulation ensures that ...
 

Select 1 option

A. classes are able to inherit functionality from other classes.
 


B. classes expose only certain fields and methods to other classes for access.
 


C. classes designate certain methods to be abstract and let them be implemented by subclasses.
 


D. a method that takes a class X object as a parameter can be passed an object of a subclass of X.
 


 
Check Answer
 



08.     QID - 2.997 
 

Consider the following class written by a novice programmer.


class Elliptical{
    public int radiusA, radiusB;
    public int sum = 100;

    public void setRadius(int r){
        if(r>99) throw new IllegalArgumentException();
        radiusA = r;
        radiusB = sum - radiusA;
        
    }
}


After some time, the requirements changed and the programmer now wants to make sure that radiusB is always (200 - radiusA) instead of (100 - radiusA) without breaking existing code that other people have written. Which of the following will accomplish his goal?
 

Select 1 option

A. Make sum = 200;
 


B. Make sum = 200 and make it private.
 


C. Make sum = 200 and make all fields (radiusA, radiusB, and sum) private.
 


D. Write another method setRadius2(int r) and set radiusB accordingly in this method.
 


E. His goal cannot be accomplished.
 


F. This class will not compile.
 


 
Check Answer
 



09.     QID - 2.1459 
 

You are asked to develop an application for a car rental company. As a part of that, you are given the following requirements - 

1. Implement three classes -  Car, SUV, and MiniVan, where the Car class is the super class of SUV as well as MiniVan.

2. Implement method int getDailyRate()  that returns the daily price of the car.

3. Implement method void printDetails() that prints the details of the car.



Which of the following definition of Car class adds a valid layer of abstraction to the class hierachy?
 

Select 1 option

A. public abstract class Car{

   public abstract int getDailyRate();

   public void printDetails(){

    // code for printing details goes here

   }

}
 


B. public abstract class Car{

   public int getDailyRate();

   public void printDetails();

}
 


C. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails();

}
 


D. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails(){

    // code for printing details goes here

   }

}
 


 
Check Answer
 



10.     QID - 2.1213 
 

When a class whose members should be accessible only to members of that class is coded such a way that its members are accessible to other classes as well, this is called ...
 

Select 1 option

A. strong coupling
 


B. weak coupling
 


C. strong typing
 


D. weak encapsulation
 


E. weak polymorphism
 


F. high cohesion
 


G. low cohesion
 


 
Check Answer
 



11.     QID - 2.1447 
 

You are writing a class named Bandwidth for an internet service provider that keeps track of number of bytes consumed by a user. The following code illustrates the expected usage of this class - 



class User{

    Bandwidth bw = new Bandwidth();

    

    public void consume(int bytesUsed){

        bw.addUsage(bytesUsed);

    }

   ... other irrelevant code    

}



class Bandwidth{

    private int totalUsage;

    private double totalBill;

    private double costPerByte;

    

   

    //add your code here



    ...other irrelevant code

}



Your goal is to implement a method addUsage (and other methods, if required) in Bandwidth class such that all the bandwidth used by a User is reflected by the totalUsage field and totalBill is always equal to totalUsage*costPerByte. Further, that a User should not be able to tamper with the totalBill value and is also not able to reduce it.



Which of the following implementation(s) accomplishes the above?
 

Select 1 option

A. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

    }

}
 


B. protected void addUsage(int bytesUsed){

       totalUsage += bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

}
 


C. private void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalUsage*costPerByte;

    }

}
 


D. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

    }

}

public void updateTotalBill(){

    totalBill = totalUsage*costPerByte;

}
 


 
Check Answer
 



12.     QID - 2.844 
 

Consider the following code:

 import java.util.ArrayList;

 public class Student{
    
    ArrayList<Integer> scores;
    private double average;
    
    public ArrayList<Integer> getScores(){ return scores; }
    
    public double getAverage(){ return average; }
    
    private void computeAverage(){
        //valid code to compute average
        average =//update average value
    }

    public Student(){
        computeAverage();
    }
}


What can be done to improve the encapsulation of this class?
 

Select 2 options

A. Make the class private.
 


B. Make the scores instance field private.
 


C. Make getScores() protected.
 


D. Make computeAverage() public.
 


E. Change getScores to return a copy of the scores list:

   public ArrayList<Integer> getScores(){ 

     return new ArrayList(scores); 

  }
 


 
Check Answer
 



Java Basics - OO Concepts (Answered)



01.     QID - 2.1107 : Java Basics - OO Concepts 
 

Which of the following are correct about "encapsulation"?
 

Correct Options are :  B C 

A. Encapsulation is same as polymorphism.
 


B. It helps make sure that clients have no accidental dependence on the choice of representation
 


C. It helps avoiding name clashes as internal variables are not visible outside.
 


D. Encapsulation makes sure that messages are sent to the right object at run time.
This is dynamic binding, an outcome of polymorphism.


E. Encapsulation helps you inherit the properties of another class.
 


Explanation: 
Encapsulation is the technique used to package the information in such a way as to hide what should be hidden, and make visible what is intended to be visible. In simple terms, encapsulation generally means making the data variables private and providing public accessors.

 
Back to Question without Answer
 



02.     QID - 2.1160 : Java Basics - OO Concepts 
 

Given that OurClass is a MyClass and OurClass has a YourClass object.

Which of the following options are correct?



(Assume that OurClass, MyClass, and YourClass are valid java classes.)
 

Correct Options are :  D E 

A. MyClass contains a reference to OurClass
 


B. OurClass contains a reference to MyClass
 


C. MyClass contains a reference to YourClass
 


D. OurClass contains a reference to YourClass
 


E. OurClass inherits from MyClass
 


Explanation: 
Visualize the hierarchy like this:

OurClass is a MyClass => OurClass extends  (or inherits from) MyClass. Thus, option 5 is correct.

OurClass has a YourClass => OurClass refers to (or contains a reference to ) YourClass object. Thus, option 4 is correct.

 
Back to Question without Answer
 



03.     QID - 2.1322 : Java Basics - OO Concepts 
 

What is meant by "encapsulation" ?
 

Correct Option is :  C 

A. There is no way to access member variable.
 


B. There are no member variables.
 


C. Member fields are declared private and public accessor/mutator methods are provided to access and change their values if needed.
 


D. Data fields are declared public and accessor methods are provided to access and change their values.
 


Explanation: 
Encapsulation is one of the 4 fundamentals of OOP (Object Oriented Programming). 



Encapsulation means that the internal representation of an object is generally hidden from view outside of the object's definition. Typically, only the object's own methods can directly inspect or manipulate its fields. Some languages like Smalltalk and Ruby only allow access via object methods, but most others (e.g. C++ or Java) offer the programmer a degree of control over what is hidden, typically via keywords like public and private.



Hiding the internals of the object protects its integrity by preventing users from setting the internal data of the component into an invalid or inconsistent state. A benefit of encapsulation is that it can reduce system complexity, and thus increases robustness, by allowing the developer to limit the interdependencies between software components.

 
Back to Question without Answer
 



04.     QID - 2.1456 : Java Basics - OO Concepts 
 

Which of the following are benefits of polymorphism?
 

Correct Options are :  A D 

A. It makes the code more reusable.
 


B. It makes the code more efficient.
This option is a bit ambiguous because it is not clear which efficiency is it talking about - execution, memory, or maintenance. Our guess is that it is referring to execution efficiency. It is not true because polymorphism causes a very slight degradation due to dynamic binding at run time.


C. It protects the code by preventing extension.
Just the reverse is true. Extension is how polymorphism is achieved.


D. It makes the code more dynamic.
Polymophism allows the actual decision of which method is to be invoked to be taken at runtime based on the actual class of object. This is dynamic binding and makes the code more dynamic.


 
Back to Question without Answer
 



05.     QID - 2.1449 : Java Basics - OO Concepts 
 

Which of the following are features of Java?

Some candidates have reported a similar question being asked with a slightly different (and ambiguous) wording: 

Which of the following are objected oriented features of Java?
 

Correct Option is :  D 

A. Every class must have a main method so that it can be tested individually from command line.
It is not required for a class to have a main method. The main method is required only if you want to execute that class directly from a command line. 

Further, running from command line is not the only way to test a class.


B. Every class belongs to a package.
Not entirely true because if you omit the package statement, the class will not be in any package. It can be argued that all such classes belong to a "default" package but it would be incorrect because it is not possible to import this default package in other packages. This implies that "default" is not really a package.


C. A package must have more than one class.
A package may have just one class as well.


D. A class may inherit from another class.
 


 
Back to Question without Answer
 



06.     QID - 2.901 : Java Basics - OO Concepts 
 

Given:

public class Triangle{
    public int base;
    public int height;
    public double area;
    
    public Triangle(int base, int height){
        this.base = base; this.height = height;
        updateArea();
    }

    void updateArea(){
        area = base*height/2;
    }
    public void setBase(int b){ base  = b; updateArea(); }
    public void setHeight(int h){ height  = h; updateArea(); }
}


The above class needs to protect an invariant on the "area" field. Which three members must have the public access modifiers removed to ensure that the invariant is maintained?
 

Correct Options are :  A B C 

A. the base field
 


B. the height field
 


C. the area field
 


D. the Triangle constructor
 


E. the setBase method
 


F. the setHeight method
 


Explanation: 
An invariant means a certain condition that constrains the state stored in the object. For example, in this case the value of the area field of the Triangle must always be consistent with its base and height fields. Thus, it should never have a value that is different from base*height/2. 



If you allow other classes to directly change the value of base, height, or area, using direct field access, the area field may not contain the correct area thereby breaking the invariant.



To prevent this inconsistency from happening, you need to prohibit changing the instance fields directly and instead permit the changes only through the setter method because these methods call the updateArea method and keep the area and base and height consistent.

 
Back to Question without Answer
 



07.     QID - 2.1419 : Java Basics - OO Concepts 
 

Encapsulation ensures that ...
 

Correct Option is :  B 

A. classes are able to inherit functionality from other classes.
 


B. classes expose only certain fields and methods to other classes for access.
 


C. classes designate certain methods to be abstract and let them be implemented by subclasses.
 


D. a method that takes a class X object as a parameter can be passed an object of a subclass of X.
 


 
Back to Question without Answer
 



08.     QID - 2.997 : Java Basics - OO Concepts 
 

Consider the following class written by a novice programmer.


class Elliptical{
    public int radiusA, radiusB;
    public int sum = 100;

    public void setRadius(int r){
        if(r>99) throw new IllegalArgumentException();
        radiusA = r;
        radiusB = sum - radiusA;
        
    }
}


After some time, the requirements changed and the programmer now wants to make sure that radiusB is always (200 - radiusA) instead of (100 - radiusA) without breaking existing code that other people have written. Which of the following will accomplish his goal?
 

Correct Option is :  E 

A. Make sum = 200;
 


B. Make sum = 200 and make it private.
 


C. Make sum = 200 and make all fields (radiusA, radiusB, and sum) private.
This should have been done when the class was first written.


D. Write another method setRadius2(int r) and set radiusB accordingly in this method.
 


E. His goal cannot be accomplished.
 


F. This class will not compile.
There is no problem with the code. Remember, IllegalArgumentException extends from RuntimeException and is a super class of NumberFormatException


Explanation: 
setRadius method makes sure that radiusB is set to sum - radiusA. So changing sum to 200 should do it. However, note that radiusA, radiusB, and sum are public which means that any other class can access these fields directly without going through the setRadius method. So there is no way to make sure that the value of radiusB is correctly set at all times. If you make them private now, other classes that are accessing the fields directly will break.



The class should have been coded with proper encapsulation of the fields in the first place.

 
Back to Question without Answer
 



09.     QID - 2.1459 : Java Basics - OO Concepts 
 

You are asked to develop an application for a car rental company. As a part of that, you are given the following requirements - 

1. Implement three classes -  Car, SUV, and MiniVan, where the Car class is the super class of SUV as well as MiniVan.

2. Implement method int getDailyRate()  that returns the daily price of the car.

3. Implement method void printDetails() that prints the details of the car.



Which of the following definition of Car class adds a valid layer of abstraction to the class hierachy?
 

Correct Option is :  C 

A. public abstract class Car{

   public abstract int getDailyRate();

   public void printDetails(){

    // code for printing details goes here

   }

}
Since Car class does not know the details of SUV and MiniVan, you can't provide the code for them in this class. Therefore, you should make this method abstract.


B. public abstract class Car{

   public int getDailyRate();

   public void printDetails();

}
This is invalid because of the lack of abstract keyword on the methods. This will not compile and is, therefore, an obviously wrong answer.


C. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails();

}
As per the given information, Car could be an abstract class with two methods. You need to make these two methods abstract so that concrete classes such as SUV and MiniVan will be forced to provide appropriate implementations of these methods.


D. public abstract class Car{

   public abstract int getDailyRate();

   public abstract void printDetails(){

    // code for printing details goes here

   }

}
A method that has code cannot be abstract and vice-versa. This will not compile and is, therefore, an obviously wrong answer.


Explanation: 
The problem statement is very ambiguous and there are multiple valid implementations. You will need to draw clues from the options and select the best option by eliminating options that are obviously wrong. Expect such questions in the exam.

 
Back to Question without Answer
 



10.     QID - 2.1213 : Java Basics - OO Concepts 
 

When a class whose members should be accessible only to members of that class is coded such a way that its members are accessible to other classes as well, this is called ...
 

Correct Option is :  D 

A. strong coupling
 


B. weak coupling
 


C. strong typing
 


D. weak encapsulation
 


E. weak polymorphism
 


F. high cohesion
 


G. low cohesion
 


Explanation: 
When a class is properly encapsulated, only the members that are part of its public API are publicly accessible to other classes. Rest is all private.

 
Back to Question without Answer
 



11.     QID - 2.1447 : Java Basics - OO Concepts 
 

You are writing a class named Bandwidth for an internet service provider that keeps track of number of bytes consumed by a user. The following code illustrates the expected usage of this class - 



class User{

    Bandwidth bw = new Bandwidth();

    

    public void consume(int bytesUsed){

        bw.addUsage(bytesUsed);

    }

   ... other irrelevant code    

}



class Bandwidth{

    private int totalUsage;

    private double totalBill;

    private double costPerByte;

    

   

    //add your code here



    ...other irrelevant code

}



Your goal is to implement a method addUsage (and other methods, if required) in Bandwidth class such that all the bandwidth used by a User is reflected by the totalUsage field and totalBill is always equal to totalUsage*costPerByte. Further, that a User should not be able to tamper with the totalBill value and is also not able to reduce it.



Which of the following implementation(s) accomplishes the above?
 

Correct Option is :  A 

A. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

    }

}
 


B. protected void addUsage(int bytesUsed){

       totalUsage += bytesUsed;

       totalBill = totalBill + bytesUsed*costPerByte;

}
There is no validity check for bytesUsed argument. User will be able to tamper will the bill by suppling a negative number for bytesUsed.


C. private void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

       totalBill = totalUsage*costPerByte;

    }

}
If this method is made private, User class will not be able to access it.


D. public void addUsage(int bytesUsed){

    if(bytesUsed>0){

       totalUsage = totalUsage + bytesUsed;

    }

}

public void updateTotalBill(){

    totalBill = totalUsage*costPerByte;

}
This is not a good approach because once the User class calls addUsage() method, totalBill field will not reflect the correct amount unless User also calls updateTotalBill, which means Bandwidth class is now dependent on some other class to keep its internal state consistent with the business logic.


 
Back to Question without Answer
 



12.     QID - 2.844 : Java Basics - OO Concepts 
 

Consider the following code:

 import java.util.ArrayList;

 public class Student{
    
    ArrayList<Integer> scores;
    private double average;
    
    public ArrayList<Integer> getScores(){ return scores; }
    
    public double getAverage(){ return average; }
    
    private void computeAverage(){
        //valid code to compute average
        average =//update average value
    }

    public Student(){
        computeAverage();
    }
}


What can be done to improve the encapsulation of this class?
 

Correct Options are :  B E 

A. Make the class private.
 


B. Make the scores instance field private.
An important aspect of encapsulation is that other classes should not be able to modify the state fields of a class directly. Therefore, the data members should be private (or protected if you want to allow subclasses to inherit the field) and if the class wants to allow access to these fields, it should provide appropriate setters and getters with public access.


C. Make getScores() protected.
 


D. Make computeAverage() public.
 


E. Change getScores to return a copy of the scores list:

   public ArrayList<Integer> getScores(){ 

     return new ArrayList(scores); 

  }
If you return the same scores list, the caller would be able to add or remove elements from it, thereby rendering the average incorrect.

This can be prevented by returning a copy of the list.


 
Back to Question without Answer
 



Working with Java Data Types
 
Exam Objectives - 
 
Declare and initialize variables (including casting of primitive data types)
Differentiate between object reference variables and primitive variables
Read or write to object fields
Develop code that uses wrapper classes such as Boolean, Double, and Integer.



01.     QID - 2.1379 
 

What will the following code print?



        int value = 1,000,000; //1

        switch(value){

            case 1_000_000 : System.out.println("A million 1"); //2

                break;

            case 1000000 : System.out.println("A million 2"); //3

                break;

        }
 

Select 1 option

A. A million 1
 


B. A million 2
 


C. Compilation error because of //1
 


D. Compilation error because of //2
 


E. Compilation error because of //3
 


F. Compilation error because of //1 and //3
 


 
Check Answer
 



02.     QID - 2.1242 
 

Given:

public class TestClass{

     public static void main(String[] args){

     int i = Integer.parseInt(args[1]);

     System.out.println(args[i]);

   }

}

What will happen when you compile and run the above program using the following command line:



java TestClass 1 2
 

Select 1 option

A. It will print 1
 


B. It will print 2
 


C. It will print some junk value.
 


D. It will throw ArrayIndexOutOfBoundsException.
 


E. It will throw NumberFormatException
 


 
Check Answer
 



03.     QID - 2.1146 
 

What will the following program print?

public class TestClass{
  public static void main(String[] args){
    unsigned byte b = 0;
    b--;
    System.out.println(b);
  }
}


 

Select 1 option

A. 0
 


B. -1
 


C. 255
 


D. -128
 


E. It will not compile.
 


 
Check Answer
 



04.     QID - 2.1331 
 

Note: This question may be considered too advanced for this exam.



Which statements can be inserted at line 1 in the following code to make the program write x on the standard output when run?


public class AccessTest{
   String a = "x";
   static char b = 'x';
   String  c = "x";
   class Inner{
      String  a = "y";
      String  get(){
         String c = "temp";
         // Line 1
         return c;
      }
   }

   AccessTest() { 
     System.out.println(  new Inner().get()  ); 
   }

   public static void main(String args[]) {  new AccessTest();  }
}

 

Select 3 options

A. c = c;
 


B. c = this.a;
 


C. c = ""+AccessTest.b;
 


D. c = AccessTest.this.a;
 


E. c = ""+b;
 


 
Check Answer
 



05.     QID - 2.1204 
 

What will be the result of attempting to compile and run the following program?

public class TestClass{

  public static void main(String args[ ] ){

    Object a, b, c ;

    a = new String("A");

    b = new String("B");

    c = a;

    a = b;

    System.out.println(""+c);

  }

}


 

Select 1 option

A. The program will print java.lang.String@XXX, where XXX is the memory location of the object a.
 


B. The program will print A
 


C. The program will print B
 


D. The program will not compile because the type of a, b, and c  is Object.
 


E. The program will print java.lang.String@XXX, where XXX is the hash code of the object a.
 


 
Check Answer
 



06.     QID - 2.1416 
 

Which of the following options will yield a Boolean wrapper object containing the value true?
 

Select 3 options

A. Boolean.parseBoolean(" true ")
 


B. Boolean.parseBoolean("true")
 


C. Boolean.valueOf(true)
 


D. Boolean.valueOf("trUE")
 


E. Boolean.TRUE
 


 
Check Answer
 



07.     QID - 2.1272 
 

Which of these are NOT legal declarations within a class?
 

Select 1 option

A. static int sa ;
 


B. final Object[ ] objArr = { null } ;
 


C. abstract int t ;
 


D. abstract void format( ) ;
 


E. final static private double PI = 3.14159265358979323846 ;
 


 
Check Answer
 



08.     QID - 2.1061 
 

What will be the result of attempting to compile and run the following class?



public class TestClass{

   public static void main(String args[ ] ){

      int i, j, k;

      i = j = k = 9;

      System.out.println(i);

   }

}
 

Select 2 options

A. The code will not compile because unlike in c++, operator '=' cannot be chained i.e. a = b = c = d is invalid.
 


B. The code will not compile as 'j' is being used before getting initialized.
 


C. The code will compile correctly and will display '9' when run.
 


D. The code will not compile as 'j' and 'i' are being used before getting initialized.
 


E. All the variables will get a value of 9.
 


 
Check Answer
 



09.     QID - 2.892 
 

Which of the following are valid classes?
 

Select 1 option

A. public class ImaginaryNumber extends Number {

 //implementation for abstract methods of the base class

}
 


B. public class ThreeWayBoolean extends Boolean {

 //implementation for abstract methods of the base class

}
 


C. public class NewSystem extends System {

 //implementation for abstract methods of the base class

}
 


D. public class ReverseString extends String {

 //implementation for abstract methods of the base class

}
 


 
Check Answer
 



10.     QID - 2.1378 
 

What will the following code print?



public class TestClass {

    public static void main(String[] args) {



        int x = 1____3;   //1



        long y = 1_3;     //2



        float z = 3.234_567f; //3



        System.out.println(x+" "+y+" "+z);

    }

}
 

Select 1 option

A. Compilation error at //1
 


B. Compilation error at //2
 


C. Compilation error at //3
 


D. Compilation error at //1 and //3
 


E. 10003 103 3.234567
 


F. 13 13 3.234567
 


 
Check Answer
 



11.     QID - 2.1259 
 

Note: Although Wrapper classes are not explicitly mentioned in the exam objectives, we have seen some candidates get questions on this aspect of Wrapper classes.



What will be the output of the following program?



public class EqualTest{

   public static void main(String args[]){

      Integer i = new Integer(1) ;

      Long m = new Long(1);

      if( i.equals(m)) System.out.println("equal");   // 1

      else System.out.println("not equal");

   }

}
 

Select 1 option

A. equal
 


B. not equal
 


C. Compile time error at //1
 


D. Runtime error at //1
 


E. None of the above.
 


 
Check Answer
 



12.     QID - 2.1243 
 

Which of the following are correct ways to initialize the static variables MAX and CLASS_GUID ?


class Widget{
   static int MAX;     //1
   static final String CLASS_GUID;   // 2
   Widget(){
       //3
   }
   Widget(int k){
       //4
   }
}


 

Select 2 options

A. Modify lines //1 and //2 as : static int MAX = 111; static final String CLASS_GUID = "XYZ123";
 


B. Add the following line just after //2 :  static {  MAX = 111; CLASS_GUID = "XYZ123"; }
 


C. Add the following line just before //1 :  { MAX = 111; CLASS_GUID = "XYZ123"; }
 


D. Add the following line at //3 as well as //4 : MAX = 111; CLASS_GUID = "XYZ123";
 


E. Only option 3 is valid.
 


 
Check Answer
 



13.     QID - 2.1371 
 

Given the following declarations:

        int a = 5, b = 7, k = 0;

        Integer m = null;

and the following statements:



        k = new Integer(a) + new Integer(b);  //1

        k = new Integer(a) + b; //2

        k = a + new Integer(b); //3

        m = new Integer(a) + new Integer(b); //4



Executed independent of each other, what will be the value of k (for //1, //2, and //3) and m (for //4) after execution of each of these statements?
 

Select 1 option

A. 12

will not compile

will not compile

12
 


B. will not compile

will not compile

will not compile

12
 


C. 12

12

12

12
 


D. will not compile

will not compile

will not compile

will not compile
 


E. 12

12

12

will not compile
 


 
Check Answer
 



14.     QID - 2.1151 
 

Given that TestClass is a class, how many objects and reference variables are created by the following code?



TestClass t1, t2, t3, t4;

 t1 = t2 = new TestClass();

 t3 = new TestClass();


 

Select 1 option

A. 2 objects, 3 references.
 


B. 2 objects, 4 references.
 


C. 3 objects, 2 references.
 


D. 2 objects, 2 references.
 


E. None of the above.
 


 
Check Answer
 



15.     QID - 2.1041 
 

Which of the following is not a primitive data value in Java?
 

Select 2 options

A. "x"
 


B. 'x'
 


C. 10.2F
 


D. Object
 


E. false
 


 
Check Answer
 



16.     QID - 2.925 
 

Given:


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<Double> al = new ArrayList<>();

        //INSERT CODE HERE
     }
}


What can be inserted in the above code so that it can compile without any error?
 

Select 2 options

A. al.add(111);
 


B. System.out.println(al.indexOf(1.0));
 


C. System.out.println(al.contains("string"));
 


D. Double d = al.get(al.length);
 


 
Check Answer
 



17.     QID - 2.937 
 

Given the following class, which statements can be inserted at line 1 without causing the code to fail compilation?


public class TestClass{
   int a;
   int b = 0;
   static int c;
   public void m(){
      int d;
      int e = 0;
      // Line 1
   }
}

 

Select 4 options

A. a++;
 


B. b++;
 


C. c++;
 


D. d++;
 


E. e++;
 


 
Check Answer
 



18.     QID - 2.1062 
 

The following code snippet will print 4.


int i1 = 1, i2 = 2, i3 = 3;
int i4 = i1 + (i2=i3 );
System.out.println(i4);


 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



19.     QID - 2.1417 
 

Identify the valid members of Boolean class.
 

Select 3 options

A. parseBoolean(String )
 


B. valueOf(boolean )
 


C. parseBoolean(boolean )
 


D. FALSE
 


E. Boolean(Boolean )
 


 
Check Answer
 



20.     QID - 2.985 
 

Which of the following declarations are valid?
 

Select 3 options

A. float f1 = 1.0;
 


B. float f = 43e1;
 


C. float f = -1;
 


D. float f = 0x0123;
 


E. float f = 4;
 


 
Check Answer
 



21.     QID - 2.1319 
 

Given the following code snippet:

   int rate = 10;
   int t = 5;
   XXX amount = 1000.0;
   for(int i=0; i<t; i++){
      amount = amount*(1 - rate/100);
   }


What can XXX be?
 

Select 1 option

A. int
 


B. long
 


C. only double
 


D. double or float
 


E. float
 


 
Check Answer
 



22.     QID - 2.890 
 

Given:


class Square {
    private double side = 0;
    String color;
    public Square(double length){
        this.side = length;
    }
    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Square mysq = new Square(10);
        mysq.color = "red";
        
        //set mysq's side to 20
    }
}


Which of the following statements will set the side of Square object referred by mysq to 20?
 

Select 1 option

A. mysq.side = 20;
 


B. mysq = new Square(20);
 


C. mysq.setSide(20);
 


D. side = 20;
 


E. Square.mysq.side = 20;
 


 
Check Answer
 



23.     QID - 2.1451 
 

Given:

public class Bandwidth{

    public int available = 0;

    public int getAvailable(){

        return available;

    }

    public Bandwidth(int quota){

        this.available = quota;

    }

    public void addMore(int more){

        available += more;

    }

    

}

and another piece of code from another class:

        Bandwidth bw = new Bandwidth(100);

        //INSERT CODE HERE

        System.out.println(bw.getAvailable());



What can be inserted in the code above so that it will print 0?
 

Select 2 options

A. bw(0);
 


B. bw.available = 0;
 


C. bw.setAvailable(0);
 


D. bw = new Bandwidth();
 


E. bw.addMore(-bw.getAvailable());
 


F. --bw.available;
 


 
Check Answer
 



24.     QID - 2.1314 
 

Which statements concerning conversion are true?
 

Select 4 options

A. Conversion from char to long does not need a cast.
 


B. Conversion from byte to short does not need a cast.
 


C. Conversion from short to char needs a cast.
 


D. Conversion from int to float needs a cast.
 


E. Conversion from byte, char or short to int, long or float does not need a cast.
 


 
Check Answer
 



25.     QID - 2.944 
 

Which of the following are valid code snippets appearing in a method:
 

Select 3 options

A. int a = b = c = 100;
 


B. int a, b, c; a = b = c = 100;
 


C. int a, b, c=100;
 


D. int a=100, b, c;
 


E. int a= 100 = b = c;
 


 
Check Answer
 



26.     QID - 2.1415 
 

Which of the following comparisons will yield false?
 

Select 3 options

A. Boolean.parseBoolean("true") == true
 


B. Boolean.parseBoolean("TrUe") == new Boolean(null);
 


C. new Boolean("TrUe") == new Boolean(true);
 


D. new Boolean() == false;
 


E. new Boolean("true") == Boolean.TRUE
 


F. new Boolean("no") == false;
 


 
Check Answer
 



27.     QID - 2.1221 
 

Which of the following is illegal ?
 

Select 1 option

A. char c = 320;
 


B. float f = 320;
 


C. double d = 320;
 


D. byte b = 320;
 


E. float f = 22.0f/7.0f;
 


F. None of the above is illegal.
 


 
Check Answer
 



28.     QID - 2.958 
 

Consider the following code:



public class Conversion{

   public static void main(String[] args){

     int i = 1234567890;

     float f = i;

     System.out.println(i - (int)f);

   }

}



What will it print when run?
 

Select 1 option

A. It will print 0.
 


B. It will not print 0.
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



29.     QID - 2.1159 
 

What happens when you try to compile and run the following class...


public class TestClass{
      public static void main(String[] args) throws Exception{
            int a = Integer.MIN_VALUE;
            int b = -a;
            System.out.println( a+ "   "+b);
      }
}


 

Select 1 option

A. It throws an OverFlowException.
 


B. It will print two same negative numbers.
 


C. It will print two different negative numbers.
 


D. It will print one negative and one positive number of same magnitude.
 


E. It will print one negative and one positive number of different magnitude.
 


 
Check Answer
 



30.     QID - 2.1421 
 

What will the following code print when compiled and run?





public class Discounter {

    static double percent; //1

    int offset = 10, base= 50; //2

    public static double calc(double value) {

        int coupon, offset, base; //3

        if(percent <10){ //4

            coupon = 15;

            offset = 20;

            base = 10;

        }

        return coupon*offset*base*value/100; //5

    }

    public static void main(String[] args) {

        System.out.println(calc(100));

    }

}


 

Select 1 option

A. 3000
 


B. 3000.0
 


C. compilation error at //3
 


D. compilation error at //4
 


E. compilation error at //5
 


F. Exception at run time.
 


 
Check Answer
 



31.     QID - 2.1104 
 

Consider the following lines of code:



Integer i = new Integer(42);

Long ln = new Long(42);

Double d = new Double(42.0);



Which of the following options are valid?
 

Select 3 options

A. i == ln;
 


B. ln == d;
 


C. i.equals(d);
 


D. d.equals(ln);
 


E. ln.equals(42);
 


 
Check Answer
 



32.     QID - 2.975 
 

In which of these variable declarations, will the variable remain uninitialized unless explicitly initialized?
 

Select 1 option

A. Declaration of an instance variable of type int.
 


B. Declaration of a static class variable of type float.
 


C. Declaration of a local variable of type float.
 


D. Declaration of a static class variable of class Object
 


E. Declaration of an instance variable of class Object.
 


 
Check Answer
 



33.     QID - 2.1405 
 

How many objects have been created by the time the main method reaches its end in the following code?

public class Noobs {

    public Noobs(){

        try{

            throw new MyException();

        }catch(Exception e){

        }

    }

    public static void main(String[] args) {

        Noobs a = new Noobs();

        Noobs b = new Noobs();

        Noobs c = a;

    }

}

class MyException extends Exception{

    

}
 

Select 1 option

A. 2
 


B. 3
 


C. 4
 


D. 5
 


E. 6
 


 
Check Answer
 



34.     QID - 2.1376 
 

Which of the following is/are valid double values for 10 million? (A million has 6 zeros)
 

Select 1 option

A. double d = 10,000,000.0;
 


B. double d = 10-000-000;
 


C. double d = 10_000_000;
 


D. double d = 10 000 000;
 


 
Check Answer
 



35.     QID - 2.1134 
 

Which of the following are valid at line 1?



public class X{

    //line 1: insert code here.

}
 

Select 2 options

A. String s;
 


B. String s = 'asdf';
 


C. String s = 'a';
 


D. String s = this.toString();
 


E. String s = asdf;
 


 
Check Answer
 



36.     QID - 2.1251 
 

What will be the result of attempting to compile and run the following code?

public class InitClass{
   public static void main(String args[ ] ){
      InitClass obj = new InitClass(5);
   }
   int m;
   static int i1 = 5;
   static int i2 ;
   int  j = 100;
   int x;
   public InitClass(int m){
      System.out.println(i1 + "  " + i2 + "   " + x + "  " + j + "  " + m);
   }
  { j = 30; i2 = 40; }  // Instance Initializer
   static { i1++; }      // Static Initializer
}


 

Select 1 option

A. The code will fail to compile since the instance initializer tries to assign a value to a static member.
 


B. The code will fail to compile since the member variable x will be uninitialized when it is used.
 


C. The code will compile without error and will print 6 40 0 30 5 when run.
 


D. The code will compile without error and will print 5, 0, 0, 100, 5 when run.
 


E. The code will compile without error and will print 5, 40, 0, 30, 0 when run.
 


 
Check Answer
 



37.     QID - 2.1409 
 

What will the following code print?



public class Test{

    public static void testInts(Integer obj, int var){

        obj = var++;

        obj++;

    }

    public static void main(String[] args) {

        Integer val1 = new Integer(5);

        int val2 = 9;

        testInts(val1++, ++val2);

        System.out.println(val1+" "+val2);

    }

}           


 

Select 1 option

A. 10 9
 


B. 10 10
 


C. 6 9
 


D. 6 10
 


E. 5 11
 


 
Check Answer
 



38.     QID - 2.1375 
 

Identify the valid code fragments when occurring by themselves within a method.
 

Select 1 option

A. long y = 123_456_L;
 


B. long z = _123_456L;
 


C. float f1 = 123_.345_667F;
 


D. float f2 = 123_345_667F;
 


E. None of the above declarations are valid.
 


 
Check Answer
 



39.     QID - 2.898 
 

Given:

public class Employee{
    String name;
    public Employee(){
    }
}


Which of the following lines creates an Employee instance?
 

Select 1 option

A. Employee e;
 


B. Employee e = new Employee();
 


C. Employee e = Employee.new();
 


D. Employee e = Employee();
 


 
Check Answer
 



40.     QID - 2.909 
 

Which of the following declarations is/are valid:



1.  bool b = null;



2. boolean b = 1;



3. boolean b = true|false;



4 bool b = (10<11);



5. boolean b = true||false;
 

Select 1 option

A. 1 and 4
 


B. 2, 3, and 5
 


C. 2 and 3
 


D. 3 and 5
 


E. 5
 


 
Check Answer
 



41.     QID - 2.1289 
 


 

 
 
Check Answer
 



42.     QID - 2.1332 
 

What happens when you try to compile and run the following program?

public class CastTest{
   public static void main(String args[ ] ){
      byte b = -128 ;
      int i = b ;
      b = (byte) i;
      System.out.println(i+" "+b);
   }
}


 

Select 1 option

A. The compiler will refuse to compile it because i and b are of different types cannot be assigned to each other.
 


B. The program will compile and will print -128 and -128 when run .
 


C. The compiler will refuse to compile it because -128 is outside the legal range of values for a byte.
 


D. The program will compile and will print 128 and -128 when run .
 


E. The program will compile and will print 255 and -128 when run .
 


 
Check Answer
 



43.     QID - 2.1189 
 

Which of the following statements are acceptable?
 

Select 4 options

A. Object o = new java.io.File("a.txt");

(Assume that java.io.File is a valid class with a constructor that takes a String.)
 


B. Boolean bool = false;
 


C. char ch = 10;
 


D. Thread t = new Runnable();

(Assume that Runnable is a valid interface.)
 


E. Runnable r = new Thread();

(Assume that Thread is a class that implements Runnable interface)
 


 
Check Answer
 



44.     QID - 2.1247 
 

Which of these assignments are valid?
 

Select 3 options

A. short s = 12 ;
 


B. long g = 012 ;
 


C. int i = (int) false;
 


D. float f = -123;
 


E. float d = 0 * 1.5;
 


 
Check Answer
 



45.     QID - 2.1199 
 

Given:

public class TestClass{
  public static int getSwitch(String str){
      return (int) Math.round( Double.parseDouble(str.substring(1, str.length()-1)) );
  }
  public static void main(String args []){
    switch(getSwitch(args[0])){
      case 0 : System.out.print("Hello ");
      case 1 : System.out.print("World"); break;
      default : System.out.print("Good Bye");
    }
  }
}



What will be printed by the above code if it is run with command line: 

java TestClass --0.50

(There are two minuses before 0.)
 

Select 1 option

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. Good Bye
 


 
Check Answer
 



46.     QID - 2.835 
 

Which of the following can be valid declarations of an integer variable?
 

Select 2 options

A. global int x = 10;
 


B. final int x = 10;
 


C. public Int x = 10;
 


D. Int x = 10;
 


E. static int x = 10;
 


 
Check Answer
 



47.     QID - 2.1027 
 

What will the following code print when run?


public class TestClass{	
    public static Integer wiggler(Integer x){
       Integer y = x + 10;
       x++;
       System.out.println(x);
       return y;
    }

    public static void main(String[] args){
       Integer dataWrapper = new Integer(5);
       Integer value = wiggler(dataWrapper);
       System.out.println(dataWrapper+value);
    }
}


 

Select 1 option

A. 5 and 20
 


B. 6 and 515
 


C. 6 and 20
 


D. 6 and 615
 


E. It will not compile.
 


 
Check Answer
 



48.     QID - 2.1126 
 

Given:

 String mStr = "123";

 long m = // 1

Which of the following options when put at //1 will assign 123 to m?
 

Select 3 options

A. new Long(mStr);
 


B. Long.parseLong(mStr);
 


C. Long.longValue(mStr);
 


D. (new Long()).parseLong(mStr);
 


E. Long.valueOf(mStr).longValue();
 


 
Check Answer
 



49.     QID - 2.982 
 

Given the following class, which of the given blocks can be inserted at line 1 without errors?


public class InitClass{
       private static int loop = 15 ;
       static final int INTERVAL = 10 ;
       boolean flag ;
       //line 1
}

 

Select 4 options

A. static {System.out.println("Static"); } 
 


B. static { loop = 1; }
 


C. static { loop += INTERVAL; }
 


D. static { INTERVAL = 10; } 
 


E. { flag = true; loop = 0; }
 


 
Check Answer
 



50.     QID - 2.1118 
 

Which of the changes given in options can be done (independent of each other) to let the following code compile and run without errors when its generateReport method is called?



class SomeClass{

   String s1 = "green mile";   // 0

   public void generateReport( int n ){

      String local;   // 1

      if( n > 0 ) local = "good";   //2

      System.out.println( s1+" = " + local );   //3

   }

}
 

Select 2 options

A. Insert after line 2 : else local = "bad";
 


B. Insert after line 2 : if(n <= 0) local = "bad";
 


C. Move line 1 and place it after line 0.
 


D. change line 1 to : final String local = "rocky";
 


E. The program already is without any errors.
 


 
Check Answer
 



51.     QID - 2.1414 
 

Which of the following statements will print true when executed?
 

Select 3 options

A. System.out.println(Boolean.parseBoolean("true"));
 


B. System.out.println(new Boolean(null));
 


C. System.out.println(new Boolean());
 


D. System.out.println(new Boolean("true"));
 


E. System.out.println(new Boolean("trUE"));
 


 
Check Answer
 



52.     QID - 2.917 
 

Given:

public class Square {
    private double side = 0;  // LINE 2
  
    public static void main(String[] args) {   // LINE 4
        Square sq = new Square();  // LINE 5
        side = 10;  // LINE 6
   }
}


What can be done to make this code compile and run?
 

Select 1 option

A. replace // LINE 2 with:

private int side = 0;
 


B. replace // LINE 2 with:

public int side = 0;
 


C. replace // LINE 5 with:

double sq = new Square();
 


D. replace // LINE 6 with:

sq.side = 10;
 


 
Check Answer
 



53.     QID - 2.994 
 

Assume that a, b, and c refer to instances of primitive wrapper classes. Which of the following statements are correct?
 

Select 2 options

A. a.equals(a) will always return true.
 


B. b.equals(c) may return false even if c.equals(b) returns true.
 


C. a.equals(b) returns same as a == b.
 


D. a.equals(b) throws an exception if they refer to instances of different classes.
 


E. a.equals(b) returns false if they refer to instances of different classes.
 


 
Check Answer
 



54.     QID - 2.1346 
 

Which of the following statements can be inserted at // 1 to make the code compile without errors?
 

public class InitTest{
   static int si = 10;
   int  i;
   final boolean bool;
   // 1
}


 

Select 1 option

A. instance { bool = true; }
 


B. InitTest() { si += 10; }
 


C. { si = 5; i = bool ? 1000 : 2000;}
 


D. { i = 1000; }
 


E. { bool = (si > 5); i = 1000; }
 


 
Check Answer
 



Working with Java Data Types (Answered)



01.     QID - 2.1379 : Working with Java Data Types 
 

What will the following code print?



        int value = 1,000,000; //1

        switch(value){

            case 1_000_000 : System.out.println("A million 1"); //2

                break;

            case 1000000 : System.out.println("A million 2"); //3

                break;

        }
 

Correct Option is :  F 

A. A million 1
 


B. A million 2
 


C. Compilation error because of //1
 


D. Compilation error because of //2
 


E. Compilation error because of //3
 


F. Compilation error because of //1 and //3
 


Explanation: 
1. You may use underscores (but not commas) to format a number for better code readability. So //1 is invalid. 

2. Adding underscores doesn't actually change the number. The compiler ignores the underscores. So 1_000_000 and 1000000 are actually same and you cannot have two case blocks with the same value. Therefore, the second case at //3 is invalid.



You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



02.     QID - 2.1242 : Working with Java Data Types 
 

Given:

public class TestClass{

     public static void main(String[] args){

     int i = Integer.parseInt(args[1]);

     System.out.println(args[i]);

   }

}

What will happen when you compile and run the above program using the following command line:



java TestClass 1 2
 

Correct Option is :  D 

A. It will print 1
 


B. It will print 2
 


C. It will print some junk value.
 


D. It will throw ArrayIndexOutOfBoundsException.
 


E. It will throw NumberFormatException
Note: NumberFormatException extends IllegalArgumentException, which in turn extends RuntimeException.


Explanation: 
1. Arrays are indexed from 0.

2. In java, the name of the class is not the first element of args.

So, when the command line is : java TestClass 1 2, args[0] is 1 and args[1] is 2.

When you try to access args[2], It will throw an ArrayIndexOutOfBoundsException because the array length is only 2 so args[2] is out of bounds.

 
Back to Question without Answer
 



03.     QID - 2.1146 : Working with Java Data Types 
 

What will the following program print?

public class TestClass{
  public static void main(String[] args){
    unsigned byte b = 0;
    b--;
    System.out.println(b);
  }
}


 

Correct Option is :  E 

A. 0
 


B. -1
 


C. 255
 


D. -128
 


E. It will not compile.
 


Explanation: 
There no unsigned keyword in java! A char can be used as an unsigned integer.

 
Back to Question without Answer
 



04.     QID - 2.1331 : Working with Java Data Types 
 

Note: This question may be considered too advanced for this exam.



Which statements can be inserted at line 1 in the following code to make the program write x on the standard output when run?


public class AccessTest{
   String a = "x";
   static char b = 'x';
   String  c = "x";
   class Inner{
      String  a = "y";
      String  get(){
         String c = "temp";
         // Line 1
         return c;
      }
   }

   AccessTest() { 
     System.out.println(  new Inner().get()  ); 
   }

   public static void main(String args[]) {  new AccessTest();  }
}

 

Correct Options are :  C D E 

A. c = c;
It will reassign 'temp' to c!


B. c = this.a;
It will assign "y" to c.


C. c = ""+AccessTest.b;
Because b is static.


D. c = AccessTest.this.a;
 


E. c = ""+b;
 


 
Back to Question without Answer
 



05.     QID - 2.1204 : Working with Java Data Types 
 

What will be the result of attempting to compile and run the following program?

public class TestClass{

  public static void main(String args[ ] ){

    Object a, b, c ;

    a = new String("A");

    b = new String("B");

    c = a;

    a = b;

    System.out.println(""+c);

  }

}


 

Correct Option is :  B 

A. The program will print java.lang.String@XXX, where XXX is the memory location of the object a.
 


B. The program will print A
 


C. The program will print B
 


D. The program will not compile because the type of a, b, and c  is Object.
String is an Object as well. You can always assign an object of the subclass to a super class reference without a cast.


E. The program will print java.lang.String@XXX, where XXX is the hash code of the object a.
 


Explanation: 
The variables a, b and c contain references to actual objects. Assigning to a reference only changes the reference value, and not the object pointed to by the reference. So, when c = a is executed c starts pointing to the string object containing A. and when a = b is executed, a starts pointing to the string object containing B but the object containing A still remains same and c still points to it. So the program prints A and not B.



The Object class's toString generates a string using:  getClass().getName() + '@' + Integer.toHexString(hashCode())

But in this case, String class overrides the toString() method that returns just the actual string value.

 
Back to Question without Answer
 



06.     QID - 2.1416 : Working with Java Data Types 
 

Which of the following options will yield a Boolean wrapper object containing the value true?
 

Correct Options are :  C D E 

A. Boolean.parseBoolean(" true ")
This will return false because of the extra spaces at the ends. Remember that case of the argment is ignored but spaces are not.


B. Boolean.parseBoolean("true")
Although this will return true but it is still not a valid answer because parseBoolean returns a primitive and not a Boolean wrapper object.


C. Boolean.valueOf(true)
 


D. Boolean.valueOf("trUE")
 


E. Boolean.TRUE
 


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



07.     QID - 2.1272 : Working with Java Data Types 
 

Which of these are NOT legal declarations within a class?
 

Correct Option is :  C 

A. static int sa ;
 


B. final Object[ ] objArr = { null } ;
Declares and defines an array of Objects of length 1.


C. abstract int t ;
Variables can't be declared as abstract or native.


D. abstract void format( ) ;
 


E. final static private double PI = 3.14159265358979323846 ;
 


Explanation: 
static and final are valid modifiers for both member field and method declarations within a class.

transient and volatile modifiers are only valid for member field declarations.

abstract and native are only valid for member methods.



Note: a class declaration can have only final, abstract and public as modifiers, unless it is a nested class, in which case, it can be declared private or  protected as well.

Within a method, a local variable may be declared as final.

 
Back to Question without Answer
 



08.     QID - 2.1061 : Working with Java Data Types 
 

What will be the result of attempting to compile and run the following class?



public class TestClass{

   public static void main(String args[ ] ){

      int i, j, k;

      i = j = k = 9;

      System.out.println(i);

   }

}
 

Correct Options are :  C E 

A. The code will not compile because unlike in c++, operator '=' cannot be chained i.e. a = b = c = d is invalid.
= can be chained. For example, assuming all the variables are declared appropriately before hand, a = b = c = d; is valid.

However, chaining to use a value of a variable at the time of declaration is not allowed. For example, int a = b = c = 100; is invalid if b and c are not already declared. Had b and c been already declared, int a = b = c = 100; would have been valid.


B. The code will not compile as 'j' is being used before getting initialized.
j is being initialize by the expression k = 9, which evaluates to 9.


C. The code will compile correctly and will display '9' when run.
 


D. The code will not compile as 'j' and 'i' are being used before getting initialized.
 


E. All the variables will get a value of 9.
 


Explanation: 
Every expression has a value, in this case the value of the expression is the value that is assigned to the right hand side of the equation.

k has a value of 9 which is assigned to j and then to i.



Another implication of this is :

boolean b = false;

if( b = true) { System.out.println("TRUE");}

The above code is valid and will print TRUE. Because b = true has a boolean value, which is what an if statement expects.



Note that if( i = 5) { ... } is not valid because the value of the expression i = 5 is an int (5) and not a boolean.

 
Back to Question without Answer
 



09.     QID - 2.892 : Working with Java Data Types 
 

Which of the following are valid classes?
 

Correct Option is :  A 

A. public class ImaginaryNumber extends Number {

 //implementation for abstract methods of the base class

}
Number is not a final class so you can extend it.


B. public class ThreeWayBoolean extends Boolean {

 //implementation for abstract methods of the base class

}
 


C. public class NewSystem extends System {

 //implementation for abstract methods of the base class

}
 


D. public class ReverseString extends String {

 //implementation for abstract methods of the base class

}
 


Explanation: 
String, StringBuilder, and StringBuffer - all are final classes.



1. Remember that wrapper classes for primitives (java.lang.Boolean, java.lang.Integer, java.lang.Long, java.lang.Short etc.) are also final and so they cannot be extended. 



2. java.lang.Number, however, is not final. Integer, Long, Double etc. extend Number.



3. java.lang.System is final as well.

 
Back to Question without Answer
 



10.     QID - 2.1378 : Working with Java Data Types 
 

What will the following code print?



public class TestClass {

    public static void main(String[] args) {



        int x = 1____3;   //1



        long y = 1_3;     //2



        float z = 3.234_567f; //3



        System.out.println(x+" "+y+" "+z);

    }

}
 

Correct Option is :  F 

A. Compilation error at //1
 


B. Compilation error at //2
 


C. Compilation error at //3
 


D. Compilation error at //1 and //3
 


E. 10003 103 3.234567
 


F. 13 13 3.234567
The number at //1 and //2 are actually the same. Although confusing, it is legal to have multiple underscores between two digits.


Explanation: 
You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



11.     QID - 2.1259 : Working with Java Data Types 
 

Note: Although Wrapper classes are not explicitly mentioned in the exam objectives, we have seen some candidates get questions on this aspect of Wrapper classes.



What will be the output of the following program?



public class EqualTest{

   public static void main(String args[]){

      Integer i = new Integer(1) ;

      Long m = new Long(1);

      if( i.equals(m)) System.out.println("equal");   // 1

      else System.out.println("not equal");

   }

}
 

Correct Option is :  B 

A. equal
 


B. not equal
 


C. Compile time error at //1
 


D. Runtime error at //1
 


E. None of the above.
 


Explanation: 
Signature of equals method is : boolean equals(Object o); So it can take any object.

The equals methods of all wrapper classes first check if the two object are of same class or not. If not, they immediately return false. Hence it will print not equal.

 
Back to Question without Answer
 



12.     QID - 2.1243 : Working with Java Data Types 
 

Which of the following are correct ways to initialize the static variables MAX and CLASS_GUID ?


class Widget{
   static int MAX;     //1
   static final String CLASS_GUID;   // 2
   Widget(){
       //3
   }
   Widget(int k){
       //4
   }
}


 

Correct Options are :  A B 

A. Modify lines //1 and //2 as : static int MAX = 111; static final String CLASS_GUID = "XYZ123";
You can initialize both the variables at declaration itself.


B. Add the following line just after //2 :  static {  MAX = 111; CLASS_GUID = "XYZ123"; }
Initializing the static variables in a static block ensures that they are initialized even when no instance of the class is created.


C. Add the following line just before //1 :  { MAX = 111; CLASS_GUID = "XYZ123"; }
This is not a static initializer and so will not be executed until an instance is created.


D. Add the following line at //3 as well as //4 : MAX = 111; CLASS_GUID = "XYZ123";
This works for non-static final fields but not for static final fields.


E. Only option 3 is valid.
 


Explanation: 
The rules are:

1. static variables can be left without being explicitly initialized. (They will get default values).

2. final variables must be explicitly initialized.

Now, here CLASS_GUID is a 'static final' variable and not just final or static. As static fields can be accessed even without creating an instance of the class, it is entirely possible that this field can be accessed before even a  single instance is created. In this case, no constructor or non-static initializer had ever been called. And so, the field (as it is final and so must be initialized explicitly) remains uninitialized. This causes the compiler to complain.



Had CLASS_GUID been just a final variable, option 4 would work but as it is also static, it cannot wait till the constructor executes to be initialized.

 
Back to Question without Answer
 



13.     QID - 2.1371 : Working with Java Data Types 
 

Given the following declarations:

        int a = 5, b = 7, k = 0;

        Integer m = null;

and the following statements:



        k = new Integer(a) + new Integer(b);  //1

        k = new Integer(a) + b; //2

        k = a + new Integer(b); //3

        m = new Integer(a) + new Integer(b); //4



Executed independent of each other, what will be the value of k (for //1, //2, and //3) and m (for //4) after execution of each of these statements?
 

Correct Option is :  C 

A. 12

will not compile

will not compile

12
 


B. will not compile

will not compile

will not compile

12
 


C. 12

12

12

12
 


D. will not compile

will not compile

will not compile

will not compile
 


E. 12

12

12

will not compile
 


Explanation: 
In all of these statements, auto-unboxing of integers will occur. For the last statement, after unboxing a and b, the value 12 will be boxed into an Integer object.

 
Back to Question without Answer
 



14.     QID - 2.1151 : Working with Java Data Types 
 

Given that TestClass is a class, how many objects and reference variables are created by the following code?



TestClass t1, t2, t3, t4;

 t1 = t2 = new TestClass();

 t3 = new TestClass();


 

Correct Option is :  B 

A. 2 objects, 3 references.
 


B. 2 objects, 4 references.
two news => two objects. t1, t2, t3, t4 => 4 references.


C. 3 objects, 2 references.
 


D. 2 objects, 2 references.
 


E. None of the above.
 


Explanation: 
A declared reference variable exists regardless of whether a reference value (i.e. an object) has been assigned to it or not.

 
Back to Question without Answer
 



15.     QID - 2.1041 : Working with Java Data Types 
 

Which of the following is not a primitive data value in Java?
 

Correct Options are :  A D 

A. "x"
This is a string containing x. String is not a primitive data type.


B. 'x'
This is a char.


C. 10.2F
 


D. Object
 


E. false
 


Explanation: 
Java has only the following primitive data types:

boolean, byte, short, char, int, long, float and double.

 
Back to Question without Answer
 



16.     QID - 2.925 : Working with Java Data Types 
 

Given:


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<Double> al = new ArrayList<>();

        //INSERT CODE HERE
     }
}


What can be inserted in the above code so that it can compile without any error?
 

Correct Options are :  B C 

A. al.add(111);
You cannot box an int into a Double object.


B. System.out.println(al.indexOf(1.0));
indexOf's accepts Object as a parameter. Although 1.0 is not an object, it will be boxed into a Double object.


C. System.out.println(al.contains("string"));
 


D. Double d = al.get(al.length);
ArrayList does not have a field named length. It does have a method named size() though. So you can do:

Double d = al.get(al.size()); It will compile but will throw IndexOutOfBoundsException at run time in this case because al.size() will return 0 and al.get(0) will try to get the first element in the list.


Explanation: 
Note that al is declared as ArrayList<Double>, therefore the add method is typed to accept only a Double.

 
Back to Question without Answer
 



17.     QID - 2.937 : Working with Java Data Types 
 

Given the following class, which statements can be inserted at line 1 without causing the code to fail compilation?


public class TestClass{
   int a;
   int b = 0;
   static int c;
   public void m(){
      int d;
      int e = 0;
      // Line 1
   }
}

 

Correct Options are :  A B C E 

A. a++;
Here, 'a' is an instance variable of type int. Therefore, it will be given a default value of Zero and so it need not be initialized explicitly.


B. b++;
 


C. c++;
Here 'c' is a class variable (also called as static variable) of type int so it will be given a default value of Zero and so it need not be initialized explicitly.


D. d++;
This will not compile because 'd' is not initialized. Note that automatic variables (also called as method local variables i.e. variables declared within a method) have to be explicitly initialized.


E. e++;
 


Explanation: 
All the instance or static variables are given a default values if they are not explicitly initialized. All numeric variable are given a value of zero or equivalent to zero (i.e. 0 for integral types and 0.0 for double/float). Booleans are initialized to false and objects are initialized to null.



Note that local (aka automatic) variables, such as the variables d and e in the code given here, are not initialized automatically. They have to be initialized explicitly. However, it is ok to leave them uninitialized if you don't use them anywhere in the code (as is the case with the variable d).

 
Back to Question without Answer
 



18.     QID - 2.1062 : Working with Java Data Types 
 

The following code snippet will print 4.


int i1 = 1, i2 = 2, i3 = 3;
int i4 = i1 + (i2=i3 );
System.out.println(i4);


 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
First the value of i1 is evaluated (i.e. 1). Now, i2 is assigned the value of i3 i.e. i2 becomes 3. Finally i4 gets 1 +3 i.e. 4.

 
Back to Question without Answer
 



19.     QID - 2.1417 : Working with Java Data Types 
 

Identify the valid members of Boolean class.
 

Correct Options are :  A B D 

A. parseBoolean(String )
 


B. valueOf(boolean )
 


C. parseBoolean(boolean )
 


D. FALSE
TRUE and FALSE are valid static members of Boolean class.


E. Boolean(Boolean )
There is no constructor that takes a Boolean.


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



20.     QID - 2.985 : Working with Java Data Types 
 

Which of the following declarations are valid?
 

Correct Options are :  C D E 

A. float f1 = 1.0;
1.0 is a double.


B. float f = 43e1;
43e1 is a double.


C. float f = -1;
 


D. float f = 0x0123;
 


E. float f = 4;
 


Explanation: 
Although the values in the option 1 and 2 are compile time constants and the values i.e. 1.0 and 43e1 can fit into a float, implicit narrowing does not happen because implicit narrowing is permitted only among byte, char, short, and int.

 
Back to Question without Answer
 



21.     QID - 2.1319 : Working with Java Data Types 
 

Given the following code snippet:

   int rate = 10;
   int t = 5;
   XXX amount = 1000.0;
   for(int i=0; i<t; i++){
      amount = amount*(1 - rate/100);
   }


What can XXX be?
 

Correct Option is :  C 

A. int
 


B. long
 


C. only double
 


D. double or float
 


E. float
 


Explanation: 
There is no need for analyzing the whole code. XXX amount = 1000.0; will be valid only if XXX is double. 



Note that the options do not include wrapper classes. Otherwise, Double is also valid because of auto boxing.

 
Back to Question without Answer
 



22.     QID - 2.890 : Working with Java Data Types 
 

Given:


class Square {
    private double side = 0;
    String color;
    public Square(double length){
        this.side = length;
    }
    public double getSide() {  return side;    }

    public void setSide(double side) {  this.side = side;   }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Square mysq = new Square(10);
        mysq.color = "red";
        
        //set mysq's side to 20
    }
}


Which of the following statements will set the side of Square object referred by mysq to 20?
 

Correct Option is :  C 

A. mysq.side = 20;
Since side is a private variable, you cannot access it from outside Square class.


B. mysq = new Square(20);
This will create a new Square object.


C. mysq.setSide(20);
 


D. side = 20;
 


E. Square.mysq.side = 20;
 


 
Back to Question without Answer
 



23.     QID - 2.1451 : Working with Java Data Types 
 

Given:

public class Bandwidth{

    public int available = 0;

    public int getAvailable(){

        return available;

    }

    public Bandwidth(int quota){

        this.available = quota;

    }

    public void addMore(int more){

        available += more;

    }

    

}

and another piece of code from another class:

        Bandwidth bw = new Bandwidth(100);

        //INSERT CODE HERE

        System.out.println(bw.getAvailable());



What can be inserted in the code above so that it will print 0?
 

Correct Options are :  B E 

A. bw(0);
 


B. bw.available = 0;
 


C. bw.setAvailable(0);
There is no setAvailable method in the given code so this will not compile.


D. bw = new Bandwidth();
Bandwidth class does not have a no-args constructor so this will not compile.


E. bw.addMore(-bw.getAvailable());
 


F. --bw.available;
This will just decrement bw.available by 1.


 
Back to Question without Answer
 



24.     QID - 2.1314 : Working with Java Data Types 
 

Which statements concerning conversion are true?
 

Correct Options are :  A B C E 

A. Conversion from char to long does not need a cast.
 


B. Conversion from byte to short does not need a cast.
 


C. Conversion from short to char needs a cast.
The reverse is also true. Because their ranges are not compatible.


D. Conversion from int to float needs a cast.
It does not need a cast because a float can hold any value of int. Note that opposite is not true because of loss of precision.


E. Conversion from byte, char or short to int, long or float does not need a cast.
Because int, long or float are bigger that byte char or short.


Explanation: 
Think of it as transferring contents of one bucket into another. You can always transfer the contents of a smaller bucket to a bigger one. But the opposite is not always possible. You can transfer the contents of the bigger bucket into the smaller bucket only if the actual content in the bigger bucket can fit into the smaller one. Otherwise, it will spill.



It is the same with integral types as well. byte is smaller than short or int. So you can assign a byte to an int (or an int to a float, or a float to a double) without any cast. But for the reverse you need to assure the compiler that the actual contents in my int will be smaller than a byte so let me assign this int to a byte. This is achieved by the cast.

int i = 10;

byte b = 20;

b = i;//will not compile because byte is smaller than int

b = (byte) i; //OK





Further, if you have a final variable and its value fits into a smaller type, then you can assign it without a cast because compiler already knows its value and realizes that it can fit into the smaller type. This is called implicit narrowing and is allowed between byte, int, char, and, short but not for long, float, and double.





final int k = 10;

b = k; //Okay because k is final and 10 fits into a byte



final float f = 10.0;//will not compile because 10.0 is a double even though the value 10.0 fits into a float

i = f;//will not compile.

 
Back to Question without Answer
 



25.     QID - 2.944 : Working with Java Data Types 
 

Which of the following are valid code snippets appearing in a method:
 

Correct Options are :  B C D 

A. int a = b = c = 100;
Chaining to use a value of a variable at the time of declaration is not allowed. Had b and c been already declared, it would have been valid. For example, the following is valid:

  int  b = 0, c = 0;

  int a = b = c = 100;

Even the following is valid:

  int  b , c;  //Not initializing b and c here.

  int a = b = c = 100; //declaring a and initializing c, b, and a at the same time.

 Notice the order of initialization of the variables - c is initialized first, b is initialized next by assigning to it the value of c. Finally, a is initialized.


B. int a, b, c; a = b = c = 100;
 


C. int a, b, c=100;
 


D. int a=100, b, c;
 


E. int a= 100 = b = c;
 


Explanation: 
Java does not allow chained initialization in declaration so option 1 and 5 are not valid.

 
Back to Question without Answer
 



26.     QID - 2.1415 : Working with Java Data Types 
 

Which of the following comparisons will yield false?
 

Correct Options are :  B C E 

A. Boolean.parseBoolean("true") == true
 


B. Boolean.parseBoolean("TrUe") == new Boolean(null);
This will yield false because parseBoolean("TrUe") will return true and new Boolean(null) will return a Boolean wrapper object containing false.


C. new Boolean("TrUe") == new Boolean(true);
Even though both the sides have a Boolean wrapper containing true, the expression will yield false because they point to two different Boolean wrapper objects.


D. new Boolean() == false;
This will not compile because Boolean class does not have a no-args constructor.


E. new Boolean("true") == Boolean.TRUE
Even though both the sides have a Boolean wrapper containing true, the expression will yield false because they point to two different Boolean wrapper objects.


F. new Boolean("no") == false;
Any string other than "true" (ignoring case) will produce a Boolean containing false. Therefore, this expression will yield true.


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



27.     QID - 2.1221 : Working with Java Data Types 
 

Which of the following is illegal ?
 

Correct Option is :  D 

A. char c = 320;
This is valid because 320 is below the maximum value that a char can take, which is 2^16 -1. Remember that char can take only positive values.


B. float f = 320;
320 is an int and any valid int can be assigned to a float or a double variable without a cast. Note that f = 320.0 is not valid as 320.0 would be a double and a double can only be assigned to a double without a cast.


C. double d = 320;
This is valid because any valid int can be assigned to a double or even a float without any cast.


D. byte b = 320;
320 cannot fit into a byte so you must cast it.: byte b = (byte) 320;


E. float f = 22.0f/7.0f;
Since both the operands of / are floats, it will result in a float, which can be assigned to f. 

If you have, 22.0f/7.0, then it would not compile because 7.0 is a double and so 22.0f/7.0 will return a double, which cannot be assigned to a float.


F. None of the above is illegal.
 


 
Back to Question without Answer
 



28.     QID - 2.958 : Working with Java Data Types 
 

Consider the following code:



public class Conversion{

   public static void main(String[] args){

     int i = 1234567890;

     float f = i;

     System.out.println(i - (int)f);

   }

}



What will it print when run?
 

Correct Option is :  B 

A. It will print 0.
 


B. It will not print 0.
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
Actually it prints -46. This is because the information was lost during the conversion from type int to type float as values of type float are not precise to nine significant digits.

Note: You are not required to know the number of significant digits that can be stored by a float for the exam. However, it is good to know about loss of precision while using float and double.

 
Back to Question without Answer
 



29.     QID - 2.1159 : Working with Java Data Types 
 

What happens when you try to compile and run the following class...


public class TestClass{
      public static void main(String[] args) throws Exception{
            int a = Integer.MIN_VALUE;
            int b = -a;
            System.out.println( a+ "   "+b);
      }
}


 

Correct Option is :  B 

A. It throws an OverFlowException.
 


B. It will print two same negative numbers.
 


C. It will print two different negative numbers.
 


D. It will print one negative and one positive number of same magnitude.
 


E. It will print one negative and one positive number of different magnitude.
 


Explanation: 
It prints: -2147483648   -2147483648



This happens because negative integers are stored in 2's complement form (complement the bits and add 1). For example:



Integer 1 in binary is  00000000 00000000 00000000 00000001  (32 bits)



So -1 in binary would be (complement the bits for 1 and add 1) :



Step 1 (complement the bits of 1): 11111111 11111111 11111111 11111110  

Step 2 (add 1 to step 1): 11111111 11111111 11111111 11111111.



Now, let's see what happens in this question:



a = Integer.MIN_VALUE = 10000000 00000000 00000000 00000000



To get -a, apply the above two steps:



Step 1  (complement the bits): 011111111 11111111 11111111 11111111 

Step 2 (add 1) : 10000000 00000000 00000000 00000000



So you got the exact same value that you started with! 



(Note that you can see the binary form of an integer using Integer.toBinaryString(i) method.)

 
Back to Question without Answer
 



30.     QID - 2.1421 : Working with Java Data Types 
 

What will the following code print when compiled and run?





public class Discounter {

    static double percent; //1

    int offset = 10, base= 50; //2

    public static double calc(double value) {

        int coupon, offset, base; //3

        if(percent <10){ //4

            coupon = 15;

            offset = 20;

            base = 10;

        }

        return coupon*offset*base*value/100; //5

    }

    public static void main(String[] args) {

        System.out.println(calc(100));

    }

}


 

Correct Option is :  E 

A. 3000
 


B. 3000.0
 


C. compilation error at //3
 


D. compilation error at //4
 


E. compilation error at //5
 


F. Exception at run time.
 


Explanation: 
Remember that static and instance variables are automatically assigned a value even if you don't initialize them explicitly but local variables must be initialized explicitly before they are used.



Now, observe that the calc method declares local variables coupon, offset, and base but does not assign them a value. Even though at run time, we know that since percent is 0 and is thus < 10, a value will be assigned to these variables, the compiler doesn't know this because the compiler doesn't take values of "variables" into consideration while determining the flow of control. It only considers the values of compile time constants. Therefore, as far as the compiler is concerned, coupon, offset, and base may remain uninitialized before they are used.



Having uninitialized variables itself is not a problem. So there is no compilation error at //3. However, using them before they are initialized is a problem and therefore the compiler flags an error at //5.



Had percent been defined as final ( static final double percent = 0; ), the code would work and print 3000.0.

 
Back to Question without Answer
 



31.     QID - 2.1104 : Working with Java Data Types 
 

Consider the following lines of code:



Integer i = new Integer(42);

Long ln = new Long(42);

Double d = new Double(42.0);



Which of the following options are valid?
 

Correct Options are :  C D E 

A. i == ln;
This will fail at compile time


B. ln == d;
This will fail at compile time


C. i.equals(d);
 


D. d.equals(ln);
 


E. ln.equals(42);
Due to auto-boxing int 42 is converted into an Integer object containing 42. So this is valid. It will return false though because ln is a Long and 42 is boxed into an Integer.


Explanation: 
The concept to understand here is as follows -

If the compiler can figure out that something can NEVER happen, then it flags an error. In this question, the compiler knows that ln, i or d can never point to the same object in any case because they are references to different classes of objects that have no relation ( superclass/subclass ) between themselves.

 
Back to Question without Answer
 



32.     QID - 2.975 : Working with Java Data Types 
 

In which of these variable declarations, will the variable remain uninitialized unless explicitly initialized?
 

Correct Option is :  C 

A. Declaration of an instance variable of type int.
 


B. Declaration of a static class variable of type float.
 


C. Declaration of a local variable of type float.
 


D. Declaration of a static class variable of class Object
 


E. Declaration of an instance variable of class Object.
 


Explanation: 
We have to explicitly initialize local variables otherwise they remain uninitialized and it will be a compile time error if such variables are accessed without getting initialized first.

Instance variables and static variables receive  a default value if not explicitly initialized. All primitive types get a defaults value equivalent to 0, that is, int to 0 and float to 0.0f and so on and boolean to false.

The type/class of a variable does not affect whether a variable is initialized or not.

 
Back to Question without Answer
 



33.     QID - 2.1405 : Working with Java Data Types 
 

How many objects have been created by the time the main method reaches its end in the following code?

public class Noobs {

    public Noobs(){

        try{

            throw new MyException();

        }catch(Exception e){

        }

    }

    public static void main(String[] args) {

        Noobs a = new Noobs();

        Noobs b = new Noobs();

        Noobs c = a;

    }

}

class MyException extends Exception{

    

}
 

Correct Option is :  C 

A. 2
 


B. 3
 


C. 4
 


D. 5
 


E. 6
 


Explanation: 
When a Noobs object is created, a MyException object is also created. Therefore a total of 4 objects are created. The line Noobs c = a; just assigns an existing Noobs object to c. No new object is created.



Note: Some candidates have reported getting a similar question. 

The question is ambiguous because two Class objects (one for Noobs and one for MyException) are also created. If you consider those, then the answer would be 6. Further, several Thread objects are also created (although not directly by this code.) Since this is out of scope for the exam, it is best to ignore these kind of objects and consider only the objects created directly by the code.

 
Back to Question without Answer
 



34.     QID - 2.1376 : Working with Java Data Types 
 

Which of the following is/are valid double values for 10 million? (A million has 6 zeros)
 

Correct Option is :  C 

A. double d = 10,000,000.0;
Comma is not a valid character here.


B. double d = 10-000-000;
Dash (-) is not a valid character here.


C. double d = 10_000_000;
 


D. double d = 10 000 000;
 


Explanation: 
Beginning with Java 7, you can include underscores in between the digits. This helps in writing long numbers. For example, if you want to write 1 million, you can write: 1_000_000, which is easier than 1000000 for humans to interpret. 



Note that you cannot start or end a value with an underscore though. Thus, 100_ or _100 are invalid values. _100 is actually a valid variable name!



You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



35.     QID - 2.1134 : Working with Java Data Types 
 

Which of the following are valid at line 1?



public class X{

    //line 1: insert code here.

}
 

Correct Options are :  A D 

A. String s;
 


B. String s = 'asdf';
A string must be enclosed in double quotes ".


C. String s = 'a';
'a' is a char. "a" is a String.


D. String s = this.toString();
Since every class directly or indirectly extends Object class and since Object class has a toString() method, that toString() method will be invoked and the String that it returns will be assigned to s.


E. String s = asdf;
there is no variable asdf defined in the given class.


 
Back to Question without Answer
 



36.     QID - 2.1251 : Working with Java Data Types 
 

What will be the result of attempting to compile and run the following code?

public class InitClass{
   public static void main(String args[ ] ){
      InitClass obj = new InitClass(5);
   }
   int m;
   static int i1 = 5;
   static int i2 ;
   int  j = 100;
   int x;
   public InitClass(int m){
      System.out.println(i1 + "  " + i2 + "   " + x + "  " + j + "  " + m);
   }
  { j = 30; i2 = 40; }  // Instance Initializer
   static { i1++; }      // Static Initializer
}


 

Correct Option is :  C 

A. The code will fail to compile since the instance initializer tries to assign a value to a static member.
 


B. The code will fail to compile since the member variable x will be uninitialized when it is used.
 


C. The code will compile without error and will print 6 40 0 30 5 when run.
 


D. The code will compile without error and will print 5, 0, 0, 100, 5 when run.
 


E. The code will compile without error and will print 5, 40, 0, 30, 0 when run.
 


Explanation: 
The value 5 is passed to the constructor to the local (automatic) variable m. So the instance variable m is shadowed. Before the body of the constructor is executed, the instance initializer is executed and assigns values 30 and 40 to variables j and i2, respectively.

A class is loaded when it is first used. For example,

class A1{
  static int i = 10;
  static { System.out.println("A1 Loaded "); }
}
public class A{
  static { System.out.println("A Loaded "); }
  public static void main(String[] args){
    System.out.println(" A should have been loaded");
    A1 a1 = null;
    System.out.println(" A1 should not have been loaded");
    System.out.println(a1.i);
  }
}



When you run it you get the output:
A Loaded
 A should have been loaded
 A1 should not have been loaded
A1 Loaded
10


Now, A should be loaded first as you are using its main method. Even though you are doing A1 a1 = null; A1 will not be loaded as it is not yet used (so the JVM figures out that it does not need to load it yet.)
When you do a1.i, you are using A1, so before you use it, it must be loaded. That's when A1 is loaded. Finally 10 is printed.

 
Back to Question without Answer
 



37.     QID - 2.1409 : Working with Java Data Types 
 

What will the following code print?



public class Test{

    public static void testInts(Integer obj, int var){

        obj = var++;

        obj++;

    }

    public static void main(String[] args) {

        Integer val1 = new Integer(5);

        int val2 = 9;

        testInts(val1++, ++val2);

        System.out.println(val1+" "+val2);

    }

}           


 

Correct Option is :  D 

A. 10 9
 


B. 10 10
 


C. 6 9
 


D. 6 10
 


E. 5 11
 


Explanation: 
There are multiple concepts at play here:

1. All the wrapper objects are immutable. So when you do obj++, what actually happens is something like this:

obj = new Integer( obj.intValue()  + 1);  



2.val1++ uses post-increment operator, which implies that you note down the current value of val1, increment it, and then pass the original noted down value to the method testInts. Thus, the reference value of Integer 5 is passed to testInts. But val1 is set to point to a new Integer object containing 6.

 ++val2 uses pre-increment operator, which implies that you first increment val2 and then pass the incremented value. Therefore, val2 is incremented to 10 and then 10 is passed to the method testInts.



3. Java uses pass by value semantics in method calls. In case of primitive variables, their values are passed, while in case of Objects, their reference values are passed.  Thus, when you assign a different object to reference variable in a method, the original reference variable that was passed from the calling method still points to the same object that it pointed to before the call.

In this question, therefore, val1 in main still points to 6 after the call to testInts returns.

 
Back to Question without Answer
 



38.     QID - 2.1375 : Working with Java Data Types 
 

Identify the valid code fragments when occurring by themselves within a method.
 

Correct Option is :  D 

A. long y = 123_456_L;
An underscore can only occur in between two digits. So the _ before L is invalid.


B. long z = _123_456L;
An underscore can only occur in between two digits. So the _ before 1 is invalid.

_123_456L is a valid variable name though. So the following code is valid:

int _123_456L = 10;

long z = _123_456L;

An exception to this rule is that multiple continuous underscores can appear between two digits. For example, 2____3 is as good as 2_3 and is same as 23.


C. float f1 = 123_.345_667F;
An underscore can only occur in between two digits. So the _ before . is invalid.


D. float f2 = 123_345_667F;
 


E. None of the above declarations are valid.
 


Explanation: 
You may use underscore for all kinds of numbers including long, double, float, binary, as well as hex.  For example, the following are all valid numbers - 

int hex = 0xCAFE_BABE;

float f = 9898_7878.333_333f;

int bin = 0b1111_0000_1100_1100;

 
Back to Question without Answer
 



39.     QID - 2.898 : Working with Java Data Types 
 

Given:

public class Employee{
    String name;
    public Employee(){
    }
}


Which of the following lines creates an Employee instance?
 

Correct Option is :  B 

A. Employee e;
This declares a variable of class Employee but does not create any object.


B. Employee e = new Employee();
Using the new operator is the right way to create an object.


C. Employee e = Employee.new();
 


D. Employee e = Employee();
 


 
Back to Question without Answer
 



40.     QID - 2.909 : Working with Java Data Types 
 

Which of the following declarations is/are valid:



1.  bool b = null;



2. boolean b = 1;



3. boolean b = true|false;



4 bool b = (10<11);



5. boolean b = true||false;
 

Correct Option is :  D 

A. 1 and 4
 


B. 2, 3, and 5
 


C. 2 and 3
 


D. 3 and 5
 


E. 5
 


Explanation: 
bool is an invalid keyword. Therefore, 1 and 4 can't be right. (Although 1 could be right if bool were a user defined class but as per Java coding conventions, a class name should start with a capital letter.)



boolean b = 1; is wrong because you can only assign true or false to a boolean variable. 1 is an integral value it cannot be converted to boolean. Also note that boolean b = null; would be invalid as well because null is not a true or false value. A primitive (whether it is a boolean or an int or a double), can never be assigned null.



boolean b = true|false; and boolean b = true||false; are both valid and the difference between true|false and true||false is not material in this case. However, there is a lot of difference between | (and &) and || (and &&) as explained below:





|| and && perform short circuit evaluation, while & and | do not. Which means, if you use the || and && forms, Java will not bother to evaluate the right-hand operand if the result of the expression can be known by just evaluating the left hand operand.



Consider the following example.



Boolean b = true; 

if(b || foo.timeConsumingCall()) {    

  //entered here without calling timeConsumingCall() 

} 



Another example:



String s = null;

if(s != null && s.isEmpty())  //No NullPointerException because string.isEmpty() is not called.

//If you use & instead of && , s.isEmpty will be called and a NullPointerException will be thrown.{     

   ...

} 

 
Back to Question without Answer
 



41.     QID - 2.1289 : Working with Java Data Types 
 


 

 
Explanation: 
In all of these cases, auto-unboxing of integers will occur. For the last statement, after unboxing a and b, the value 12 will be boxed into an Integer object.

 
Back to Question without Answer
 



42.     QID - 2.1332 : Working with Java Data Types 
 

What happens when you try to compile and run the following program?

public class CastTest{
   public static void main(String args[ ] ){
      byte b = -128 ;
      int i = b ;
      b = (byte) i;
      System.out.println(i+" "+b);
   }
}


 

Correct Option is :  B 

A. The compiler will refuse to compile it because i and b are of different types cannot be assigned to each other.
 


B. The program will compile and will print -128 and -128 when run .
A byte can ALWAYS be assigned to an int.


C. The compiler will refuse to compile it because -128 is outside the legal range of values for a byte.
Range of byte is -128 to 127


D. The program will compile and will print 128 and -128 when run .
 


E. The program will compile and will print 255 and -128 when run .
 


Explanation: 
byte and int both hold signed values. So when b is assigned to i, the sign is preserved.

 
Back to Question without Answer
 



43.     QID - 2.1189 : Working with Java Data Types 
 

Which of the following statements are acceptable?
 

Correct Options are :  A B C E 

A. Object o = new java.io.File("a.txt");

(Assume that java.io.File is a valid class with a constructor that takes a String.)
This is valid because every object in Java is an Object.


B. Boolean bool = false;
bool is a variable of type Boolean and not of a primitive type boolean however this is still valid because Java performs auto-boxing (and unboxing) for primitives and their wrapper types which allows false to be automatically be boxed into a Boolean false object.


C. char ch = 10;
Because 10 can fit into a char.


D. Thread t = new Runnable();

(Assume that Runnable is a valid interface.)
Since Runnable is an interface, it cannot be instantiated like this. But you can do :

Runnable r = new Runnable(){

                       public void run(){ }

                    };


E. Runnable r = new Thread();

(Assume that Thread is a class that implements Runnable interface)
Since Thread implements Runnable, this is a valid assignment.


 
Back to Question without Answer
 



44.     QID - 2.1247 : Working with Java Data Types 
 

Which of these assignments are valid?
 

Correct Options are :  A B D 

A. short s = 12 ;
This is valid since 12 can fit into a short and an implicit narrowing conversion can occur.


B. long g = 012 ;
012 is a valid octal number.


C. int i = (int) false;
Values of type boolean cannot be converted to any other types.


D. float f = -123;
Implicit widening conversion will occur in this case.


E. float d = 0 * 1.5;
double cannot be implicitly narrowed to a float even though the value is representable by a float.


Explanation: 
Note that

float d = 0 * 1.5f; and float d = 0 * (float)1.5 ; are OK



A narrowing primitive conversion may be used if all of the following conditions are satisfied:



1. The expression is a constant expression of type int.



2. The type of the variable is byte, short, or char.



3. The value of the expression (which is known at compile time, because it is a constant expression) is representable in the type of the variable.



Note that narrowing conversion does not apply to long or double. So, char ch = 30L; will fail even though 30 is representable in char.

 
Back to Question without Answer
 



45.     QID - 2.1199 : Working with Java Data Types 
 

Given:

public class TestClass{
  public static int getSwitch(String str){
      return (int) Math.round( Double.parseDouble(str.substring(1, str.length()-1)) );
  }
  public static void main(String args []){
    switch(getSwitch(args[0])){
      case 0 : System.out.print("Hello ");
      case 1 : System.out.print("World"); break;
      default : System.out.print("Good Bye");
    }
  }
}



What will be printed by the above code if it is run with command line: 

java TestClass --0.50

(There are two minuses before 0.)
 

Correct Option is :  C 

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. Good Bye
 


Explanation: 
str.substring(1, str.length()-1) => "--0.50".substring(1, (6-1) ) => -0.5

Math.round(-0.5) = 0.0 

so getSwitch(...) returns 0 if passed an argument of "--0.50".

Now, there is no "break" in case 0 of switch. so the control falls through to the next case ( i.e. case 1) after printing Hello. At case 1, it prints World. And since there is a break. default is not executed.



Observe that rounding is a standard mathematical procedure where the number that lies exactly between two numbers always rounds up to the higher one. So .5 rounds to 1 and -.5 rounds to 0.

 
Back to Question without Answer
 



46.     QID - 2.835 : Working with Java Data Types 
 

Which of the following can be valid declarations of an integer variable?
 

Correct Options are :  B E 

A. global int x = 10;
global is an invalid modifier. There is nothing like global in java. The closest you can get is static.


B. final int x = 10;
 


C. public Int x = 10;
Int with a capital I is invalid.


D. Int x = 10;
Int with a capital I is invalid.


E. static int x = 10;
 


 
Back to Question without Answer
 



47.     QID - 2.1027 : Working with Java Data Types 
 

What will the following code print when run?


public class TestClass{	
    public static Integer wiggler(Integer x){
       Integer y = x + 10;
       x++;
       System.out.println(x);
       return y;
    }

    public static void main(String[] args){
       Integer dataWrapper = new Integer(5);
       Integer value = wiggler(dataWrapper);
       System.out.println(dataWrapper+value);
    }
}


 

Correct Option is :  C 

A. 5 and 20
 


B. 6 and 515
 


C. 6 and 20
 


D. 6 and 615
 


E. It will not compile.
 


Explanation: 
1. Wrapper objects are always immutable. Therefore, when dataWrapper is passed into wiggler() method, it is never changed even when x++; is executed. However, x, which was pointing to the same object as dataWrapper, is assigned a new Integer object (different from dataWrapper) containing 6.



2. If both the operands of the + operator are numeric, it adds the two operands. Here, the two operands are Integer 5 and Integer 15, so it unboxes them, adds them, and prints 20.

 
Back to Question without Answer
 



48.     QID - 2.1126 : Working with Java Data Types 
 

Given:

 String mStr = "123";

 long m = // 1

Which of the following options when put at //1 will assign 123 to m?
 

Correct Options are :  A B E 

A. new Long(mStr);
Auto unboxing will occur.


B. Long.parseLong(mStr);
 


C. Long.longValue(mStr);
longValue is a non-static method in Long class.


D. (new Long()).parseLong(mStr);
Long (or any wrapper class) does not have a no-args constructor, so new Long() is invalid.


E. Long.valueOf(mStr).longValue();
Long.valueOf(mStr) returns a Long object containing 123. longValue() on the Long object returns 123.


 
Back to Question without Answer
 



49.     QID - 2.982 : Working with Java Data Types 
 

Given the following class, which of the given blocks can be inserted at line 1 without errors?


public class InitClass{
       private static int loop = 15 ;
       static final int INTERVAL = 10 ;
       boolean flag ;
       //line 1
}

 

Correct Options are :  A B C E 

A. static {System.out.println("Static"); } 
 


B. static { loop = 1; }
 


C. static { loop += INTERVAL; }
 


D. static { INTERVAL = 10; } 
INTERVAL is final and so it can never be changed after it is given a value.


E. { flag = true; loop = 0; }
flag is not static and so it can be accessed only from a non-static block. loop is static so can be accessed from any block.


 
Back to Question without Answer
 



50.     QID - 2.1118 : Working with Java Data Types 
 

Which of the changes given in options can be done (independent of each other) to let the following code compile and run without errors when its generateReport method is called?



class SomeClass{

   String s1 = "green mile";   // 0

   public void generateReport( int n ){

      String local;   // 1

      if( n > 0 ) local = "good";   //2

      System.out.println( s1+" = " + local );   //3

   }

}
 

Correct Options are :  A C 

A. Insert after line 2 : else local = "bad";
 


B. Insert after line 2 : if(n <= 0) local = "bad";
 


C. Move line 1 and place it after line 0.
 


D. change line 1 to : final String local = "rocky";
Making it final will not let //2 compile as it would then try to modify a final variable.


E. The program already is without any errors.
 


Explanation: 
The problem is that local is declared inside a method is therefore local to that method. It is called a local variable (also known as automatic variable) and it cannot be used before initialized. Further, it will not be initialized unless you initialize it explicitly because local variables are not initialized by the JVM on its own. The compiler spots the usage of such uninitialized variables and ends with an error message.



1. Making it a member variable (choice "Move line 1 and place it after line 0.") will initialize it to null.

2. Putting an else part (choice "Insert after line 2 : else local = "bad";") will ensure that it is initialized to either 'good' or 'bad'. So this also works.

Choice "Insert after line 2 : if(n <= 0) local = "bad";" doesn't work because the second 'if' will actually be another statement and is not considered as a part of first 'if'. So, compiler doesn't realize that 'local' will be initialized even though it does get initialized.

 
Back to Question without Answer
 



51.     QID - 2.1414 : Working with Java Data Types 
 

Which of the following statements will print true when executed?
 

Correct Options are :  A D E 

A. System.out.println(Boolean.parseBoolean("true"));
 


B. System.out.println(new Boolean(null));
This will print false.


C. System.out.println(new Boolean());
This will not compile because Boolean class does not have a no-args constructor. Remember that no other wrapper class has a no-args constructor either. So new Integer(), or new Long() will also not compile.


D. System.out.println(new Boolean("true"));
Case of the String parameter does not matter. As long as the String equals "true" after ignoring the case, it will be parsed as true.  However, if you have extra spaces, for example, " true" or "true ", it will be parsed as false.


E. System.out.println(new Boolean("trUE"));
Case of the String parameter does not matter. As long as the String equals "true" after ignoring the case, it will be parsed as true.  However, if you have extra spaces, for example, " true" or "true ", it will be parsed as false.


Explanation: 
You need to remember the following points about Boolean:



1. Boolean class has two constructors - Boolean(String) and Boolean(boolean)

The String constructor allocates a Boolean object representing the value true if the string argument is not null and is equal, ignoring case, to the string "true". Otherwise, allocate a Boolean object representing the value false. Examples: new Boolean("True") produces a Boolean object that represents true. new Boolean("yes") produces a Boolean object that represents false.



The boolean constructor is self explanatory.



2. Boolean class has two static helper methods for creating booleans - parseBoolean and valueOf.

Boolean.parseBoolean(String ) method returns a primitive boolean and not a Boolean object (Note - Same is with the case with other parseXXX methods such as Integer.parseInt - they return primitives and not objects). The boolean returned represents the value true if the string argument is not null and is equal, ignoring case, to the string "true". 



Boolean.valueOf(String ) and its overloaded Boolean.valueOf(boolean ) version, on the other hand, work similarly but return a reference to either Boolean.TRUE or Boolean.FALSE wrapper objects. Observe that they dont create a new Boolean object but just return the static constants TRUE or FALSE defined in Boolean class.



3. When you use the equality operator ( == ) with booleans, if exactly one of the operands is a Boolean wrapper, it is first unboxed into a boolean primitive and then the two are compared (JLS 15.21.2). If both are Boolean wrappers, then their references are compared just like in the case of other objects. Thus, new Boolean("true") == new Boolean("true") is false, but new Boolean("true") == Boolean.parseBoolean("true") is true.

 
Back to Question without Answer
 



52.     QID - 2.917 : Working with Java Data Types 
 

Given:

public class Square {
    private double side = 0;  // LINE 2
  
    public static void main(String[] args) {   // LINE 4
        Square sq = new Square();  // LINE 5
        side = 10;  // LINE 6
   }
}


What can be done to make this code compile and run?
 

Correct Option is :  D 

A. replace // LINE 2 with:

private int side = 0;
 


B. replace // LINE 2 with:

public int side = 0;
 


C. replace // LINE 5 with:

double sq = new Square();
 


D. replace // LINE 6 with:

sq.side = 10;
side is not a "global variable" that you can access directly (Note that Java doesn't have the concept of a global variable). side is an instance field in Square class, which means, only objects of Square class will have this field. Therefore, you need to specify which Square object's side you are trying to access. You are doing that here by using the reference sq that points to an instance of Square class.



Remember that private members of a class are accessible from the same class. The main method is within Square class and that is why you can access the side field of Square class from this method.



An integer can be assigned to a double without a cast but not vice versa.


 
Back to Question without Answer
 



53.     QID - 2.994 : Working with Java Data Types 
 

Assume that a, b, and c refer to instances of primitive wrapper classes. Which of the following statements are correct?
 

Correct Options are :  A E 

A. a.equals(a) will always return true.
 


B. b.equals(c) may return false even if c.equals(b) returns true.
 


C. a.equals(b) returns same as a == b.
The wrapper classes's equals() method overrides Object's equals() method to compare the actual value instead of the reference.


D. a.equals(b) throws an exception if they refer to instances of different classes.
It returns false in such a case.


E. a.equals(b) returns false if they refer to instances of different classes.
 


Explanation: 
Equals method of a primitive wrapper class ( e.g. java.lang.Integer, Double, Float etc) are

 1. symmetric => a.equals(b) returns same as b.equals(a)

 2. transitive => if a.equals(b) and b.equals(c) return true, then a.equals(c) returns true.

 3. reflexive => a.equals(a) return true.



For example, the following code for the equals method on Integer explains how it works:

public boolean equals(Object obj) {

   if (obj instanceof Integer) {

       return value == ((Integer)obj).intValue();

   }

   return false;

}

 
Back to Question without Answer
 



54.     QID - 2.1346 : Working with Java Data Types 
 

Which of the following statements can be inserted at // 1 to make the code compile without errors?
 

public class InitTest{
   static int si = 10;
   int  i;
   final boolean bool;
   // 1
}


 

Correct Option is :  E 

A. instance { bool = true; }
you cannot put the word instance here. It is not a keyword.


B. InitTest() { si += 10; }
It is a valid constructor but does not initialize bool, which is a final variable and must be initialized either in an instance block or in a constructor.


C. { si = 5; i = bool ? 1000 : 2000;}
bool is not initialized. Therefore, it cannot be used !


D. { i = 1000; }
bool remains uninitialized.


E. { bool = (si > 5); i = 1000; }
 


Explanation: 
A final variable must be initialized when an instance is constructed, or else the code will not compile. This can be done either in an instance initializer or in EVERY constructor.

The keyword static is used to signify that a block is static initializer. If nothing is there before starting curly brace then it is an instance initializer.

 
Back to Question without Answer
 



Working with Java Data Types - Garbage Collection
 
Exam Objectives - 
 
Explain an Object's Lifecycle (creation, "dereference" and garbage collection)



01.     QID - 2.883 
 

When is the Object created at line //1 eligible for garbage collection?



public class TestClass{

  public Object getObject(){

     Object obj = new String("aaaaa");   //1

     Object objArr[] = new Object[1]; //2

     objArr[0] = obj; //3

     obj = null;      //4

     objArr[0] = null;//5

     return obj;      //6

  }

}
 

Select 1 option

A. Just after line 2.
 


B. Just after line 3.
 


C. Just after line 4.
 


D. Just after line 5.
 


E. Just after line 6.
 


 
Check Answer
 



02.     QID - 2.884 
 

Consider the following code snippet:



public class Test{

  void test(){

      MyClass obj = new MyClass();

      obj.name = "jack";

      // 1 insert code here

  }

}



//In MyClass.java

public class MyClass{

  int value;

  String name;

}



What can be inserted at // 1, which will make the object referred to by obj eligible for garbage collection?
 

Select 1 option

A. obj.destroy();
 


B. Runtime.getRuntime().gc();
 


C. obj = null;
 


D. obj.finalize()
 


E. obj.name = null; as well as obj = null;
 


 
Check Answer
 



03.     QID - 2.920 
 

Which is the earliest line in the following code after which the object created on line // 1 can be garbage collected, assuming no compiler optimizations are done?


public class NewClass{
   private Object o;
   void doSomething(Object s){  o = s;   }

   public static void main(String args[]){
      Object obj = new Object(); // 1
      NewClass tc = new NewClass(); //2
      tc.doSomething(obj); //3
      obj = new Object();    //4
      obj = null;    //5
      tc.doSomething(obj); //6
   }
}


 

Select 1 option

A. Line 1
 


B. Line 2
 


C. Line 3
 


D. Line 4
 


E. Line 5
 


F. Line 6
 


 
Check Answer
 



04.     QID - 2.921 
 

Consider the following code:



class MyClass { }

public class TestClass{

   MyClass getMyClassObject(){

      MyClass mc = new MyClass(); //1

         return mc; //2

   }

   public static void main(String[] args){

      TestClass tc = new TestClass(); //3

      MyClass x = tc.getMyClassObject(); //4

      System.out.println("got myclass object"); //5

      x = new MyClass(); //6

      System.out.println("done"); //7

   }

}



After what line the MyClass object created at line 1 will be eligible for garbage collection?
 

Select 1 option

A. 2
 


B. 5
 


C. 6
 


D. 7
 


E. Never till the program ends.
 


 
Check Answer
 



05.     QID - 2.919 
 

After which line will the object created at line XXX be eligible for garbage collection?





public Object getObject(Object a) //0

   {



 Object b = new Object();  //XXX



 Object c, d = new Object(); //1

 c = b; //2

 b = a = null; //3

 return c; //4

}
 

Select 1 option

A. //2
 


B. //3
 


C. //4
 


D. Never in this method.
 


E. Cannot be determined.
 


 
Check Answer
 



06.     QID - 2.922 
 

In the following code, after which statement (earliest), the object originally held in s, may be garbage collected ?





1. public class TestClass{

2.   public static void main (String args[]){

3.      Student s = new Student("Vaishali", "930012");

4.      s.grade();

5.      System.out.println(s.getName());

6.      s = null;

7.      s = new Student("Vaishali", "930012");

8.      s.grade();

9.      System.out.println(s.getName());

10      s = null;

     }

   }



public class Student{

   private String name, rollNumber;

   

   public Student(String name, String rollNumber) {

      this.name = name;

      this.rollNumber = rollNumber;

   }



   //valid setter and getter for name and rollNumber follow



   public void grade() {

   }



}
 

Select 1 option

A. It will not be Garbage Collected till the end of the program.
 


B. Line 5
 


C. Line 6
 


D. Line 7
 


E. Line 10
 


 
Check Answer
 



Working with Java Data Types - Garbage Collection (Answered)



01.     QID - 2.883 : Working with Java Data Types - Garbage Collection 
 

When is the Object created at line //1 eligible for garbage collection?



public class TestClass{

  public Object getObject(){

     Object obj = new String("aaaaa");   //1

     Object objArr[] = new Object[1]; //2

     objArr[0] = obj; //3

     obj = null;      //4

     objArr[0] = null;//5

     return obj;      //6

  }

}
 

Correct Option is :  D 

A. Just after line 2.
 


B. Just after line 3.
 


C. Just after line 4.
 


D. Just after line 5.
 


E. Just after line 6.
 


Explanation: 
The official exam objectives now explicitly mention Garbage collection.  All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();



After line 3, both, obj and objArr[0] are pointing to the same String object.

After line 4, obj points to null but objArr[0] is still pointing to the String object.

After line 5, objArr[0] also starts pointing to null so there is no reference left that is pointing to the String object. So it is now available for Garbage collection.

 
Back to Question without Answer
 



02.     QID - 2.884 : Working with Java Data Types - Garbage Collection 
 

Consider the following code snippet:



public class Test{

  void test(){

      MyClass obj = new MyClass();

      obj.name = "jack";

      // 1 insert code here

  }

}



//In MyClass.java

public class MyClass{

  int value;

  String name;

}



What can be inserted at // 1, which will make the object referred to by obj eligible for garbage collection?
 

Correct Option is :  C 

A. obj.destroy();
 


B. Runtime.getRuntime().gc();
Execution of garbage collector doesn't make an object eligible for garbage collection. So even if you try to invoke the garbage collector, it will not destroy the object that is not eligible for garbage collection.

Also remember that calling System.gc() or Runtime.getRuntime().gc() will not necessarily run the garbage collector. It only requests the JVM to perform garbage collection but there is no guarantee that the JVM will do it.



By the way, System.gc() is equivalent to Runtime.getRuntime().gc().


C. obj = null;
This will make the object eligible for GC because there are no other references to it.


D. obj.finalize()
 


E. obj.name = null; as well as obj = null;
You don't need to do obj.name=null;


Explanation: 
The official exam objectives now explicitly mention Garbage collection.  All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();



Nothing can ensure that an object will definitely be destroyed by the garbage collector. You can at most make an object eligible for GC by making sure that there are no references to it.

 
Back to Question without Answer
 



03.     QID - 2.920 : Working with Java Data Types - Garbage Collection 
 

Which is the earliest line in the following code after which the object created on line // 1 can be garbage collected, assuming no compiler optimizations are done?


public class NewClass{
   private Object o;
   void doSomething(Object s){  o = s;   }

   public static void main(String args[]){
      Object obj = new Object(); // 1
      NewClass tc = new NewClass(); //2
      tc.doSomething(obj); //3
      obj = new Object();    //4
      obj = null;    //5
      tc.doSomething(obj); //6
   }
}


 

Correct Option is :  F 

A. Line 1
 


B. Line 2
 


C. Line 3
 


D. Line 4
 


E. Line 5
 


F. Line 6
Before this line the object is being pointed to by at least one variable.


Explanation: 
The official exam objectives now explicitly mention Garbage collection.  All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();

 
Back to Question without Answer
 



04.     QID - 2.921 : Working with Java Data Types - Garbage Collection 
 

Consider the following code:



class MyClass { }

public class TestClass{

   MyClass getMyClassObject(){

      MyClass mc = new MyClass(); //1

         return mc; //2

   }

   public static void main(String[] args){

      TestClass tc = new TestClass(); //3

      MyClass x = tc.getMyClassObject(); //4

      System.out.println("got myclass object"); //5

      x = new MyClass(); //6

      System.out.println("done"); //7

   }

}



After what line the MyClass object created at line 1 will be eligible for garbage collection?
 

Correct Option is :  C 

A. 2
 


B. 5
 


C. 6
At line 6, x starts pointing to a new MyClassObject and no reference to the original MyClass object is left.


D. 7
 


E. Never till the program ends.
 


Explanation: 
The official exam objectives now explicitly mention Garbage collection. All you need to know is:



1. An object can be made eligible for garbage collection by making sure there are no references pointing to that object.

2. You cannot directly invoke the garbage collector. You can suggest the JVM to perform garbage collection by calling System.gc();

 
Back to Question without Answer
 



05.     QID - 2.919 : Working with Java Data Types - Garbage Collection 
 

After which line will the object created at line XXX be eligible for garbage collection?





public Object getObject(Object a) //0

   {



 Object b = new Object();  //XXX



 Object c, d = new Object(); //1

 c = b; //2

 b = a = null; //3

 return c; //4

}
 

Correct Option is :  D 

A. //2
 


B. //3
 


C. //4
 


D. Never in this method.
 


E. Cannot be determined.
 


Explanation: 
Note that at line 2, c is assigned the reference of b. i.e. c starts pointing to the object created at //XXX. So even if at //3 b and a are set to null, the object is not without any reference.

Also, at //4 c is being returned. So the object referred to by c cannot be garbage collected in this method!

 
Back to Question without Answer
 



06.     QID - 2.922 : Working with Java Data Types - Garbage Collection 
 

In the following code, after which statement (earliest), the object originally held in s, may be garbage collected ?





1. public class TestClass{

2.   public static void main (String args[]){

3.      Student s = new Student("Vaishali", "930012");

4.      s.grade();

5.      System.out.println(s.getName());

6.      s = null;

7.      s = new Student("Vaishali", "930012");

8.      s.grade();

9.      System.out.println(s.getName());

10      s = null;

     }

   }



public class Student{

   private String name, rollNumber;

   

   public Student(String name, String rollNumber) {

      this.name = name;

      this.rollNumber = rollNumber;

   }



   //valid setter and getter for name and rollNumber follow



   public void grade() {

   }



}
 

Correct Option is :  C 

A. It will not be Garbage Collected till the end of the program.
 


B. Line 5
 


C. Line 6
 


D. Line 7
 


E. Line 10
 


Explanation: 
In this case, since there is only one reference to Student object, as soon as it is set to null, the object held by the reference is eligible for GC, here it is done at line 6.

Note that although an object is created at line 7 with same parameters, it is a different object and it will be eligible for GC after line 10.

 
Back to Question without Answer
 



Using Operators and Decision Constructs
 
Exam Objectives - 
 
Use Java operators
Use parentheses to override operator precedence
Test equality between strings and other objects using == and equals ()
Create if and if/else and ternary constructs
Use a switch statement



01.     QID - 2.859 
 

What will the following code print when run?



public class TestClass {



    public void switchString(String input){

        switch(input){

            case "a" : System.out.println( "apple" );

            case "b" : System.out.println( "bat" );

                break;

            case "c" : System.out.println( "cat" );                

            default : System.out.println( "none" );

        }

    }



    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        tc.switchString("c");

    }

}
 

Select 1 option

A. apple

cat

none
 


B. apple

cat
 


C. cat

none
 


D. cat
 


 
Check Answer
 



02.     QID - 2.1014 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

     Object obj1 = new Object();

     Object obj2 = obj1;

     if( obj1.equals(obj2) ) System.out.println("true");

     else  System.out.println("false");

  }

}
 

Select 1 option

A. true
 


B. false
 


C. It will not compile.
 


D. It will compile but throw an exception at run time.
 


E. None of the above.
 


 
Check Answer
 



03.     QID - 2.986 
 

The following method will compile and run without any problems.


public void switchTest(byte x){
   switch(x){
      case 'b':   // 1
      default :   // 2
      case -2:    // 3
      case 80:    // 4
   }
}

 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



04.     QID - 2.949 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2 = false;

if (b2 != b1 = !b2){

   System.out.println("true");

}

else{

   System.out.println("false");

}


 

Select 1 option

A. Compile time error.
 


B. It will print true.
 


C. It will print false.
 


D. Runtime error.
 


E. It will print nothing.
 


 
Check Answer
 



05.     QID - 2.1084 
 

Which of the following are valid operators in Java?
 

Select 4 options

A. !
 


B. ~
 


C. &
 


D. %=
 


E. $
 


 
Check Answer
 



06.     QID - 2.1239 
 

What letters will be printed by this program?

public class ForSwitch{
    public static void main(String args[]){
        char i;
        LOOP: for (i=0;i<5;i++){
            switch(i++){
                case '0': System.out.println("A");
                case 1: System.out.println("B"); break LOOP;
                case 2: System.out.println("C"); break;
                case 3: System.out.println("D"); break;
                case 4: System.out.println("E");
                case 'E' : System.out.println("F");
            }
        }
    }
}

 

Select 2 options

A. A
 


B. B
 


C. C
 


D. D
 


E. F
 


 
Check Answer
 



07.     QID - 2.1240 
 

Given:





  byte b = 1;

  char c = 1;

  short s = 1;

  int i = 1;



which of the following expressions are valid?
 

Select 3 options

A. s = b * b ;
 


B. i = b + b ;
 


C. s *= b ;
 


D. c = c + b ;
 


E. s += i ;
 


 
Check Answer
 



08.     QID - 2.1089 
 


 

 
 
Check Answer
 



09.     QID - 2.857 
 

Consider the following code:



public class TestClass {

  

    //define tester method here

    

    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        while(tc.tester()){

            System.out.println("running...");

        }

    }

}



Which of the following options would be a valid implementation of tester() method?
 

Select 2 options

A.   public boolean tester(){

        return false;

    }
 


B.    public Boolean tester(){

        return false;

    }
 


C.     public tester(){

        return false;

    }
 


D.    public int tester(){

        return 0;

    }
 


E.   public String tester(){

        return "false";

    }
 


 
Check Answer
 



10.     QID - 2.1238 
 

What will the following code print when run without any arguments ...


public class TestClass {

    public static int m1(int i){
        return ++i;
    }
    
    public static void main(String[] args) {

        int k = m1(args.length);
        k += 3 + ++k;
        System.out.println(k);
    }

}

 

Select 1 option

A. It will throw ArrayIndexOutOfBoundsException.
 


B. It will throw NullPointerException.
 


C. 6
 


D. 5
 


E. 7
 


F. 2
 


G. None of these.
 


 
Check Answer
 



11.     QID - 2.1401 
 

Given:





int expr1 = 3 + 5 * 9 - 7;        

int expr2 = 3 + (5 * 9) - 7;        

int expr3 = 3 + 5 * (9 - 7);        

int expr4 = (3 + 5) * 9 - 7;                





Which of the above variables will have the value 45?
 

Select 1 option

A. expr1
 


B. expr2
 


C. expr3
 


D. expr4
 


E. None of them.
 


 
Check Answer
 



12.     QID - 2.1464 
 

Given:

public class LoopTest {

    int k = 5;

    public boolean checkIt(int k){

        return k-->0?true:false;

    }

    public void printThem(){

        while(checkIt(k)){

            System.out.print(k);

        }

    }

    public static void main(String[] args) {

        new LoopTest().printThem();

    }

}

What changes should be made so that the program will print 54321?
 

Select 1 option

A. No change is necessary.
 


B. Replace System.out.print(k); with System.out.print(k--);
 


C. Replace System.out.print(k); with System.out.print(--k);
 


D. Replace while(checkIt(k)) with while(checkIt(--k)).
 


E. Replace return k-->0?true:false; with return this.k-->0?true:false;
 


 
Check Answer
 



13.     QID - 2.953 
 

Which of the following are also known as "short circuiting logical operators"?
 

Select 2 options

A. &
 


B. ||
 


C. &&
 


D. |
 


E. ^
 


 
Check Answer
 



14.     QID - 2.918 
 

Given:



int a = 1 + 2 + 3 * 4;

int b = 2 * 3 + 4;



int total = a + b;



What will be the value of total?
 

Select 1 option

A. 34
 


B. 38
 


C. 29
 


D. 25
 


 
Check Answer
 



15.     QID - 2.1051 
 

Assuming that a valid integer will be passed in the command line as first argument, which statements regarding the following code are correct?



public class TestClass{

   public static void main(String args[]){

      int x = Integer.parseInt(args[0]);

      switch(x){

         case x < 5 :   System.out.println("BIG"); break;

         case x > 5 :   System.out.println("SMALL");

         default :    System.out.println("CORRECT"); break;

      }

   }

}
 

Select 1 option

A. BIG will never be followed by SMALL.
 


B. SMALL will never follow anything else.
 


C. SMALL will always be followed by CORRECT.
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


 
Check Answer
 



16.     QID - 2.1180 
 

The following code snippet will not compile:



int i = 10;

System.out.println( i<20 ? out1() : out2() );



Assume that out1 and out2 methods have the following signatures: public void out1(); and public void out2();
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



17.     QID - 2.1277 
 

Which of the following statements are true?
 

Select 2 options

A. System.out.println(1 + 2 + "3"); would print 33.
 


B. System.out.println("1" + 2 + 3); would print 15.
 


C. System.out.println(4 + 1.0f); would print 5.0
 


D. System.out.println(5/4); would print 1.25
 


E. System.out.println('a' + 1 ); would print b.
 


 
Check Answer
 



18.     QID - 2.1164 
 

Which of the following statements will compile without any error?
 

Select 4 options

A. System.out.println("a"+'b'+63);
 


B. System.out.println("a"+63);
 


C. System.out.println('b'+new Integer(63));
 


D. String s = 'b'+63+"a";
 


E. String s = 63 + new Integer(10);
 


 
Check Answer
 



19.     QID - 2.1125 
 


 

 
 
Check Answer
 



20.     QID - 2.1325 
 

What will be the result of attempting to compile and run the following class?


public class IfTest{
   public static void main(String args[]){
      if (true)
      if (false)
      System.out.println("True False");
      else
      System.out.println("True True");
   }
}

 

Select 1 option

A. The code will fail to compile because the syntax of the if statement is not correct.
 


B. The code will fail to compile because the values in the condition bracket are invalid.
 


C. The code will compile correctly and will not display anything.
 


D. The code will compile correctly and will display True True.
 


E. The code will compile correctly but will display True False
 


 
Check Answer
 



21.     QID - 2.1128 
 

What will the following code print?



  int i = 0;

  int j = 1;

  if( (i++ == 0) & (j++ == 2) ){

     i = 12;

  }

  System.out.println(i+" "+j);


 

Select 1 option

A. 1 2
 


B. 2 3
 


C. 12 2
 


D. 12 1
 


E. It will not compile.
 


 
Check Answer
 



22.     QID - 2.1194 
 

Consider the following lines of code:



   System.out.println(null + true); //1

   System.out.println(true + null); //2

   System.out.println(null + null); //3



Which of the following statements are correct?
 

Select 1 option

A. None of the 3 lines will compile.
 


B. All the 3 lines will compile and print nulltrue, truenull and nullnull respectively.
 


C. Line 1 and 2 won't compile but line 3 will print nullnull.
 


D. Line 3 won't compile but line 1 and 2 will print nulltrue and truenull respectively.
 


E. None of the above.
 


 
Check Answer
 



23.     QID - 2.860 
 

What will the following code print when run?


public class TestClass {
    public void switchString(String input){
        switch(input){
            case "a" : System.out.println( "apple" );
            case "b" : System.out.println( "bat" );
                break;
            case "B" : System.out.println( "big bat" );                
            default : System.out.println( "none" );
        }
    }

    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.switchString("B");
    }
}

 

Select 1 option

A. bat

big bat
 


B. big bat

none
 


C. big bat
 


D. bat
 


E. The code will not compile.
 


 
Check Answer
 



24.     QID - 2.1190 
 

What will the following code snippet print?



    Object t = new Integer(107);

    int k = (Integer) t.intValue()/9;

    System.out.println(k);
 

Select 1 option

A. 11
 


B. 12
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


 
Check Answer
 



25.     QID - 2.1040 
 

What will the following class print ?



class InitTest{

   public static void main(String[] args){

      int a = 10;

      int b = 20;

      a += (a = 4);

      b = b + (b = 5);

      System.out.println(a+ ",  "+b);

   }

}
 

Select 1 option

A. It will print 8, 25
 


B. It will print 4, 5
 


C. It will print 14, 5
 


D. It will print 4, 25
 


E. It will print 14, 25
 


 
Check Answer
 



26.     QID - 2.1212 
 

Which of the following expressions will evaluate to true if preceded by the following code?



 String a = "java";

    char[] b = { 'j', 'a', 'v', 'a' };

    String c = new String(b);

    String d = a;
 

Select 3 options

A. (a == d)
 


B. (b == d)
 


C. (a == "java")
 


D. a.equals(c)
 


 
Check Answer
 



27.     QID - 2.1176 
 

Which code fragments will print the last argument given on the command line to the standard output, and exit without any output or exception stack trace if no arguments are given?


1.
 public static void main(String args[ ]){
       if (args.length != 0)   System.out.println(args[args.length-1]);
 }

2.
public static void main(String args[ ]){
       try {      System.out.println(args[args.length-1]);        }
       catch (ArrayIndexOutOfBoundsException e) {    }
}

3.
 public static void main(String args[ ]){
     int i = args.length;
     if (i != 0) System.out.println(args[i-1]);
}

4.
public static void main(String args[ ]){
    int i = args.length-1;
   if (i > 0) System.out.println(args[i]);
}

5.
 public static void main(String args[ ]){
       try { System.out.println(args[args.length-1]); }
       catch (NullPointerException e) {}
 }


 

Select 3 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


 
Check Answer
 



28.     QID - 2.1282 
 

What, if anything, is wrong with the following code?



void test(int x){

   switch(x){

      case 1:

      case 2:

      case 0:

      default :

      case 4:

   }

}
 

Select 1 option

A. Data Type of 'x' is not valid to be used as an expression for the switch clause.
 


B. The case label 0 must precede case label 1.
 


C. Each case section must end with a break keyword.
 


D. The default label must be the last label in the switch statement.
 


E. There is nothing wrong with the code.
 


 
Check Answer
 



29.     QID - 2.1369 
 

Given the following declarations, identify which statements will return true:



Integer i1 = 1; 

Integer i2 = new Integer(1);

int i3 = 1;

Byte b1 = 1;

Long g1 = 1L;
 

Select 2 options

A. i1 == i2
 


B. i1 == i3
 


C. i1 == b1
 


D. i1.equals(i2)
 


E. i1.equals(g1)
 


F. i1.equals(b1)
 


 
Check Answer
 



30.     QID - 2.1196 
 

Consider the following code snippet:



XXXX m ; 

//other code

  switch( m ){

     case 32  : System.out.println("32");   break;

     case 64  : System.out.println("64");   break;

     case 128 : System.out.println("128");  break;

  }



What type can 'm' be of so that the above code compiles and runs as expected ?
 

Select 3 options

A. int m;
 


B. long m;
 


C. char m;
 


D. byte m;
 


E. short m;
 


 
Check Answer
 



31.     QID - 2.1271 
 

What will be the result of attempting to compile and run the following code?

public class PromotionTest{

   public static void main(String args[]){

      int i = 5;

      float f = 5.5f;

      double d = 3.8;

      char c = 'a';

      if (i == f) c++;

      if (((int) (f + d)) == ((int) f + (int) d)) c += 2;

      System.out.println(c);

   }

}
 

Select 1 option

A. The code will fail to compile.
 


B. It will print d.
 


C. It will print c.
 


D. It will print b
 


E. It will print a.
 


 
Check Answer
 



32.     QID - 2.1267 
 

Which of the following implementations of a max() method will correctly return the largest value?
 

Select 1 option

A.   int max(int x, int y){

     return(  if(x > y){ x; } else{ y; }  );

  }
 


B.   int max(int x, int y){

     return( if(x > y){ return x; }  else{ return y; } );

  }
 


C.   int max(int x, int y){

     switch(x < y){

        case true:

               return y;

        default :

               return x;

     };

 }
 


D. int max(int x, int y){

      if (x > y)  return x;

      return y;

}
 


E. None of the above.
 


 
Check Answer
 



33.     QID - 2.1402 
 

What will the following program print when run?

public class Operators{



    public static int operators(){

        int x1 = -4;

        int x2 = x1--;

        int x3 = ++x2;

        if(x2 > x3){

            --x3;

        }else{

            x1++;

        }

        return x1 + x2 + x3;

    }

    public static void main(String[] args) {

        System.out.println(operators());

    }

}
 

Select 1 option

A. -9
 


B. -10
 


C. -11
 


D. -12
 


 
Check Answer
 



34.     QID - 2.929 
 

Consider the following lines of code:



boolean greenLight = true;

boolean pedestrian = false;

boolean rightTurn = true;

boolean otherLane = false;



You can go ahead only if  the following expression evaluates to 'true' :



(( (rightTurn && !pedestrian || otherLane) || ( ? && !pedestrian && greenLight ) )  == true )



What variables can you put in place of '?' so that you can go ahead?
 

Select 1 option

A. rightTurn
 


B. otherLane
 


C. Any variable would do.
 


D. None of the variable would allow to go.
 


 
Check Answer
 



35.     QID - 2.1269 
 

Which of the following will not give any error at compile time and run time?
 

Select 4 options

A. if (8 == 81) {}
 


B. if (x = 3) {} // assume that x is an int
 


C. if (true) {}
 


D. if (bool = false) {}  //assume that bool is declared as a boolean
 


E. if (x == 10 ? true:false) { } // assume that x is an int
 


 
Check Answer
 



36.     QID - 2.908 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        

         boolean flag  = true;

         switch (flag){

             case true : System.out.println("true");

                 default: System.out.println("false");

         }

              

    }

}
 

Select 1 option

A. It will not compile.
 


B. false
 


C. true

false
 


D. Exception at run time.
 


 
Check Answer
 



37.     QID - 2.1313 
 

What is the result of executing the following code when the value of i is 5:





switch (i){

    default:

    case 1:

        System.out.println(1);

    case 0:

        System.out.println(0);

    case 2:

        System.out.println(2);

        break;

    case 3:

        System.out.println(3);

}




 

Select 1 option

A. It will print 1 0 2
 


B. It will print 1 0 2 3
 


C. It will print 1 0
 


D. It will print 1
 


E. Nothing will be printed.
 


 
Check Answer
 



38.     QID - 2.948 
 

Which statements about the output of the following programs are true?


public class TestClass{
   public static void main(String args[ ] ){
      int i = 0 ;
      boolean bool1 = true;
      boolean bool2 = false;
      boolean bool  = false;
      bool = (bool2 &  method1("1"));  //1
      bool = (bool2 && method1("2"));  //2
      bool = (bool1 |  method1("3"));  //3
      bool = (bool1 || method1("4"));  //4
   }
   public static boolean method1(String str){
      System.out.println(str);
      return true;
   }
}

 

Select 2 options

A. 1 will be the part of the output.
 


B. 2 will be the part of the output.
 


C. 3 will be the part of the output.
 


D. 4 will be the part of the output.
 


E. None of the above
 


 
Check Answer
 



39.     QID - 2.1342 
 

Consider that str is a local variable of class java.lang.String.

Which of the following lines of code may throw a NullPointerException in certain situations?



Or a tougher version of the question could be :

Which of the following lines of code are not an example of robust design ?
 

Select 3 options

A. if ( (str != null) | ( i == str.length() ) ) 
 


B. if ( (str == null) | ( i == str.length() ) ) 
 


C. if ( (str != null) || (i == str.length() ) )
 


D. if ( (str == null) || (i == str.length() ) )
 


 
Check Answer
 



40.     QID - 2.1038 
 

What will be the output of the following program?



public class TestClass{

   public static void main(String args[ ] ){

      int i = 0 ;

      boolean bool1 = true ;

      boolean bool2 = false;

      boolean bool  = false;

      bool = ( bool2 &  method1(i++) ); //1

      bool = ( bool2 && method1(i++) ); //2

      bool = ( bool1 |  method1(i++) ); //3

      bool = ( bool1 || method1(i++) ); //4

      System.out.println(i);

   }

   public static boolean method1(int i){

       return i>0 ? true : false;

   }

}


 

Select 1 option

A. It will print 1.
 


B. It will print 2.
 


C. It will print 3.
 


D. It will print 4.
 


E. It will print 0.
 


 
Check Answer
 



41.     QID - 2.1441 
 

You are writing a piece of code that determines tax rate on a given grossIncome. The tax rate is to be computed as follows - 

   If grossIncome is less than or equals to 18000, taxRate is 0.

   If grossIncome is more than 18000 but less than or equal to 36000, taxRate is 10%

   If grossIncome is more than 36000, taxRate is 20%.



Which of following code fragments do it correctly?
 

Select 3 options

A. double taxRate = grossIncome<=18000 ? 0 : (grossIncome<=36000) ? .1 : .2;
 


B. double taxRate = .2;

taxRate = grossIncome<=18000?0:.1;

taxRate = grossIncome<=36000?.1:.2;
 


C. double taxRate = 0;

if(grossIncome>36000) taxRate = .20;

if(grossIncome>18000 && grossIncome<=36000) taxRate = .10;
 


D. double taxRate = .2;

if(grossIncome>36000) {

   taxRate = .2;

}else taxRate = 0;

if(grossIncome>18000 ) {

   taxRate = .1;

}
 


E. double taxRate = 0;

taxRate = grossIncome>18000?grossIncome<=36000?.1:.2:0;
 


 
Check Answer
 



42.     QID - 2.1103 
 

What will be printed by the following code if it is run with command line: java TestClass -0.50 ?



public class TestClass{

    public static double getSwitch(String str){

        return Double.parseDouble(str.substring(1, str.length()-1) );

    }

    public static void main(String args []){

        switch(getSwitch(args[0])){

            case 0.0 : System.out.println("Hello");

            case 1.0 : System.out.println("World"); break;

            default : System.out.println("Good Bye");

        }

    }

}
 

Select 1 option

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. None of the above.
 


 
Check Answer
 



43.     QID - 2.977 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 != b2){

   System.out.println("true");

} else{

   System.out.println("false");

}


 

Select 1 option

A. Compile time error.
 


B. It will print true;
 


C. It will print false;
 


D. Runtime error.
 


E. It will print nothing.
 


 
Check Answer
 



44.     QID - 2.1440 
 

Given:

   public static boolean getBool(){

      return true;

   }

   public static String getString(){

      return "true";

   }   

   public static void main(String args[]){

       switch( getBool() ){

            case true : 

              System.out.println("true");

              break;

          default : 

              System.out.println("none");

              break;

       }

   }



What changes can be done so that it will print only true?
 

Select 1 option

A. No change is necessary.
 


B. Call getString instead of getBool in the switch.
 


C. Call getString instead of getBool in the switch and also change the case label from true to "true".
 


D. Remove the default section of the switch block.
 


 
Check Answer
 



45.     QID - 2.991 
 

What can be the return type of method getSwitch so that this program compiles and runs without any problems?


public class TestClass{
   public static XXX getSwitch(int x){
      return x - 20/x + x*x;
   }
   public static void main(String args[]){
       switch( getSwitch(10) ){
          case 1 :
          case 2 :
          case 3 :
          default : break;
       }
   }
}


 

Select 1 option

A. int
 


B. float
 


C. long
 


D. double
 


E. char
 


F. byte
 


G. short
 


 
Check Answer
 



46.     QID - 2.1039 
 

What will the following method return if called with an argument of 7?



public int transformNumber(int n){

   int radix = 2;

   int output = 0;

   output += radix*n;

   radix = output/radix;

   if(output<14){

       return output;

   }

   else{

       output = output*radix/2;

       return output;

   }

   else {

       return output/2;

   }

}
 

Select 1 option

A. 7
 


B. 14
 


C. 49
 


D. Compilation fails.
 


 
Check Answer
 



47.     QID - 2.1317 
 

Which of the following are NOT valid operators in Java?
 

Select 4 options

A. sizeof
 


B. <<<
 


C. instanceof
 


D. mod
 


E. equals
 


 
Check Answer
 



48.     QID - 2.973 
 

Which operators will always evaluate all the operands?
 

Select 2 options

A. &&
 


B. |
 


C. ||
 


D. ? :
 


E. %
 


 
Check Answer
 



49.     QID - 2.1179 
 

The following code snippet will print 'true'.



short s = Short.MAX_VALUE;

char c = s;

System.out.println( c == Short.MAX_VALUE);
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



50.     QID - 2.1105 
 

Consider the following method...



public void ifTest(boolean flag){

   if (flag)   //1

   if (flag)   //2

   System.out.println("True False");

   else        // 3

   System.out.println("True True");

   else        // 4

   System.out.println("False False");

}



Which of the following statements are correct ?
 

Select 3 options

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


 
Check Answer
 



51.     QID - 2.1078 
 

The following code snippet will print true.



String str1 = "one";

String str2 = "two";

System.out.println( str1.equals(str1=str2) );
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



52.     QID - 2.882 
 

What will the following program print when run without any command line argument?


public class TestClass {
    public static void main(String[] args)  {

        boolean hasParams = (args == null ? false : true);
        if(hasParams){
            System.out.println("has params");
        }{
            System.out.println("no params");
        }
    }
}

 

Select 1 option

A. has params
 


B. has params

no params
 


C. no params
 


D. It will not compile.
 


 
Check Answer
 



53.     QID - 2.1418 
 

Consider the following code snippet:



//INSERT LINE OF CODE HERE

  switch( condition ){

     case 1  : System.out.println("1");   break;

     case 2  : System.out.println("2");   break;

     case 3 : System.out.println("3");  break;

  }



What type can be inserted in the code above so that the above code compiles and runs as expected ?
 

Select 2 options

A. int condition;
 


B. long condition = 2;
 


C. Integer condition = new Integer("1");
 


D. String condition = "1";
 


E. short condition = new Short(1);
 


F. Byte condition = 1;
 


 
Check Answer
 



54.     QID - 2.1081 
 

Which of the following code snippets will print exactly 10?



1.  Object t = new Integer(106);

    int k = ((Integer) t).intValue()/10;

    System.out.println(k);



2.  System.out.println(100/9.9);



3.  System.out.println(100/10.0);



4.  System.out.println(100/10);



5.  System.out.println(3 + 100/10*2-13);
 

Select 3 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


 
Check Answer
 



55.     QID - 2.1071 
 

What will be the output of the following code snippet?



int a = 1;

int[] ia = new int[10];

int b = ia[a];

int c = b + a;

System.out.println(b = c);


 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. true
 


E. false
 


 
Check Answer
 



56.     QID - 2.1353 
 

Which of the lines will cause a compile time error in the following program?


public class MyClass{
   public static void main(String args[]){
      char c;
      int i;
      c = 'a';//1
      i = c;  //2
      i++;    //3
      c = i;  //4
      c++;    //5
   }
}


 

Select 1 option

A. line 1
 


B. line 2
 


C. line 3
 


D. line 4
 


E. line 5
 


 
Check Answer
 



57.     QID - 2.1257 
 

Which of the following statements concerning the switch construct are true?
 

Select 3 options

A. A character literal can be used as a value for a case label.
 


B. A 'long' cannot be used as a switch variable.
 


C. An empty switch block is a valid construct.
 


D. A switch block must have a default label.
 


E. If present, the default label must be the last of all the labels.
 


 
Check Answer
 



58.     QID - 2.927 
 

What will the following code print ?



class Test{

   public static void main(String[] args){

      int k = 1;

      int[] a = { 1 };

      k += (k = 4) * (k + 2);

      a[0] += (a[0] = 4) * (a[0] + 2);

      System.out.println( k + " , " + a[0]);

   }

}
 

Select 1 option

A. It will not compile.
 


B. 4 , 4
 


C. 25 , 25
 


D. 13 , 13
 


E. None of the above.
 


 
Check Answer
 



59.     QID - 2.1266 
 

Which of the following statements are true?
 

Select 3 options

A. The condition expression in an if statement can contain method calls.
 


B. If a and b are of type boolean, the expression (a = b) can be used as the condition expression of an if statement.
 


C. An if statement can have either an 'if' clause or an 'else' clause.
 


D. The statement : if (false) ; else ; is illegal.
 


E. Only expressions which evaluate to a boolean value can be used as the condition in an if statement.
 


 
Check Answer
 



60.     QID - 2.1310 
 

Consider the following method...


public static void ifTest(boolean flag){
   if (flag)   //1
   if (flag)   //2
   if (flag)   //3
   System.out.println("False True");
   else        //4
   System.out.println("True False");
   else        //5
   System.out.println("True True");
   else        //6
   System.out.println("False False");
}


Which of the following statements are correct ?
 

Select 2 options

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


 
Check Answer
 



61.     QID - 2.1119 
 

Given:


public class Switcher{
 
   public static void main(String[] args){
       switch(Integer.parseInt(args[1]))  //1
       {
          case 0 :
             boolean b = false;
             break;
     
          case 1 :
             b = true; //2
             break;
       }
       
       if(b) System.out.println(args[2]);
   }
}


What will the above  program print if compiled and run using the following command line: 

 java Switcher 1 2 3

 

Select 1 option

A. It will print 1
 


B. It will print 2
 


C. It will print 3
 


D. It will not print anything.
 


E. It will not compile because of //1.
 


F. It will not compile because of //2.
 


G. It will not compile for some other reason.
 


 
Check Answer
 



62.     QID - 2.932 
 

Which of the following statements are true?
 

Select 2 options

A. The modulus operator % can only be used with integer operands.
 


B. & can have integral as well as boolean operands.
 


C. The arithmetic operators *, / and % have the same level of precedence.
 


D. && can have integer as well as boolean operands.
 


E. ~ can have integer as well as boolean operands.
 


 
Check Answer
 



63.     QID - 2.1397 
 

Given:

public class CrazyMath {

    public static void main(String[] args) {

        int x = 10, y = 20;

        int dx, dy;

        try{

            dx = x % 5;

            dy =  y/dx;

        }catch(ArithmeticException ae){

            System.out.println("Caught AE");

            dx = 2;

            dy = y/dx;

        }

        x = x/dx;

        y = y/dy;

        System.out.println(dx+" "+dy);

        System.out.println(x+" "+y);

        

    }

}

What is the output?
 

Select 1 option

A. Caught AE

2 10

5 5
 


B. Caught AE

2 10

5 2
 


C. 2 10

5 2
 


D. It will not compile.
 


 
Check Answer
 



64.     QID - 2.965 
 

Consider the following program:


public class TestClass{
   public static void main(String[] args)  {     calculate(2);    }
   public static void calculate(int x){
      String val;
      switch(x){
         case 2:
         default:
         val = "def";
      }
      System.out.println(val);
   }
}


What will happen if you try to compile and run the program?
 

Select 2 options

A. It will not compile saying that variable val may not have been initialized..
 


B. It will compile and print def
 


C. As such it will not compile but it will compile if calculate(2); is replaced by calculate(3);
 


D. It will compile for any int values in calculate(...);
 


 
Check Answer
 



65.     QID - 2.1357 
 

Which of these combinations of switch expression types and case label value types are legal within a switch statement?
 

Select 1 option

A. switch expression of type int and case label value of type char.
 


B. switch expression of type float and case label value of type int.
 


C. switch expression of type byte and case label value of type float.
 


D. switch expression of type char and case label value of type byte.
 


E. switch expression of type boolean and case label value of type boolean.
 


 
Check Answer
 



66.     QID - 2.1173 
 

Consider the following class :



public class Test{

   public static void main(String[] args){

      if (args[0].equals("open"))

         if (args[1].equals("someone"))

            System.out.println("Hello!");

      else System.out.println("Go away "+ args[1]);

    }

}



Which of the following statements are true if the above program is run with the command line :

java Test closed
 

Select 1 option

A. It will throw ArrayIndexOutOfBoundsException at runtime.
 


B. It will end without exceptions and will print nothing.
 


C. It will print Go away
 


D. It will print Go away and then will throw ArrayIndexOutOfBoundsException.
 


E. None of the above.
 


 
Check Answer
 



67.     QID - 2.1082 
 

What will be the output when the following class is compiled and run?



class ScopeTest{

   static int x = 5;

   public static void main(String[] args){

      int x  = ( x=3 ) * 4;  // 1

      System.out.println(x);

   }

}
 

Select 1 option

A. It will not compile because line //1 cannot be parsed correctly.
 


B. It will not compile because x is used before initialization.
 


C. It will not compile because there is an ambiguous reference to x.
 


D. It will print 12.
 


E. It will print 3 .
 


 
Check Answer
 



68.     QID - 2.1339 
 

What will the following code print?


  int i = 1;
  int j = i++;
  if( (i==++j) | (i++ == j) ){
    i+=j;
  }
  System.out.println(i);


 

Select 1 option

A. 3
 


B. 4
 


C. 5
 


D. 2
 


E. It will not compile.
 


 
Check Answer
 



69.     QID - 2.1156 
 

What will the following class print when executed?



class Test{

    static boolean a;

    static boolean b;

    static boolean c;

    public static void main (String[] args){

        boolean bool = (a = true) || (b = true) && (c = true);

        System.out.print(a + ", " + b + ", " + c);

    }

}
 

Select 1 option

A. true, false, true
 


B. true, true, false
 


C. true, false, false
 


D. true, true, true
 


 
Check Answer
 



70.     QID - 2.1290 
 

Consider the following method:



    static int mx(int s){

        for(int i=0; i<3; i++){

            s = s + i;

        }

        return s;

    }



and the following code snippet:



    int s = 5;

        s += s + mx(s) + ++s;

        System.out.println(s); 



What will it print?
 

Select 1 option

A. 21
 


B. 22
 


C. 23
 


D. 24
 


E. 25
 


F. 26
 


 
Check Answer
 



71.     QID - 2.1335 
 

Consider the code shown below:


public class TestClass{
  public static int switchTest(int k){
     int j = 1;
     switch(k){
        case 1: j++;
        case 2: j++;
        case 3: j++;
        case 4: j++;
        case 5: j++;
        default : j++;
     }
     return j + k;
  }
  public static void main(String[] args){
     System.out.println( switchTest(4) );
  }
}


What will it print when compiled and run?
 

Select 1 option

A. 5
 


B. 6
 


C. 7
 


D. 8
 


E. 9
 


 
Check Answer
 



72.     QID - 2.1108 
 

What will the following program print?



class Test{

   public static void main(String args[]){

      int k = 9, s = 5;

      switch(k){

         default :

         if( k == 10) { s = s*2; }

         else{

            s = s+4;

            break;

         }

         case 7 : s = s+3;

      }

      System.out.println(s);

   }

}
 

Select 1 option

A. 5
 


B. 9
 


C. 12
 


D. It will not compile.
 


 
Check Answer
 



73.     QID - 2.1088 
 

Consider:

o1 and o2 denote two object references to two different objects of the same class.

Which of the following statements are true?
 

Select 2 options

A. o1.equals(o2) will always be false.
 


B. o1.hashCode() == o2.hashCode() will always be false.
 


C. o1 == o2 will always be false.
 


D. Nothing can be said about o1.equals(o2) regarding what it will return based on the given information.
 


E. Nothing can be said about o1 == o2.
 


 
Check Answer
 



74.     QID - 2.1111 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 == false){

   System.out.println("true");

} else{

   System.out.println("false");

}
 

Select 1 option

A. Compile time error.
 


B. It will print true
 


C. It will print false
 


D. Runtime error.
 


E. It will print nothing.
 


 
Check Answer
 



Using Operators and Decision Constructs (Answered)



01.     QID - 2.859 : Using Operators and Decision Constructs 
 

What will the following code print when run?



public class TestClass {



    public void switchString(String input){

        switch(input){

            case "a" : System.out.println( "apple" );

            case "b" : System.out.println( "bat" );

                break;

            case "c" : System.out.println( "cat" );                

            default : System.out.println( "none" );

        }

    }



    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        tc.switchString("c");

    }

}
 

Correct Option is :  C 

A. apple

cat

none
 


B. apple

cat
 


C. cat

none
Since there is a case condition that matches the input string "c", that case statement will be executed directly. This prints "cat". Since there is no break after this case statement and the next case statement, the control will fall through the next one (which is default : ) and so "none" will be printed as well.


D. cat
 


Explanation: 
In the JDK 7 release, you can use a String object in the expression of a switch statement:



public String getTypeOfDayWithSwitchStatement(String dayOfWeekArg) {

     String typeOfDay;

     switch (dayOfWeekArg) {

         case "Monday":

             typeOfDay = "Start of work week";

             break;

         case "Tuesday":

         case "Wednesday":

         case "Thursday":

             typeOfDay = "Midweek";

             break;

         case "Friday":

             typeOfDay = "End of work week";

             break;

         case "Saturday":

         case "Sunday":

             typeOfDay = "Weekend";

             break;

         default:

             throw new IllegalArgumentException("Invalid day of the week: " + dayOfWeekArg);

     }

     return typeOfDay;

}



The switch statement compares the String object in its expression with the expressions associated with each case label as if it were using the String.equals method; consequently, the comparison of String objects in switch statements is case sensitive. The Java compiler generates generally more efficient bytecode from switch statements that use String objects than from chained if-then-else statements.

 
Back to Question without Answer
 



02.     QID - 2.1014 : Using Operators and Decision Constructs 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

     Object obj1 = new Object();

     Object obj2 = obj1;

     if( obj1.equals(obj2) ) System.out.println("true");

     else  System.out.println("false");

  }

}
 

Correct Option is :  A 

A. true
 


B. false
 


C. It will not compile.
 


D. It will compile but throw an exception at run time.
 


E. None of the above.
 


Explanation: 
Object class's equals() method just checks whether the two references are pointing to the same location or not. In this case they really are pointing to the same location because of obj2 = obj1; so it returns true.

 
Back to Question without Answer
 



03.     QID - 2.986 : Using Operators and Decision Constructs 
 

The following method will compile and run without any problems.


public void switchTest(byte x){
   switch(x){
      case 'b':   // 1
      default :   // 2
      case -2:    // 3
      case 80:    // 4
   }
}

 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
The following types can be used as a switch variable:



byte, char, short, int, String, and enums. Wrapper classes Byte, Character, Short, and Integer are allowed as well. Note that long, float, double, and boolean are not allowed. 



All the case constants should be assignable to the switch variable type. i.e. had there been a case label of 128 ( case 128 : //some code ), it would not have compiled. Because the range of a byte is from -128 to 127 and so 128 is not assignable to 'x'.



The integral value of 'b' is 98, which is less than 127 so Line //1 is fine. 



Note: Although it is not required for the exam to know the integral values of characters, it is good to know that all English letters (upper case as well as lower case) as well as 0-9 are below 127 and so are assignable to byte.

 
Back to Question without Answer
 



04.     QID - 2.949 : Using Operators and Decision Constructs 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2 = false;

if (b2 != b1 = !b2){

   System.out.println("true");

}

else{

   System.out.println("false");

}


 

Correct Option is :  A 

A. Compile time error.
 


B. It will print true.
 


C. It will print false.
 


D. Runtime error.
 


E. It will print nothing.
 


Explanation: 
Note that  boolean operators have more precedence than =. (In fact, = has least precedence of all operators.)

so, in (b2 != b1 = !b2)  first b2 != b1 is evaluated which returns a value 'false'. So the expression becomes false = !b2. And this is illegal because false is a value and not a variable!

 

Had it been something like (b2 = b1 != b2) then it is valid because it will boil down to : b2 = false.

Because all an if() needs is a boolean, now b1 != b2 returns false which is a boolean and as b2 =  false is an expression and every expression has a return value (which is actually the Left Hand Side of the expression). Here, it returns false, which is again a boolean.



Note that return value of expression :  i = 10 , where i is an int, is 10 (an int).

 
Back to Question without Answer
 



05.     QID - 2.1084 : Using Operators and Decision Constructs 
 

Which of the following are valid operators in Java?
 

Correct Options are :  A B C D 

A. !
operates only on booleans


B. ~
bitwise negation. Operates only on integral types.


C. &
bitwise AND


D. %=
similar to += or /=


E. $
It is not an operator!


 
Back to Question without Answer
 



06.     QID - 2.1239 : Using Operators and Decision Constructs 
 

What letters will be printed by this program?

public class ForSwitch{
    public static void main(String args[]){
        char i;
        LOOP: for (i=0;i<5;i++){
            switch(i++){
                case '0': System.out.println("A");
                case 1: System.out.println("B"); break LOOP;
                case 2: System.out.println("C"); break;
                case 3: System.out.println("D"); break;
                case 4: System.out.println("E");
                case 'E' : System.out.println("F");
            }
        }
    }
}

 

Correct Options are :  C E 

A. A
 


B. B
 


C. C
 


D. D
 


E. F
 


Explanation: 
1. Defining i as char doesn't mean that it can only hold characters (a, b, c etc). It is an integral data type which can take any +ive integer value from 0 to 2^16 -1.

2. Integer 0 or 1, 2 etc. is not same as char '0', '1' or '2' etc.

so when i is equal to 0, nothing gets printed and i is incremented to 1 (due to i++ in the switch).

 i is then incremented again by the for loop for next iteration. so i becomes 2.

when i = 2, "C" is printed and i is incremented to 3 (due to i++ in the switch) and then i is incremented to 4 by the for loop so i becomes 4.

when i = 4, "E" is printed and since there is no break, it falls through to case 'E' and "F" is printed.

i is incremented to 5  (due to i++ in the switch) and then it is again incremented to 6 by the for loop. Since i < 5 is now false, the for loop ends.

 
Back to Question without Answer
 



07.     QID - 2.1240 : Using Operators and Decision Constructs 
 

Given:





  byte b = 1;

  char c = 1;

  short s = 1;

  int i = 1;



which of the following expressions are valid?
 

Correct Options are :  B C E 

A. s = b * b ;
b * b returns an int.


B. i = b + b ;
 


C. s *= b ;
All compound assignment operators internally do an explicit cast.


D. c = c + b ;
c + b returns an int


E. s += i ;
All compound assignment operators internally do an explicit cast.


Explanation: 
Remember these rules for primitive types:

1. Anything bigger than an int can NEVER be assigned to an int or anything smaller than int ( byte, char, or short) without explicit cast.

2. CONSTANT values up to int can be assigned (without cast) to variables of lesser size ( for example, short to byte) if the value is representable by the variable.( that is, if it fits into the size of the variable).

3. operands of mathematical operators are ALWAYS promoted to AT LEAST int. (i.e. for byte * byte both bytes will be first promoted to int.) and the return value will be AT LEAST int.

4. Compound assignment operators ( +=, *= etc)  have strange ways so read this carefully:



A compound assignment expression of the form E1 op= E2 is equivalent to E1 = (T)((E1) op (E2)), where T is the type of E1, except that E1 is evaluated only once. 

Note that the implied cast to type T may be either an identity conversion or a narrowing primitive conversion. 

For example, the following code is correct:



short x = 3;

x += 4.6;



and results in x having the value 7 because it is equivalent to: 



short x = 3;

x = (short)(x + 4.6);

 
Back to Question without Answer
 



08.     QID - 2.1089 : Using Operators and Decision Constructs 
 


 

 
Explanation: 
1. i = (int) k.shortValue();   --> You can use *= here but then you can't complete the 4th line.



2. str += b; -->  You can't use =, or *= here. Only += is valid.



3. b = !b; --> You can't use anything other than = here.



4. c *= i; --> You can only use *= or +=. = is not valid. Further, if you use += here, you can't complete line 2.

 
Back to Question without Answer
 



09.     QID - 2.857 : Using Operators and Decision Constructs 
 

Consider the following code:



public class TestClass {

  

    //define tester method here

    

    public static void main(String[] args) throws Exception {

        TestClass tc = new TestClass();

        while(tc.tester()){

            System.out.println("running...");

        }

    }

}



Which of the following options would be a valid implementation of tester() method?
 

Correct Options are :  A B 

A.   public boolean tester(){

        return false;

    }
 


B.    public Boolean tester(){

        return false;

    }
 


C.     public tester(){

        return false;

    }
return type is missing.


D.    public int tester(){

        return 0;

    }
It is a valid method but it will not work for while(tester()) because a while condition expects a boolean or Boolean value.


E.   public String tester(){

        return "false";

    }
A string cannot be used in while condition. So it has the same problem as above.


 
Back to Question without Answer
 



10.     QID - 2.1238 : Using Operators and Decision Constructs 
 

What will the following code print when run without any arguments ...


public class TestClass {

    public static int m1(int i){
        return ++i;
    }
    
    public static void main(String[] args) {

        int k = m1(args.length);
        k += 3 + ++k;
        System.out.println(k);
    }

}

 

Correct Option is :  C 

A. It will throw ArrayIndexOutOfBoundsException.
 


B. It will throw NullPointerException.
 


C. 6
 


D. 5
 


E. 7
 


F. 2
 


G. None of these.
 


Explanation: 
When the program is run without any arguments, args gets assigned a string array of size 0. So NullPointerException or ArrayIndexOutOfBoundsException are out of question. Thus, the first call becomes : 

int k = m1(0);



Follow through the code like this:

1. Method m1() uses pre-increment operation. Therefore, first i is incremented and then the new value of i is returned.

2. Thus, k gets the value of 1.



3. Expand the += operator as: 

 k = k + 3 + ++k;



This becomes (remember that k = 1 at this point): 

k = 1 + 3 + (++k) i.e.

k = 1 + 3 + 2; (at this point value of k is 2 because of ++k). But the value of Right Hand Side has not yet been assigned to k.

k = 6; 6 is assigned to k thereby overwriting the value of 2.



Therefore, the final value of k is 6.

 
Back to Question without Answer
 



11.     QID - 2.1401 : Using Operators and Decision Constructs 
 

Given:





int expr1 = 3 + 5 * 9 - 7;        

int expr2 = 3 + (5 * 9) - 7;        

int expr3 = 3 + 5 * (9 - 7);        

int expr4 = (3 + 5) * 9 - 7;                





Which of the above variables will have the value 45?
 

Correct Option is :  E 

A. expr1
 


B. expr2
 


C. expr3
 


D. expr4
 


E. None of them.
 


Explanation: 
Their values are 41 41 13 and 65.

You may find similar questions in the exam where you have to find the expression that returns the highest or lower value. In such cases, you will need to evaluate each expression.

 
Back to Question without Answer
 



12.     QID - 2.1464 : Using Operators and Decision Constructs 
 

Given:

public class LoopTest {

    int k = 5;

    public boolean checkIt(int k){

        return k-->0?true:false;

    }

    public void printThem(){

        while(checkIt(k)){

            System.out.print(k);

        }

    }

    public static void main(String[] args) {

        new LoopTest().printThem();

    }

}

What changes should be made so that the program will print 54321?
 

Correct Option is :  B 

A. No change is necessary.
It will go in an infinite loop.


B. Replace System.out.print(k); with System.out.print(k--);
 


C. Replace System.out.print(k); with System.out.print(--k);
It will print 43210.


D. Replace while(checkIt(k)) with while(checkIt(--k)).
It will print 4321.


E. Replace return k-->0?true:false; with return this.k-->0?true:false;
This will print 43210.


Explanation: 
Observe that the method parameter k in checkIt shadows the instance variable k. Therefore, any changes made to k in checkIt will not affect the instance variable k. For checkIt method to access the instance variable k, you need to do this.k.



 k-->0 means, first compare the value of k with 0, and then reduce it by 1. (As opposed to --k>0, which means, first reduce the value of k by 1 and then compare with 0).



In the printThem method, k refers to the instance variable. You need to reduce it by 1 after each iteration. Therefore, System.out.print(k--); will do.

 
Back to Question without Answer
 



13.     QID - 2.953 : Using Operators and Decision Constructs 
 

Which of the following are also known as "short circuiting logical operators"?
 

Correct Options are :  B C 

A. &
 


B. ||
 


C. &&
 


D. |
 


E. ^
 


Explanation: 
|| and && are called short circuiting operators because if, while evaluating a logical expression, at any stage, the value of the whole expression can be determined without evaluating the rest of the expression, then the remaining sub-expressions are not evaluated.



Consider this:

boolean bool  = true; int k = 10;

if( bool == false && ( (k = 3) == 5 )  ) { .....}

System.out.println(k);             // this will print 10.



Because the value of the whole expression can be determined just by looking at bool == false. 

So k = 3 is never executed. The big expression was short circuited by &&.



Had the expression been if( bool == false & ( (k = 3) == 5 )  ) { .....}  /* notice single & instead of && */  

then it would have printed 3 because k = 3 will be executed. Even though the value of the expression is known immediately after evaluating bool == false, the rest of the expression is still evaluated. Thus, & is not a short circuiting operator.



Same thing happens with || and | as well.

 
Back to Question without Answer
 



14.     QID - 2.918 : Using Operators and Decision Constructs 
 

Given:



int a = 1 + 2 + 3 * 4;

int b = 2 * 3 + 4;



int total = a + b;



What will be the value of total?
 

Correct Option is :  D 

A. 34
 


B. 38
 


C. 29
 


D. 25
Multiplication has more precedence than addition. So this will be evaluated as:

int a = 1 + 2 + (3 * 4); 

3+12

15



int b = 2 * 3 + 4;

6+4

10



So, total = 25


Explanation: 
You may get a few very simple questions about operator preference. Simple school math trick of BODMAS can be used to evaluate the expressions.



B Brackets first 

O Orders (i.e. Powers and Square Roots, etc.) 

DM Division and Multiplication (left-to-right) 

AS Addition and Subtraction (left-to-right)

 
Back to Question without Answer
 



15.     QID - 2.1051 : Using Operators and Decision Constructs 
 

Assuming that a valid integer will be passed in the command line as first argument, which statements regarding the following code are correct?



public class TestClass{

   public static void main(String args[]){

      int x = Integer.parseInt(args[0]);

      switch(x){

         case x < 5 :   System.out.println("BIG"); break;

         case x > 5 :   System.out.println("SMALL");

         default :    System.out.println("CORRECT"); break;

      }

   }

}
 

Correct Option is :  D 

A. BIG will never be followed by SMALL.
 


B. SMALL will never follow anything else.
 


C. SMALL will always be followed by CORRECT.
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


Explanation: 
It will say the following when compiled:



TestClass.java: incompatible types

found   : boolean

required: int

case x < 5 :        System.out.println("BIG"); break;





TestClass.java: incompatible types

found   : boolean

required: int

case x > 5 :        System.out.println("SMALL");



This is because the type of the case labels must be consistent with the type of the switch condition. Here, switch condition is an int, so the case label values must be assignable to the switch condition variable. The expression x<5 is of type boolean, which cannot be assigned it x (since it is an int).



Further, the expression in a switch statement must be of the type char, byte, short, int, Character, Byte, Short, Integer, String, or an enum. It cannot be a boolean. This is another reason the given code will not compile.



Further more, the expression in case must generate a constant value. Here, the value of the expression x<5 is not constant. It is variable. So it is invalid.

 
Back to Question without Answer
 



16.     QID - 2.1180 : Using Operators and Decision Constructs 
 

The following code snippet will not compile:



int i = 10;

System.out.println( i<20 ? out1() : out2() );



Assume that out1 and out2 methods have the following signatures: public void out1(); and public void out2();
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
Note that it is not permitted for either the second or the third operand expression of the ? operator to be an invocation of a void method.



   If one of the operands is of type byte and the other is of type short, then the type of the conditional expression is short.

   If one of the operands is of type T where T is byte, short, or char, and the other operand is a constant expression of type int whose value is representable in type T, then the type of the conditional expression is T.

   

Otherwise, binary numeric promotion (5.6.2) is applied to the operand types, and the type of the conditional expression is the promoted type of the second and third operands.

   If one of the second and third operands is of the null type and the type of the other is a reference type, then the type of the conditional expression is that reference type.

   If the second and third operands are of different reference types, then it must be possible to convert one of the types to the other type (call this latter type T) by assignment conversion (5.2); the type of the conditional expression is T. It is a compile-time error if neither type is assignment compatible with the other type.

 
Back to Question without Answer
 



17.     QID - 2.1277 : Using Operators and Decision Constructs 
 

Which of the following statements are true?
 

Correct Options are :  A C 

A. System.out.println(1 + 2 + "3"); would print 33.
operator + is left associative so evaluation of (1 + 2 + "3" ) is as follows: ( 1 + 2 ) + "3" -> 3 + "3" -> "33".


B. System.out.println("1" + 2 + 3); would print 15.
evaluation of ("1" + 2 + 3) is as follows: ("1" + 2) + 3 -> "12" + 3 -> "123".


C. System.out.println(4 + 1.0f); would print 5.0
(4 + 1.0f ) evaluates as 4.0f + 1.0f ->5.0f -> 5.0


D. System.out.println(5/4); would print 1.25
(5/4) performs integer division because both 5 and 4 are integers, resulting in the value 1.


E. System.out.println('a' + 1 ); would print b.
Both operands in the expression ( 'a' + 1 ) will be promoted to int => 97 + 1 = 98


Explanation: 
All operands of type byte, char or short are promoted AT LEAST to an int before performing mathematical operations. If one of the operands is larger than an int then the other one is promoted to the same type.

Note that System.out.println((float)5/4); will print 1.25. If you remove the explicit cast (float), it will print 1.

 
Back to Question without Answer
 



18.     QID - 2.1164 : Using Operators and Decision Constructs 
 

Which of the following statements will compile without any error?
 

Correct Options are :  A B C D 

A. System.out.println("a"+'b'+63);
Since the first operand is a String all others (one by one) will be converted to String."ab" + 63 => "ab63"


B. System.out.println("a"+63);
Since the first operand is a String all others (one by one) will be converted to String."a" + 63 => "a63"


C. System.out.println('b'+new Integer(63));
Since the first operand of + one is of numeric type, its numeric value of 98 will be used. Integer 63 will be unboxed and added to 98. Therefore, the final value will be int 161.


D. String s = 'b'+63+"a";
Since the first one is numeric type so, 'b'+63 = 161, 161+"a" = 161a.


E. String s = 63 + new Integer(10);
Since neither of the operands of + operator is a String, it will not generate a String. However, due to auto-unboxing of 10, it will generate an int value of 73.


Explanation: 
+ is overloaded such that if any one of its two operands is a String then it will convert the other operand to a String and create a new string by concatenating the two.

Therefore, in 63+"a" and "a"+63, 63 is converted to "63" and 'b' +"a" and "a"+'b', 'b' is converted to "b".

Note that in 'b'+ 63 , 'b' is promoted to an int i.e. 98 giving 161.

 
Back to Question without Answer
 



19.     QID - 2.1125 : Using Operators and Decision Constructs 
 


 

 
Explanation: 
i1 == i2 will return false because both are pointing to different object.

i1 == i3 will return true because one operand is a primitive int and so the other will be unboxed and then the value will be compared.

i1 == b1 will not even compile because type of i1 and b1 references are classes that are not in the same class hierarchy. So == knows at compile time itself that they can't point to the same object.

i1.equals(i2) will return true because both are Integer objects and both have the value 1.

i1.equals(b1) and i1.equals(g1) will return false because they are pointing to objects of different types.



Signature of equals method is : boolean equals(Object o); So it can take any object hence there will be no compilation error. 

Further, The equals methods of all wrapper classes first check if the two object are of same class or not. If not, they immediately return false.

 
Back to Question without Answer
 



20.     QID - 2.1325 : Using Operators and Decision Constructs 
 

What will be the result of attempting to compile and run the following class?


public class IfTest{
   public static void main(String args[]){
      if (true)
      if (false)
      System.out.println("True False");
      else
      System.out.println("True True");
   }
}

 

Correct Option is :  D 

A. The code will fail to compile because the syntax of the if statement is not correct.
It is perfectly valid.


B. The code will fail to compile because the values in the condition bracket are invalid.
Any expression that returns a boolean is valid. false and true are valid expressions that return boolean.


C. The code will compile correctly and will not display anything.
 


D. The code will compile correctly and will display True True.
 


E. The code will compile correctly but will display True False
 


Explanation: 
This code can be rewritten as follows:

public class IfTest{
    public static void main(String args[]) {
        if (true) {
            if (false) {
                System.out.println("True False");
            } else {
                System.out.println("True True");
            }
        }
    }
}


Notice how the last "else" is associated with the last "if" and not the first "if". Now, the first if condition returns true so the next 'if' will be executed. In the second 'if' the condition returns false so the else part will be evaluated which prints 'True True'.

 
Back to Question without Answer
 



21.     QID - 2.1128 : Using Operators and Decision Constructs 
 

What will the following code print?



  int i = 0;

  int j = 1;

  if( (i++ == 0) & (j++ == 2) ){

     i = 12;

  }

  System.out.println(i+" "+j);


 

Correct Option is :  A 

A. 1 2
 


B. 2 3
 


C. 12 2
 


D. 12 1
 


E. It will not compile.
 


Explanation: 
This question is based on 2 concepts:



1. i = ++j; is not same as i = j++;

In the case of i = ++j, j is first incremented and then compared with i. While in the case of i = j++;, j is first compared with i and then incremented.



2. The | and & operators, when applied to boolean operands, ensure that both the sides are evaluated. This is opposed to || and && operators, which do not evaluate the Right Hand Side operand if the result can be known by just evaluating the Left Hand Side.



Now, let us see the values of i and j at each step:



int i = 0;

int j = 1;

if( (i++ == 0) & (j++ == 2) )    //compare i with 0 and increment i => returns true and i becomes 1. Evaluate next condition:

        //compare j with 2 and increment j => return false and j becomes 2.

        //true & false returns false so i= 12 is not executed.{

   i = 12;

}

System.out.println(i+" "+j)); //print 1 and 2



 
Back to Question without Answer
 



22.     QID - 2.1194 : Using Operators and Decision Constructs 
 

Consider the following lines of code:



   System.out.println(null + true); //1

   System.out.println(true + null); //2

   System.out.println(null + null); //3



Which of the following statements are correct?
 

Correct Option is :  A 

A. None of the 3 lines will compile.
 


B. All the 3 lines will compile and print nulltrue, truenull and nullnull respectively.
 


C. Line 1 and 2 won't compile but line 3 will print nullnull.
 


D. Line 3 won't compile but line 1 and 2 will print nulltrue and truenull respectively.
 


E. None of the above.
 


Explanation: 
Note that none of the parameters is a String so conversion to String will not happen. The following are the error messages given by the compiler.



C:\works\nbtestproject\src\TestClass.java:46: operator + cannot be applied to <nulltype>,boolean

   System.out.println(null + true); //1

C:\works\nbtestproject\src\TestClass.java:46: reference to println is ambiguous, both method println(char[]) in java.io.PrintStream and method println(java.lang.String) in java.io.PrintStream match

   System.out.println(null + true); //1

C:\works\nbtestproject\src\TestClass.java:47: operator + cannot be applied to boolean,<nulltype>

   System.out.println(true + null); //2

C:\works\nbtestproject\src\TestClass.java:47: reference to println is ambiguous, both method println(char[]) in java.io.PrintStream and method println(java.lang.String) in java.io.PrintStream match

   System.out.println(true + null); //2

C:\works\nbtestproject\src\TestClass.java:48: operator + cannot be applied to <nulltype>,<nulltype>

   System.out.println(null + null); //3

C:\works\nbtestproject\src\TestClass.java:48: reference to println is ambiguous, both method println(char[]) in java.io.PrintStream and method println(java.lang.String) in java.io.PrintStream match

   System.out.println(null + null); //3

6 errors



  If one operand expression is of type String, then string conversion is performed on the other operand to produce a String at run time. The result is a reference to a newly created String object that is the concatenation of the two Strings. The characters of the left-hand operand precede the characters of the right-hand operand in the newly created string.

  Any type may be converted to type String by string conversion.

  A value x of primitive type T is first converted to a reference value as if by giving it as an argument to an appropriate class instance creation expression e.g. if T is boolean, then use new Boolean(x) .

  toString() is defined by the primordial class Object; many classes override it, notably Boolean, Character, Integer, Long, Float, Double, and String.



Note that had there been a method like String getString() { return null; }, println( getString() + true ) etc. would have compiled fine and would have printed "nulltrue".

 
Back to Question without Answer
 



23.     QID - 2.860 : Using Operators and Decision Constructs 
 

What will the following code print when run?


public class TestClass {
    public void switchString(String input){
        switch(input){
            case "a" : System.out.println( "apple" );
            case "b" : System.out.println( "bat" );
                break;
            case "B" : System.out.println( "big bat" );                
            default : System.out.println( "none" );
        }
    }

    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.switchString("B");
    }
}

 

Correct Option is :  B 

A. bat

big bat
 


B. big bat

none
Since there is a case condition that matches the input string "B", that case statement will be executed directly. This prints "big bat". Since there is no break after this case statement and the next case statement, the control will fall through the next one (which is default : ) and so "none" will be printed as well.



Note that "b" and "B" are different strings. "B" is not equal to "b".


C. big bat
 


D. bat
 


E. The code will not compile.
 


Explanation: 
As of JDK 7 release, you can use a String object in the expression of a switch statement:


public String getTypeOfDayWithSwitchStatement(String dayOfWeekArg) {
     String typeOfDay;
     switch (dayOfWeekArg) {
         case "Monday":
             typeOfDay = "Start of work week";
             break;
         case "Tuesday":
         case "Wednesday":
         case "Thursday":
             typeOfDay = "Midweek";
             break;
         case "Friday":
             typeOfDay = "End of work week";
             break;
         case "Saturday":
         case "Sunday":
             typeOfDay = "Weekend";
             break;
         default:
             throw new IllegalArgumentException("Invalid day of the week: " + dayOfWeekArg);
     }
     return typeOfDay;
}


The switch statement compares the String object in its expression with the expressions associated with each case label as if it were using the String.equals method; consequently, the comparison of String objects in switch statements is case sensitive. The Java compiler generates generally more efficient bytecode from switch statements that use String objects than from chained if-then-else statements.

 
Back to Question without Answer
 



24.     QID - 2.1190 : Using Operators and Decision Constructs 
 

What will the following code snippet print?



    Object t = new Integer(107);

    int k = (Integer) t.intValue()/9;

    System.out.println(k);
 

Correct Option is :  C 

A. 11
 


B. 12
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


Explanation: 
Compiler will complain that the method intValue() is not available in Object. This is because the . operator has more precedence than the cast operator. So you have to write it like this:

    int k = ((Integer) t).intValue()/9;

Now, since both the operands of / are ints, it is an integer division. This means the resulting value is truncated (and not rounded). Therefore, the above statement will print 11 and not 12.

 
Back to Question without Answer
 



25.     QID - 2.1040 : Using Operators and Decision Constructs 
 

What will the following class print ?



class InitTest{

   public static void main(String[] args){

      int a = 10;

      int b = 20;

      a += (a = 4);

      b = b + (b = 5);

      System.out.println(a+ ",  "+b);

   }

}
 

Correct Option is :  E 

A. It will print 8, 25
 


B. It will print 4, 5
 


C. It will print 14, 5
 


D. It will print 4, 25
 


E. It will print 14, 25
 


Explanation: 
a += (a =4) is same as a = a + (a=4).

First, a's value of 10 is kept aside and (a=4) is evaluated. The statement (a=4) assigns 4 to a and the whole statement returns the value 4. Thus, 10 and 4 are added and assigned back to a.



Same logic applies to b = b + (b = 5); as well.

 
Back to Question without Answer
 



26.     QID - 2.1212 : Using Operators and Decision Constructs 
 

Which of the following expressions will evaluate to true if preceded by the following code?



 String a = "java";

    char[] b = { 'j', 'a', 'v', 'a' };

    String c = new String(b);

    String d = a;
 

Correct Options are :  A C D 

A. (a == d)
 


B. (b == d)
b and d can not even be compared because they are of different types.


C. (a == "java")
 


D. a.equals(c)
Note that a == c will be false because doing 'new' creates an entirely new object.


 
Back to Question without Answer
 



27.     QID - 2.1176 : Using Operators and Decision Constructs 
 

Which code fragments will print the last argument given on the command line to the standard output, and exit without any output or exception stack trace if no arguments are given?


1.
 public static void main(String args[ ]){
       if (args.length != 0)   System.out.println(args[args.length-1]);
 }

2.
public static void main(String args[ ]){
       try {      System.out.println(args[args.length-1]);        }
       catch (ArrayIndexOutOfBoundsException e) {    }
}

3.
 public static void main(String args[ ]){
     int i = args.length;
     if (i != 0) System.out.println(args[i-1]);
}

4.
public static void main(String args[ ]){
    int i = args.length-1;
   if (i > 0) System.out.println(args[i]);
}

5.
 public static void main(String args[ ]){
       try { System.out.println(args[args.length-1]); }
       catch (NullPointerException e) {}
 }


 

Correct Options are :  A B C 

A. 1
 


B. 2
 


C. 3
 


D. 4
if there is only one argument, i will be 1-1 = 0. And the if condition will fail.


E. 5
 


Explanation: 
If no argument is given, a String array of length Zero is received in the main method. So, there is no NullPointerException on accessing args even if no argument is given.

Indexing in java starts from zero. So the last element will be at args.length-1.

 
Back to Question without Answer
 



28.     QID - 2.1282 : Using Operators and Decision Constructs 
 

What, if anything, is wrong with the following code?



void test(int x){

   switch(x){

      case 1:

      case 2:

      case 0:

      default :

      case 4:

   }

}
 

Correct Option is :  E 

A. Data Type of 'x' is not valid to be used as an expression for the switch clause.
x is an int and int is perfectly valid. long, double, boolean, and float are not valid.


B. The case label 0 must precede case label 1.
While ordering may be important for the logic being implemented in the code, technically, any order is valid.


C. Each case section must end with a break keyword.
This is not necessary. If there is no break at the end of a case section, the control will fall through to the next case section (even if the case label doesn't match).


D. The default label must be the last label in the switch statement.
Any order of case statements is valid.


E. There is nothing wrong with the code.
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS.

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



29.     QID - 2.1369 : Using Operators and Decision Constructs 
 

Given the following declarations, identify which statements will return true:



Integer i1 = 1; 

Integer i2 = new Integer(1);

int i3 = 1;

Byte b1 = 1;

Long g1 = 1L;
 

Correct Options are :  B D 

A. i1 == i2
This will return false because both are pointing to different objects.


B. i1 == i3
This will return true because one operand is a primitive int, so the other will be unboxed and then the value will be compared.


C. i1 == b1
This will not compile because type of i1 and b1 references are classes that are not in the same class hierarchy. So the compiler figures out at compile time itself these two references cannot ever point to the same object.


D. i1.equals(i2)
This will return true because both are Integer objects and both have the value 1.


E. i1.equals(g1)
This will return false because they are pointing to objects of different types.



Signature of equals method is : boolean equals(Object o);

Thus, it can take any object as a parameter and so there will be no compilation error. 



Further, The equals method of all wrapper classes first checks if the two object are of same class or not. If not, they immediately return false.


F. i1.equals(b1)
This will return false because they are pointing to objects of different types.


 
Back to Question without Answer
 



30.     QID - 2.1196 : Using Operators and Decision Constructs 
 

Consider the following code snippet:



XXXX m ; 

//other code

  switch( m ){

     case 32  : System.out.println("32");   break;

     case 64  : System.out.println("64");   break;

     case 128 : System.out.println("128");  break;

  }



What type can 'm' be of so that the above code compiles and runs as expected ?
 

Correct Options are :  A C E 

A. int m;
m can hold all the case values.


B. long m;
long, float, double, and boolean can never be used as a switch variable.


C. char m;
m can hold all the case values.


D. byte m;
m will not be able to hold 128. a byte's range is -128 to 127.


E. short m;
m can hold all the case values.


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



31.     QID - 2.1271 : Using Operators and Decision Constructs 
 

What will be the result of attempting to compile and run the following code?

public class PromotionTest{

   public static void main(String args[]){

      int i = 5;

      float f = 5.5f;

      double d = 3.8;

      char c = 'a';

      if (i == f) c++;

      if (((int) (f + d)) == ((int) f + (int) d)) c += 2;

      System.out.println(c);

   }

}
 

Correct Option is :  E 

A. The code will fail to compile.
 


B. It will print d.
 


C. It will print c.
 


D. It will print b
 


E. It will print a.
 


Explanation: 
In the case of i == f, value of i will be promoted to a float i.e. 5.0, and so it returns false.

(int)f+(int)d =  (int)5.5 + (int) 3.8 => 5 + 3 = 8

(int)(f + d) => (int) (5.5 + 3.8) => (int)(9.3) => 9, so this also return false.

So, c is not incremented at all. Hence c remains 'a'.

 
Back to Question without Answer
 



32.     QID - 2.1267 : Using Operators and Decision Constructs 
 

Which of the following implementations of a max() method will correctly return the largest value?
 

Correct Option is :  D 

A.   int max(int x, int y){

     return(  if(x > y){ x; } else{ y; }  );

  }
The if statement does not return any value so it can not be used the way it is used in (1).


B.   int max(int x, int y){

     return( if(x > y){ return x; }  else{ return y; } );

  }
It would work if the first return and the corresponding brackets is removed.


C.   int max(int x, int y){

     switch(x < y){

        case true:

               return y;

        default :

               return x;

     };

 }
Neither the switch expression nor the case labels can be of type boolean.


D. int max(int x, int y){

      if (x > y)  return x;

      return y;

}
 


E. None of the above.
 


 
Back to Question without Answer
 



33.     QID - 2.1402 : Using Operators and Decision Constructs 
 

What will the following program print when run?

public class Operators{



    public static int operators(){

        int x1 = -4;

        int x2 = x1--;

        int x3 = ++x2;

        if(x2 > x3){

            --x3;

        }else{

            x1++;

        }

        return x1 + x2 + x3;

    }

    public static void main(String[] args) {

        System.out.println(operators());

    }

}
 

Correct Option is :  B 

A. -9
 


B. -10
 


C. -11
 


D. -12
 


Explanation: 
You will need to work out the values of the variables at each line on your worksheet to answer such questions.

x1 is -4

x2 is (x1)-- => x2 is first assigned the value of x1 i.e. -4 and then x1 in decremented by 1 to become -5

x3  is ++(x2) => x2 becomes -3 first and  then its value i.e. -3 is assigned to x3 

x2>x3 is false so x1++  => x1 becomes -4



therefore -4 + -3 + -3 => -10.

 
Back to Question without Answer
 



34.     QID - 2.929 : Using Operators and Decision Constructs 
 

Consider the following lines of code:



boolean greenLight = true;

boolean pedestrian = false;

boolean rightTurn = true;

boolean otherLane = false;



You can go ahead only if  the following expression evaluates to 'true' :



(( (rightTurn && !pedestrian || otherLane) || ( ? && !pedestrian && greenLight ) )  == true )



What variables can you put in place of '?' so that you can go ahead?
 

Correct Option is :  C 

A. rightTurn
 


B. otherLane
 


C. Any variable would do.
since the part before second || is true, the next part is not even evaluated.


D. None of the variable would allow to go.
 


Explanation: 
Observe that (rightTurn && !pedestrian || otherLane) is true, therefore ( ? && !pedestrian && greenLight ) does not matter.



 || and && are short circuit operators. So, if the first part of the expression ( i.e. part before || ) is true ( or false for && ) the other part is not evaluated at all.



Note that this is not true for | and &. In that case, the whole expression will be evaluated even if the value of the expression can be known by just evaluating first part.

 
Back to Question without Answer
 



35.     QID - 2.1269 : Using Operators and Decision Constructs 
 

Which of the following will not give any error at compile time and run time?
 

Correct Options are :  A C D E 

A. if (8 == 81) {}
8 == 81 is a valid expression that returns false.


B. if (x = 3) {} // assume that x is an int
Because the exp. x = 3 does not return a boolean.


C. if (true) {}
 


D. if (bool = false) {}  //assume that bool is declared as a boolean
Because the expression 'bool = false' returns a boolean ( which happens to be false)


E. if (x == 10 ? true:false) { } // assume that x is an int
 


Explanation: 
All an if(...) needs is a boolean.

x = 3 is not valid because the return value of this expression is 3 which is not a boolean.

 
Back to Question without Answer
 



36.     QID - 2.908 : Using Operators and Decision Constructs 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        

         boolean flag  = true;

         switch (flag){

             case true : System.out.println("true");

                 default: System.out.println("false");

         }

              

    }

}
 

Correct Option is :  A 

A. It will not compile.
A boolean cannot be used for a switch statement. It needs an integral type, an enum, or a String.


B. false
 


C. true

false
 


D. Exception at run time.
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



37.     QID - 2.1313 : Using Operators and Decision Constructs 
 

What is the result of executing the following code when the value of i is 5:





switch (i){

    default:

    case 1:

        System.out.println(1);

    case 0:

        System.out.println(0);

    case 2:

        System.out.println(2);

        break;

    case 3:

        System.out.println(3);

}




 

Correct Option is :  A 

A. It will print 1 0 2
 


B. It will print 1 0 2 3
 


C. It will print 1 0
 


D. It will print 1
 


E. Nothing will be printed.
 


Explanation: 
Here are the rules:



The type of the switch expression must be String, char, byte, short, or int (and their wrapper classes), or an enum or a compile-time error occurs. 



All of the following must be true, or a compile-time error will result:

1. Every case constant expression associated with a switch statement must be assignable (5.2) to the type of the switch Expression.

2. No two of the case constant expressions associated with a switch statement may have the same value.

3. At most one default label may be associated with the same switch statement.



Basically it looks for a matching case or if no match is found it goes to default. (If default is also not found it does nothing)

Then it executes the statements till it reaches a break or end of the switch statement.

Here, it goes to default and executes till it reaches first break. So it prints 1 0 2.





Note that the switch statement compares the String object in its expression with the expressions associated with each case label as if it were using the String.equals method; consequently, the comparison of String objects in switch statements is case sensitive. The Java compiler generates generally more efficient bytecode from switch statements that use String objects than from chained if-then-else statements.

 
Back to Question without Answer
 



38.     QID - 2.948 : Using Operators and Decision Constructs 
 

Which statements about the output of the following programs are true?


public class TestClass{
   public static void main(String args[ ] ){
      int i = 0 ;
      boolean bool1 = true;
      boolean bool2 = false;
      boolean bool  = false;
      bool = (bool2 &  method1("1"));  //1
      bool = (bool2 && method1("2"));  //2
      bool = (bool1 |  method1("3"));  //3
      bool = (bool1 || method1("4"));  //4
   }
   public static boolean method1(String str){
      System.out.println(str);
      return true;
   }
}

 

Correct Options are :  A C 

A. 1 will be the part of the output.
& (unlike &&), when used as a logical operator, does not short circuit the expression, which means it always evaluates both the operands even if the result of the whole expression can be known by just evaluating the left operand.


B. 2 will be the part of the output.
 


C. 3 will be the part of the output.
& and | (unlike && and ||), when used as logical operators, do not short circuit the expression, which means they always evaluate both the operands even if the result of the whole expression can be known by just evaluating the left operand.


D. 4 will be the part of the output.
 


E. None of the above
 


Explanation: 
& and | do not short circuit the expression. The value of all the expressions ( 1 through 4) can be determined just by looking at the first part.

&& and || do not evaluate the rest of the expression if the result of the whole expression can be known by just evaluating the left operand, so method1() is not called for 2 and 4.

 
Back to Question without Answer
 



39.     QID - 2.1342 : Using Operators and Decision Constructs 
 

Consider that str is a local variable of class java.lang.String.

Which of the following lines of code may throw a NullPointerException in certain situations?



Or a tougher version of the question could be :

Which of the following lines of code are not an example of robust design ?
 

Correct Options are :  A B C 

A. if ( (str != null) | ( i == str.length() ) ) 
(i == str.length()) will always be executed so if 'str' is null, then str.length() will throw a NullPointerException.


B. if ( (str == null) | ( i == str.length() ) ) 
(i == str.length()) will always be executed so if 'str' is null, then str.length() will throw a NullPointerException.


C. if ( (str != null) || (i == str.length() ) )
(i == str.length()) will only be evaluated if (str != null) is false, and (str != null) will be false if 'str' is null. So it will also throw a NullPointerException.


D. if ( (str == null) || (i == str.length() ) )
(i == str.length()) will only be evaluated if (str == null) is false, and (str == null) will be false if 'str' is NOT null. So it will NEVER throw a NullPointerException.


Explanation: 
The concept is : || and && are short circuiting operation i.e. if the value of the expression can be known by just seeing the first part then the remaining part is not evaluated while | and & will always let all the parts evaluates.

Let's break this down in two cases:



1. Say  str = null;



for a, the first part is false and str.length() throws NullPointerException because str is null.



for b, the first part of it is true but it will still evaluate the second part  and as str is null, str.length() throws NullPointerException. Had it been || instead of |, the second part would not have been evaluated and no exception would have been thrown.



for c, the first part of it is false and it will also evaluate the second part which will throw a NullPointerException as str is null.



for d, the first part is true, so the second part is not evaluated. 





2. Say,  str = "somestring"; //i.e. str is not null.



for a, the first part is true, so is the second part. No exception is thrown.  Note that second part will still be evaluated although by looking at the first part itself we can tell that the whole expression will return true.



for b, the first part is false, and the second part is also true. No exception is thrown. 



for c, first part is true, so second part is not evaluated at all. No exception is thrown. 



for d, first part is false, so it will evaluate second part. No exception is thrown as str is not null. 





It would be nice if you try to run the following program to understand the concept :

(Uncomment only one of the commented lines one by one).



public class TestClass {

   public static void main(String[] args) {

      int i = 0;

      String s = "";



      //s = null;

      if ((s != null) | ( i==s.length())) {}

      System.out.println("A");



      //s = null;

      if ((s == null) | ( i==s.length())) {}

      System.out.println("B");



      //s = null;

      if ((s != null) || (i==s.length())) {}

      System.out.println("C");



      s = null;

      if ((s == null) || (i==s.length())) {}

      System.out.println("D");

   }

}

 
Back to Question without Answer
 



40.     QID - 2.1038 : Using Operators and Decision Constructs 
 

What will be the output of the following program?



public class TestClass{

   public static void main(String args[ ] ){

      int i = 0 ;

      boolean bool1 = true ;

      boolean bool2 = false;

      boolean bool  = false;

      bool = ( bool2 &  method1(i++) ); //1

      bool = ( bool2 && method1(i++) ); //2

      bool = ( bool1 |  method1(i++) ); //3

      bool = ( bool1 || method1(i++) ); //4

      System.out.println(i);

   }

   public static boolean method1(int i){

       return i>0 ? true : false;

   }

}


 

Correct Option is :  B 

A. It will print 1.
 


B. It will print 2.
 


C. It will print 3.
 


D. It will print 4.
 


E. It will print 0.
 


Explanation: 
& and | do not short circuit the expression but && and || do.

As the value of all the expressions ( 1 through 4) can be determined just by looking at the first part, && and || do not evaluate the rest of the expression, so method1() is not called for 2 and 4.

Hence the value of i is incremented only twice.

 
Back to Question without Answer
 



41.     QID - 2.1441 : Using Operators and Decision Constructs 
 

You are writing a piece of code that determines tax rate on a given grossIncome. The tax rate is to be computed as follows - 

   If grossIncome is less than or equals to 18000, taxRate is 0.

   If grossIncome is more than 18000 but less than or equal to 36000, taxRate is 10%

   If grossIncome is more than 36000, taxRate is 20%.



Which of following code fragments do it correctly?
 

Correct Options are :  A C E 

A. double taxRate = grossIncome<=18000 ? 0 : (grossIncome<=36000) ? .1 : .2;
 


B. double taxRate = .2;

taxRate = grossIncome<=18000?0:.1;

taxRate = grossIncome<=36000?.1:.2;
It will assign .1 to taxRate even if grossIncome is less than 18000.


C. double taxRate = 0;

if(grossIncome>36000) taxRate = .20;

if(grossIncome>18000 && grossIncome<=36000) taxRate = .10;
 


D. double taxRate = .2;

if(grossIncome>36000) {

   taxRate = .2;

}else taxRate = 0;

if(grossIncome>18000 ) {

   taxRate = .1;

}
This will assign .1 to taxRate even if grossIncome is greater than 36000.


E. double taxRate = 0;

taxRate = grossIncome>18000?grossIncome<=36000?.1:.2:0;
 


Explanation: 
This question is assigned a rating of tough only because it is a bit time consuming to check each option. Otherwise, it is quite easy to figure out what each option is doing. You may expect such questions in the exam.

 
Back to Question without Answer
 



42.     QID - 2.1103 : Using Operators and Decision Constructs 
 

What will be printed by the following code if it is run with command line: java TestClass -0.50 ?



public class TestClass{

    public static double getSwitch(String str){

        return Double.parseDouble(str.substring(1, str.length()-1) );

    }

    public static void main(String args []){

        switch(getSwitch(args[0])){

            case 0.0 : System.out.println("Hello");

            case 1.0 : System.out.println("World"); break;

            default : System.out.println("Good Bye");

        }

    }

}
 

Correct Option is :  E 

A. Hello
 


B. World
 


C. Hello World
 


D. Hello World Good Bye
 


E. None of the above.
 


Explanation: 
Observe that the method getSwitch() has been declared to return a double. Its return value is being used in the switch statement. Therefore, the program will not even compile because double/float/long/boolean cannot be used in a switch statement.

 
Back to Question without Answer
 



43.     QID - 2.977 : Using Operators and Decision Constructs 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 != b2){

   System.out.println("true");

} else{

   System.out.println("false");

}


 

Correct Option is :  C 

A. Compile time error.
 


B. It will print true;
 


C. It will print false;
 


D. Runtime error.
 


E. It will print nothing.
 


Explanation: 
All an if() needs is a boolean. Now, b1 != b2 returns false which is a boolean and so the expression becomes b2 = false.  It returns false which is again a boolean. So there is no error and it prints false.

Remember that every expression has a return value (which is actually the Left Hand Side of the expression). For example, The value of the expressing i = 10 , is 10 (an int).

 
Back to Question without Answer
 



44.     QID - 2.1440 : Using Operators and Decision Constructs 
 

Given:

   public static boolean getBool(){

      return true;

   }

   public static String getString(){

      return "true";

   }   

   public static void main(String args[]){

       switch( getBool() ){

            case true : 

              System.out.println("true");

              break;

          default : 

              System.out.println("none");

              break;

       }

   }



What changes can be done so that it will print only true?
 

Correct Option is :  C 

A. No change is necessary.
You cannot use a boolean expression in a switch statement and for case statements. So, as it is, the given code will not compile.


B. Call getString instead of getBool in the switch.
 


C. Call getString instead of getBool in the switch and also change the case label from true to "true".
Strings can be used in a switch.


D. Remove the default section of the switch block.
Since there is a break; statement in the previous case block, there is no need to remove the default section. It will not execute anyway.


 
Back to Question without Answer
 



45.     QID - 2.991 : Using Operators and Decision Constructs 
 

What can be the return type of method getSwitch so that this program compiles and runs without any problems?


public class TestClass{
   public static XXX getSwitch(int x){
      return x - 20/x + x*x;
   }
   public static void main(String args[]){
       switch( getSwitch(10) ){
          case 1 :
          case 2 :
          case 3 :
          default : break;
       }
   }
}


 

Correct Option is :  A 

A. int
 


B. float
 


C. long
 


D. double
 


E. char
 


F. byte
 


G. short
 


Explanation: 
If you just consider the method getSwitch, any of int long float or double will do. But the return value is used in the switch statement later on. A switch condition cannot accept float, long, double, or boolean. So only int is valid.



The return type cannot be byte, short, or char because the expression x - 20/x + x*x; returns an int.

 
Back to Question without Answer
 



46.     QID - 2.1039 : Using Operators and Decision Constructs 
 

What will the following method return if called with an argument of 7?



public int transformNumber(int n){

   int radix = 2;

   int output = 0;

   output += radix*n;

   radix = output/radix;

   if(output<14){

       return output;

   }

   else{

       output = output*radix/2;

       return output;

   }

   else {

       return output/2;

   }

}
 

Correct Option is :  D 

A. 7
 


B. 14
 


C. 49
 


D. Compilation fails.
The if-else-else is invalid. It should be if , else if, else.


 
Back to Question without Answer
 



47.     QID - 2.1317 : Using Operators and Decision Constructs 
 

Which of the following are NOT valid operators in Java?
 

Correct Options are :  A B D E 

A. sizeof
It is a valid operator in C++ but not in java because size of everything is known at compile time and is not machine dependent.


B. <<<
For left shifts there is no difference between shifting signed and unsigned values so there is only one leftshift '<<' in java.


C. instanceof
 


D. mod
No such thing.


E. equals
boolean equals(Object o) is a method in java.lang.Object. It is not an operator.


 
Back to Question without Answer
 



48.     QID - 2.973 : Using Operators and Decision Constructs 
 

Which operators will always evaluate all the operands?
 

Correct Options are :  B E 

A. &&
 


B. |
 


C. ||
 


D. ? :
If the condition before ? returns true, only the first operand will be evaluated, otherwise only the second operand is evaluated.


E. %
All mathematical operators evaluate all the operands.


Explanation: 
|| and && are also known as short circuit operators since they do not evaluate the rest of the expression if the value of the expression can be determined by just evaluating part of the expression for example ( true || (bool = false)) will not assign false to bool because the value of the expression can be told just by seeing the first part i.e. true. But ( true | (bool = false)) will assign false to bool.

 
Back to Question without Answer
 



49.     QID - 2.1179 : Using Operators and Decision Constructs 
 

The following code snippet will print 'true'.



short s = Short.MAX_VALUE;

char c = s;

System.out.println( c == Short.MAX_VALUE);
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
This will not compile because a short VARIABLE can NEVER be assigned to a char without explicit casting. A short CONSTANT can be assigned to a char only if the value fits into a char.



short s = 1; byte b = s; => this will also not compile because although value is small enough to be held by a byte but the Right Hand Side i.e. s is a variable and not a constant.

final short s = 1; byte b = s; => This is fine because s is a constant and the value fits into a byte.

final short s = 200; byte b = s; => This is invalid because although s is a constant but the value does not fit into a byte.



Implicit narrowing occurs only for byte, char, short, and int. Remember that it does not occur for long, float, or double. So, this will not compile: int i = 129L;

 
Back to Question without Answer
 



50.     QID - 2.1105 : Using Operators and Decision Constructs 
 

Consider the following method...



public void ifTest(boolean flag){

   if (flag)   //1

   if (flag)   //2

   System.out.println("True False");

   else        // 3

   System.out.println("True True");

   else        // 4

   System.out.println("False False");

}



Which of the following statements are correct ?
 

Correct Options are :  A C D 

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


Explanation: 
Note that if and else do not cascade. They are like opening and closing braces. 

   if (flag)   //1

       if (flag)   //2

          System.out.println("True False");

       else        // 3 This closes //2

          System.out.println("True True");

   else        // 4 This closes //1

      System.out.println("False False");



So, else at //3 is associated with if at //2 and else at //4 is associated with if at //1

 
Back to Question without Answer
 



51.     QID - 2.1078 : Using Operators and Decision Constructs 
 

The following code snippet will print true.



String str1 = "one";

String str2 = "two";

System.out.println( str1.equals(str1=str2) );
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
First the value of 'str1' is evaluated (i.e. one). Now, before the method is called, the operands are evaluated, so str1 becomes "two". so "one".equals("two") is false.

 
Back to Question without Answer
 



52.     QID - 2.882 : Using Operators and Decision Constructs 
 

What will the following program print when run without any command line argument?


public class TestClass {
    public static void main(String[] args)  {

        boolean hasParams = (args == null ? false : true);
        if(hasParams){
            System.out.println("has params");
        }{
            System.out.println("no params");
        }
    }
}

 

Correct Option is :  B 

A. has params
 


B. has params

no params
 


C. no params
 


D. It will not compile.
 


Explanation: 
Remember that the args array is never null. If the program is run without any arguments, args points to a String array of length 0. Therefore, hasParams will be true and it will print "has params".



Since there is no else, the subsequent code block will also be executed and it will print "no params". Note that it is not syntactically wrong to have section of code wrapped in { }.

 
Back to Question without Answer
 



53.     QID - 2.1418 : Using Operators and Decision Constructs 
 

Consider the following code snippet:



//INSERT LINE OF CODE HERE

  switch( condition ){

     case 1  : System.out.println("1");   break;

     case 2  : System.out.println("2");   break;

     case 3 : System.out.println("3");  break;

  }



What type can be inserted in the code above so that the above code compiles and runs as expected ?
 

Correct Options are :  C F 

A. int condition;
It will not compile because condition is not initialized before it is used in the switch.


B. long condition = 2;
long, float, double, and boolean can never be used as a switch variable.


C. Integer condition = new Integer("1");
 


D. String condition = "1";
Although a String can be used in a switch statement, it will not work here because the case statements in the given code do not use Strings.


E. short condition = new Short(1);
This is almost a valid option but for the fact that 1 is an int and you can't instantiate a Short object with an int argument. It will, therefore, not compile. short condition = new Short((short)1); would have been valid.


F. Byte condition = 1;
 


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS.

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



54.     QID - 2.1081 : Using Operators and Decision Constructs 
 

Which of the following code snippets will print exactly 10?



1.  Object t = new Integer(106);

    int k = ((Integer) t).intValue()/10;

    System.out.println(k);



2.  System.out.println(100/9.9);



3.  System.out.println(100/10.0);



4.  System.out.println(100/10);



5.  System.out.println(3 + 100/10*2-13);
 

Correct Options are :  A D E 

A. 1
 


B. 2
Since one of the operands (9.9) is a double, it wil perform a real division and will print 10.1010101010101


C. 3
Since one of the operands (10.0) is a double, it will perform a real division and will print 10.0


D. 4
 


E. 5
 


Explanation: 
1. int k = ((Integer) t).intValue()/10;

Since both the operands of / are ints, it is a integer division. This means the resulting value is truncated (and not rounded). Therefore, the above statement will print 10 and not 11.

5. 3 + 100/10*2-13 will be parsed as: 3 + (100/10)*2-13. This is because the precedence of / and * is same (and is higher than + and -) and since the expression is evaluated from left to right, the operands are grouped on first come first served basis. [This is not the right terminology but you will be able to answer the questions if you remember this rule.]

 
Back to Question without Answer
 



55.     QID - 2.1071 : Using Operators and Decision Constructs 
 

What will be the output of the following code snippet?



int a = 1;

int[] ia = new int[10];

int b = ia[a];

int c = b + a;

System.out.println(b = c);


 

Correct Option is :  B 

A. 0
 


B. 1
 


C. 2
 


D. true
 


E. false
 


Explanation: 
1. All the elements of an array of primitives are automatically initialized by default values, which is 0 for numeric types and false for boolean.

Therefore, ia[1] is 0.

2. = is not same as ==. The statement b = c assigns c (whose value is 1) to b. which is then printed.

 
Back to Question without Answer
 



56.     QID - 2.1353 : Using Operators and Decision Constructs 
 

Which of the lines will cause a compile time error in the following program?


public class MyClass{
   public static void main(String args[]){
      char c;
      int i;
      c = 'a';//1
      i = c;  //2
      i++;    //3
      c = i;  //4
      c++;    //5
   }
}


 

Correct Option is :  D 

A. line 1
 


B. line 2
 


C. line 3
 


D. line 4
 


E. line 5
 


Explanation: 
1. A char value can ALWAYS be assigned to an int variable, since the int type is wider than the char type. So line 2 is valid.



2. Line 4 will not compile because it is trying to assign an int to a char. Although the value of i can be held by the char but since  'i' is not a constant but a variable, implicit narrowing will not occur.



Here is the rule given in JLS:

A narrowing primitive conversion may be used if all of the following conditions are satisfied:

The expression is a constant expression of type int.

The type of the variable is byte, short, or char.

The value of the expression (which is known at compile time, because it is a constant expression) is representable in the type of the variable.

Note that narrowing conversion does not apply to long or double.

so, char ch = 30L; will fail although 30 is representable by a char.

 
Back to Question without Answer
 



57.     QID - 2.1257 : Using Operators and Decision Constructs 
 

Which of the following statements concerning the switch construct are true?
 

Correct Options are :  A B C 

A. A character literal can be used as a value for a case label.
boolean, long, float and double cannot be used.


B. A 'long' cannot be used as a switch variable.
boolean, long, float and double cannot be used.


C. An empty switch block is a valid construct.
 


D. A switch block must have a default label.
 


E. If present, the default label must be the last of all the labels.
Any order is valid.


Explanation: 
Here are the rules for a switch statement:

1. Only String, byte, char, short, int, (and their wrapper classes Byte, Character, Short, and Integer), and enums can be used as types of a switch variable. (String is allowed only since Java 7). 

2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.

3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535.

4.  All case labels should be COMPILE TIME CONSTANTS. 

5. No two of the case constant expressions associated with a switch statement may have the same value.

6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



58.     QID - 2.927 : Using Operators and Decision Constructs 
 

What will the following code print ?



class Test{

   public static void main(String[] args){

      int k = 1;

      int[] a = { 1 };

      k += (k = 4) * (k + 2);

      a[0] += (a[0] = 4) * (a[0] + 2);

      System.out.println( k + " , " + a[0]);

   }

}
 

Correct Option is :  C 

A. It will not compile.
 


B. 4 , 4
 


C. 25 , 25
 


D. 13 , 13
 


E. None of the above.
 


Explanation: 
The value 1 of k is saved by the compound assignment operator += before its right-hand operand (k = 4) * (k + 2) is evaluated. Evaluation of this right-hand operand then assigns 4 to k, calculates the value 6 for k + 2, and then multiplies 4 by 6 to get 24. This is added to the saved value 1 to get 25, which is then stored into k by the += operator. An identical analysis applies to the case that uses a[0].

  k += (k = 4) * (k + 2);

  a[0] += (a[0] = 4) * (a[0] + 2);

  k = k + (k = 4) * (k + 2);

  a[0] = a[0] + (a[0] = 4) * (a[0] + 2);

 
Back to Question without Answer
 



59.     QID - 2.1266 : Using Operators and Decision Constructs 
 

Which of the following statements are true?
 

Correct Options are :  A B E 

A. The condition expression in an if statement can contain method calls.
Yes, as long as the method returns a boolean value.


B. If a and b are of type boolean, the expression (a = b) can be used as the condition expression of an if statement.
 


C. An if statement can have either an 'if' clause or an 'else' clause.
An if-statement must always have an 'if' clause. 'else' is optional.


D. The statement : if (false) ; else ; is illegal.
if-clause and the else-clause can have empty statements. Empty statement ( i.e. just  a semi-colon ) is a valid statement.


E. Only expressions which evaluate to a boolean value can be used as the condition in an if statement.
Unlike C/C++ where you can use integers as conditions, in java, only booleans are allowed.


Explanation: 
The expression (a = b) does not compare the variables a and b, but rather assigns the value of b to the variable a. The result of the expression is the value being assigned. Since a and b are boolean variables, the value returned by the expression is also boolean. This allows the expressions to be used as the condition for an if-statement.

if-clause and the else-clause can have empty statements. Empty statement ( i.e. just ; ) is a valid statement.

But this is illegal :

if (true) else;

because the if part doesn't contain any valid statement. ( A statement cannot start with an else!)

So, the following is valid.

if(true) if(false);

because if(false); is a valid statement.

 
Back to Question without Answer
 



60.     QID - 2.1310 : Using Operators and Decision Constructs 
 

Consider the following method...


public static void ifTest(boolean flag){
   if (flag)   //1
   if (flag)   //2
   if (flag)   //3
   System.out.println("False True");
   else        //4
   System.out.println("True False");
   else        //5
   System.out.println("True True");
   else        //6
   System.out.println("False False");
}


Which of the following statements are correct ?
 

Correct Options are :  A D 

A. If run with an argument of 'false', it will print 'False False'
 


B. If run with an argument of 'false', it will print 'True True'
 


C. If run with an argument of 'true', it will print 'True False'
 


D. It will never print 'True True'
 


E. It will not compile.
 


Explanation: 
Look at it like this:

   if (flag)      //1
   {
       if (flag)       // 2
       {
            if (flag)        //3
            {
                  System.out.println("False True");
            }
            else            //4
            {
                  System.out.println("True False");
            }
       }
       else           //5
       {
             System.out.println("True True");
       }
   }
  else           //6
  {
        System.out.println("False False");
   }


Note that if and else do not cascade. They are like opening an closing brackets.
So, else at //4 is associated with if at //3
and else at //5 is associated with if at //2

 
Back to Question without Answer
 



61.     QID - 2.1119 : Using Operators and Decision Constructs 
 

Given:


public class Switcher{
 
   public static void main(String[] args){
       switch(Integer.parseInt(args[1]))  //1
       {
          case 0 :
             boolean b = false;
             break;
     
          case 1 :
             b = true; //2
             break;
       }
       
       if(b) System.out.println(args[2]);
   }
}


What will the above  program print if compiled and run using the following command line: 

 java Switcher 1 2 3

 

Correct Option is :  G 

A. It will print 1
 


B. It will print 2
 


C. It will print 3
 


D. It will not print anything.
 


E. It will not compile because of //1.
There is no problem here because Integer.parseInt() returns an int.


F. It will not compile because of //2.
There is no problem here. b is in scope for the rest of the switch block.


G. It will not compile for some other reason.
It will not compile because of if(b) because b is declared in the switch block and it is out of scope after the switch block ends. Pay close attention to question text. It may seem to test you on one concept but actually it could be testing something entirely different.


 
Back to Question without Answer
 



62.     QID - 2.932 : Using Operators and Decision Constructs 
 

Which of the following statements are true?
 

Correct Options are :  B C 

A. The modulus operator % can only be used with integer operands.
It can be used on floating points operands also. For example, 5.5 % 3 = 2.5


B. & can have integral as well as boolean operands.
unlike &&, & will not "short circuit" the expression if used on boolean parameters.


C. The arithmetic operators *, / and % have the same level of precedence.
 


D. && can have integer as well as boolean operands.
!, && and || operate only on booleans.


E. ~ can have integer as well as boolean operands.
~ Operates only on integral types


Explanation: 
Note : 

integral types means byte, short, int, long, and char





As per Section 4.1 of JLS 8 -



The integral types are byte, short, int, and long, whose values are 8-bit, 16-bit, 32-bit and 64-bit signed two's-complement integers, respectively, and char, whose

values are 16-bit unsigned integers representing UTF-16 code units.

 
Back to Question without Answer
 



63.     QID - 2.1397 : Using Operators and Decision Constructs 
 

Given:

public class CrazyMath {

    public static void main(String[] args) {

        int x = 10, y = 20;

        int dx, dy;

        try{

            dx = x % 5;

            dy =  y/dx;

        }catch(ArithmeticException ae){

            System.out.println("Caught AE");

            dx = 2;

            dy = y/dx;

        }

        x = x/dx;

        y = y/dy;

        System.out.println(dx+" "+dy);

        System.out.println(x+" "+y);

        

    }

}

What is the output?
 

Correct Option is :  B 

A. Caught AE

2 10

5 5
 


B. Caught AE

2 10

5 2
 


C. 2 10

5 2
 


D. It will not compile.
 


Explanation: 
% is the modulus operator. It returns the remainder of a division. Thus, dx = x%5 assigns 0 to dx because 5 divides 10 perfectly (no remainder).

y/dx therefore throws an ArithmeticException because of division by 0, which is caught by the catch block.

In the catch block, "Caught AE" is printed" and then dx is set to 2 and dy becomes 20/2 i.e.10

x = x/dx => x becomes 10/2 i.e. 5 and y = y/dy => becomes 20/10 i.e. 2

 
Back to Question without Answer
 



64.     QID - 2.965 : Using Operators and Decision Constructs 
 

Consider the following program:


public class TestClass{
   public static void main(String[] args)  {     calculate(2);    }
   public static void calculate(int x){
      String val;
      switch(x){
         case 2:
         default:
         val = "def";
      }
      System.out.println(val);
   }
}


What will happen if you try to compile and run the program?
 

Correct Options are :  B D 

A. It will not compile saying that variable val may not have been initialized..
 


B. It will compile and print def
 


C. As such it will not compile but it will compile if calculate(2); is replaced by calculate(3);
 


D. It will compile for any int values in calculate(...);
 


Explanation: 
When you try to access a local variable, the compiler makes sure that it is initialized in all the cases. If it finds that there is a case in which it may not be initialized then it flags an error. For example:



int i;

if( somecondition) i = 20;

int k = i;



Here, if some condition returns false, then i remains uninitialized hence the compiler flags an error.

In the given question:

As there is no break after case 2, val will always be initialized in the switch block. So it will compile and run fine.

Note that it will not compile if break is placed after case 2 because the compiler will figure out that in certain cases val may be left uninitialized.

 
Back to Question without Answer
 



65.     QID - 2.1357 : Using Operators and Decision Constructs 
 

Which of these combinations of switch expression types and case label value types are legal within a switch statement?
 

Correct Option is :  A 

A. switch expression of type int and case label value of type char.
Note that the following is invalid though because a char cannot be assigned to an Integer:

Integer x = 1;  // int x = 1; is valid.

switch(x){

   case 'a' : System.out.println("a");

}


B. switch expression of type float and case label value of type int.
 


C. switch expression of type byte and case label value of type float.
 


D. switch expression of type char and case label value of type byte.
This will not work in all cases because a byte may have negative values which cannot be assigned to a char. For example, char ch = -1; does not compile. Therefore, the following does not compile either:



       char ch = 'x';

       switch(ch){

          case -1 :        System.out.println("-1"); break; // This will not compile : "possible loss of precision"

          default:        System.out.println("default");    

       }


E. switch expression of type boolean and case label value of type boolean.
 


Explanation: 
You should remember the following rules for a switch statement:



1. Only String, byte, char, short, int, and enum values can be used as types of a switch variable. (String is allowed since Java 7.) Wrapper classes Byte, Character, Short, and Integer are allowed as well.



2. The case constants must be assignable to the switch variable. For example, if your switch variable is of class String, your case labels must use Strings as well.



3. The switch variable must be big enough to hold all the case constants. For example, if the switch variable is of type char, then none of the case constants can be greater than 65535 because a char's range is from 0 to 65535. Similarly, the following will not compile because 300 cannot be assigned to 'by', which can only hold values from -128 to 127.

byte by = 10;

switch(by){

    case 200 :  //some code;

    case 300 :  //some code;

}



4.  All case labels should be COMPILE TIME CONSTANTS. 



5. No two of the case constant expressions associated with a switch statement may have the same value.



6. At most one default label may be associated with the same switch statement.

 
Back to Question without Answer
 



66.     QID - 2.1173 : Using Operators and Decision Constructs 
 

Consider the following class :



public class Test{

   public static void main(String[] args){

      if (args[0].equals("open"))

         if (args[1].equals("someone"))

            System.out.println("Hello!");

      else System.out.println("Go away "+ args[1]);

    }

}



Which of the following statements are true if the above program is run with the command line :

java Test closed
 

Correct Option is :  B 

A. It will throw ArrayIndexOutOfBoundsException at runtime.
 


B. It will end without exceptions and will print nothing.
 


C. It will print Go away
 


D. It will print Go away and then will throw ArrayIndexOutOfBoundsException.
 


E. None of the above.
 


Explanation: 
As in C and C++, the Java if statement suffers from the so-called "dangling else problem," The problem is that both the outer if statement and the inner if statement might conceivably own the else clause.

In this example, one might be tempted to assume that the programmer intended the else clause to belong to the outer if statement.



The Java language, like C and C++ and many languages before them, arbitrarily decree that an else clause belongs to the innermost if so as the first if() condition fails (args[0] not being "open") there is no else associated to execute. So, the program does nothing. The else actually is associated with the second if. So had the command line been :

java Test open, it would have executed the second if and thrown ArrayIndexOutOfBoundsException.

If the command line had been:

java Test open xyz, it would execute the else part(which is associated with the second if) and would have printed "Go away xyz".

 
Back to Question without Answer
 



67.     QID - 2.1082 : Using Operators and Decision Constructs 
 

What will be the output when the following class is compiled and run?



class ScopeTest{

   static int x = 5;

   public static void main(String[] args){

      int x  = ( x=3 ) * 4;  // 1

      System.out.println(x);

   }

}
 

Correct Option is :  D 

A. It will not compile because line //1 cannot be parsed correctly.
 


B. It will not compile because x is used before initialization.
It is not.


C. It will not compile because there is an ambiguous reference to x.
There is no conflict for resolution of x. The local 'x' simply shadows the member variable 'x'.


D. It will print 12.
 


E. It will print 3 .
 


Explanation: 
x is first initialized by x = 3, then the value of this expression (i.e. "x = 3"), which is 3, is multiplied by 4 and is again assigned to x. So it prints 12.

 
Back to Question without Answer
 



68.     QID - 2.1339 : Using Operators and Decision Constructs 
 

What will the following code print?


  int i = 1;
  int j = i++;
  if( (i==++j) | (i++ == j) ){
    i+=j;
  }
  System.out.println(i);


 

Correct Option is :  C 

A. 3
 


B. 4
 


C. 5
 


D. 2
 


E. It will not compile.
 


Explanation: 
This question is based on 2 concepts:



1. i == ++j is not same as i == j++;

In the case of i == ++j, j is first incremented and then compared with i. While in the case of i == j++;, j is first compared with i and then incremented.



2. The | operator, when applied for boolean operands, ensures that both the sides are evaluated. This is opposed to || which does not evaluate the Right Hand Side if the result can be known by just evaluating the Left Hand Side.



Now, let us see the values of i and j at each step:



int i = 1;

int j = i++; // j is assigned 1 and i is incremented to 2

if( (i==++j) | (i++ == j) )     // increment j (so j becomes 2) and compare with i => return true.

        //since it is |, evaluate next condition: compare i with 2 and increment i => i becomes 3.{

    i+=j; //i = 3+2 = 5

}

System.out.println(i); //prints 5

 
Back to Question without Answer
 



69.     QID - 2.1156 : Using Operators and Decision Constructs 
 

What will the following class print when executed?



class Test{

    static boolean a;

    static boolean b;

    static boolean c;

    public static void main (String[] args){

        boolean bool = (a = true) || (b = true) && (c = true);

        System.out.print(a + ", " + b + ", " + c);

    }

}
 

Correct Option is :  C 

A. true, false, true
 


B. true, true, false
 


C. true, false, false
 


D. true, true, true
 


Explanation: 
Java parses the expression from left to right. Once it realizes that the left operand of a conditional "or" operator has evaluated to true, it does not even try to evaluate the right side expression.

 
Back to Question without Answer
 



70.     QID - 2.1290 : Using Operators and Decision Constructs 
 

Consider the following method:



    static int mx(int s){

        for(int i=0; i<3; i++){

            s = s + i;

        }

        return s;

    }



and the following code snippet:



    int s = 5;

        s += s + mx(s) + ++s;

        System.out.println(s); 



What will it print?
 

Correct Option is :  D 

A. 21
 


B. 22
 


C. 23
 


D. 24
s += (expression) will be converted to s =  s + expression. So the given expression will become:

s = s + s + mx(s) + ++s;

s = 5 + 5 + mx(5) + 6;

s = 5 + 5+ 8 + 6;

s = 24;


E. 25
 


F. 26
 


 
Back to Question without Answer
 



71.     QID - 2.1335 : Using Operators and Decision Constructs 
 

Consider the code shown below:


public class TestClass{
  public static int switchTest(int k){
     int j = 1;
     switch(k){
        case 1: j++;
        case 2: j++;
        case 3: j++;
        case 4: j++;
        case 5: j++;
        default : j++;
     }
     return j + k;
  }
  public static void main(String[] args){
     System.out.println( switchTest(4) );
  }
}


What will it print when compiled and run?
 

Correct Option is :  D 

A. 5
 


B. 6
 


C. 7
 


D. 8
 


E. 9
 


Explanation: 
The control in the case falls through till reaches the break statement.

Here, switch(4) will take the control to case 4:.

Now since there is no break statement, all the statements till the end will be executed. So j will be incremented 3 time making it 4. finally 4 + 4 i.e. 8 will be returned.

 
Back to Question without Answer
 



72.     QID - 2.1108 : Using Operators and Decision Constructs 
 

What will the following program print?



class Test{

   public static void main(String args[]){

      int k = 9, s = 5;

      switch(k){

         default :

         if( k == 10) { s = s*2; }

         else{

            s = s+4;

            break;

         }

         case 7 : s = s+3;

      }

      System.out.println(s);

   }

}
 

Correct Option is :  B 

A. 5
 


B. 9
Since 9 does not match any of the case labels, it is accepted by default block. In this block, the else part is executed, which sets s to the value of s+4, i.e. 9. Since there is a break in the else block, case 7: is not executed.


C. 12
 


D. It will not compile.
 


 
Back to Question without Answer
 



73.     QID - 2.1088 : Using Operators and Decision Constructs 
 

Consider:

o1 and o2 denote two object references to two different objects of the same class.

Which of the following statements are true?
 

Correct Options are :  C D 

A. o1.equals(o2) will always be false.
It depends on how the equals method is overridden. If it is not overridden, then it will return false.


B. o1.hashCode() == o2.hashCode() will always be false.
hashCode() can be overridden and so the given statements is not true.


C. o1 == o2 will always be false.
The == operator compares whether the two references are pointing to the same object or not. Here, they are not, so it returns false.


D. Nothing can be said about o1.equals(o2) regarding what it will return based on the given information.
It depends on how the class implements this method.


E. Nothing can be said about o1 == o2.
It will always return false if references are to two different objects.


Explanation: 
Note that both equals() and hashCode() methods can be overridden by the programmer so you can't say anything about what they will return without looking at the code.

 
Back to Question without Answer
 



74.     QID - 2.1111 : Using Operators and Decision Constructs 
 

What is the result of executing the following fragment of code:



boolean b1 = false;

boolean b2  = false;

if (b2 = b1 == false){

   System.out.println("true");

} else{

   System.out.println("false");

}
 

Correct Option is :  B 

A. Compile time error.
 


B. It will print true
 


C. It will print false
 


D. Runtime error.
 


E. It will print nothing.
 


Explanation: 
All that if() needs is a boolean, now b1 == false returns true, which is a boolean and since b2 = true is an expression and every expression has a return value (which is the Left Hand Side of the expression), it returns true, which is again a boolean.



FYI: the return value of expression  i = 10;  is 10 (an int).

 
Back to Question without Answer
 



Creating and Using Arrays
 
Exam Objectives - 
 
Declare, instantiate, initialize and use a one-dimensional array
Declare, instantiate, initialize and use multi-dimensional array



01.     QID - 2.1076 
 

What would be the result of compiling and running the following program?



class SomeClass{

   public static void main(String args[]){

      int size = 10;

      int[] arr = new int[size];

      for (int i = 0 ; i < size ; ++i) System.out.println(arr[i]);

   }

}
 

Select 1 option

A. The code will fail to compile, because the int[] array declaration is incorrect.
 


B. The program will compile, but will throw an IndexArrayOutOfBoundsException when run.
 


C. The program will compile and run without error, and will print nothing.
 


D. The program will compile and run without error and will print null ten times.
 


E. The program will compile and run without error and will print 0 ten times.
 


 
Check Answer
 



02.     QID - 2.1387 
 

Identify correct statements about a two dimensional array.
 

Select 1 option

A. It is like a rectangular matrix where number of rows and number of columns may be different but each row or each column have the same number of elements.
 


B. It is like a square matrix where number of rows and number of columns are same and each row or each column have the same number of elements.
 


C. The number of rows and columns must be specified at the time it is declared.
 


D. It is basically an array of arrays.
 


 
Check Answer
 



03.     QID - 2.971 
 

What will be the result of trying to compile and execute the following program?



public class TestClass{

   public static void main(String args[] ){

      int i = 0 ;

      int[] iA = {10, 20} ;

      iA[i] = i = 30 ;

      System.out.println(""+ iA[ 0 ] + " " + iA[ 1 ] + "  "+i) ;

    }

}


 

Select 1 option

A. It will throw ArrayIndexOutOfBoundsException at Runtime.
 


B. Compile time Error.
 


C. It will print 10 20 30
 


D. It will print 30 20 30
 


E. It will print 0 20 30
 


 
Check Answer
 



04.     QID - 2.1384 
 

Consider the following code:



public class ArrayTest {



    static int[][] table = new int[2][3];



    public static void init() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to initialize



            }

        }

    }



    public static void multiply() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to multiply



            }

        }

    }

}



Which of the following options can be used in the code above so that the init method initializes each table element to the sum of its row and column number and the multiply method just multiplies the element value by 2?
 

Select 1 option

A. table[x, y] = x+y;

and

table[x, y] = table[x, y]*2;
 


B. table[x][y] = x+y;

and

table[x][y] = table[x][y]*2;
 


C. table[[x] [y]] = x+y;

and

table[[x] [y]] = table[[x] [y]]*2;
 


D. table(x, y) = x+y;

and

table(x, y) = table(x, y)*2;
 


 
Check Answer
 



05.     QID - 2.1354 
 

Which of the following correctly declare a variable which can hold an array of 10 integers?
 

Select 2 options

A. int[ ] iA
 


B. int[10] iA
 


C. int iA[ ]
 


D. Object[ ] iA
 


E. Object[10] iA
 


 
Check Answer
 



06.     QID - 2.1286 
 

Consider the following array definitions:

int[] array1, array2[];

int[][] array3;

int[] array4[], array5[];

Which of the following are valid statements?
 

Select 3 options

A. array2 = array3;
 


B. array2 = array4;
 


C. array1 = array2;
 


D. array4 = array1;
 


E. array5 = array3;
 


 
Check Answer
 



07.     QID - 2.843 
 

Given the following declaration:



  int[][] twoD = { { 1, 2, 3} , { 4, 5, 6, 7}, { 8, 9, 10 } };



What will the following lines of code print?



System.out.println(twoD[1].length);

System.out.println(twoD[2].getClass().isArray());

System.out.println(twoD[1][2]);
 

Select 1 option

A. 4

true

6
 


B. 3

true

3
 


C. 3

false

3
 


D. 4

false

6
 


 
Check Answer
 



08.     QID - 2.1443 
 

What will the following code print when compiled and run?



public class OrderTest {



    public void initData(String[] arr){

        int ind = 0;

        for(String str : arr){

            str.concat(str+" "+ind);

            ind++;

        }

    }

    

    public void printData(String[] arr){

        for(String str : arr){

            System.out.println(str);

        }

    }

    

    public static void main(String[] args) {

        OrderTest ot = new OrderTest();

        String[] arr = new String[2];

        ot.initData(arr);

        ot.printData(arr);

    }

}
 

Select 1 option

A. null 0

null 1
 


B. 0

1
 


C.    0

   1

(There is a space before 0 and 1)
 


D. null

null
 


E. It will throw a RuntimeException at run time.
 


 
Check Answer
 



09.     QID - 2.1036 
 

Consider the following class...



class Test{

   public static void main(String[ ] args){

      int[] a = { 1, 2, 3, 4 };

      int[] b = { 2, 3, 1, 0 };

      System.out.println( a [ (a = b)[3] ] );

   }

}



What will it print when compiled and run ?
 

Select 1 option

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException when run.
 


C. It will print 1.
 


D. It will print 3.
 


E. It will print 4
 


 
Check Answer
 



10.     QID - 2.946 
 

What will be the result of attempting to compile and run the following class?


public class TestClass{
    public static void main(String args[ ] ){
       int i = 1;
       int[] iArr = {1};
       incr(i) ;
       incr(iArr) ;
       System.out.println( "i = " + i + "  iArr[0] = " + iArr [ 0 ] ) ;
    }
    public static void incr(int   n ) { n++ ; }
    public static void incr(int[ ] n ) { n [ 0 ]++ ; }
}


 

Select 1 option

A. The code will print i = 1 iArr[0] = 1
 


B. The code will print i = 1 iArr[0] = 2
 


C. The code will print i = 2 iArr[0] = 1
 


D. The code will print i = 2 iArr[0] = 2
 


E. The code will not compile.
 


 
Check Answer
 



11.     QID - 2.1398 
 

Given:

public class FunWithArgs {

    public static void main(String[][] args) {

        System.out.println(args[0][1]);

    }

    public static void main(String[] args) {

        FunWithArgs fwa = new FunWithArgs();

        String[][] newargs = {args};

        fwa.main(newargs);

    }

}



The above program is compiled with the command line:

javac FunWithArgs.java

and then run with:

java FunWithArgs a b c



What will be the output?
 

Select 1 option

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException at run time.
 


C. It will print b
 


D. It will print null
 


 
Check Answer
 



12.     QID - 2.1396 
 

What is the result of compiling and running the following program?



public class Learner {

    public static void main(String[] args) {

        String[] dataArr = new String[4];

        dataArr[1] = "Bill";

        dataArr[2] = "Steve";

        dataArr[3] = "Larry";

        try{

            for(String data : dataArr){

                System.out.print(data+" ");

            }

        }catch(Exception e){

            System.out.println(e.getClass());

        }

    }

}
 

Select 1 option

A. Bill Steve Larry null
 


B. Bill Steve Larry class java.lang.NullPointerException
 


C. class java.lang.Exception Bill Steve Larry
 


D. Bill Steve Larry class java.lang.Exception
 


E. null Bill Steve Larry
 


 
Check Answer
 



13.     QID - 2.938 
 

What will the following program print? 


class Test{
   public static void main(String[] args){
      int i = 4;
      int ia[][][] = new int[i][i = 3][i];
      System.out.println( ia.length + ", " + ia[0].length+", "+ ia[0][0].length);
   }
}

 

Select 1 option

A. It will not compile.
 


B. 3, 4, 3
 


C. 3, 3, 3
 


D. 4, 3, 4
 


E. 4, 3, 3
 


 
Check Answer
 



14.     QID - 2.1404 
 

Consider the following code:



        //INSERT CODE HERE

        a[0][0] = 1;

        a[0][1] = 2;

        



        a[1][0] = 3;

        a[1][1] = 4;

        a[1][2] = 5;

        a[1][3] = 6;

What can be inserted independently in the above code so that it will compile and run without any error or exception?
 

Select 2 options

A.         int[][] a = new int[2][];
 


B.         int[][] a = new int[2][4];
 


C.         int[][] a = new int[4][2];
 


D.         int[][] a = new int[2][];

        a[0] = new int[2];

        a[1] = new int[4];


 


E.         int[][] a = new int[4][];

        a[0] = new int[2];

        a[1] = new int[2];


 


 
Check Answer
 



15.     QID - 2.913 
 

Which of the following statements about an array are correct?
 

Select 1 option

A. An array can dynamically grow in size.
 


B. Arrays can be created only for primitive types.
 


C. Every array has a built in property named 'size' which tells you the number of elements in the array.
 


D. Every array has an implicit method named 'length' which tells you the number of elements in the array.
 


E. Element indexing starts at 0.
 


 
Check Answer
 



16.     QID - 2.987 
 

What will be the result of attempting to run the following program?



public class StringArrayTest{

   public static void main(String args[]){

      String[][][] arr  ={{ { "a", "b" , "c"}, { "d", "e", null } },{ {"x"}, null },{{"y"}},{ { "z","p"}, {} }

      };

      System.out.println(arr[0][1][2]);

   }

}


 

Select 1 option

A. It will throw NullPointerBoundsException.
 


B. It will throw ArrayIndexOutOfBoundsException.
 


C. It will print null.
 


D. It will run without any error but will print nothing.
 


E. None of the above.
 


 
Check Answer
 



17.     QID - 2.1381 
 

What will the following code print when compiled and run?



int [] [] array = {{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}};

int[] arr1 = array[4];

System.out.println (arr1[4][1]);

System.out.println (array[4][1]);


 

Select 1 option

A. 1

1
 


B. 1

4
 


C. 4

1
 


D. It will not compile.
 


E. It will throw ArrayIndexOutOfBoundsException at run time.
 


F. It will throw IllegalArgumentException at run time.
 


 
Check Answer
 



18.     QID - 2.1326 
 

What will happen when the following code is compiled and run?



class AX{

  static int[] x = new int[0];

  static{

   x[0] = 10;

  }

  public static void main(String[] args){

    AX ax = new AX();

  }

}
 

Select 1 option

A. It will throw NullPointerException at runtime.
 


B. It will throw ArrayIndexOutOfBoundsException at runtime.
 


C. It will throw ExceptionInInitializerError at runtime.
 


D. It will not compile.
 


 
Check Answer
 



19.     QID - 2.1137 
 

What will the following code snippet print?



 int index = 1;

 String[] strArr = new String[5];

 String   myStr  = strArr[index];

 System.out.println(myStr);


 

Select 1 option

A. nothing
 


B. null
 


C. It will throw ArrayIndexOutOfBounds at runtime.
 


D. It will print some junk value.
 


E. None of the above.
 


 
Check Answer
 



20.     QID - 2.1229 
 

Which of these array declarations and instantiations are legal?
 

Select 4 options

A. int[ ] a[ ] = new int [5][4] ;
 


B. int a[ ][ ] = new int [5][4] ;
 


C. int a[ ][ ] = new int [ ][4] ;
 


D. int[ ] a[ ] = new int[4][ ] ;
 


E. int[ ][ ] a = new int[5][4] ;
 


 
Check Answer
 



21.     QID - 2.1207 
 

Which of the following are valid code fragments:
 

Select 2 options

A. new Object[]{ "aaa", new Object(), new ArrayList(), 10};
 


B. new Object[]{ "aaa", new Object(), new ArrayList(), {} };
 


C. new Object[]{ "aaa", new Object(), new ArrayList(), new String[]{""} };
 


D. new Object[1]{ new Object() };
 


 
Check Answer
 



22.     QID - 2.1296 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

    String str = "111";

    boolean[] bA = new boolean[1];

    if( bA[0] ) str = "222";

    System.out.println(str);

  }

}
 

Select 1 option

A. 111
 


B. 222
 


C. It will not compile as bA[0] is uninitialized.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



23.     QID - 2.1316 
 

Which of the following statements will correctly create and initialize an array of Strings to non null elements?
 

Select 4 options

A. String[] sA = new String[1] { "aaa"};
 


B. String[] sA = new String[] { "aaa"};
 


C. String[] sA = new String[1] ; sA[0] = "aaa";
 


D. String[] sA = {new String( "aaa")};
 


E. String[] sA = { "aaa"};
 


 
Check Answer
 



24.     QID - 2.1115 
 

Consider the following program...



class ArrayTest{

   public static void main(String[] args){

      int ia[][] = { {1, 2}, null };

      for (int i = 0; i < 2; i++)

         for (int j = 0; j < 2; j++)

            System.out.println(ia[i][j]);

   }

}



Which of the following statements are true?
 

Select 1 option

A. It will not compile.
 


B. It will throw an ArrayIndexOutOfBoundsException at Runtime.
 


C. It will throw a NullPointerException at Runtime.
 


D. It will compile and run without throwing any exceptions.
 


E. None of the above.
 


 
Check Answer
 



25.     QID - 2.1244 
 

Given the following program, which statements are true?

 

// Filename: TestClass.java

public class TestClass{

   public static void main(String args[]){

      A[] a, a1;

      B[] b;

      a = new A[10]; a1  = a;

      b =  new B[20];

      a = b;  // 1

      b = (B[]) a;  // 2

      b = (B[]) a1; // 3

   }

}

class A { }

class B extends A { }
 

Select 2 options

A. Compile time error at line 3.
 


B. The program will throw a java.lang.ClassCastException at the line labelled 2 when run.
 


C. The program will throw a java.lang.ClassCastException at the line labelled 3 when run.
 


D. The program will compile and run if the (B[ ] ) cast in the line 2 and the whole line 3 is removed.
 


E. The cast at line 2 is needed.
 


 
Check Answer
 



26.     QID - 2.1262 
 

Consider the following code snippet ...



boolean[] b1 = new boolean[2];

boolean[] b2 = {true , false};

System.out.println( "" + (b1[0] == b2[0]) + ", "+ (b1[1] == b2[1])  );



What will it print ?
 

Select 1 option

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsError at Runtime.
 


C. false, true
 


D. true, false
 


E. It will print false, false.
 


 
Check Answer
 



27.     QID - 2.897 
 

Given the following code :


public class TestClass {

    int[][] matrix = new int[2][3];
    
    int a[] = {1, 2, 3};
    int b[] = {4, 5, 6};
            
    public int compute(int x, int y){
        //1 : Insert Line of Code here
    }
    
    public void loadMatrix(){
        for(int x=0; x<matrix.length; x++){
            for(int y=0; y<matrix[x].length; y++){
                //2: Insert Line of Code here
            }
        }
    }
}



What can be inserted at //1 and //2?
 

Select 1 option

A. return a(x)*b(y);

and

matrix(x, y) = compute(x, y);
 


B. return a[x]*b[y];

and

matrix[x, y] = compute(x, y);
 


C. return a[x]*b[y];

and

matrix[x][y] = compute(x, y);
 


D. return a(x)*b(y);

and

matrix(x)(y) = compute(x, y);
 


E. return a[x]*b[y];

and

matrix[[x][y]] = compute(x, y);
 


 
Check Answer
 



28.     QID - 2.1029 
 

The following class will print 'index = 2' when compiled and run.



class Test{

   public static int[ ] getArray() {  return null;  }

   public static void main(String[] args){

      int index = 1;

      try{

         getArray()[index=2]++;

      }

      catch (Exception e){  }  //empty catch

      System.out.println("index = " + index);

   }

}
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



29.     QID - 2.1307 
 

Given:



double daaa[][][] = new double[3][][];

double d = 100.0;

double[][] daa = new double[1][1];



Which of the following will not cause any problem at compile time or runtime?
 

Select 2 options

A. daaa[0] = d;
 


B. daaa[0] = daa;
 


C. daaa[0] = daa[0];
 


D. daa[1][1] = d;
 


E. daa = daaa[0];
 


 
Check Answer
 



30.     QID - 2.1191 
 

Which of the following code fragments will successfully initialize a two-dimensional array of chars named cA with a size such that cA[2][3] refers to a valid element?



1.

  char[][] cA = {  { 'a', 'b', 'c' },  { 'a', 'b', 'c' }   };

2.

  char cA[][] = new char[3][];

  for (int i=0; i<cA.length; i++) cA[i] = new char[4];

3.

  char cA[][] = { new char[ ]{ 'a', 'b', 'c' }  ,   new char[ ]{ 'a', 'b', 'c' }  };

4

  char cA[3][2] = new char[][] {  { 'a', 'b', 'c' },   { 'a', 'b', 'c' }   };

5.

  char[][] cA = { "1234", "1234",  "1234"  };
 

Select 1 option

A. 1, 3
 


B. 4, 5
 


C. 2, 3
 


D. 1, 2, 3
 


E. 2
 


 
Check Answer
 



31.     QID - 2.1106 
 

Is it possible to create arrays of length zero?
 

Select 1 option

A. Yes, you can create arrays of any type with length zero.
 


B. Yes, but only for primitive datatypes.
 


C. Yes, but only for arrays of object references.
 


D. Yes, and it is same as a null Array.
 


E. No, arrays of length zero do not exist in Java.
 


 
Check Answer
 



32.     QID - 2.1202 
 

What would be the result of trying to compile and run the following program?

public class Test{

   int[] ia = new int[1];

   Object oA[]  = new Object[1];

   boolean bool;

   public static void main(String args[]){

      Test test = new Test();

      System.out.println(test.ia[0] + "  " + test.oA[0]+"  "+test.bool);

   }

}
 

Select 1 option

A. The program will fail to compile, because of uninitialized variable 'bool'.
 


B. The program will throw a java.lang.NullPointerException when run.
 


C. The program will print "0 null false".
 


D. The program will print "0 null true".
 


E. The program will print null and false but will print junk value for ia[0].
 


 
Check Answer
 



Creating and Using Arrays (Answered)



01.     QID - 2.1076 : Creating and Using Arrays 
 

What would be the result of compiling and running the following program?



class SomeClass{

   public static void main(String args[]){

      int size = 10;

      int[] arr = new int[size];

      for (int i = 0 ; i < size ; ++i) System.out.println(arr[i]);

   }

}
 

Correct Option is :  E 

A. The code will fail to compile, because the int[] array declaration is incorrect.
 


B. The program will compile, but will throw an IndexArrayOutOfBoundsException when run.
 


C. The program will compile and run without error, and will print nothing.
 


D. The program will compile and run without error and will print null ten times.
Here, all the array elements are initialized to have 0.


E. The program will compile and run without error and will print 0 ten times.
It correctly will declare and initialize an array of length 10 containing int values initialized to have 0.


Explanation: 
Elements of Arrays of primitive types are initialized to their default value ( i.e. 0 for integral types, 0.0 for float/double and false for boolean)

Elements of Arrays of non-primitive types are initialized to null.

 
Back to Question without Answer
 



02.     QID - 2.1387 : Creating and Using Arrays 
 

Identify correct statements about a two dimensional array.
 

Correct Option is :  D 

A. It is like a rectangular matrix where number of rows and number of columns may be different but each row or each column have the same number of elements.
 


B. It is like a square matrix where number of rows and number of columns are same and each row or each column have the same number of elements.
 


C. The number of rows and columns must be specified at the time it is declared.
Size of the dimensions is required to be specified only at the time of instantiation and not at the time of declaration. For example,

int[][] ia; //this is a valid declaration.

int[][] ia = new int[2][3];//This is a valid declaration and a valid instantiation



Further, only the size of the first dimension is required to be specified at the time of instantiation for an array of more than one dimension. Sizes of the other dimensions may be left out.

int[][] iaa=new int[3][]; 

int[][][] iaaa = new int[3][][]; //Both are valid. 

This is allowed because a multi dimensional array in Java is just an array of arrays. They do not have to be symmetric, that is, each sub array is an independent array and so they do not have to be of the same size. So, in the above example, iaa[0] can be initialized to new int[5], and ia[1] to new int[10], while ia[2] can be left null.


D. It is basically an array of arrays.
 


Explanation: 
Unlike some other languages, multi dimensional arrays in Java are not like matrices. They are just arrays of arrays. For example, if you have a two dimensional array then each element of this array is a one dimensional array. Each such array element is independent and therefore can be of different lengths (but not of different type).

 
Back to Question without Answer
 



03.     QID - 2.971 : Creating and Using Arrays 
 

What will be the result of trying to compile and execute the following program?



public class TestClass{

   public static void main(String args[] ){

      int i = 0 ;

      int[] iA = {10, 20} ;

      iA[i] = i = 30 ;

      System.out.println(""+ iA[ 0 ] + " " + iA[ 1 ] + "  "+i) ;

    }

}


 

Correct Option is :  D 

A. It will throw ArrayIndexOutOfBoundsException at Runtime.
 


B. Compile time Error.
 


C. It will print 10 20 30
 


D. It will print 30 20 30
 


E. It will print 0 20 30
 


Explanation: 
The statement iA[i] = i = 30 ; will be processed as follows:

iA[i] = i = 30; => iA[0] = i = 30 ;  =>  i = 30; iA[0] = i ; =>   iA[0] = 30 ;



Here is what JLS says on this:

1 Evaluate Left-Hand Operand First  

2 Evaluate Operands before Operation  

3 Evaluation Respects Parentheses and Precedence  

4 Argument Lists are Evaluated Left-to-Right  



For Arrays: First, the dimension expressions are evaluated, left-to-right. If any of the expression evaluations completes abruptly, the expressions to the right of it are not evaluated.

 
Back to Question without Answer
 



04.     QID - 2.1384 : Creating and Using Arrays 
 

Consider the following code:



public class ArrayTest {



    static int[][] table = new int[2][3];



    public static void init() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to initialize



            }

        }

    }



    public static void multiply() {

        for (int x = 0; x < table.length; x++) {

            for (int y = 0; y < table[x].length; y++) {



                //insert code to multiply



            }

        }

    }

}



Which of the following options can be used in the code above so that the init method initializes each table element to the sum of its row and column number and the multiply method just multiplies the element value by 2?
 

Correct Option is :  B 

A. table[x, y] = x+y;

and

table[x, y] = table[x, y]*2;
 


B. table[x][y] = x+y;

and

table[x][y] = table[x][y]*2;
This code snippet illustrates correct syntax for accessing array elements in a multi dimensional array. All other options are syntactically incorrect and will not compile.


C. table[[x] [y]] = x+y;

and

table[[x] [y]] = table[[x] [y]]*2;
 


D. table(x, y) = x+y;

and

table(x, y) = table(x, y)*2;
 


 
Back to Question without Answer
 



05.     QID - 2.1354 : Creating and Using Arrays 
 

Which of the following correctly declare a variable which can hold an array of 10 integers?
 

Correct Options are :  A C 

A. int[ ] iA
 


B. int[10] iA
Size of the array is NEVER specified on the Left Hand Side.


C. int iA[ ]
 


D. Object[ ] iA
Here, iA is an array of Objects. It cannot hold an array of integers.


E. Object[10] iA
Size of the array is NEVER specified on the LHS.


Explanation: 
Note that an array of integers IS an Object :

 Object obj = new int[]{ 1, 2, 3 }; // is valid.

But it is not an array of objects.

 Object[] o = new int[10]; // is not valid.



Difference between the placement of square brackets:

int[] i, j; //here i and j are both array of integers.

int i[], j; //here only i is an array of integers. j is just an integer.

 
Back to Question without Answer
 



06.     QID - 2.1286 : Creating and Using Arrays 
 

Consider the following array definitions:

int[] array1, array2[];

int[][] array3;

int[] array4[], array5[];

Which of the following are valid statements?
 

Correct Options are :  A B E 

A. array2 = array3;
 


B. array2 = array4;
 


C. array1 = array2;
 


D. array4 = array1;
 


E. array5 = array3;
 


Explanation: 
There is a subtle difference between: int[] i; and int i[]; although in both the cases, i is an array of integers.

The difference is if you declare multiple variables in the same statement such as: int[] i, j; and int i[], j;, j is not of the same type in the two cases.

In the first case, j is an array of integers while in the second case, j is just an integer.

Therefore, in this question:

array1 is an array of int

array2, array3, array4, and array5  are arrays of int arrays

Therefore, option 1, 2 and 5 are valid.

 
Back to Question without Answer
 



07.     QID - 2.843 : Creating and Using Arrays 
 

Given the following declaration:



  int[][] twoD = { { 1, 2, 3} , { 4, 5, 6, 7}, { 8, 9, 10 } };



What will the following lines of code print?



System.out.println(twoD[1].length);

System.out.println(twoD[2].getClass().isArray());

System.out.println(twoD[1][2]);
 

Correct Option is :  A 

A. 4

true

6
 


B. 3

true

3
 


C. 3

false

3
 


D. 4

false

6
 


Explanation: 
In Java, array numbering starts from 0. So in this case, twoD is an array containing 3 other arrays.

twoD[0] is { 1, 2, 3} , twoD[1] is { 4, 5, 6, 7}, and twoD[2] is  { 8, 9, 10 }.



Thus, twoD[1].length is 4 and twoD[1][2] is the third element in { 4, 5, 6, 7}, which is 6.



In Java, arrays are just like regular Objects and arrays of different types have different class names. For example, the class name of an int[] is [I and the class name for int[][] is [[I.



For array classes, the isArray() method of a Class returns true. For example, twoD.getClass().isArray() will return true.



There are a few questions in the exam that require you to know about this.

 
Back to Question without Answer
 



08.     QID - 2.1443 : Creating and Using Arrays 
 

What will the following code print when compiled and run?



public class OrderTest {



    public void initData(String[] arr){

        int ind = 0;

        for(String str : arr){

            str.concat(str+" "+ind);

            ind++;

        }

    }

    

    public void printData(String[] arr){

        for(String str : arr){

            System.out.println(str);

        }

    }

    

    public static void main(String[] args) {

        OrderTest ot = new OrderTest();

        String[] arr = new String[2];

        ot.initData(arr);

        ot.printData(arr);

    }

}
 

Correct Option is :  E 

A. null 0

null 1
 


B. 0

1
 


C.    0

   1

(There is a space before 0 and 1)
 


D. null

null
 


E. It will throw a RuntimeException at run time.
When you do new String[2], you create a String array of two elements. arr is therefore not null. But each element of the array is not given any value and is therefore null. When you call a method on that element (i.e. str.concat(str+" "+ind); in initData), it will generate a NullPointerException, which is a RuntimeException.


 
Back to Question without Answer
 



09.     QID - 2.1036 : Creating and Using Arrays 
 

Consider the following class...



class Test{

   public static void main(String[ ] args){

      int[] a = { 1, 2, 3, 4 };

      int[] b = { 2, 3, 1, 0 };

      System.out.println( a [ (a = b)[3] ] );

   }

}



What will it print when compiled and run ?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException when run.
 


C. It will print 1.
 


D. It will print 3.
 


E. It will print 4
 


Explanation: 
In an array access, the expression to the left of the brackets appears to be fully evaluated before any part of the expression within the brackets is evaluated.

In the expression a[(a=b)[3]], the expression a is fully evaluated before the expression (a=b)[3]; this means that the original value of a is fetched and remembered while the expression (a=b)[3] is evaluated. This array referenced by the original value of a is then subscripted by a value that is element 3 of another array (possibly the same array) that was referenced by b and is now also referenced by a. So, it is actually a[0] = 1.

Note that if evaluation of the expression to the left of the brackets completes abruptly, no part of the expression within the brackets will appear to have been evaluated.

 
Back to Question without Answer
 



10.     QID - 2.946 : Creating and Using Arrays 
 

What will be the result of attempting to compile and run the following class?


public class TestClass{
    public static void main(String args[ ] ){
       int i = 1;
       int[] iArr = {1};
       incr(i) ;
       incr(iArr) ;
       System.out.println( "i = " + i + "  iArr[0] = " + iArr [ 0 ] ) ;
    }
    public static void incr(int   n ) { n++ ; }
    public static void incr(int[ ] n ) { n [ 0 ]++ ; }
}


 

Correct Option is :  B 

A. The code will print i = 1 iArr[0] = 1
 


B. The code will print i = 1 iArr[0] = 2
 


C. The code will print i = 2 iArr[0] = 1
 


D. The code will print i = 2 iArr[0] = 2
 


E. The code will not compile.
There is no problem with the code.


Explanation: 
Arrays are proper objects (i.e. iArr instanceof Object returns true) and Object references are passed by value (so effectively, it seems as though objects are being passed by reference).

So the value of reference of iArr is passed to the method incr(int[] i); This method changes the actual value of the int element at 0.

 
Back to Question without Answer
 



11.     QID - 2.1398 : Creating and Using Arrays 
 

Given:

public class FunWithArgs {

    public static void main(String[][] args) {

        System.out.println(args[0][1]);

    }

    public static void main(String[] args) {

        FunWithArgs fwa = new FunWithArgs();

        String[][] newargs = {args};

        fwa.main(newargs);

    }

}



The above program is compiled with the command line:

javac FunWithArgs.java

and then run with:

java FunWithArgs a b c



What will be the output?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsException at run time.
 


C. It will print b
 


D. It will print null
 


Explanation: 
There is no problem with the code. The main method is just overloaded. 

When it is run, the main method with String[] will be called. This method then calls the main with String[][] with an argument { {"a", "b", "c"} } 

Thus, args[0][1] refers to "b", which is what is printed.

 
Back to Question without Answer
 



12.     QID - 2.1396 : Creating and Using Arrays 
 

What is the result of compiling and running the following program?



public class Learner {

    public static void main(String[] args) {

        String[] dataArr = new String[4];

        dataArr[1] = "Bill";

        dataArr[2] = "Steve";

        dataArr[3] = "Larry";

        try{

            for(String data : dataArr){

                System.out.print(data+" ");

            }

        }catch(Exception e){

            System.out.println(e.getClass());

        }

    }

}
 

Correct Option is :  E 

A. Bill Steve Larry null
 


B. Bill Steve Larry class java.lang.NullPointerException
 


C. class java.lang.Exception Bill Steve Larry
 


D. Bill Steve Larry class java.lang.Exception
 


E. null Bill Steve Larry
 


Explanation: 
Array indexing starts with 0. The first element therefore is at dataArr[0], which is not set in this code. It is initialized by default to null. Hence, the code prints null Bill Steve Larry.

 
Back to Question without Answer
 



13.     QID - 2.938 : Creating and Using Arrays 
 

What will the following program print? 


class Test{
   public static void main(String[] args){
      int i = 4;
      int ia[][][] = new int[i][i = 3][i];
      System.out.println( ia.length + ", " + ia[0].length+", "+ ia[0][0].length);
   }
}

 

Correct Option is :  E 

A. It will not compile.
 


B. 3, 4, 3
 


C. 3, 3, 3
 


D. 4, 3, 4
 


E. 4, 3, 3
 


Explanation: 
In an array creation expression, there may be one or more dimension expressions, each within brackets. Each dimension expression is fully evaluated before any part of any dimension expression to its right. The first dimension is calculated as 4 before the second dimension expression sets 'i' to 3.

Note that if evaluation of a dimension expression completes abruptly, no part of any dimension expression to its right will appear to have been evaluated.

 
Back to Question without Answer
 



14.     QID - 2.1404 : Creating and Using Arrays 
 

Consider the following code:



        //INSERT CODE HERE

        a[0][0] = 1;

        a[0][1] = 2;

        



        a[1][0] = 3;

        a[1][1] = 4;

        a[1][2] = 5;

        a[1][3] = 6;

What can be inserted independently in the above code so that it will compile and run without any error or exception?
 

Correct Options are :  B D 

A.         int[][] a = new int[2][];
This will instantiate only the first dimension of the array. The elements in the second dimension will be null. In other words, a will be instantiated to two elements but a[0] and a[1] will be null and so a[0][0] (and access to all other such ints) will throw a NullPointerException.


B.         int[][] a = new int[2][4];
This is correct because it will instantiate both the dimensions of the array. i.e. a will be initialized with 2 references to int arrays a[0] and a[1]. Further, the arrays pointed to by a[0] and a[1] will also be initialized with size 4.


C.         int[][] a = new int[4][2];
This will initialize a to an array of size 4 and each element of this array will be initialized to an int array of size 2. Therefore, a[0][2], a[0][3], a[1][2], and a[1][3],  will cause an ArrayIndexOutOfBoundsException to be thrown.


D.         int[][] a = new int[2][];

        a[0] = new int[2];

        a[1] = new int[4];


Observe that this creates a jagged array. i.e. the elements in the second dimension of a are not of same length. The first element in the second dimension is only of length 2 while the second element is of length 4. Since the given code doesn't need a[0][2] and a[0][3], it is ok.


E.         int[][] a = new int[4][];

        a[0] = new int[2];

        a[1] = new int[2];


In this case, a[1][2] and a[1][3] will cause an ArrayIndexOutOfBoundsException to be thrown.


 
Back to Question without Answer
 



15.     QID - 2.913 : Creating and Using Arrays 
 

Which of the following statements about an array are correct?
 

Correct Option is :  E 

A. An array can dynamically grow in size.
Arrays cannot grow in size once created. ArrayLists can do that.


B. Arrays can be created only for primitive types.
You can have arrays for objects also. For example:

Object[] objArray = new Object[4];

String[] arrayOfStrings = { "a", "b" };


C. Every array has a built in property named 'size' which tells you the number of elements in the array.
It is named length and not size. ArrayList has a method named size() that returns the number of elements in the ArrayList.



String[] sa = { "a", "b" };

int k = sa.length; //k will be assigned a value of 2.



ArrayList al = new ArrayList();

int k = al.size(); //k will be assigned a value of 0.


D. Every array has an implicit method named 'length' which tells you the number of elements in the array.
 


E. Element indexing starts at 0.
 


 
Back to Question without Answer
 



16.     QID - 2.987 : Creating and Using Arrays 
 

What will be the result of attempting to run the following program?



public class StringArrayTest{

   public static void main(String args[]){

      String[][][] arr  ={{ { "a", "b" , "c"}, { "d", "e", null } },{ {"x"}, null },{{"y"}},{ { "z","p"}, {} }

      };

      System.out.println(arr[0][1][2]);

   }

}


 

Correct Option is :  C 

A. It will throw NullPointerBoundsException.
There is no such exception.


B. It will throw ArrayIndexOutOfBoundsException.
 


C. It will print null.
 


D. It will run without any error but will print nothing.
 


E. None of the above.
 


Explanation: 
arr[0][1][2] => [0] = { { "a", "b" , "c"}, { "d", "e", null } }, [1] = { "d", "e", null } and [2] = null.

So it will print null.

 
Back to Question without Answer
 



17.     QID - 2.1381 : Creating and Using Arrays 
 

What will the following code print when compiled and run?



int [] [] array = {{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}};

int[] arr1 = array[4];

System.out.println (arr1[4][1]);

System.out.println (array[4][1]);


 

Correct Option is :  D 

A. 1

1
 


B. 1

4
 


C. 4

1
 


D. It will not compile.
arr1 is an array of one dimension. But arr1[4][1] is trying to access it as a two dimensional array. This will, therefore, not compile.


E. It will throw ArrayIndexOutOfBoundsException at run time.
 


F. It will throw IllegalArgumentException at run time.
 


 
Back to Question without Answer
 



18.     QID - 2.1326 : Creating and Using Arrays 
 

What will happen when the following code is compiled and run?



class AX{

  static int[] x = new int[0];

  static{

   x[0] = 10;

  }

  public static void main(String[] args){

    AX ax = new AX();

  }

}
 

Correct Option is :  C 

A. It will throw NullPointerException at runtime.
 


B. It will throw ArrayIndexOutOfBoundsException at runtime.
 


C. It will throw ExceptionInInitializerError at runtime.
The following is the output when the program is run:

java.lang.ExceptionInInitializerError

Caused by: java.lang.ArrayIndexOutOfBoundsException: 0

        at AX.<clinit>(SM.java:6)

Exception in thread "main" 

Java Result: 1



Note that the program ends with ExceptionInInitializerError because any exception thrown in a static block is wrapped into ExceptionInInitializerError and then that ExceptionInInitializerError is thrown. Remember that a static or instance initializer can only throw a RuntimeException. If you try to throw a checked exception from a static or instance initializer block to the outside, the code will not compile.


D. It will not compile.
 


Explanation: 
Even though the line x[0] = 10; will throw java.lang.ArrayIndexOutOfBoundsException, JVM will wrap it and rethrow java.lang.ExceptionInInitializerError.

 
Back to Question without Answer
 



19.     QID - 2.1137 : Creating and Using Arrays 
 

What will the following code snippet print?



 int index = 1;

 String[] strArr = new String[5];

 String   myStr  = strArr[index];

 System.out.println(myStr);


 

Correct Option is :  B 

A. nothing
 


B. null
 


C. It will throw ArrayIndexOutOfBounds at runtime.
 


D. It will print some junk value.
 


E. None of the above.
 


Explanation: 
When you create an array of Objects ( here, Strings) all the elements are initialized to null. So in the line 3, null is assigned to myStr.

Note that. empty string is "" ( String str = ""; ) and is not same as null.

 
Back to Question without Answer
 



20.     QID - 2.1229 : Creating and Using Arrays 
 

Which of these array declarations and instantiations are legal?
 

Correct Options are :  A B D E 

A. int[ ] a[ ] = new int [5][4] ;
This will create an array of length 5. Each element of this array will be an array of 4 ints.


B. int a[ ][ ] = new int [5][4] ;
This will create an array of length 5. Each element of this array will be an array of 4 ints.


C. int a[ ][ ] = new int [ ][4] ;
The statement int[ ][4] will not compile, because the dimensions must be created from left to right.


D. int[ ] a[ ] = new int[4][ ] ;
This will create an array of length 4. Each element of this array will be null. But you can assign an array of ints of any length to any of the elements. For example:

a[0] = new int[10];//valid

a[1] = new int[4];//valid

a[2] = new int[]; //invalid because you must specify the length

a[3] = new Object[] //invalid because a[3] can only refer to an array of ints.



This shows that while creating a one dimensional array, the length must be specified but while creating multidimensional arrays, the length of the last dimension can be left unspecified. Further, the length of multiple higher dimensions after the first one can also be left unspecified if none of the dimensions are specified after it. So for example,

a[][][][] = new int[4][3][3][5]; is same as a[][][][] = new int[4][][][];  (Note that the first dimension must be specified.)



Thus,  multidimensional arrays do not have to be symmetrical.


E. int[ ][ ] a = new int[5][4] ;
This will create an array of length 5. Each element of this array will be an array of 4 ints.


Explanation: 
The [] notation can be placed both before and after the variable name in an array declaration.
   int[] ia, ba;  // here ia and ba both are int arrays.
   int ia[], ba; //here only ia is int array and ba is an int.

Multidimensional arrays are created by creating arrays that can contain references to other arrays .

 
Back to Question without Answer
 



21.     QID - 2.1207 : Creating and Using Arrays 
 

Which of the following are valid code fragments:
 

Correct Options are :  A C 

A. new Object[]{ "aaa", new Object(), new ArrayList(), 10};
10 is a primitive and not an Object but due to auto-boxing it will be converted into an Integer object and that object will then be stored into the array of Objects.


B. new Object[]{ "aaa", new Object(), new ArrayList(), {} };
{} is not a valid way to create an Object here. However, it is valid while creating an array. For example, the following are valid:

String[] sa = { };  //assigns a valid String[] object of length 0 to sa

Object arr[][] = new Object[][] {new String[5], {} }; //assigns a valid Object[] object of length 0 to arr[1].


C. new Object[]{ "aaa", new Object(), new ArrayList(), new String[]{""} };
Every array is an Object so new String[]{""} is also an Object and can be placed in an array of objects.


D. new Object[1]{ new Object() };
You can't specify array length if you are initializing it at the same place.


Explanation: 
1. An array of objects can store Objects of any class.

2. Primitives (i.e. int, byte, char, short, boolean, long, double, and float) are NOT objects.

3. An array (of primitives as well as of objects) is an Object.

 
Back to Question without Answer
 



22.     QID - 2.1296 : Creating and Using Arrays 
 

What will the following program print?



public class TestClass{

  public static void main(String[] args){

    String str = "111";

    boolean[] bA = new boolean[1];

    if( bA[0] ) str = "222";

    System.out.println(str);

  }

}
 

Correct Option is :  A 

A. 111
 


B. 222
 


C. It will not compile as bA[0] is uninitialized.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
All the arrays are initialized to contain the default values of their type. This means,

int[] iA = new int[10]; will contain 10 integers with a value of 0.

Object[] oA = new Object[10]; will contain 10 object references pointing to null.

boolean[] bA = new boolean[10] will contain 10 booleans of value false.

So, as bA[0] is false, the if condition fails and str remains 111.

 
Back to Question without Answer
 



23.     QID - 2.1316 : Creating and Using Arrays 
 

Which of the following statements will correctly create and initialize an array of Strings to non null elements?
 

Correct Options are :  B C D E 

A. String[] sA = new String[1] { "aaa"};
Array size cannot be given here as the array is being initialized in the declaration.


B. String[] sA = new String[] { "aaa"};
 


C. String[] sA = new String[1] ; sA[0] = "aaa";
 


D. String[] sA = {new String( "aaa")};
 


E. String[] sA = { "aaa"};
 


 
Back to Question without Answer
 



24.     QID - 2.1115 : Creating and Using Arrays 
 

Consider the following program...



class ArrayTest{

   public static void main(String[] args){

      int ia[][] = { {1, 2}, null };

      for (int i = 0; i < 2; i++)

         for (int j = 0; j < 2; j++)

            System.out.println(ia[i][j]);

   }

}



Which of the following statements are true?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw an ArrayIndexOutOfBoundsException at Runtime.
 


C. It will throw a NullPointerException at Runtime.
 


D. It will compile and run without throwing any exceptions.
 


E. None of the above.
 


Explanation: 
It will throw a NullPointerException for ia[1][0] because ia[1] is null.

Note that null is not same as having less number of elements in an array than expected.

If you try to access ia[2][0], it would have thrown ArrayIndexOutOfBoundsException because the length of ia is only 2 and so ia[2] tries to access an element out of that range. ia[2] is not null, it simply does not exist.

 
Back to Question without Answer
 



25.     QID - 2.1244 : Creating and Using Arrays 
 

Given the following program, which statements are true?

 

// Filename: TestClass.java

public class TestClass{

   public static void main(String args[]){

      A[] a, a1;

      B[] b;

      a = new A[10]; a1  = a;

      b =  new B[20];

      a = b;  // 1

      b = (B[]) a;  // 2

      b = (B[]) a1; // 3

   }

}

class A { }

class B extends A { }
 

Correct Options are :  C E 

A. Compile time error at line 3.
 


B. The program will throw a java.lang.ClassCastException at the line labelled 2 when run.
 


C. The program will throw a java.lang.ClassCastException at the line labelled 3 when run.
 


D. The program will compile and run if the (B[ ] ) cast in the line 2 and the whole line 3 is removed.
 


E. The cast at line 2 is needed.
 


Explanation: 
The line //1 will be allowed during compilation, since assignment is done from a subclass reference to a superclass reference.

The cast in line //2 is needed because a superclass reference is assigned to a subclass reference variable. And this works at runtime because the object referenced to by a is actually of an array of B.

Now, the cast at line //3 tells the compiler not to worry, that I'm a good programmer and I know what I am doing and the object referenced by the super class reference (a1) will actually be of class B at run time. So there is no compile time error. But at run time, this fails because the actual object is not an array of B but is an array of A.

 
Back to Question without Answer
 



26.     QID - 2.1262 : Creating and Using Arrays 
 

Consider the following code snippet ...



boolean[] b1 = new boolean[2];

boolean[] b2 = {true , false};

System.out.println( "" + (b1[0] == b2[0]) + ", "+ (b1[1] == b2[1])  );



What will it print ?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ArrayIndexOutOfBoundsError at Runtime.
 


C. false, true
 


D. true, false
 


E. It will print false, false.
 


Explanation: 
Note that whenever you create an array all of its elements are automatically given defaults values. Numeric types are initialized to 0, objects are initialized to null, and booleans to false.



So if you have, float[ ] f = new float[3]; f[0], f[1] and f[2] will all be 0.0.

if you have Object[ ] o = new String[3]; o[0], o[1] and o[2] will all be null.

In this case, b1[0] and b1[1] are false.

whereas b2[0] and b2[1] are true and false.

So the answer is false and true.

 
Back to Question without Answer
 



27.     QID - 2.897 : Creating and Using Arrays 
 

Given the following code :


public class TestClass {

    int[][] matrix = new int[2][3];
    
    int a[] = {1, 2, 3};
    int b[] = {4, 5, 6};
            
    public int compute(int x, int y){
        //1 : Insert Line of Code here
    }
    
    public void loadMatrix(){
        for(int x=0; x<matrix.length; x++){
            for(int y=0; y<matrix[x].length; y++){
                //2: Insert Line of Code here
            }
        }
    }
}



What can be inserted at //1 and //2?
 

Correct Option is :  C 

A. return a(x)*b(y);

and

matrix(x, y) = compute(x, y);
( and ) are used to call a method on an object. To access array elements, you need to use [ and ].


B. return a[x]*b[y];

and

matrix[x, y] = compute(x, y);
 


C. return a[x]*b[y];

and

matrix[x][y] = compute(x, y);
 


D. return a(x)*b(y);

and

matrix(x)(y) = compute(x, y);
a(x), b(y), and matrix(x)(y) are invalid because a, b, and matrix are not methods.


E. return a[x]*b[y];

and

matrix[[x][y]] = compute(x, y);
[[x][y]] is invalid syntax.


Explanation: 
The correct syntax to access any element within an array is to use the square brackets - [ ]. Thus, to access the first element in an array, you would use array[0].



For a multi dimensional array, to reach an individual item, you need to specify index for each dimension. For example, since matrix is a two dimensional array, matrix is an array of array and matrix[0] will give you the first array of the arrays. matrix[0][0] will give you the first element of the first array of the arrays.

 
Back to Question without Answer
 



28.     QID - 2.1029 : Creating and Using Arrays 
 

The following class will print 'index = 2' when compiled and run.



class Test{

   public static int[ ] getArray() {  return null;  }

   public static void main(String[] args){

      int index = 1;

      try{

         getArray()[index=2]++;

      }

      catch (Exception e){  }  //empty catch

      System.out.println("index = " + index);

   }

}
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
If the array reference expression produces null instead of a reference to an array, then a NullPointerException is thrown at runtime, but only after all parts of the array reference expression have been evaluated and only if these evaluations completed normally. 



This means, first index = 2 will be executed, which assigns 2 to index. After that null[2] is executed, which throws a NullPointerException. But this exception is caught by the catch block, which prints nothing. So it seems like NullPointerException is not thrown but it actually is.



In other words, the embedded assignment of 2 to index occurs before the check for array reference produced by getArray().



In an array access, the expression to the left of the brackets appears to be fully evaluated before any part of the expression within the brackets is evaluated. Note that if evaluation of the expression to the left of the brackets completes abruptly, no part of the expression within the brackets will appear to have been evaluated.

 
Back to Question without Answer
 



29.     QID - 2.1307 : Creating and Using Arrays 
 

Given:



double daaa[][][] = new double[3][][];

double d = 100.0;

double[][] daa = new double[1][1];



Which of the following will not cause any problem at compile time or runtime?
 

Correct Options are :  B E 

A. daaa[0] = d;
daaa[0] should be a 2 dimensional array because daaa is a 3 dimensional array.


B. daaa[0] = daa;
 


C. daaa[0] = daa[0];
daaa[0] should be a 2 dimensional array while daa[0] is a one dimensional array.


D. daa[1][1] = d;
daa[1][1] will cause an ArrayIndexOutOfBoundsException because daa's length is only 1 and the indexing starts from 0. To access the first element, you should use daa[0][0].


E. daa = daaa[0];
 


 
Back to Question without Answer
 



30.     QID - 2.1191 : Creating and Using Arrays 
 

Which of the following code fragments will successfully initialize a two-dimensional array of chars named cA with a size such that cA[2][3] refers to a valid element?



1.

  char[][] cA = {  { 'a', 'b', 'c' },  { 'a', 'b', 'c' }   };

2.

  char cA[][] = new char[3][];

  for (int i=0; i<cA.length; i++) cA[i] = new char[4];

3.

  char cA[][] = { new char[ ]{ 'a', 'b', 'c' }  ,   new char[ ]{ 'a', 'b', 'c' }  };

4

  char cA[3][2] = new char[][] {  { 'a', 'b', 'c' },   { 'a', 'b', 'c' }   };

5.

  char[][] cA = { "1234", "1234",  "1234"  };
 

Correct Option is :  E 

A. 1, 3
 


B. 4, 5
 


C. 2, 3
 


D. 1, 2, 3
 


E. 2
 


Explanation: 
1 and 3 declare a two dimensional array alright but they create the array of size 2, 3. And cA[2][3] means we need an array of

size 3, 4 because the numbering starts from 0.

4 : You cannot put array size information on left hand side of equals sign.

5 : This is a one dimensional array and that too of strings. Note that a java String is not equivalent to 1 dimensional array of chars.

This leaves us with only one choice 2.

 
Back to Question without Answer
 



31.     QID - 2.1106 : Creating and Using Arrays 
 

Is it possible to create arrays of length zero?
 

Correct Option is :  A 

A. Yes, you can create arrays of any type with length zero.
Java allows arrays of length zero to be created.  Here is an example:

int[] zeroLengthArray1 = new int[0];

System.out.println(zeroLengthArray1.length); //will print 0

String[] zeroLengthArray2 = new String[0];

System.out.println(zeroLengthArray2.length);  //will print 0




B. Yes, but only for primitive datatypes.
 


C. Yes, but only for arrays of object references.
 


D. Yes, and it is same as a null Array.
A null pointer is different from an array of length zero. A reference being null or pointing to null means it is not pointing to anything at all. But an array of length zero is a valid object. Thus, a reference pointing to such an array is not pointing to null.



For example, if you have int[] intArr = new int[0]; then (intArr == null) is false.


E. No, arrays of length zero do not exist in Java.
 


Explanation: 
Example: When a Java program is run without any program arguments, the String[] args argument to main() gets an array of length Zero.

 
Back to Question without Answer
 



32.     QID - 2.1202 : Creating and Using Arrays 
 

What would be the result of trying to compile and run the following program?

public class Test{

   int[] ia = new int[1];

   Object oA[]  = new Object[1];

   boolean bool;

   public static void main(String args[]){

      Test test = new Test();

      System.out.println(test.ia[0] + "  " + test.oA[0]+"  "+test.bool);

   }

}
 

Correct Option is :  C 

A. The program will fail to compile, because of uninitialized variable 'bool'.
No, All the instance variables are initialized by default values.


B. The program will throw a java.lang.NullPointerException when run.
No reason for this at all.


C. The program will print "0 null false".
 


D. The program will print "0 null true".
All the variables, including the array elements, will be initialized to their default values.


E. The program will print null and false but will print junk value for ia[0].
All the elements of the arrays of primitives are initialized to default values.


Explanation: 
Following are the default values that instance variables are initialized with if not initialized explicitly:

  types (byte, short, char, int, long, float, double) to 0 ( or 0.0 ).

All Object types to null.

boolean to false.

 
Back to Question without Answer
 



Using Loop Constructs
 
Exam Objectives - 
 
Create and use while loops
Create and use for loops including the enhanced for loop
Create and use do/while loops
Compare loop constructs
Use break and continue



01.     QID - 2.1114 
 

What will the following code print?


public class TestClass{
        int x = 5;
        int getX(){ return x; }

        public static void main(String args[]) throws Exception{
            TestClass tc = new TestClass();
            tc.looper();
            System.out.println(tc.x);
        }
        
        public void looper(){
            int x = 0;
            while( (x = getX()) != 0 ){
                for(int m = 10; m>=0; m--){
                    x = m;
                }
            }
            
       }     
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print 0.
 


D. It will print 5.
 


E. None of these.
 


 
Check Answer
 



02.     QID - 2.1059 
 

Identify valid for constructs...

Assume that Math.random() returns a double between 0.0 and 1.0 (not including 1.0).
 

Select 3 options

A. for(;Math.random()<0.5;){

    System.out.println("true");

}
 


B. for(;;Math.random()<0.5){

    System.out.println("true");

}
 


C. for(;;Math.random()){

    System.out.println("true");

}
 


D. for(;;){

    Math.random()<.05? break : continue;

}
 


E. for(;;){

    if(Math.random()<.05) break;

}
 


 
Check Answer
 



03.     QID - 2.1016 
 

What will the following code snippet print?


int count = 0, sum = 0;
do{
       if(count % 3 == 0) continue;
       sum+=count;
}
while(count++ < 11);
System.out.println(sum);

 

Select 1 option

A. 49
 


B. 48
 


C. 37
 


D. 36
 


E. 38
 


 
Check Answer
 



04.     QID - 2.960 
 

What will the following code print when compiled and run?


class Test{
    public static void main(String args[]){
        int c = 0;
        A: for(int i = 0; i < 2; i++){
            B: for(int j = 0; j < 2; j++){
                C: for(int k = 0; k < 3; k++){
                    c++;
                    if(k>j) break;
                }
            }
        }
        System.out.println(c);
    }
}

 

Select 1 option

A. 7
 


B. 8
 


C. 9
 


D. 10
 


E. 11
 


 
Check Answer
 



05.     QID - 2.1386 
 

What can be inserted in the following code so that it will print exactly 2345 when compiled and run?



public class FlowTest {



    static int[] data = {1, 2, 3, 4, 5};



    public static void main(String[] args) {

        for (int i : data) {

            if (i < 2) {

                //insert code1 here

            }

            System.out.print(i);

            if (i == 3) {

                //insert code2 here

            }

        }

    }

}
 

Select 2 options

A. break; 

and

//nothing is required
 


B. continue; 

and

//nothing is required
 


C. continue;

and 

continue;
 


D. break;

and

continue;
 


E. break;

and

break;
 


 
Check Answer
 



06.     QID - 2.1279 
 

Which of the following code snippets will compile without any errors?

(Assume that the statement int x = 0; exists prior to the statements below.)
 

Select 3 options

A. while (false) { x=3; }
 


B. if (false) { x=3; }
 


C. do{ x = 3; } while(false);
 


D. for( int i = 0; i< 0; i++) x = 3;
 


 
Check Answer
 



07.     QID - 2.916 
 

Consider the following code written by a new developer:



while(true){

        //additional valid code

        if(isDone()) break;

 }



What can be done to make this code more readable?
 

Select 1 option

A. Use a for loop
 


B. Use the enhanced for loop
 


C. use do-while instead of while.
 


D. Use continue instead of break.
 


 
Check Answer
 



08.     QID - 2.1454 
 

You have been given an array of objects and you need to process this array as follows - 

1. Call a method on each object from first to last one by one.

2. Call a method on each object from last to first one by one.

3. Call a method on only those objects at even index (0, 2, 4, 6, etc.)



Which of the following are correct?
 

Select 1 option

A. Enhanced for loops can be used for all the three tasks.
 


B. Enhanced for loop can be used for only the first task. For the rest, standard for loops can be used.
 


C. Standard for loops can be used for tasks 1 and 2 but not 3.
 


D. All the tasks can be performed either by using only standard for loops or by using only enhanced for loops.
 


E. Neither standard for loops nor enhanced for loops can be used for all three tasks.
 


 
Check Answer
 



09.     QID - 2.1356 
 

How many times will the line marked //1 be called in the following code?


int x = 10;
do{
 x--;
 System.out.println(x);  // 1
}while(x<10);


 

Select 1 option

A. 0
 


B. 1
 


C. 9
 


D. 10
 


E. None of these.
 


 
Check Answer
 



10.     QID - 2.848 
 

What will the following code print when compiled and run:


public class TestClass {
    
    public static void main(String[] args){
        int k = 2;
        do{
            System.out.println(k);
        }while(--k>0);
    }
}

 

Select 1 option

A. 1
 


B. 1

0
 


C. 2

1
 


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
 


 
Check Answer
 



11.     QID - 2.1281 
 

Which of the following statements regarding 'break' and 'continue' are true?
 

Select 1 option

A. break without a label, can occur only in a switch, while, do, or for statement.
 


B. continue without a label, can occur only in a switch, while, do, or for statement.
 


C. break can never occur without a label.
 


D. continue can never occur WITH a label.
 


E. None of the above.
 


 
Check Answer
 



12.     QID - 2.1083 
 

What will the following program print?




class LoopTest{
    public static void main(String args[]) {
        int counter = 0;
        outer:
        for (int i = 0; i < 3; i++) {
            middle:
            for (int j = 0; j < 3; j++) {
                inner:
                for (int k = 0; k < 3; k++) {
                    if (k - j > 0) {
                        break middle;
                    }
                    counter++;
                }
            }
        }
        System.out.println(counter);
    }
}

 

Select 1 option

A. 2
 


B. 3
 


C. 6
 


D. 7
 


E. 9
 


 
Check Answer
 



13.     QID - 2.963 
 

Consider the following code snippet:



    for(int i=INT1; i<INT2; i++){

        System.out.println(i);

    }



INT1 and INT2 can be any two integers.



Which of the following will produce the same result?
 

Select 1 option

A. for(int i=INT1; i<INT2; System.out.println(++i));
 


B. for(int i=INT1; i++<INT2; System.out.println(i));
 


C. int i=INT1; while(i++<INT2) { System.out.println(i); }
 


D. int i=INT1; do { System.out.println(i); }while(i++<INT2);
 


E. None of these.
 


 
Check Answer
 



14.     QID - 2.1032 
 

What will the following code print?



public class BreakTest{
  public static void main(String[] args){
    int i = 0, j = 5;
    lab1 : for( ; ; i++){
      for( ; ; --j)  if( i >j ) break lab1;
    }
    System.out.println(" i = "+i+", j = "+j);
  }
}

 

Select 1 option

A. i = 1, j = -1
 


B. i = 1, j = 4
 


C. i = 0, j = 4
 


D. i = 0, j = -1
 


E. It will not compile.
 


 
Check Answer
 



15.     QID - 2.1060 
 

Identify the valid for loop constructs assuming the following declarations:


Object o = null;
Collection c = //valid collection object.
int[][] ia = //valid array

 

Select 2 options

A. for(o : c){ }
 


B. for(final Object o2 :c){ }
 


C. for(int i : ia) { }
 


D. for(Iterator it : c.iterator()){ }
 


E. for(int i : ia[0]){ }
 


 
Check Answer
 



16.     QID - 2.1245 
 

Consider the following class :


class Test{
   public static void main(String[] args){
      for (int i = 0; i < 10; i++) System.out.print(i + " ");  //1
      for (int i = 10; i > 0; i--) System.out.print(i + " ");  //2
      int i = 20;                  //3
      System.out.print(i + " ");   //4
   }
}


Which of the following statements are true?
 

Select 4 options

A. As such, the class will compile and print "20 " (without quotes) at the end of its output.
 


B. It will not compile if line 3 is removed.
 


C. It will not compile if line 3 is removed and placed before line 1.
 


D. It will not compile if line 4 is removed and placed before line 3.
 


E. Only Option 2, 3, and 4 are correct.
 


 
Check Answer
 



17.     QID - 2.1270 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      boolean b = false;
      int i = 1;
      do{
         i++ ;
      } while (b = !b);
      System.out.println( i );
   }
}

 

Select 1 option

A. The code will fail to compile, 'while' has an invalid condition expression.
 


B. It will compile but will throw an exception at runtime.
 


C. It will print 3.
 


D. It will go in an infinite loop.
 


E. It will print 1.
 


 
Check Answer
 



18.     QID - 2.1042 
 

Consider the following method which is called with an argument of 7:


public void method1(int i){
   int j = (i*30 - 2)/100;
   
   POINT1 : for(;j<10; j++){
       boolean flag  = false;
       while(!flag){
	if(Math.random()>0.5) break POINT1;
       }
   }
  while(j>0){
     System.out.println(j--);
     if(j == 4) break POINT1;
   }
}


What will it print?

(Assume that Math.random() return a double between 0.0 and 1.0, not including 1.0)
 

Select 1 option

A. It will print 1 and 2
 


B. It will print 1 to N where N is a random number.
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


 
Check Answer
 



19.     QID - 2.1224 
 

Consider the following code for the main() method:


public static void main(String[] args) throws Exception{
   int i = 1, j = 10;
   do {
      if (i++ > --j) continue;
   } while (i < 5);
   System.out.println("i=" + i + " j=" + j);
}


What will be the output when the above code is executed?
 

Select 1 option

A. i=6 j=6
 


B. i=5 j=6
 


C. i=5 j=5
 


D. i=6 j=5
 


E. None of these.
 


 
Check Answer
 



20.     QID - 2.1050 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      for (i=1 ;  i<5  ; i++) continue;  //(1)
      for (i=0 ;       ; i++) break;       //(2)
      for (    ; i<5?false:true ;    );     //(3)
   }
}

 

Select 1 option

A. The code will compile without error and will terminate without problems when run.
 


B. The code will fail to compile, since the continue can't be used this way.
 


C. The code will fail to compile, since the break can't be used this way.
 


D. The code will fail to compile, since the for statement in line 2 is invalid.
 


E. The code will compile without error but will never terminate.
 


 
Check Answer
 



21.     QID - 2.869 
 

Which of the following are true about the enhanced for loop?
 

Select 3 options

A. It can iterate over an array or a Collection but not a Map.
 


B. Using an enhanced for loop prevents the code from going into an infinite loop.
 


C. Using an enhanced for loop on an array may cause infinite loop.
 


D. An enhanced for loop can iterate over a Map.
 


E. You cannot find out the number of the current iteration while iterating.
 


 
Check Answer
 



22.     QID - 2.1099 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      int x  = 0;
      labelA:   for (int i=10; i<0; i--){
         int j = 0;
         labelB:
         while (j < 10){
            if (j > i) break labelB;
            if (i == j){
               x++;
               continue labelA;
            }
            j++;
         }
         x--;
      }
      System.out.println(x);
   }
}

 

Select 1 option

A. It will not compile.
 


B. It will go in infinite loop when run.
 


C. The program will write 10 to the standard output.
 


D. The program will write 0 to the standard output.
 


E. None of the above.
 


 
Check Answer
 



23.     QID - 2.847 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        int k = 2;

        while(--k){

            System.out.println(k);

        }

    }

}
 

Select 1 option

A. 1
 


B. 1

0
 


C. 2

1
 


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
 


 
Check Answer
 



24.     QID - 2.1391 
 

Given:



package loops;

public class JustLooping {

    private int j;

    void showJ(){

        while(j<=5){

            for(int j=1; j <= 5;){

                System.out.print(j+" ");

                j++;

            }

            j++;

        }

    }

    public static void main(String[] args) {

        new JustLooping().showJ();

    }

}

What is the result?
 

Select 1 option

A. It will not compile.
 


B. It will print 1 2 3 4 5 five times.
 


C. It will print 1 3 5 five times.
 


D. It will print 1 2 3 4 5 once.
 


E. It will print 1 2 3 4 5 six times.
 


 
Check Answer
 



25.     QID - 2.1057 
 

What will the following code print?

void crazyLoop(){
   int c = 0;
   JACK: while (c < 8){
       JILL: System.out.println(c);
       if (c > 3) break JILL; else c++;
   }
}


 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


 
Check Answer
 



26.     QID - 2.914 
 

Consider the following code:


public static void main(String[] args) {
   int[] values = { 10, 30, 50 };
        for( int val : values ){
            int x = 0;
            while(x<values.length){
             System.out.println(x+" "+val);
              x++;
            }
        }              
    }



How many times is 2 printed out in the output?
 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. 3
 


 
Check Answer
 



27.     QID - 2.1388 
 

Consider the following code:

        String[] dataList = {"x", "y", "z"};

        for (String dataElement : dataList) {

            int innerCounter = 0;

            while (innerCounter < dataList.length) {

                System.out.println(dataElement + ", " + innerCounter);

                innerCounter++;

            }



        }



How many times will the output contain 2?
 

Select 1 option

A. 0
 


B. 1
 


C. 2
 


D. 3
 


E. 4
 


F. It will fail to compile.
 


 
Check Answer
 



28.     QID - 2.849 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        String[] sa = {"a", "b", "c"};

        for(String s :  sa){

            if("b".equals(s)) continue;

            System.out.println(s);

            if("b".equals(s)) break;

            System.out.println(s+" again");

        }

    }

}
 

Select 1 option

A. a

a again

c

c again
 


B. a

a again

b
 


C. a

a again

b

b again
 


D. c

c again
 


 
Check Answer
 



29.     QID - 2.891 
 

What can you do to make the following code compile?



public class TestClass {

    public static void main(String[] args) {

        int[] values = { 10, 20, 30 };

        for( /* put code here */ ){

        }

    }

}
 

Select 2 options

A. int k : values
 


B. int k in values
 


C. int k; k<0; k++
 


D. ;;
 


E. ; k<values.length;k++
 


 
Check Answer
 



30.     QID - 2.1268 
 

Which of these for statements are valid?


1. for (int i=5; i=0; i--) { }

2.  int j=5;
      for(int i=0, j+=5;  i<j ; i++) {  j--;  }

3. int i, j;
    for (j=10; i<j; j--) { i += 2; }

4. int i=10;
    for ( ; i>0 ; i--) { }

5. for (int i=0, j=10; i<j; i++, --j) {;}


 

Select 1 option

A. 1, 2
 


B. 3, 4
 


C. 1, 5
 


D. 4, 5
 


E. 5
 


 
Check Answer
 



31.     QID - 2.1010 
 

What will the following program print?


public class TestClass{
  public static void main(String[] args){
     for : for(int i = 0; i< 10; i++){
        for (int j = 0; j< 10; j++){
             if ( i+ j > 10 )  break for;
        }
        System.out.println( "hello");
     }
  }
}

 

Select 1 option

A. It will print hello 6 times.
 


B. It will not compile.
 


C. It will print hello 2 times.
 


D. It will print hello 5 times.
 


E. It will print hello 4 times.
 


 
Check Answer
 



32.     QID - 2.1090 
 

What is the effect of compiling and running the code shown in exhibit?


public class TestClass{
   public static void main (String args []){
      int sum = 0;
      for (int i = 0, j = 10; sum > 20; ++i, --j)      // 1
      {
         sum = sum+ i + j;
      }
      System.out.println("Sum = " + sum);
   }
}

 

Select 1 option

A. Compile time error at line 1.
 


B. It will print Sum = 0
 


C. It will print Sum = 20
 


D. Runtime error.
 


E. None of the above.
 


 
Check Answer
 



33.     QID - 2.1299 
 

What will the following program print?


class Test{
   public static void main(String args[]){
      int var = 20, i=0;
      do{
         while(true){
         if( i++ > var) break;
         }
      }while(i<var--);
      System.out.println(var);
   }
}


 

Select 1 option

A. 19
 


B. 20
 


C. 21
 


D. 22
 


E. It will enter an infinite loop.
 


 
Check Answer
 



34.     QID - 2.1193 
 

Which of these statements are valid when occurring by themselves in a method?
 

Select 3 options

A. while ( ) break ;
 


B. do { break ; } while (true) ;
 


C. if (true) { break ; } (When not inside a switch block or a loop)
 


D. switch (1) { default : break; }
 


E. for ( ; true ; ) break ;
 


 
Check Answer
 



35.     QID - 2.1121 
 

What will the following code print?


void crazyLoop(){
  int c = 0;
  JACK: while (c < 8){
    JILL: System.out.println(c);
    if (c > 3) break JACK; else c++;
  }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


 
Check Answer
 



36.     QID - 2.1366 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        while(int k = 5; k<7){

            System.out.println(k++);

        }

    }

}
 

Select 1 option

A. 5

6
 


B. 5

6

7
 


C. It will keep printing 5.
 


D. It will not compile.
 


E. It will throw an exception at run time.
 


 
Check Answer
 



37.     QID - 2.1227 
 

Given the following code, which of these statements are true?


class TestClass{
   public static void main(String args[]){
      int k = 0;
      int m = 0;
      for ( int i = 0; i <= 3; i++){
         k++;
         if ( i == 2){
            // line 1
         }
         m++;
      }
      System.out.println( k + ", " + m );
   }
}


 

Select 3 options

A. It will print 3, 2 when line 1 is replaced by break;
 


B. It will print 3, 2 when line 1 is replaced by continue.
 


C. It will print 4, 3 when line 1 is replaced by continue.
 


D. It will print 4, 4 when line 1 is replaced by i = m++;
 


E. It will print 3, 3 when line 1 is replaced by i = 4;
 


 
Check Answer
 



38.     QID - 2.1280 
 

In the following code what will be the output if 0 (integer value zero) is passed to loopTest()?


public class TestClass{
   public void loopTest(int x){
      loop: for (int i = 1; i < 5; i++){
         for (int j = 1; j < 5; j++){
            System.out.println(i);
            if (x == 0) {  continue loop;  }
            System.out.println(j);
         }
      }
   }
}

 

Select 1 option

A. The program will not compile.
 


B. It will print 1 2 3 4
 


C. It will print 1 1 2 3 4
 


D. It will print 1 1 2 2 3 3 4 4
 


E. Produces no output
 


 
Check Answer
 



39.     QID - 2.1413 
 

What will the following code print when compiled and run?



public class TestClass{

   public static void main(String[] args){

        int[] arr = { 1, 2, 3, 4, 5, 6 };

        int counter = 0;

        for (int value : arr) {

           if (counter >= 5) {

               break;    

           } else {

            continue;    

           }

           if (value > 4) {

             arr[counter] = value + 1;    

           }    

           counter++;

        }

        System.out.println(arr[counter]);

   }



}
 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at run time.
 


C. 5
 


D. 6
 


E. 7
 


F. 8
 


 
Check Answer
 



40.     QID - 2.1013 
 

Using a break in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



41.     QID - 2.1233 
 

What will the following program print?


class Test{
    public static void main(String args[]){
        int c = 0;
        boolean flag = true;
        for(int i = 0; i < 3; i++){
            while(flag){
                c++;
                if(i>c || c>5) flag = false;
            }
        }
        System.out.println(c);
    }
}

 

Select 1 option

A. 3
 


B. 4
 


C. 5
 


D. 6
 


E. 7
 


 
Check Answer
 



42.     QID - 2.1352 
 

Using a continue in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



43.     QID - 2.1420 
 

What will the following code print when compiled and run?



        int[][] ab = { {1, 2, 3}, {4, 5} };

        for(int i=0; i<ab.length; i++){

            for(int j=0; j<ab[i].length; j++){

                System.out.print(ab[i][j]+" ");

                if(ab[i][j] == 2){

                    break;

                }

            }

            continue;

        }


 

Select 1 option

A. 1 2 3 4 5
 


B. 1 2
 


C. 1 3 4 5
 


D. 1 2 4 5
 


E. 2 3 5
 


F. It will not compile.
 


 
Check Answer
 



44.     QID - 2.1044 
 

What will be the output if you run the following program?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0 ; j < 1 ; ++j , i++){
         System.out.println( i + " " + j );
      }
      System.out.println( i + " " + j );
   }
}

 

Select 1 option

A. 0 0 will be printed twice.
 


B. 1 1 will be printed once.
 


C. 0 1 will be printed followed by 1 2.
 


D. 0 0 will be printed followed by 1 1.
 


E. It will print 0 0 and then 0 1.
 


 
Check Answer
 



45.     QID - 2.1411 
 

What will the following code print when compiled and run?

public class DaysTest{



    static String[] days = {"monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday" };

    

    public static void main(String[] args) {

        

        int index = 0;

        for(String day : days){

            

            if(index == 3){

                break;

            }else {

                 continue;

            }

            index++;

            if(days[index].length()>3){

                days[index] = day.substring(0,3);

            }

        }

        System.out.println(days[index]);

    }

}
 

Select 1 option

A. wed
 


B. thu
 


C. fri
 


D. It will not compile.
 


E. It will throw an exception at run time.
 


 
Check Answer
 



46.     QID - 2.1327 
 

What will be the output when the following program is run?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0; j < i; ++j, i++){
         System.out.println(i + " " + j);
      }
      System.out.println(i + " " + j);
   }
}


 

Select 1 option

A. 0 0 will be printed twice.
 


B. 0 0 will be printed once.
 


C. It will keep on printing 0 0
 


D. It will not compile.
 


E. It will print 0 0 and then 0 1.
 


 
Check Answer
 



47.     QID - 2.1395 
 

Given:



public class SimpleLoop {

    public static void main(String[] args) {

        int i=0, j=10;

        int count = 0;

        while (i<j) {            

            i++;

            j--;

            count++;

        }

        System.out.println(i+" "+j+" "+count);

    }

}

What is the result?
 

Select 1 option

A. 6 4 5
 


B. 6 5 5
 


C. 6 5 6
 


D. 6 4 6
 


E. 5 5 5
 


 
Check Answer
 



Using Loop Constructs (Answered)



01.     QID - 2.1114 : Using Loop Constructs 
 

What will the following code print?


public class TestClass{
        int x = 5;
        int getX(){ return x; }

        public static void main(String args[]) throws Exception{
            TestClass tc = new TestClass();
            tc.looper();
            System.out.println(tc.x);
        }
        
        public void looper(){
            int x = 0;
            while( (x = getX()) != 0 ){
                for(int m = 10; m>=0; m--){
                    x = m;
                }
            }
            
       }     
}

 

Correct Option is :  E 

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print 0.
 


D. It will print 5.
 


E. None of these.
This program will compile and run but will never terminate.


Explanation: 
Note that looper() declares an automatic variable x, which shadows the instance variable x. So when x = m; is executed, it is the local variable x that is changed not the instance field x. So getX() never returns 0. If you remove int x = 0; from looper(), it will print 0 and end.

 
Back to Question without Answer
 



02.     QID - 2.1059 : Using Loop Constructs 
 

Identify valid for constructs...

Assume that Math.random() returns a double between 0.0 and 1.0 (not including 1.0).
 

Correct Options are :  A C E 

A. for(;Math.random()<0.5;){

    System.out.println("true");

}
The second expression in a for loop must return a boolean, which is happening here. So this is valid.


B. for(;;Math.random()<0.5){

    System.out.println("true");

}
Here, the first part (i.e. the init part) and the second part (i.e. the expression/condition part) part of the for loop are empty. Both are valid. (When the expression/condition part is empty, it is interpreted as true.) 



The third part (i.e. the update part) of the for loop does not allow every kind of statement. It allows only the following statements here:  Assignment, PreIncrementExpression, PreDecrementExpression, PostIncrementExpression, PostDecrementExpression, MethodInvocation, and ClassInstanceCreationExpression. Thus, Math.random()<0.5 is not valid here, and so this will not compile.


C. for(;;Math.random()){

    System.out.println("true");

}
This is a valid never ending loop that will keep printing true.


D. for(;;){

    Math.random()<.05? break : continue;

}
This is an invalid use of ? : operator. Both sides of : should return some value. Here, break and continue do not return anything. However, the following would have been valid:

for(;Math.random()<.05? true : false;){  }


E. for(;;){

    if(Math.random()<.05) break;

}
 


Explanation: 
The three parts of a for loop are independent of each other. However, there are certain rules for each part. Please go through section 14.14.1 of JLS to understand it fully.

 
Back to Question without Answer
 



03.     QID - 2.1016 : Using Loop Constructs 
 

What will the following code snippet print?


int count = 0, sum = 0;
do{
       if(count % 3 == 0) continue;
       sum+=count;
}
while(count++ < 11);
System.out.println(sum);

 

Correct Option is :  B 

A. 49
 


B. 48
 


C. 37
 


D. 36
 


E. 38
 


Explanation: 
1. The while condition uses post increment operator, which means count is first compared with 11 (and based on this comparison a decision is made whether to execute the loop again or not) and then incremented. So when count is 10, the condition 10<11 is true (that means the loop needs to be executed again) and count is incremented to 11.



2. When count is completely divisible by 3, (i.e. when count is 0, 3, 6, 9) sum+=count; is not executed.



Thus, the result is the summation of:

1 2 4 5 7 8 10 11

 
Back to Question without Answer
 



04.     QID - 2.960 : Using Loop Constructs 
 

What will the following code print when compiled and run?


class Test{
    public static void main(String args[]){
        int c = 0;
        A: for(int i = 0; i < 2; i++){
            B: for(int j = 0; j < 2; j++){
                C: for(int k = 0; k < 3; k++){
                    c++;
                    if(k>j) break;
                }
            }
        }
        System.out.println(c);
    }
}

 

Correct Option is :  D 

A. 7
 


B. 8
 


C. 9
 


D. 10
 


E. 11
 


Explanation: 
The point to note here is that a break without any label breaks the innermost outer loop. So in this case, whenever k>j, the C loop breaks.

You should run the program and follow it step by step to understand how it progresses.

 
Back to Question without Answer
 



05.     QID - 2.1386 : Using Loop Constructs 
 

What can be inserted in the following code so that it will print exactly 2345 when compiled and run?



public class FlowTest {



    static int[] data = {1, 2, 3, 4, 5};



    public static void main(String[] args) {

        for (int i : data) {

            if (i < 2) {

                //insert code1 here

            }

            System.out.print(i);

            if (i == 3) {

                //insert code2 here

            }

        }

    }

}
 

Correct Options are :  B C 

A. break; 

and

//nothing is required
 


B. continue; 

and

//nothing is required
 


C. continue;

and 

continue;
 


D. break;

and

continue;
 


E. break;

and

break;
 


Explanation: 
This is a very simple loop to follow if you know what break and continue do.

break breaks the nearest outer loop. Once a break is encountered, no further iterations of that loop will execute.

continue simply starts the next iteration of the loop. Once a continue is encountered, rest of the statements within that loop are ignored (not executed ) and the next iteration is started.

 
Back to Question without Answer
 



06.     QID - 2.1279 : Using Loop Constructs 
 

Which of the following code snippets will compile without any errors?

(Assume that the statement int x = 0; exists prior to the statements below.)
 

Correct Options are :  B C D 

A. while (false) { x=3; }
 


B. if (false) { x=3; }
 


C. do{ x = 3; } while(false);
In a do- while, the block is ALWAYS executed at least once because the condition check is done after the block is executed. Unlike a while loop, where the condition is checked before the execution of the block.


D. for( int i = 0; i< 0; i++) x = 3;
 


Explanation: 
while (false) { x=3; } is a compile-time error because the statement x=3; is not reachable;

Similarly, for( int i = 0; false; i++) x = 3; is also a compile time error because x= 3 is unreachable.



In if(false){ x=3; }, although the body of the condition is unreachable, this is not an error because the JLS explicitly defines this as an exception to the rule. It allows this construct to support optimizations through the conditional compilation. For example,



if(DEBUG){ System.out.println("beginning task 1"); } 



Here, the DEBUG variable can be set to false in the code while generating the production version of the class file, which will allow the compiler to optimize the code by removing the whole if statement entirely from the class file.

 
Back to Question without Answer
 



07.     QID - 2.916 : Using Loop Constructs 
 

Consider the following code written by a new developer:



while(true){

        //additional valid code

        if(isDone()) break;

 }



What can be done to make this code more readable?
 

Correct Option is :  C 

A. Use a for loop
The following is how it can be done using a for loop:

for(;!isDone();) {

//additional valid code

}


B. Use the enhanced for loop
 


C. use do-while instead of while.
In the current state, the actual loop breaker condition is coded far away from the while condition. This reduces readability because it isn't immediately known when the loop breaks. Therefore, it should be changed to:

do{

} while( !isDone() );




D. Use continue instead of break.
 


 
Back to Question without Answer
 



08.     QID - 2.1454 : Using Loop Constructs 
 

You have been given an array of objects and you need to process this array as follows - 

1. Call a method on each object from first to last one by one.

2. Call a method on each object from last to first one by one.

3. Call a method on only those objects at even index (0, 2, 4, 6, etc.)



Which of the following are correct?
 

Correct Option is :  B 

A. Enhanced for loops can be used for all the three tasks.
 


B. Enhanced for loop can be used for only the first task. For the rest, standard for loops can be used.
 


C. Standard for loops can be used for tasks 1 and 2 but not 3.
 


D. All the tasks can be performed either by using only standard for loops or by using only enhanced for loops.
 


E. Neither standard for loops nor enhanced for loops can be used for all three tasks.
 


Explanation: 
The enhanced for loop is tailor made for processing each element of a collection (or an array) in order. Most importantly, it does not give you an iterating variable that you can manipulate and that makes it impossible to change the order or to skip an element. Therefore, tasks 2 and 3 cannot be done by an enhanced for loop.



The standard for loop is very flexible. It can do pretty much anything. Here is how you can do task 2 and 3 using a standard for loop - 



//processing in reverse

for(int i=arr.length-1; i>=0; i--){

  arr[i].m1(); 

}



//processing alternate

for(int i=0; i<arr.length; i=i+2){

  arr[i].m1(); 

}

 
Back to Question without Answer
 



09.     QID - 2.1356 : Using Loop Constructs 
 

How many times will the line marked //1 be called in the following code?


int x = 10;
do{
 x--;
 System.out.println(x);  // 1
}while(x<10);


 

Correct Option is :  E 

A. 0
 


B. 1
 


C. 9
 


D. 10
 


E. None of these.
 


Explanation: 
A do-while loop is always executed at least once. So in the first iteration, x is decremented and becomes 9. Now the while condition is tested, which returns true because 9 is less than 10. So the loop is executed again with x = 9. In the loop, x is decremented to 8 and the condition is tested again, which again returns true because 8 is less than 10.



As you can see, x keeps on decreasing by one in each iteration and every time the condition x<10 returns true. However, after x reaches -2147483648, which is its MIN_VALUE, it cannot decrease any further and at this time when x-- is executed, the value rolls over to 2147483647, which is Integer.MAX_VALUE. At this time, the condition x<10 fails and the loop terminates.

 
Back to Question without Answer
 



10.     QID - 2.848 : Using Loop Constructs 
 

What will the following code print when compiled and run:


public class TestClass {
    
    public static void main(String[] args){
        int k = 2;
        do{
            System.out.println(k);
        }while(--k>0);
    }
}

 

Correct Option is :  C 

A. 1
 


B. 1

0
 


C. 2

1
--k>0 implies, decrement the value of k and then compare with 0. Therefore, the loop will only execute twice, printing 2 and 1.



Had it been k-->0, it would imply, first compare k with 0, and then decrement k. In this case, the loop would execute thrice, printing 2, 1, and 0.


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
 


 
Back to Question without Answer
 



11.     QID - 2.1281 : Using Loop Constructs 
 

Which of the following statements regarding 'break' and 'continue' are true?
 

Correct Option is :  A 

A. break without a label, can occur only in a switch, while, do, or for statement.
 


B. continue without a label, can occur only in a switch, while, do, or for statement.
It cannot occur in a switch.


C. break can never occur without a label.
 


D. continue can never occur WITH a label.
 


E. None of the above.
 


Explanation: 
A break statement with no label attempts to transfer control to the innermost enclosing switch, while, do, or for statement; this statement, which is called the break target, then immediately completes normally. If no switch, while, do, or for statement encloses the break statement, a compile-time error occurs.



A break statement with label Identifier attempts to transfer control to the enclosing labeled statement  that has the same Identifier as its label; this statement, which is called the break target, then immediately completes normally. In this case, the break target need not be a while, do, for, or switch statement.



A continue statement with no label attempts to transfer control to the innermost enclosing while, do, or for statement; this statement, which is called the continue target, then immediately ends the current iteration and begins a new one. If no while, do, or for statement encloses the continue statement, a compile-time error occurs.



A continue statement with label Identifier attempts to transfer control to the enclosing labelled statement that has the same Identifier as its label; that statement, which is called the continue target, then immediately ends the current iteration and begins a new one. The continue target must be a while, do, or for statement or a compile-time error occurs. If no labelled statement with Identifier as its label contains the continue statement, a compile-time error occurs.

 
Back to Question without Answer
 



12.     QID - 2.1083 : Using Loop Constructs 
 

What will the following program print?




class LoopTest{
    public static void main(String args[]) {
        int counter = 0;
        outer:
        for (int i = 0; i < 3; i++) {
            middle:
            for (int j = 0; j < 3; j++) {
                inner:
                for (int k = 0; k < 3; k++) {
                    if (k - j > 0) {
                        break middle;
                    }
                    counter++;
                }
            }
        }
        System.out.println(counter);
    }
}

 

Correct Option is :  B 

A. 2
 


B. 3
 


C. 6
 


D. 7
 


E. 9
 


Explanation: 
To understand how this loop works let us put some extra print statements in the innermost loop:

System.out.println("i="+i+" j="+j+" k="+k);
if(k-j>0){
     System.out.println("breaking middle "+j);
     break middle;
}
counter++;


This is what it prints:

i=0 j=0 k=0
i=0 j=0 k=1
breaking middle 0
i=1 j=0 k=0
i=1 j=0 k=1
breaking middle 0
i=2 j=0 k=0
i=2 j=0 k=1
breaking middle 0
3


The key is that the middle loop is broken as soon as k-j becomes > 0. This happens on every second iteration of inner loop when k is 1 and j is 0. Now, when middle is broken inner cannot continue. So the next iteration of outer starts.

 
Back to Question without Answer
 



13.     QID - 2.963 : Using Loop Constructs 
 

Consider the following code snippet:



    for(int i=INT1; i<INT2; i++){

        System.out.println(i);

    }



INT1 and INT2 can be any two integers.



Which of the following will produce the same result?
 

Correct Option is :  E 

A. for(int i=INT1; i<INT2; System.out.println(++i));
Prints: 2 and 3


B. for(int i=INT1; i++<INT2; System.out.println(i));
Prints: 2 and 3


C. int i=INT1; while(i++<INT2) { System.out.println(i); }
Prints: 2 and 3


D. int i=INT1; do { System.out.println(i); }while(i++<INT2);
Prints: 1 2 and 3


E. None of these.
 


Explanation: 
In such a question it is best to take a sample data such as INT1=1 and INT2=3 and execute the loops mentally. Eliminate the wrong options. In this case, the original loop will print:

=====ORIGINAL ====

1



2



Outputs of all the options are given above (Ignoring the line breaks).



Thus, none of them is same as the original.

 
Back to Question without Answer
 



14.     QID - 2.1032 : Using Loop Constructs 
 

What will the following code print?



public class BreakTest{
  public static void main(String[] args){
    int i = 0, j = 5;
    lab1 : for( ; ; i++){
      for( ; ; --j)  if( i >j ) break lab1;
    }
    System.out.println(" i = "+i+", j = "+j);
  }
}

 

Correct Option is :  D 

A. i = 1, j = -1
 


B. i = 1, j = 4
 


C. i = 0, j = 4
 


D. i = 0, j = -1
 


E. It will not compile.
 


Explanation: 
The values of i and j in the inner most for loop change as follows:

i = 0 j = 5

i = 0 j = 4

i = 0 j = 3

i = 0 j = 2

i = 0 j = 1

i = 0 j = 0

i = 0 j = -1

Therefore, the final println prints i = 0, j = -1

 
Back to Question without Answer
 



15.     QID - 2.1060 : Using Loop Constructs 
 

Identify the valid for loop constructs assuming the following declarations:


Object o = null;
Collection c = //valid collection object.
int[][] ia = //valid array

 

Correct Options are :  B E 

A. for(o : c){ }
Cannot use an existing/predefined variable in the variable declaration part.


B. for(final Object o2 :c){ }
final is the only modifier (excluding annotations) that is allowed here.


C. for(int i : ia) { }
Each element of ia is itself an array. Thus, they cannot be assigned to an int.


D. for(Iterator it : c.iterator()){ }
c.iterator() does not return any Collection. Note that the following would have been valid:

Collection<Iterator> c = //some collection that contains Iterator objects

for(Iterator it : c){ }


E. for(int i : ia[0]){ }
Since ia[0] is an array of ints, this is valid. (It may throw a NullPointerException or ArrayIndexOutOfBoundsException at runtime if ia is not appropriately initialized.)


 
Back to Question without Answer
 



16.     QID - 2.1245 : Using Loop Constructs 
 

Consider the following class :


class Test{
   public static void main(String[] args){
      for (int i = 0; i < 10; i++) System.out.print(i + " ");  //1
      for (int i = 10; i > 0; i--) System.out.print(i + " ");  //2
      int i = 20;                  //3
      System.out.print(i + " ");   //4
   }
}


Which of the following statements are true?
 

Correct Options are :  A B C D 

A. As such, the class will compile and print "20 " (without quotes) at the end of its output.
 


B. It will not compile if line 3 is removed.
If //3 is removed, 'i' will be undefined for //4


C. It will not compile if line 3 is removed and placed before line 1.
 


D. It will not compile if line 4 is removed and placed before line 3.
 


E. Only Option 2, 3, and 4 are correct.
 


Explanation: 
The scope of a local variable declared in 'for' statement is the rest of the 'for' statement, including its own initializer. So, when line 3 is placed before line 1, there is a redeclaration of i in the first for() which is not legal.

As such, the scope of i's declared in for() is just within the 'for' blocks. So placing line 4 before line 3 will not work since 'i' is not in scope there.

 
Back to Question without Answer
 



17.     QID - 2.1270 : Using Loop Constructs 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      boolean b = false;
      int i = 1;
      do{
         i++ ;
      } while (b = !b);
      System.out.println( i );
   }
}

 

Correct Option is :  C 

A. The code will fail to compile, 'while' has an invalid condition expression.
It is perfectly valid because b = !b; returns a boolean, which is what is needed for while condition.


B. It will compile but will throw an exception at runtime.
 


C. It will print 3.
The loop body is executed twice and the program will print 3.


D. It will go in an infinite loop.
 


E. It will print 1.
 


Explanation: 
Unlike the 'while(){}' loop, the 'do {} while()' loop executes at least once because the condition is checked after the iteration.

 
Back to Question without Answer
 



18.     QID - 2.1042 : Using Loop Constructs 
 

Consider the following method which is called with an argument of 7:


public void method1(int i){
   int j = (i*30 - 2)/100;
   
   POINT1 : for(;j<10; j++){
       boolean flag  = false;
       while(!flag){
	if(Math.random()>0.5) break POINT1;
       }
   }
  while(j>0){
     System.out.println(j--);
     if(j == 4) break POINT1;
   }
}


What will it print?

(Assume that Math.random() return a double between 0.0 and 1.0, not including 1.0)
 

Correct Option is :  C 

A. It will print 1 and 2
 


B. It will print 1 to N where N is a random number.
 


C. It will not compile.
Remember that a labeled break or continue statement must always exist inside the loop where the label is declared. Here, if(j == 4) break POINT1; is a labelled break that is occurring in the second loop while the label POINT1 is declared for the first loop.


D. It will throw an exception at runtime.
 


 
Back to Question without Answer
 



19.     QID - 2.1224 : Using Loop Constructs 
 

Consider the following code for the main() method:


public static void main(String[] args) throws Exception{
   int i = 1, j = 10;
   do {
      if (i++ > --j) continue;
   } while (i < 5);
   System.out.println("i=" + i + " j=" + j);
}


What will be the output when the above code is executed?
 

Correct Option is :  B 

A. i=6 j=6
 


B. i=5 j=6
 


C. i=5 j=5
 


D. i=6 j=5
 


E. None of these.
 


Explanation: 
To understand the flow, let us put a print statement in the code:



  int i = 1, j = 10;

   int k =1;

   do {

      System.out.println("Iteration "+k+": i=" + i + " j=" + j);

      k++;

      if (i++ > --j) continue;

   } while (i < 5);

   System.out.println("i=" + i + " j=" + j);



It generates the following output:



Iteration 1: i=1 j=10

Iteration 2: i=2 j=9

Iteration 3: i=3 j=8

Iteration 4: i=4 j=7

i=5 j=6



In the iteration 1, the if comparison goes like this:

if (1++ > --10 ) continue; => if( 1 > 9 ) . The values of i and j after the if statement are 2 and 9

In the iteration 2, the if comparison goes like this:

if (2++ > --9 ) continue; => if( 2 > 8 ) . The values of i and j after the if statement are 3 and 8

In the iteration 3, the if comparison goes like this:

if (3++ > --8 ) continue; => if( 3 > 7 ) . The values of i and j after the if statement are 4 and 7

In the iteration 4, the if comparison goes like this:

if (4++ > --7 ) continue; => if( 4 > 6 ) . The values of i and j after the if statement are 5 and 6



Now, i is not < 5 so the while(i<5) check fails and the loop terminates. So the final values are 5 and 6.

 
Back to Question without Answer
 



20.     QID - 2.1050 : Using Loop Constructs 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      for (i=1 ;  i<5  ; i++) continue;  //(1)
      for (i=0 ;       ; i++) break;       //(2)
      for (    ; i<5?false:true ;    );     //(3)
   }
}

 

Correct Option is :  A 

A. The code will compile without error and will terminate without problems when run.
 


B. The code will fail to compile, since the continue can't be used this way.
 


C. The code will fail to compile, since the break can't be used this way.
 


D. The code will fail to compile, since the for statement in line 2 is invalid.
 


E. The code will compile without error but will never terminate.
the condition part is 'false' so the control will never go inside the loop.


Explanation: 
A continue statement can occur in and only in a for, while or do-while loop. A continue statement means: Forget about the rest of the statements in the loop and start the next iteration. 

So, 

for (i=1 ;  i<5  ; i++) continue; just increments the value of i up to 5 because of i++.



for (i=0 ;       ; i++) break; iterates only once because of the break so the value of i becomes 0.



for (    ; i<5?false:true ;    ); never iterates because i is less than 5 (it is 0 because of //2) and the condition expression is false!



At the end of the code, the value of i is 0.

 
Back to Question without Answer
 



21.     QID - 2.869 : Using Loop Constructs 
 

Which of the following are true about the enhanced for loop?
 

Correct Options are :  A B E 

A. It can iterate over an array or a Collection but not a Map.
An enhanced for loop needs either an array or an object of a class that implements java.lang.Iterable. Map does not implement Iterable, though you can use keySet() or values() methods to get a Collection (which extends Iterable) and then iterate over that Collection.


B. Using an enhanced for loop prevents the code from going into an infinite loop.
Since there is no explicit condition check written in the code, it provides less opportunity to write code that causes infinite loop.


C. Using an enhanced for loop on an array may cause infinite loop.
 


D. An enhanced for loop can iterate over a Map.
 


E. You cannot find out the number of the current iteration while iterating.
Unlike in a regular for loop, there is no iteration variable available in an enhanced for loop, so it is not possible to determine the number of the iteration just by using the enhanced for loop. You will need to do something like:



int i = 0;

for(Object obj : collectionOrArray){

  System.out.println("Iteration number = "+i+" Object = "+obj);

  i++;

}


 
Back to Question without Answer
 



22.     QID - 2.1099 : Using Loop Constructs 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      int x  = 0;
      labelA:   for (int i=10; i<0; i--){
         int j = 0;
         labelB:
         while (j < 10){
            if (j > i) break labelB;
            if (i == j){
               x++;
               continue labelA;
            }
            j++;
         }
         x--;
      }
      System.out.println(x);
   }
}

 

Correct Option is :  D 

A. It will not compile.
 


B. It will go in infinite loop when run.
 


C. The program will write 10 to the standard output.
 


D. The program will write 0 to the standard output.
 


E. None of the above.
 


Explanation: 
This is just a simple code that is meant to confuse you. 

Notice the for statement: for(int i=10; i<0; i--). i is being initialized to 10 and the test is i<0, which is false. Therefore, the control will never get inside the for loop, none of the weird code will be executed, and x will remain 0, which is what is printed.

 
Back to Question without Answer
 



23.     QID - 2.847 : Using Loop Constructs 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        int k = 2;

        while(--k){

            System.out.println(k);

        }

    }

}
 

Correct Option is :  F 

A. 1
 


B. 1

0
 


C. 2

1
 


D. 2

1

0
 


E. It will keeping printing numbers in an infinite loop.
 


F. It will not compile.
In Java, a while or do/while construct takes an expression that returns a boolean. The expression --k is an integer, which is invalid and so the compilation fails.



You could change it to: while( --k>0 ){ ... }. In this case, --k<0 is a boolean expression and is valid.


 
Back to Question without Answer
 



24.     QID - 2.1391 : Using Loop Constructs 
 

Given:



package loops;

public class JustLooping {

    private int j;

    void showJ(){

        while(j<=5){

            for(int j=1; j <= 5;){

                System.out.print(j+" ");

                j++;

            }

            j++;

        }

    }

    public static void main(String[] args) {

        new JustLooping().showJ();

    }

}

What is the result?
 

Correct Option is :  E 

A. It will not compile.
There is no problem with the code. The variable j declared in the for loop shadows the instance member j inside the for loop.


B. It will print 1 2 3 4 5 five times.
 


C. It will print 1 3 5 five times.
 


D. It will print 1 2 3 4 5 once.
 


E. It will print 1 2 3 4 5 six times.
 


Explanation: 
The point to note here is that the j in for loop is different from the instance member j. Therefore, j++ occuring in the for loop doesn't affect the while loop. The for loop prints 1 2 3 4 5.

The while loop runs for the values 0 to 5 i.e. 6 iterations. Thus, 1 2 3 4 5 is printed 6 times. Note that after the end of the while loop the value of j is 6.

 
Back to Question without Answer
 



25.     QID - 2.1057 : Using Loop Constructs 
 

What will the following code print?

void crazyLoop(){
   int c = 0;
   JACK: while (c < 8){
       JILL: System.out.println(c);
       if (c > 3) break JILL; else c++;
   }
}


 

Correct Option is :  A 

A. It will not compile.
Because break JILL; would be valid only when it is within the block of code under the scope of the label JILL. 

In this case, the scope of JILL extends only up till System.out.println(c); and break JILL; is out of the scope of the label.


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


 
Back to Question without Answer
 



26.     QID - 2.914 : Using Loop Constructs 
 

Consider the following code:


public static void main(String[] args) {
   int[] values = { 10, 30, 50 };
        for( int val : values ){
            int x = 0;
            while(x<values.length){
             System.out.println(x+" "+val);
              x++;
            }
        }              
    }



How many times is 2 printed out in the output?
 

Correct Option is :  D 

A. 0
 


B. 1
 


C. 2
 


D. 3
 


Explanation: 
This is a simple while loop nested inside a for loop. The for loop loops three times - once for each value in values array.

Since, values.length is 3, x is incremented two times for each for loop iteration before the condition x<values.length returns false.

Therefore, it prints:

0 10

1 10

2 10

0 30

1 30

2 30

0 50

1 50

2 50

 
Back to Question without Answer
 



27.     QID - 2.1388 : Using Loop Constructs 
 

Consider the following code:

        String[] dataList = {"x", "y", "z"};

        for (String dataElement : dataList) {

            int innerCounter = 0;

            while (innerCounter < dataList.length) {

                System.out.println(dataElement + ", " + innerCounter);

                innerCounter++;

            }



        }



How many times will the output contain 2?
 

Correct Option is :  D 

A. 0
 


B. 1
 


C. 2
 


D. 3
 


E. 4
 


F. It will fail to compile.
 


Explanation: 
The while loop runs three times for each element in the dataList. So it will print 2 three times. Here is the complete output:

x, 0

x, 1

x, 2

y, 0

y, 1

y, 2

z, 0

z, 1

z, 2

 
Back to Question without Answer
 



28.     QID - 2.849 : Using Loop Constructs 
 

What will the following code print when run?



public class TestClass {

    public static void main(String[] args) throws Exception {

        String[] sa = {"a", "b", "c"};

        for(String s :  sa){

            if("b".equals(s)) continue;

            System.out.println(s);

            if("b".equals(s)) break;

            System.out.println(s+" again");

        }

    }

}
 

Correct Option is :  A 

A. a

a again

c

c again
 


B. a

a again

b
 


C. a

a again

b

b again
 


D. c

c again
 


Explanation: 
To determine the output you have to run through the loop one iteration at a time in your mind:



Iteration 1: s is "a". It is not equal to "b" so, it will print "a", and then "a again".

Iteration 2: s is "b". It is equal to "b", so the first if will execute "continue", which mean the rest of the code in the loop will not be executed (thus b and b again will not be printed), and the next iteration will start. Note that the second if is not executed at all because of the continue in the first if.

Iteration 3: s is "c", both the if conditions are not satisfied. So "c" and "c again" will be printed.

 
Back to Question without Answer
 



29.     QID - 2.891 : Using Loop Constructs 
 

What can you do to make the following code compile?



public class TestClass {

    public static void main(String[] args) {

        int[] values = { 10, 20, 30 };

        for( /* put code here */ ){

        }

    }

}
 

Correct Options are :  A D 

A. int k : values
 


B. int k in values
 


C. int k; k<0; k++
k must be initialized first. So it should be: int k=0; k<0; k++


D. ;;
It will cause an infinite loop, but it is valid.


E. ; k<values.length;k++
k needs to be declared first.


 
Back to Question without Answer
 



30.     QID - 2.1268 : Using Loop Constructs 
 

Which of these for statements are valid?


1. for (int i=5; i=0; i--) { }

2.  int j=5;
      for(int i=0, j+=5;  i<j ; i++) {  j--;  }

3. int i, j;
    for (j=10; i<j; j--) { i += 2; }

4. int i=10;
    for ( ; i>0 ; i--) { }

5. for (int i=0, j=10; i<j; i++, --j) {;}


 

Correct Option is :  D 

A. 1, 2
 


B. 3, 4
 


C. 1, 5
1 is not valid.


D. 4, 5
 


E. 5
 


Explanation: 
No 1.

uses '=' instead of '==' for condition which is invalid. The loop condition must be of type boolean.



No 2.

uses 'j +=5'. Now, this statement is preceded by 'int i=0,' and that means we are trying to declare variable j. But it is already declared before the for loop. If we remove the int in the initialization part and declare i before the loop then it will work. But if we remove the statement int j = 5; it will not work because compiler will try to do j = j+5 and you can't use the variable before it is initialized. Although the compiler gives a message 'Invalid declaration' for j += 5, it really means the above mentioned thing.



No 3. i is uninitialized.



No 4. is valid. It contains empty initialization part.



No 5.

This is perfectly valid. You can have any number of comma separated statements in initialization and incrementation part. The condition part must contain a single expression that returns a boolean.

All a for loop needs is two semi colons :-

for( ; ; ) {} This is a valid for loop that never ends. A more concise form for the same is : for( ; ; );

 
Back to Question without Answer
 



31.     QID - 2.1010 : Using Loop Constructs 
 

What will the following program print?


public class TestClass{
  public static void main(String[] args){
     for : for(int i = 0; i< 10; i++){
        for (int j = 0; j< 10; j++){
             if ( i+ j > 10 )  break for;
        }
        System.out.println( "hello");
     }
  }
}

 

Correct Option is :  B 

A. It will print hello 6 times.
 


B. It will not compile.
 


C. It will print hello 2 times.
 


D. It will print hello 5 times.
 


E. It will print hello 4 times.
 


Explanation: 
Note that for is a keyword and so cannot be used as a label. But you can use any other identifier as a label.

For example, The following code is valid even though String is a class name and String is also used as an identifier!

     String String = "";   //This is valid.
     String : for(int i = 0; i< 10; i++) //This is valid too!
     {
        for (int j = 0; j< 10; j++){
             if ( i+ j > 10 )  break String;
        }
       System.out.println( "hello");
      }


It will print hello 2 times.

 
Back to Question without Answer
 



32.     QID - 2.1090 : Using Loop Constructs 
 

What is the effect of compiling and running the code shown in exhibit?


public class TestClass{
   public static void main (String args []){
      int sum = 0;
      for (int i = 0, j = 10; sum > 20; ++i, --j)      // 1
      {
         sum = sum+ i + j;
      }
      System.out.println("Sum = " + sum);
   }
}

 

Correct Option is :  B 

A. Compile time error at line 1.
 


B. It will print Sum = 0
Note that the loop condition is sum >20 and not sum <20.


C. It will print Sum = 20
Note that the loop condition is sum >20 and not sum <20.


D. Runtime error.
 


E. None of the above.
 


Explanation: 
Read the questions carefully. This is very important. Some questions are easy but you need to read them carefully.

 
Back to Question without Answer
 



33.     QID - 2.1299 : Using Loop Constructs 
 

What will the following program print?


class Test{
   public static void main(String args[]){
      int var = 20, i=0;
      do{
         while(true){
         if( i++ > var) break;
         }
      }while(i<var--);
      System.out.println(var);
   }
}


 

Correct Option is :  A 

A. 19
 


B. 20
 


C. 21
 


D. 22
 


E. It will enter an infinite loop.
 


Explanation: 
When the first iteration of outer do-while loop starts, var is 20. Now, the inner loop executes till i becomes 21.

Now, the condition for outer do-while is checked, while( 22 < 20 ), [i is 22 because of the last i++>var check], thereby making var 19. And as the condition is false, the outer loop also ends.

So, 19 is printed.

 
Back to Question without Answer
 



34.     QID - 2.1193 : Using Loop Constructs 
 

Which of these statements are valid when occurring by themselves in a method?
 

Correct Options are :  B D E 

A. while ( ) break ;
The condition expression in a while header is required.


B. do { break ; } while (true) ;
 


C. if (true) { break ; } (When not inside a switch block or a loop)
You cannot have break or continue in an 'if' or 'else' block without being inside a loop. Note that the problem statement mentions, "...occuring by themselves". This implies that the given statement is not wrapped within any other block.

Note: break with a label is possible in an if/else statement without a loop:

     label: if(true){

         System.out.println("break label");

         break label; //this is valid

      }




D. switch (1) { default : break; }
You can use a constant in switch(...);


E. for ( ; true ; ) break ;
 


Explanation: 
It is not possible to break out of an if statement. But if the if statement is placed within a switch statement or a loop construct, the usage of break in option 3 would be valid.

 
Back to Question without Answer
 



35.     QID - 2.1121 : Using Loop Constructs 
 

What will the following code print?


void crazyLoop(){
  int c = 0;
  JACK: while (c < 8){
    JILL: System.out.println(c);
    if (c > 3) break JACK; else c++;
  }
}

 

Correct Option is :  E 

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. It will print numbers from 0 to 8
 


D. It will print numbers from 0 to 3
 


E. It will print numbers from 0 to 4
 


Explanation: 
This is a straight forward loop that contains a labelled break statement. A labelled break breaks out of the loop that is marked with the given label. Therefore, a labelled break is used to break out from deeply nested loops to the outer loops. Here, there is only one nested loop so the break; and break JACK; are same, but consider the following code:

    public static void crazyLoop(){
      int c = 0;
      JACK: while (c < 8){
        JILL: System.out.println("c = "+c);
        for(int k = 0; k<c; k++){
            System.out.println(" k = "+k+" c = "+c);
            if (c > 3) break JACK; 
        }
        c++;
      }
    }


This code prints:

c = 0
c = 1
  k = 0 c = 1
c = 2
  k = 0 c = 2
  k = 1 c = 2
c = 3
  k = 0 c = 3
  k = 1 c = 3
  k = 2 c = 3
c = 4
  k = 0 c = 4


As you can see, in this case, break JACK; will break out from the outer most loop (the while loop). If break JACK; is replaced by break; it will print:

c = 0
c = 1
  k = 0 c = 1
c = 2
  k = 0 c = 2
  k = 1 c = 2
c = 3
  k = 0 c = 3
  k = 1 c = 3
  k = 2 c = 3
c = 4
  k = 0 c = 4
c = 5
  k = 0 c = 5
c = 6
  k = 0 c = 6
c = 7
  k = 0 c = 7


This shows that a break without a label only breaks out of the current loop.

 
Back to Question without Answer
 



36.     QID - 2.1366 : Using Loop Constructs 
 

What will the following code print when compiled and run:



public class TestClass {

    

    public static void main(String[] args){

        while(int k = 5; k<7){

            System.out.println(k++);

        }

    }

}
 

Correct Option is :  D 

A. 5

6
 


B. 5

6

7
 


C. It will keep printing 5.
 


D. It will not compile.
In Java, a while or do/while construct takes an expression that returns a boolean. But unlike a for loop, you cannot put instantiation and increment sections in the while condition.



Therefore, for(int k=5;k<7;) is valid but while(int k=5;k<7;) is not.


E. It will throw an exception at run time.
 


 
Back to Question without Answer
 



37.     QID - 2.1227 : Using Loop Constructs 
 

Given the following code, which of these statements are true?


class TestClass{
   public static void main(String args[]){
      int k = 0;
      int m = 0;
      for ( int i = 0; i <= 3; i++){
         k++;
         if ( i == 2){
            // line 1
         }
         m++;
      }
      System.out.println( k + ", " + m );
   }
}


 

Correct Options are :  A C E 

A. It will print 3, 2 when line 1 is replaced by break;
 


B. It will print 3, 2 when line 1 is replaced by continue.
 


C. It will print 4, 3 when line 1 is replaced by continue.
 


D. It will print 4, 4 when line 1 is replaced by i = m++;
It will print 4, 5


E. It will print 3, 3 when line 1 is replaced by i = 4;
 


Explanation: 
This is a simple loop. All you need to do is execute each statement in your head. For example, if line 1 is replaced by break:



1. k=0, m=0

2. iteration 1: i=0

    2.1 k = 1

    2.2 i == 2 is false

    2.3 m = 1

3. iteration 2: i = 1

    3.1 k=2

    3.2 i==2 is false

    3.3 m = 2

4. iteration 3: i = 2

    4.1 k=3

    4.2 i==2 is true

    4.3 break

5. print 3, 2



 
Back to Question without Answer
 



38.     QID - 2.1280 : Using Loop Constructs 
 

In the following code what will be the output if 0 (integer value zero) is passed to loopTest()?


public class TestClass{
   public void loopTest(int x){
      loop: for (int i = 1; i < 5; i++){
         for (int j = 1; j < 5; j++){
            System.out.println(i);
            if (x == 0) {  continue loop;  }
            System.out.println(j);
         }
      }
   }
}

 

Correct Option is :  B 

A. The program will not compile.
 


B. It will print 1 2 3 4
 


C. It will print 1 1 2 3 4
 


D. It will print 1 1 2 2 3 3 4 4
 


E. Produces no output
 


Explanation: 
When x is 0, the statement continue loop; is executed. Note that loop: is for the outer loop. So, only one iteration (that too not full) is performed for the inner loop.

So, the inner loop prints the value of i only once and then next iteration of outer loop starts. 'j' is never printed. So, it prints 1 2 3 4.

 
Back to Question without Answer
 



39.     QID - 2.1413 : Using Loop Constructs 
 

What will the following code print when compiled and run?



public class TestClass{

   public static void main(String[] args){

        int[] arr = { 1, 2, 3, 4, 5, 6 };

        int counter = 0;

        for (int value : arr) {

           if (counter >= 5) {

               break;    

           } else {

            continue;    

           }

           if (value > 4) {

             arr[counter] = value + 1;    

           }    

           counter++;

        }

        System.out.println(arr[counter]);

   }



}
 

Correct Option is :  A 

A. It will not compile.
Observe that the line  if (value > 4) { and the rest of the code in the for loop will not execute in any case. It is therefore unreachable code and the compiler will complain about it.


B. It will throw an exception at run time.
 


C. 5
 


D. 6
 


E. 7
 


F. 8
 


 
Back to Question without Answer
 



40.     QID - 2.1013 : Using Loop Constructs 
 

Using a break in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
The break statement is to break out of any loop completely. So the current iteration and any other remaining iterations of the loop will not execute.

Control is transferred to the first statement after the loop.

 
Back to Question without Answer
 



41.     QID - 2.1233 : Using Loop Constructs 
 

What will the following program print?


class Test{
    public static void main(String args[]){
        int c = 0;
        boolean flag = true;
        for(int i = 0; i < 3; i++){
            while(flag){
                c++;
                if(i>c || c>5) flag = false;
            }
        }
        System.out.println(c);
    }
}

 

Correct Option is :  D 

A. 3
 


B. 4
 


C. 5
 


D. 6
 


E. 7
 


Explanation: 
In the first iteration of for loop, the while loop keeps running till c becomes 6. Now, for all next for loop iteration, the while loop never runs as the flag is false. So final value of c is 6.

 
Back to Question without Answer
 



42.     QID - 2.1352 : Using Loop Constructs 
 

Using a continue in a while loop causes the loop to break the current iteration and start the next iteration of the loop.
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
A continue causes the next iteration of the loop to start without executing the remaining statements in the loop.

 
Back to Question without Answer
 



43.     QID - 2.1420 : Using Loop Constructs 
 

What will the following code print when compiled and run?



        int[][] ab = { {1, 2, 3}, {4, 5} };

        for(int i=0; i<ab.length; i++){

            for(int j=0; j<ab[i].length; j++){

                System.out.print(ab[i][j]+" ");

                if(ab[i][j] == 2){

                    break;

                }

            }

            continue;

        }


 

Correct Option is :  D 

A. 1 2 3 4 5
 


B. 1 2
 


C. 1 3 4 5
 


D. 1 2 4 5
 


E. 2 3 5
 


F. It will not compile.
 


Explanation: 
For answering such questions, it is best to use a pen and a paper and start executing the code line by line.

The i of the outer loop runs from 0 to < ab.length, which is 2. i.e. i will be 0 and then 1.

The j of the inner loop runs from 0 to < ab[i].length, which is 3 for the first iteration of the outer for loop and 2 for the second iteration of the outer for loop.

Thus, for the first iteration of the outer for loop - the inner for loop prints ab[0][0] i.e. 1 , ab[0][1] i.e. 2 and then since the if condition is satisfied, the inner loop ends and thesecond iteration of the outer for loop begins.

For the second iteration of the outer for loop - the inner for loop prints ab[1][0] i.e. 4 , ab[1][1] i.e. 5.



The continue statement in this case is redundant because there is no statement left to execute after continue in the for loop anyway.

 
Back to Question without Answer
 



44.     QID - 2.1044 : Using Loop Constructs 
 

What will be the output if you run the following program?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0 ; j < 1 ; ++j , i++){
         System.out.println( i + " " + j );
      }
      System.out.println( i + " " + j );
   }
}

 

Correct Option is :  D 

A. 0 0 will be printed twice.
 


B. 1 1 will be printed once.
 


C. 0 1 will be printed followed by 1 2.
 


D. 0 0 will be printed followed by 1 1.
 


E. It will print 0 0 and then 0 1.
 


Explanation: 
j will be less than 1 for only the first iteration. So, first it will print 0, 0. Next, i and j are incremented.

  Because j is not less than 1 at the start of the loop, the condition fails and it comes out of the loop. Finally, it will print 1,1.

 
Back to Question without Answer
 



45.     QID - 2.1411 : Using Loop Constructs 
 

What will the following code print when compiled and run?

public class DaysTest{



    static String[] days = {"monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday" };

    

    public static void main(String[] args) {

        

        int index = 0;

        for(String day : days){

            

            if(index == 3){

                break;

            }else {

                 continue;

            }

            index++;

            if(days[index].length()>3){

                days[index] = day.substring(0,3);

            }

        }

        System.out.println(days[index]);

    }

}
 

Correct Option is :  D 

A. wed
 


B. thu
 


C. fri
 


D. It will not compile.
 


E. It will throw an exception at run time.
 


Explanation: 
Notice the statement :

 if(index == 3){

                break;

            }else {

                 continue;

            }

In no situation can the control go beyond this statement in the for loop. Therefore,  rest of the statements in the for loop are unreachable and so the code will not compile.

 
Back to Question without Answer
 



46.     QID - 2.1327 : Using Loop Constructs 
 

What will be the output when the following program is run?


public class TestClass{
   public static void main(String args[]){
      int i;
      int j;
      for (i = 0, j = 0; j < i; ++j, i++){
         System.out.println(i + " " + j);
      }
      System.out.println(i + " " + j);
   }
}


 

Correct Option is :  B 

A. 0 0 will be printed twice.
 


B. 0 0 will be printed once.
 


C. It will keep on printing 0 0
 


D. It will not compile.
 


E. It will print 0 0 and then 0 1.
 


Explanation: 
++j and i++ do not matter in this case.

The loop will not execute even once since j is not less than i at the start of the loop so the condition fails and the program will print 0 0 just once.

 
Back to Question without Answer
 



47.     QID - 2.1395 : Using Loop Constructs 
 

Given:



public class SimpleLoop {

    public static void main(String[] args) {

        int i=0, j=10;

        int count = 0;

        while (i<j) {            

            i++;

            j--;

            count++;

        }

        System.out.println(i+" "+j+" "+count);

    }

}

What is the result?
 

Correct Option is :  E 

A. 6 4 5
 


B. 6 5 5
 


C. 6 5 6
 


D. 6 4 6
 


E. 5 5 5
 


Explanation: 
In such type of questions, you will need to work out the values of the loop variables for every iteration (unless you can recognize the pattern) on your worksheet.

Beginning i=0, j=10, count = 0

Iteration 1: i<j is true, i becomes 1, j becomes 9, count becomes 1

Iteration 2: i<j is true, i becomes 2, j becomes 8, count becomes 2

Iteration 3: i<j is true, i becomes 3, j becomes 7, count becomes 3

Iteration 4: i<j is true, i becomes 4, j becomes 6, count becomes 4

Iteration 5: i<j is true, i becomes 5, j becomes 5, count becomes 5

Iteration 6: i<j is false so the while loop is not entered.

Print 5 5 5.

 
Back to Question without Answer
 



Constructors
 
Exam Objectives - 
 
Create and overload constructors; including impact on default constructors



01.     QID - 2.1075 
 

Given the following source code, which of the lines that are commented out may be reinserted without introducing errors?


abstract class Bang{
 //abstract void f();  //(0)
   final    void g(){}
 //final    void h(){} //(1)
   protected static int i;
   private int j;
}

final class BigBang extends Bang{
 //BigBang(int n) { m = n; } //(2)
   public static void main(String args[]){
      Bang mc = new BigBang();
   }
   void h(){}
 //void k(){ i++; } //(3)
 //void l(){ j++; } //(4)
   int m;
}

 

Select 1 option

A. final void h( ) { } //(1)
 


B. BigBang(int n) { m = n; }  //(2)
 


C. void k( ) { i++; }   //(3)
 


D. void l( ) { j++; }  //(4)
 


E. abstract void f( ) ;  //(0)
 


 
Check Answer
 



02.     QID - 2.1442 
 

What will the following code print when compiled and run?

    

class X{

    public X(){

        System.out.println("In X");

    }

}



class Y extends X{

    public Y(){

        super();

        System.out.println("In Y");

    }

}



class Z extends Y{

    public Z(){

        System.out.println("In Z");

    }

}



public class Test {

 

    public static void main(String[] args) {

        Y y = new Z();

    }

} 
 

Select 1 option

A. It will not compile.
 


B. In X

In Y

In Z
 


C. In Z

In Y

In X
 


D. In Y

In X

In Z
 


E. In Z

In X

In Y
 


 
Check Answer
 



03.     QID - 2.896 
 

Which of the following classes have a default constructor?



class A{  }

class B {  B(){ } }

class C{  C(String s){ } }


 

Select 1 option

A. A
 


B. A and B
 


C. B
 


D. C
 


E. B and C
 


 
Check Answer
 



04.     QID - 2.1102 
 

Under what situations does a class get a default constructor?
 

Select 1 option

A. All classes in Java get a default constructor.
 


B. You have to define at least one constructor to get the default constructor.
 


C. If the class does not define any constructors explicitly.
 


D. All classes get default constructor from Object class.
 


E. None of the above.
 


 
Check Answer
 



05.     QID - 2.1098 
 

What will be the result of attempting to compile the following program?


public class TestClass{
   long l1;
   public void TestClass(long pLong) { l1 = pLong ; }  //(1)
   public static void main(String args[]){
      TestClass a, b ;
      a = new TestClass();  //(2)
      b = new TestClass(5);  //(3)
   }
}


 

Select 1 option

A. A compilation error will be encountered at (1), since constructors should not specify a return value.
 


B. A compilation error will be encountered at (2), since the class does not have a default constructor.
 


C. A compilation error will be encountered at (3).
 


D. The program will compile correctly.
 


E. It will not compile because parameter type of the constructor is different than the type of value passed to it.
 


 
Check Answer
 



06.     QID - 2.858 
 

Which of the following are true about the "default" constructor?
 

Select 1 option

A. It is provided by the compiler only if the class and any of its super classes does not define any constructor.
 


B. It takes no arguments.
 


C. A default constructor is used to return a default value.
 


D. To define a default constructor, you must use the default keyword.
 


E. It is always public.
 


 
Check Answer
 



07.     QID - 2.1012 
 

Which lines contain a valid constructor in the following code?


public class TestClass{
   public TestClass(int a, int b) { } // 1
   public void TestClass(int a) { }   // 2
   public TestClass(String s); // 3
   private TestClass(String s, int a) { }     //4
   public TestClass(String s1, String s2) { }; //5
}

 

Select 3 options

A. Line // 1
 


B. Line // 2
 


C. Line // 3
 


D. Line // 4
 


E. Line // 5
 


 
Check Answer
 



08.     QID - 2.1216 
 

Which of these statements are true?
 

Select 2 options

A. All classes must explicitly define a constructor.
 


B. A constructor can be declared private.
 


C. A constructor can declare a return value.
 


D. A constructor must initialize all the member variables of a class.
 


E. A constructor can access the non-static members of a class.
 


 
Check Answer
 



09.     QID - 2.1355 
 

Given the following code, which of the constructors shown in the options can be added to class B without causing a compilation to fail?


class A{
   int i;
   public A(int x) { this.i = x; }
}
class B extends A{
   int j;
   public B(int x, int y) { super(x);  this.j = y; }
}

 

Select 2 options

A. B( ) { }
 


B. B(int y ) { j = y; }
 


C. B(int y ) { super(y*2 ); j = y; }
 


D. B(int y ) { i = y; j = y*2; }
 


E. B(int z ) { this(z, z); }
 


 
Check Answer
 



10.     QID - 2.1116 
 

Which of the following are true about the "default" constructor?
 

Select 2 options

A. It is provided by the compiler only if the class does not define any constructor.
 


B. It initializes the instance members of the class.
 


C. It calls the no-args constructor of the super class.
 


D. It initializes instance as well as class fields of the class.
 


E. It is provided by the compiler if the class does not define a 'no-args' constructor.
 


 
Check Answer
 



11.     QID - 2.1349 
 

Given a class named Test, which of these would be valid definitions for a constructor for the class?
 

Select 1 option

A. Test(Test b) { }
 


B. Test Test( ) { }
 


C. private final Test( ) { }
 


D. void Test( ) { }
 


E. public static void Test(String args[ ] ) { }
 


 
Check Answer
 



Constructors (Answered)



01.     QID - 2.1075 : Constructors 
 

Given the following source code, which of the lines that are commented out may be reinserted without introducing errors?


abstract class Bang{
 //abstract void f();  //(0)
   final    void g(){}
 //final    void h(){} //(1)
   protected static int i;
   private int j;
}

final class BigBang extends Bang{
 //BigBang(int n) { m = n; } //(2)
   public static void main(String args[]){
      Bang mc = new BigBang();
   }
   void h(){}
 //void k(){ i++; } //(3)
 //void l(){ j++; } //(4)
   int m;
}

 

Correct Option is :  C 

A. final void h( ) { } //(1)
It will fail because BigBang will try to override a final method.


B. BigBang(int n) { m = n; }  //(2)
It will fail since BigBang will no longer have a default constructor that is used in the main( ) method.


C. void k( ) { i++; }   //(3)
 


D. void l( ) { j++; }  //(4)
It will fail since the method will try to access a private member 'j' of the superclass.


E. abstract void f( ) ;  //(0)
If this line is inserted, then either the class BigBang will have to be declared abstract or it has to implement method f().


Explanation: 
Default constructor (having no arguments) is automatically created only if the class does not define any constructors. So as soon as //2 is inserted the default constructor will not be created.

 
Back to Question without Answer
 



02.     QID - 2.1442 : Constructors 
 

What will the following code print when compiled and run?

    

class X{

    public X(){

        System.out.println("In X");

    }

}



class Y extends X{

    public Y(){

        super();

        System.out.println("In Y");

    }

}



class Z extends Y{

    public Z(){

        System.out.println("In Z");

    }

}



public class Test {

 

    public static void main(String[] args) {

        Y y = new Z();

    }

} 
 

Correct Option is :  B 

A. It will not compile.
 


B. In X

In Y

In Z
 


C. In Z

In Y

In X
 


D. In Y

In X

In Z
 


E. In Z

In X

In Y
 


Explanation: 
There is no problem with the code. 



Remember that before the fields of a subclass can be initialized by a constructor, the fields of superclass have to be initialized. Therefore, a super class constructor must first execute before a subclass constructor can execute. This order of invocation of constructors goes up the chain up from the subclass that is being created up to the top most super class, which is java.lang.Object.



The explicit call to super(); in class Y is not required because the compiler puts a call to super(); anyway if you don't explicitly call either any super class constructor using super(...) or another constructor of the same class using this(...) first ( "..." refers to appropriate arguments as required for a given constructor).



The declared type of a variable is immaterial here. Only the actual class of object that is being instantiated is important. Therefore, if you instantiate class Z, Z's constructor will be invoked, but internally, that constructor will first invoke Y's constructor before executing the rest of Z's constructor. Similarly, Y's constructor will first invoke X's constructor before executing the rest of Y's constructor. Finally, X's constructor will first invoke Objects's constructor before executing the rest of X's constructor. Object class's constructor doesn't print anything so no output is generated because of that. But once that is finished, the remaining code of X constructor's is executed, which prints "In X", then the control goes back to Y's constructor, which prints, "In Y". Finally, the control goes back to Z's constructor, which prints, "In Z".

 
Back to Question without Answer
 



03.     QID - 2.896 : Constructors 
 

Which of the following classes have a default constructor?



class A{  }

class B {  B(){ } }

class C{  C(String s){ } }


 

Correct Option is :  A 

A. A
 


B. A and B
 


C. B
 


D. C
Since class C has a constructor defined in it, the default constructor will not be provided for it by the compiler.


E. B and C
 


Explanation: 
There is only one rule regarding the "default" constructor:

The Java compiler automatically adds a constructor that takes no argument and has the same access as the class, if and only if the programmer does not define ANY constructor in the class.



In this case, the programmer has not defined any constructor for class A, hence it will have the default constructor.



For class B, the programmer has defined a constructor that is exactly same as the default constructor that would have been provided automatically. It is a matter of interpretation whether it can be called a default constructor or not.



Based on Java Language Specification section 8.8.9, quoted below, our interpretation is that class B will not get a default constructor:



(http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html )



8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor with no formal parameters and no throws clause is implicitly declared. 



If the class being declared is the primordial class Object, then the default constructor has an empty body. Otherwise, the default constructor simply invokes the superclass constructor with no arguments. 



It is a compile-time error if a default constructor is implicitly declared but the superclass does not have an accessible constructor (6.6) that takes no arguments and has no throws clause. 



It follows that if the nullary constructor of the superclass has a throws clause, then a compile-time error will occur.

 
Back to Question without Answer
 



04.     QID - 2.1102 : Constructors 
 

Under what situations does a class get a default constructor?
 

Correct Option is :  C 

A. All classes in Java get a default constructor.
No. If a class defines a constructor explicitly, it will not get the default constructor.


B. You have to define at least one constructor to get the default constructor.
A default (no args one) will be given if the class doesn't define any.


C. If the class does not define any constructors explicitly.
In this case, the compiler will add a no args constructor for this class.


D. All classes get default constructor from Object class.
Constructors are NEVER inherited.


E. None of the above.
 


 
Back to Question without Answer
 



05.     QID - 2.1098 : Constructors 
 

What will be the result of attempting to compile the following program?


public class TestClass{
   long l1;
   public void TestClass(long pLong) { l1 = pLong ; }  //(1)
   public static void main(String args[]){
      TestClass a, b ;
      a = new TestClass();  //(2)
      b = new TestClass(5);  //(3)
   }
}


 

Correct Option is :  C 

A. A compilation error will be encountered at (1), since constructors should not specify a return value.
But it becomes a valid method if you give a return type.


B. A compilation error will be encountered at (2), since the class does not have a default constructor.
The class has an implicit default constructor since the class doesn't have any constructor defined.


C. A compilation error will be encountered at (3).
Because (1) is a method and not a constructor. So there is no constructor that take a parameter.


D. The program will compile correctly.
 


E. It will not compile because parameter type of the constructor is different than the type of value passed to it.
If (1) was a valid constructor 'int' would be promoted to long at the time of passing.


Explanation: 
The declaration at (1) declares a method, not a constructor because it has a return value. The method happens to have the same name as the class, but that is ok.

The class has an implicit default constructor since the class contains no constructor declarations. This allows the instantiation at (2) to work.

 
Back to Question without Answer
 



06.     QID - 2.858 : Constructors 
 

Which of the following are true about the "default" constructor?
 

Correct Option is :  B 

A. It is provided by the compiler only if the class and any of its super classes does not define any constructor.
It is provided by the compiler if the class does not define any constructor. It is immaterial if the super class provides a constructor or not.


B. It takes no arguments.
 


C. A default constructor is used to return a default value.
A constructor does not return any value at all. It is meant to initialize the state of an object.


D. To define a default constructor, you must use the default keyword.
 


E. It is always public.
The access type of a default constructor is same as the access type of the class. Thus, if a class is public, the default constructor will be public.


Explanation: 
The default constructor is provided by the compiler only when a class does not define ANY constructor explicitly.
For example,

public class A{
  public A()  //This constructor is automatically inserted by the compiler because there is no other constructor defined by the programmer explicitly.
  {
    super();  //Note that it calls the super class's default no-args constructor.
  }
}
public class A{
  //Compiler will not generate any constructor because the programmer has defined a constructor.
  public A(int i){
     //do something
  }
}



 
Back to Question without Answer
 



07.     QID - 2.1012 : Constructors 
 

Which lines contain a valid constructor in the following code?


public class TestClass{
   public TestClass(int a, int b) { } // 1
   public void TestClass(int a) { }   // 2
   public TestClass(String s); // 3
   private TestClass(String s, int a) { }     //4
   public TestClass(String s1, String s2) { }; //5
}

 

Correct Options are :  A D E 

A. Line // 1
 


B. Line // 2
Constructors cannot return anything. Not even void.


C. Line // 3
Constructors cannot have empty bodies (i.e. they cannot be abstract)


D. Line // 4
You can apply public, private, protected to a constructor. But not static, final, synchronized, native and abstract.


E. Line // 5
The compiler ignores the extra semi-colon.


Explanation: 
It is interesting to note that public void TestClass(int a) {} // 2 will actually compile. It is not a constructor, but compiler considers it as a valid method!

 
Back to Question without Answer
 



08.     QID - 2.1216 : Constructors 
 

Which of these statements are true?
 

Correct Options are :  B E 

A. All classes must explicitly define a constructor.
A default no args one will be provided if not defined any.


B. A constructor can be declared private.
This feature is used for implementing Singleton Classes.


C. A constructor can declare a return value.
 


D. A constructor must initialize all the member variables of a class.
All non-final instance variables get default values if not explicitly initialized.


E. A constructor can access the non-static members of a class.
A constructor is non-static, and so it can access directly both the static and non-static members of the class.


Explanation: 
Constructors need not initialize *all* the member variables of the class. A non-final member(i.e. an instance) variable will be assigned a default value if not explicitly initialized.

 
Back to Question without Answer
 



09.     QID - 2.1355 : Constructors 
 

Given the following code, which of the constructors shown in the options can be added to class B without causing a compilation to fail?


class A{
   int i;
   public A(int x) { this.i = x; }
}
class B extends A{
   int j;
   public B(int x, int y) { super(x);  this.j = y; }
}

 

Correct Options are :  C E 

A. B( ) { }
 


B. B(int y ) { j = y; }
 


C. B(int y ) { super(y*2 ); j = y; }
 


D. B(int y ) { i = y; j = y*2; }
 


E. B(int z ) { this(z, z); }
 


Explanation: 
1. Remember that an instance of a class is also an instance of its parent class. Therefore, as a part of constructing an instance of a subclass, the JVM has to initialize those parts of the instance that are inherited from the super class as well. Further, the parts inherited from the super class need to be initialized first because the subclass may depend on them. Since it is the job of a constructor to initialize an instance, a constructor of the super class has to be invoked before the constructor of the subclass can proceed. The compiler ensures that at least one constructor of the super class is invoked if you do not explicitly call a super class's constructor by adding super(); (i.e. a call to the no-args constructor) as the first line of the sub class constructor. It automatically adds this call IF and ONLY IF the subclass's constructor does not explicitly call any of the super class's constructor in the first line of its code.



Now, if the super class ( here, A ) does not have a no-args constructor, the call super(); will fail. Hence, choices B( ) { }, B(int y ) { j = y; } and B(int y ) { i = y; j = y*2; } are not valid and choice B(int y ) { super(y*2 ); j = y; } is valid because it explicitly calls super( int ), which is available in A.



2. Instead of calling a super class's constructor using super(<args>), you can also call another constructor of the sub class in the first line (as given in choice B(int z ) { this(z, z); } ). Here, this(int, int) is called in the first line, which, in turn, calls super(int). So the super class A is correctly instantiated before the sub class B begins initialization.

 
Back to Question without Answer
 



10.     QID - 2.1116 : Constructors 
 

Which of the following are true about the "default" constructor?
 

Correct Options are :  A C 

A. It is provided by the compiler only if the class does not define any constructor.
 


B. It initializes the instance members of the class.
 


C. It calls the no-args constructor of the super class.
 


D. It initializes instance as well as class fields of the class.
 


E. It is provided by the compiler if the class does not define a 'no-args' constructor.
It is not provided even if the class declares any other with-args constructor.


Explanation: 
The default constructor is provided by the compiler only when a class does not define ANY constructor explicitly.
For example,

public class A{
  public A()  //This constructor is automatically inserted by the compiler because there is no other constructor defined by the programmer explicitly.
  {
    super();  //Note that it calls the super class' default no-args constructor.
  }
}
public class A{
  //Compiler will not generate any constructor because the programmer has defined a constructor.
  public A(int i){
     //do something
  }
}


 
Back to Question without Answer
 



11.     QID - 2.1349 : Constructors 
 

Given a class named Test, which of these would be valid definitions for a constructor for the class?
 

Correct Option is :  A 

A. Test(Test b) { }
The constructor can take the same type as a parameter.


B. Test Test( ) { }
A constructor cannot return anything.


C. private final Test( ) { }
A constructor cannot be final, static or abstract.


D. void Test( ) { }
A constructor cannot return anything. Not even void.


E. public static void Test(String args[ ] ) { }
A constructor cannot be final, static or abstract.


 
Back to Question without Answer
 



Working with Methods
 
Exam Objectives - 
 
Create methods with arguments and return values
Apply the static keyword to methods and fields
Determine the effect upon object references and primitive values when they are passed into methods that change the values
Apply access modifiers



01.     QID - 2.886 
 

Given:


class StaticTest{
    
    void m1(){
        StaticTest.m2();  // 1
        m4();             // 2
        StaticTest.m3();  // 3
    }
    
    static void m2(){ }  // 4
    
    void m3(){
        m1();            // 5
        m2();            // 6
        StaticTest.m1(); // 7
    }
    
    static void m4(){ }
}


Which of the lines will fail to compile?
 

Select 2 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


 
Check Answer
 



02.     QID - 2.957 
 

What will the following program print?


public class TestClass{
  static int someInt = 10;
  public static void changeIt(int a){
    a = 20;
  }
  public static void main(String[] args){
    changeIt(someInt);
    System.out.println(someInt);
  }
}


 

Select 1 option

A. 10
 


B. 20
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



03.     QID - 2.1218 
 


 

 
 
Check Answer
 



04.     QID - 2.1053 
 

Compared to public, protected and private accessibility, default accessibility is....
 

Select 1 option

A. Less restrictive than public
 


B. More restrictive than public, but less restrictive than protected.
 


C. More restrictive than protected, but less restrictive than private.
 


D. More restrictive than private.
 


E. Less restrictive than protected from within a package, and more restrictive than protected from outside a package.
 


 
Check Answer
 



05.     QID - 2.862 
 

Consider the following code appearing in the same file:


class Data {
    int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}


Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Select 2 options

A. Add the following two statements:

d.x = 2;

d.y = 2;
 


B. Add the following statement:

d = new Data(2, 2);
 


C. Add the following two statements:

d.x += 1;

d.y += 1;
 


D. Add the following statement:

d = d + 1;
 


 
Check Answer
 



06.     QID - 2.906 
 

Given:

class Triangle{
    public int base;
    public int height;
    private final double ANGLE;

    public  void setAngle(double a){  ANGLE = a;  }
    
    public static void main(String[] args) {
        Triangle t = new Triangle();
        t.setAngle(90);
    }
}


 

Select 1 option

A. the value of ANGLE will not be set to 90 by the setAngle method.
 


B. An exception will be thrown at run time.
 


C. The code will work as expected setting the value of ANGLE to 90.
 


D. The code will not compile.
 


 
Check Answer
 



07.     QID - 2.912 
 

Which of the following methods does not return any value?
 

Select 1 option

A. public doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
 


B. public null doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
 


C. public doStuff() {

    //valid code not shown

} 
 


D. public void doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
 


E. private doStuff() {

    //valid code not shown

} 
 


 
Check Answer
 



08.     QID - 2.1439 
 

Given:

//In file AccessTest.java

package a;

public class AccessTest {

 int a;

 private int b;

 protected void c(){ }

 public int d(){  return 0; }

}



//In file AccessTester.java

package b;

import a.AccessTest;



public class AccessTester extends AccessTest{

    public static void main(String[] args) {

        AccessTest ref = new AccessTest();



    }

}

Idenfity the correct statements -
 

Select 1 option

A. Only c() and d() can be accessed by ref.
 


B. b, c(), as well as d(), can be accessed by ref.
 


C. Only d() can be accessed by ref.
 


D. Only a and d() can be accessed by ref.
 


 
Check Answer
 



09.     QID - 2.974 
 

What will be the contents of s1 and s2 at the time of the println statement in the main method of the following program?


import java.util.*;
public class TestClass{
   public static void main(String args[]){
      Stack s1 = new Stack ();
      Stack s2 = new Stack ();
      processStacks (s1,s2);
      System.out.println (s1 + "    "+ s2);
   }
   public static void processStacks(Stack x1, Stack x2){
      x1.push (new Integer ("100")); //assume that the method push adds the passed object to the stack.
      x2 = x1;
   }
 }

Note:[] is used in the options below to denote each element of the Stack.
 

Select 1 option

A. [100] [100]
 


B. [100] []
 


C. [] [100]
 


D. [] []
 


 
Check Answer
 



10.     QID - 2.1001 
 

Consider the following class:


public class Test{
    public int id;
}


Which of the following is the correct way to make the variable 'id' read only for any other class?
 

Select 1 option

A. Make 'id' private.
 


B. Make 'id' private and provide a public method getId() which will return its value.
 


C. Make 'id' static and provide a public static method getId() which will return its value.
 


D. Make id 'protected'
 


 
Check Answer
 



11.     QID - 2.1158 
 

What will the following program print?


public class InitTest{
   public InitTest(){
      s1 = sM1("1");
   }
   static String s1 = sM1("a");
   String s3 = sM1("2");{
      s1 = sM1("3");
   }
   static{
      s1 = sM1("b");
   }
   static String s2 = sM1("c");
   String s4 = sM1("4");
    public static void main(String args[]){
        InitTest it = new InitTest();
    }
    private static String sM1(String s){
       System.out.println(s);  return s;
    }
}


 

Select 1 option

A. The program will not compile.
 


B. It will print : a b c 2 3 4 1
 


C. It will print : 2 3 4 1 a b c
 


D. It will print : 1 a 2 3 b c 4
 


E. It will print : 1 a b c 2 3 4
 


 
Check Answer
 



12.     QID - 2.1252 
 

What will be the output when the following program is run?


public class TestClass{
    char c;
    public void m1(){
        char[ ] cA = { 'a' , 'b'};
        m2(c, cA);
        System.out.println( ( (int)c)  + "," + cA[1] );
    }
    public void m2(char c, char[ ] cA){
        c = 'b';
        cA[1] = cA[0] = 'm';
    }
    public static void main(String args[]){
        new TestClass().m1();
    }
}


 

Select 1 option

A. Compile time error.
 


B. ,m
 


C. 0,m
 


D. b,b
 


E. b,m
 


 
Check Answer
 



13.     QID - 2.1312 
 

Which of the following code fragments are valid method declarations?
 

Select 1 option

A. void method1{ }
 


B. void method2( ) { }
 


C. void method3(void){ }
 


D. method4{ }
 


E. method5(void){ }
 


 
Check Answer
 



14.     QID - 2.978 
 

Given the following definition of class, which member variables are accessible from OUTSIDE the package com.enthu.qb?



package com.enthu.qb;

public class TestClass{

   int i;

   public int j;

   protected int k;

   private int l;

}
 

Select 2 options

A. Member variable i.
 


B. Member variable j.
 


C. Member variable k.
 


D. Member variable k, but only for subclasses.
 


E. Member variable l.
 


 
Check Answer
 



15.     QID - 2.831 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
        System.out.println(this.myValue);
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
        System.out.println(this.myValue);
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        ct.showTwo(200);
    }
}


 

Select 1 option

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


 
Check Answer
 



16.     QID - 2.833 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showTwo(200);
        System.out.println(ct.myValue);
        ct.showOne(100);
        System.out.println(ct.myValue);
    }
}

 

Select 1 option

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


E. 200 followed by 200.
 


F. 200 followed by 100
 


 
Check Answer
 



17.     QID - 2.830 
 

Consider the following method :



public void myMethod(int m, Object p, double d){

  ... valid code here

}



Assuming that there is no other method with the same name, which of the following options are correct regarding the above method?
 

Select 1 option

A. If this method is called with two parameters, the value of d in the method will be 0.0.
 


B. If this method is called with one parameter, the value of p and d in the method will be null and 0.0 respectively.
 


C. If this method is called with one parameter, the call will throw a NullPointerException.
 


D. If this method is called with one parameter, the call will throw a NullPointerException only if the code in the method tries to access p.
 


E. If this method is called with two parameters, the code will not compile.
 


 
Check Answer
 



18.     QID - 3.1486 
 

What will happen on running the following program?



public class DatabaseWrapper

{

  static String url = "jdbc://derby://localhost:1527//mydb";

  static DatabaseWrapper getDatabase()

  {

     System.out.println("Getting DB");

     return null;

  }

  public static void main(String[ ] args)

  {

    System.out.println( getDatabase().url );

  }

}
 

Select 1 option

A. It will print Getting DB and jdbc://derby://localhost:1527//mydb without throwing an exception.
 


B. It will throw a NullpointerException at Runtime.
 


C. It will print jdbc://derby://localhost:1527//mydb but will NOT print Getting DB.
 


D. It will print Getting DB and then throw a NullPointerException.
 


E. It will print nothing.
 


 
Check Answer
 



19.     QID - 2.1343 
 

Consider the following class...



class TestClass{

   int x;

   public static void main(String[] args){

      // lot of code.

   }

}
 

Select 1 option

A. By declaring x as static, main can access this.x
 


B. By declaring x as public, main can access this.x
 


C. By declaring x as protected, main can access this.x
 


D. main cannot access this.x as it is declared now.
 


E. By declaring x as private, main can access this.x
 


 
Check Answer
 



20.     QID - 2.904 
 

Given:

class Triangle{
    public int base;
    public int height;
    private static double ANGLE;

    public static double getAngle();
    
    public static void Main(String[] args) {
        System.out.println(getAngle());
    }
}


Identify the correct statements:
 

Select 1 option

A. It will not compile because it does not implement setAngle method.
 


B. It will not compile because ANGLE cannot be private.
 


C. It will not compile because getAngle() has no body.
 


D. It will not compile because ANGLE field is not initialized.
 


E. It will not compile because of the name of the method Main instead of main.
 


 
Check Answer
 



21.     QID - 2.875 
 

What will the following code print when compiled and run:

class Data {

    int intVal = 0;
    String strVal = "default";
    public Data(int k){
        this.intVal = k; 
    }

}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d1 = new Data(10);
        d1.strVal = "D1";
        Data d2 = d1;
        d2.intVal = 20;
        System.out.println("d2 val = "+d2.strVal);
    }
}


 

Select 1 option

A. d2 val =
 


B. d2 val = default
 


C. d2 val = D1
 


D. Exception at run time.
 


 
Check Answer
 



22.     QID - 2.856 
 

Consider the following code:



public class MyClass {



  protected int value = 10;



}



Which of the following statements are correct regarding the field value?
 

Select 1 option

A. It cannot be accessed from any other class.
 


B. It can be read but cannot be modified from any other class.
 


C. It can be modified but only from a subclass of MyClass.
 


D. It can be read and modified from any class within the same package or from any subclass of MyClass.
 


 
Check Answer
 



23.     QID - 2.1275 
 

How can you declare 'i' so that it is not visible outside the package test.


package test;
public class Test{
   XXX int i;
   /*  irrelevant code */
}


 

Select 2 options

A. private
 


B. public
 


C. protected
 


D. No access modifier
 


E. friend
 


 
Check Answer
 



24.     QID - 2.1362 
 

Which of the following statements are true?
 

Select 2 options

A. private keyword can never be applied to a class.
 


B. synchronized keyword can never be applied to a class.
 


C. synchronized keyword may be applied to a non-primitive variable.
 


D. final keyword can never be applied to a class.
 


E. A final variable can be hidden in a subclass.
 


 
Check Answer
 



25.     QID - 2.1092 
 

What will the following class print when compiled and run?


class Holder{
   int value = 1;
   Holder link;
   public Holder(int val){ this.value = val; }
   public static void main(String[] args){
	final Holder a = new Holder(5);
	Holder b = new Holder(10);
	a.link = b;
	b.link = setIt(a, b);
	System.out.println(a.link.value+" "+b.link.value);
   }
   
   public static Holder setIt(final Holder x, final Holder y){
       x.link = y.link;
       return x;
   }
   
}


 

Select 1 option

A. It will not compile because 'a' is final.
 


B. It will not compile because method setIt() cannot change x.link.
 


C. It will print 5, 10.
 


D. It will print 10, 10.
 


E. It will throw an exception when run.
 


 
Check Answer
 



26.     QID - 2.863 
 

Consider the following code appearing in the same file:


class Data {
    private int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}



Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Select 1 option

A. Add the following two statements :

d.x = 2;

d.y = 2;
 


B. Add the following statement:

d = new Data(2, 2);
 


C. Add the following two statements:

d.x += 1;

d.y += 1;
 


D. Add the following method to Data class:

public void setValues(int x, int y){

  this.x.setInt(x);   this.y.setInt(y);

}



Then add the following statement:

d.setValues(2, 2);
 


E. Add the following method to Data class:

public void setValues(int x, int y){

  this.x = x;   this.y = y;

}



Then add the following statement:

d.setValues(2, 2);
 


 
Check Answer
 



27.     QID - 2.889 
 

What will the following code print when run?


class A{
    String value = "test";
    A(String val){
        this.value = val;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        new A("new test").print();
    }
}

 

Select 1 option

A. test
 


B. new test
 


C. It will not compile.
 


D. It will throw an exception at run time.
 


 
Check Answer
 



28.     QID - 2.1131 
 

What would be the result of attempting to compile and run the following program?



class TestClass{

   static TestClass ref;

   String[] arguments;

   public static void main(String args[]){

      ref = new TestClass();

      ref.func(args);

   }

   public void func(String[] args){

      ref.arguments = args;

   }

}
 

Select 1 option

A. The program will fail to compile, since the static method main is trying to call the non-static method func.
 


B. The program will fail to compile, since the non-static method func cannot access the static member variable ref.
 


C. The program will fail to compile, since the argument args passed to the static method main cannot be passed on to the non-static method func.
 


D. The program will fail to compile, since method func is trying to assign to the non-static member variable 'arguments' through the static member variable ref.
 


E. The program will compile and run successfully.
 


 
Check Answer
 



29.     QID - 2.1228 
 

What will be the result of attempting to compile and run the following class?


public class InitTest{
   static String s1 = sM1("a");{
      s1 = sM1("b");
   }
   static{
      s1 = sM1("c");
   }
   public static void main(String args[]){
      InitTest it = new InitTest();
   }
   private static String sM1(String s){
      System.out.println(s);  return s;
   }
}


 

Select 1 option

A. The program will fail to compile.
 


B. The program will compile without error and will print a, c and b in that order when run.
 


C. The program will compile without error and will print a, b and c in that order when run.
 


D. The program will compile without error and will print c, a and b in that order when run.
 


E. The program will compile without error and will print b, c and a in that order when run.
 


 
Check Answer
 



30.     QID - 2.832 
 

What will the following program print when run?


public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        System.out.println(ct.myValue);
        ct.showTwo(200);
        System.out.println(ct.myValue);
    }
}


 

Select 1 option

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


 
Check Answer
 



31.     QID - 2.1188 
 

What should be the return type of the following method?

public RETURNTYPE methodX( byte by){
    double d = 10.0;
    return (long) by/d*3;
}


 

Select 1 option

A. int
 


B. long
 


C. double
 


D. float
 


E. byte
 


 
Check Answer
 



32.     QID - 2.966 
 

Select the correct order of restrictiveness for access modifiers...

(First one should be least restrictive)
 

Select 1 option

A. public < protected < package (i.e. no modifier) < private
 


B. public < package (i.e. no modifier) < protected < private
 


C. public < protected < private < package (i.e. no modifier)
 


D. protected < package (i.e. no modifier) < private < public
 


E. depends on the implementation of the class or method.
 


 
Check Answer
 



33.     QID - 2.1283 
 

What is the correct declaration for an abstract method 'add' in a class that is accessible to any class, takes no arguments and returns nothing?
 

Select 1 option

A. public void add();
 


B. abstract add();
 


C. abstract null add();
 


D. abstract public void add(){ }
 


E. abstract public void add() throws Exception;
 


 
Check Answer
 



34.     QID - 2.1294 
 

What will the code shown below print when run?

class Wrapper{
        int w = 10;
}

public class TestClass{
    
    static Wrapper changeWrapper(Wrapper w){
        w = new Wrapper();
        w.w += 9;
        return w;
    }
        
    
    public static void main(String[] args){
        Wrapper w = new Wrapper();
        w.w = 20;
        changeWrapper(w);
        w.w += 30;
        System.out.println(w.w);
        w = changeWrapper(w);
        System.out.println(w.w);
     }
}

 

Select 2 options

A. 9
 


B. 19
 


C. 30
 


D. 20
 


E. 29
 


F. 50
 


 
Check Answer
 



Working with Methods (Answered)



01.     QID - 2.886 : Working with Methods 
 

Given:


class StaticTest{
    
    void m1(){
        StaticTest.m2();  // 1
        m4();             // 2
        StaticTest.m3();  // 3
    }
    
    static void m2(){ }  // 4
    
    void m3(){
        m1();            // 5
        m2();            // 6
        StaticTest.m1(); // 7
    }
    
    static void m4(){ }
}


Which of the lines will fail to compile?
 

Correct Options are :  C G 

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


Explanation: 
To call an instance method you need a reference that points to the object on which you want to call that method. Now, within an instance method a reference named "this" pointing to the current object is always available. So to call another instance method from within an instance method, you can either use the this reference explicitly (for example, you may call this.m3() from within m1) , or leave out the this reference altogether (for example, you can directly call m3() from within m1()) because the compiler automatically adds the "this." part implicitly. The "this" variable is available only within an instance method and not in static methods because static methods are not invoked within the context of an object of that class. 



You can call a static method of a class from either a static or an instance method of the same class . No object reference is required. You can call it by using the name of the class or you can omit that as well. To call a static method of another class, you must use the name of the other class, for example OtherClass.staticMethod();



At //3, you are trying to call an instance method from another instance method. Therefore, you need to either specify an object reference or you can rely on this if you omit it. However, you cannot do StaticTest.m3() because StaticTest is not a valid reference that points to an object of class StaticTest.



Same thing happens at //7.

 
Back to Question without Answer
 



02.     QID - 2.957 : Working with Methods 
 

What will the following program print?


public class TestClass{
  static int someInt = 10;
  public static void changeIt(int a){
    a = 20;
  }
  public static void main(String[] args){
    changeIt(someInt);
    System.out.println(someInt);
  }
}


 

Correct Option is :  A 

A. 10
 


B. 20
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
In case of primitives such as an int, it is the value of the primitive that is passed. For example, in this question, when you pass someInt to changeIt method, you are actually passing the value 10 to the method, which is then assigned to method variable 'a'. In the method, you assign 20 to 'a'. However, this does not change the value contained in someInt. someInt still contains 10. Therefore, 10 is printed.



Theoretically, java supports Pass by Value for everything ( i.e. primitives as well as Objects). 



  . Primitives are always passed by value. 

  . Object "references" are passed by value. So it looks like the object is passed by reference but actually it is the value of the reference that is passed. 



        An  example: 

        Object o1 = new Object(); //Let us say, the object is stored at memory location 15000. 

        //Since o1 actually stores the address of the memory location where the object is stored, it contains 15000. 



        Now, when you call someMethod(o1); the value 15000 is passed to the method. 



        Inside the method someMethod():



        someMethod( Object localVar) { 

            /*localVar now contains 15000, which means it also points to the same memory location where the object is stored.

            Therefore, when you call a method on localVar, it will be executed on the same object.

            However, when you change the value of localVar itself, for example if you do localVar=null, 

            it then starts pointing to a different memory location. But the original variable o1 still 

            contains 15000 so it still points to the same object. */

        }

  

If you need even more detailed explanation, please check http://www.javaranch.com/campfire/StoryPassBy.jsp

 
Back to Question without Answer
 



03.     QID - 2.1218 : Working with Methods 
 


 

 
Explanation: 
This question is based on the principle that primitives are always passed by value. Thus, when you pass a to update() method, the value of a is passed. The variable a in update() method is not same as the a in main(). It is a completely different variable and so updating update() method's a does not affect main()'s a. Therefore, we need to return the new value from update() method and assign it to main()'s a.



The following is the complete code listing:



public class Updater {

  public int update(int a, int offset){

    a = a + offset;

    return a;

  }



  public static void main(String[] args) {

    Updater u = new Updater();

    int a = 99;

    a = u.update(a, 111);

    System.out.println(a);

  }

}

 
Back to Question without Answer
 



04.     QID - 2.1053 : Working with Methods 
 

Compared to public, protected and private accessibility, default accessibility is....
 

Correct Option is :  C 

A. Less restrictive than public
public is least restrictive.


B. More restrictive than public, but less restrictive than protected.
 


C. More restrictive than protected, but less restrictive than private.
The default accessibility is more restrictive than protected, but less restrictive than private. Members with default accessibility are only accessible within the class itself and from other classes in the same package. protected members are in addition accessible from subclasses in any other package as well. Members with private accessibility are only accessible within the class itself.


D. More restrictive than private.
private is most restrictive.


E. Less restrictive than protected from within a package, and more restrictive than protected from outside a package.
 


Explanation: 
The correct order :

public < protected < package (or default) < private

(here, public is least restrictive and private is most restrictive.)

 
Back to Question without Answer
 



05.     QID - 2.862 : Working with Methods 
 

Consider the following code appearing in the same file:


class Data {
    int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}


Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Correct Options are :  A C 

A. Add the following two statements:

d.x = 2;

d.y = 2;
 


B. Add the following statement:

d = new Data(2, 2);
This will create a new Data object and will not change the original Data object referred to be d.


C. Add the following two statements:

d.x += 1;

d.y += 1;
 


D. Add the following statement:

d = d + 1;
This will not compile because Java does not allow operator overloading for user defined objects.


 
Back to Question without Answer
 



06.     QID - 2.906 : Working with Methods 
 

Given:

class Triangle{
    public int base;
    public int height;
    private final double ANGLE;

    public  void setAngle(double a){  ANGLE = a;  }
    
    public static void main(String[] args) {
        Triangle t = new Triangle();
        t.setAngle(90);
    }
}


 

Correct Option is :  D 

A. the value of ANGLE will not be set to 90 by the setAngle method.
 


B. An exception will be thrown at run time.
 


C. The code will work as expected setting the value of ANGLE to 90.
 


D. The code will not compile.
 


Explanation: 
The given code has two problems:

1. If you declare a field to be final, it must be explicitly initialized by the time the creation of an object of the class is complete. So you can either initialize it immediately:

private final double ANGLE = 0;

or you can initialize it in the constructor or an instance block.



2. Since ANGLE is final, you can't change its value once it is set. Therefore the setAngle method will also not compile.

 
Back to Question without Answer
 



07.     QID - 2.912 : Working with Methods 
 

Which of the following methods does not return any value?
 

Correct Option is :  D 

A. public doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
It is missing the return type. Every method must have a return type specified in its declaration. 

It could be a valid constructor though if the class is named doStuff because the constructors don't return anything, not even void.


B. public null doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
null can be a return value not a return type because null is not a type.


C. public doStuff() {

    //valid code not shown

} 
This is not a valid method because there is no return type declared. Although it can be a valid constructor if the name of the class is doStuff.


D. public void doStuff() throws FileNotFoundException, IllegalArgumentException{

    //valid code not shown

} 
A method that does not return anything should declare its return type as void.

Note that this is different from constructors. A constructor also doesn't return anything but for a constructor, you don't specify any return type at all. That is how a constructor is differentiated from a regular method.


E. private doStuff() {

    //valid code not shown

} 
This is not a valid method because there is no return type declared. Although it can be a valid constructor if the name of the class is doStuff.


 
Back to Question without Answer
 



08.     QID - 2.1439 : Working with Methods 
 

Given:

//In file AccessTest.java

package a;

public class AccessTest {

 int a;

 private int b;

 protected void c(){ }

 public int d(){  return 0; }

}



//In file AccessTester.java

package b;

import a.AccessTest;



public class AccessTester extends AccessTest{

    public static void main(String[] args) {

        AccessTest ref = new AccessTest();



    }

}

Idenfity the correct statements -
 

Correct Option is :  C 

A. Only c() and d() can be accessed by ref.
 


B. b, c(), as well as d(), can be accessed by ref.
 


C. Only d() can be accessed by ref.
 


D. Only a and d() can be accessed by ref.
 


Explanation: 
The wording of this question is a bit vague because it is not clear what is meant by "can be accessed by". Expect such wording in the real exam as well. Our guess is that it means what variables of class AccessTest can be accessed using the reference named ref. 



Since a public member is always accessible to every one, ref.d() is definitely correct. private is only accessible within that class, therefore, b cannot be accessed from anywhere outside of class AccessTest. A default (aka package protected) member is accessible only from members of the same package. Since AccessTester is in a different package a cannot be accessed from AccessTester either.



Now, the question is only about the method c(). A protected member is inherited by a subclass and it is therefore accessible in the subclass. However, In the words of Java Language Specification, protected members of a class are accessible outside the package only in subclasses of that class, and only when they are fields of objects that are being implemented by the code that is accessing them.

Basically, it implies that a protected member is accessible in the subclass only using a reference whose declared type is of the same subclass (or its subclass.). 



In this case, the declared type of ref is AccessTest, which is not of the same type as the class from which you are trying to access c(). Therefore, you cannot do ref.c() in AccessTester. If you had AccessTester ref = new AccessTester(); you could do ref.c() because now the declared type of ref (i.e. AcessTester) is the same subclass from which you are trying to access c(). It will work even if the declared type of the reference is a child of the subclass. For example, the following would be valid as well.

        SubAccessTester ref = new SubAccessTester();

        ref.c(); //this is valid

Where SubAccessTester is a subclass of AccessTester - 

class SubAccessTester extends AccessTester{ }

 
Back to Question without Answer
 



09.     QID - 2.974 : Working with Methods 
 

What will be the contents of s1 and s2 at the time of the println statement in the main method of the following program?


import java.util.*;
public class TestClass{
   public static void main(String args[]){
      Stack s1 = new Stack ();
      Stack s2 = new Stack ();
      processStacks (s1,s2);
      System.out.println (s1 + "    "+ s2);
   }
   public static void processStacks(Stack x1, Stack x2){
      x1.push (new Integer ("100")); //assume that the method push adds the passed object to the stack.
      x2 = x1;
   }
 }

Note:[] is used in the options below to denote each element of the Stack.
 

Correct Option is :  B 

A. [100] [100]
 


B. [100] []
 


C. [] [100]
 


D. [] []
 


Explanation: 
. Primitives are always passed by value. 

  . Object "references" are passed by value. So it looks like the object is passed by reference but actually it is the value of the reference that is passed. 



        An  example: 

        Object o1 = new Object(); //Let us say, the object is stored at memory location 15000. 

        //Since o1 actually stores the address of the memory location where the object is stored, it contains 15000. 



        Now, when you call someMethod(o1); the value 15000 is passed to the method. 



        Inside the method someMethod():



        someMethod( Object localVar) { 

            /*localVar now contains 15000, which means it also points to the same memory location where the object is stored.

            Therefore, when you call a method on localVar, it will be executed on the same object.

            However, when you change the value of localVar itself, for example if you do localVar=null, 

            it then starts pointing to a different memory location. But the original variable o1 still 

            contains 15000 so it still points to the same object. */

        }



If you need even more detailed explanation, please check http://www.javaranch.com/campfire/StoryPassBy.jsp

  

This is what happens in this question.



You created two objects in main method:

s1 ------------> [ EMPTY ] STACK 1 OBJECT

s1 actually contains 15000 (say)

s2 ------------> [ EMPTY ] STACK 2 OBJECT

s2 actually contains 25000 (say)



inside the method processStacks() :



Step 1:

s1 ----> [ EMPTY ] STACK 1 OBJECT <----x1 Local variable

s1 and x1 both contain 15000 (say)

s2 ----> [ EMPTY ] STACK 2 OBJECT <----x2 Local variable

s2 and x2 both contain 25000 (say)



Step 2;

s1 -----> [ 100 ] STACK 1 OBJECT <----x1 Local variable

Because x1 is referring to the same memory location.

s2 -----> [ EMPTY ] STACK 2 OBJECT <---x2 Local variable



Step 3: After doing x2 = x1

s1 ---> [ 100 ] STACK 1 OBJECT <---- x1 and x2 Local variables

s1 and x1 both contain 15000 (say) and x2 now also contains 15000.

s2 ------------> [ EMPTY ] STACK 2 OBJECT



But s2 still contains 25000.



Note that it is the local variable x2 that is pointing to the same object as x1, which is s1 stack object. The original s2 (of the main method) is still pointing to the same object which is empty.



So when you come back to the main method, you print s1 (which has now 100) and s2 (which is still empty).

 
Back to Question without Answer
 



10.     QID - 2.1001 : Working with Methods 
 

Consider the following class:


public class Test{
    public int id;
}


Which of the following is the correct way to make the variable 'id' read only for any other class?
 

Correct Option is :  B 

A. Make 'id' private.
This will not allow others to read or write.


B. Make 'id' private and provide a public method getId() which will return its value.
 


C. Make 'id' static and provide a public static method getId() which will return its value.
 


D. Make id 'protected'
 


Explanation: 
This is a standard way of providing read only access to internal variables.

 
Back to Question without Answer
 



11.     QID - 2.1158 : Working with Methods 
 

What will the following program print?


public class InitTest{
   public InitTest(){
      s1 = sM1("1");
   }
   static String s1 = sM1("a");
   String s3 = sM1("2");{
      s1 = sM1("3");
   }
   static{
      s1 = sM1("b");
   }
   static String s2 = sM1("c");
   String s4 = sM1("4");
    public static void main(String args[]){
        InitTest it = new InitTest();
    }
    private static String sM1(String s){
       System.out.println(s);  return s;
    }
}


 

Correct Option is :  B 

A. The program will not compile.
 


B. It will print : a b c 2 3 4 1
 


C. It will print : 2 3 4 1 a b c
 


D. It will print : 1 a 2 3 b c 4
 


E. It will print : 1 a b c 2 3 4
 


Explanation: 
First, static statements/blocks are called IN THE ORDER they are defined.

Next, instance initializer statements/blocks are called IN THE ORDER they are defined.

Finally, the constructor is called. So, it prints a b c 2 3 4 1.

 
Back to Question without Answer
 



12.     QID - 2.1252 : Working with Methods 
 

What will be the output when the following program is run?


public class TestClass{
    char c;
    public void m1(){
        char[ ] cA = { 'a' , 'b'};
        m2(c, cA);
        System.out.println( ( (int)c)  + "," + cA[1] );
    }
    public void m2(char c, char[ ] cA){
        c = 'b';
        cA[1] = cA[0] = 'm';
    }
    public static void main(String args[]){
        new TestClass().m1();
    }
}


 

Correct Option is :  C 

A. Compile time error.
c is an instance variable of numeric type so it will be given a default value of 0, which prints as empty space.


B. ,m
Without the cast to int, c would be printed as empty space and cA[1] is 'm'


C. 0,m
Because of the explicit cast to int in the println() call, c will be printed as 0.


D. b,b
 


E. b,m
 


Explanation: 
Note that Arrays are Objects (i.e. cA instanceof Object is true) so are effectively passed by reference. So in m1() the change in cA[1] done by m2() is reflected everywhere the array is used.

c is a primitive type and is passed by value. In method m2() the passed parameter c is different than instance variable 'c' as local variable hides the instance variable. So instance member 'c' keeps its default (i.e. 0) value.

 
Back to Question without Answer
 



13.     QID - 2.1312 : Working with Methods 
 

Which of the following code fragments are valid method declarations?
 

Correct Option is :  B 

A. void method1{ }
It does not have () after method1.


B. void method2( ) { }
 


C. void method3(void){ }
The keyword void is not a valid type for a parameter.


D. method4{ }
Methods must specify a return type and '( )'. If the method does not want to return a value, it should specify void.


E. method5(void){ }
If the method does not take any parameter, it should have empty brackets instead of void.


Explanation: 
A valid method declaration MUST specify a return type, all other things are optional.

 
Back to Question without Answer
 



14.     QID - 2.978 : Working with Methods 
 

Given the following definition of class, which member variables are accessible from OUTSIDE the package com.enthu.qb?



package com.enthu.qb;

public class TestClass{

   int i;

   public int j;

   protected int k;

   private int l;

}
 

Correct Options are :  B D 

A. Member variable i.
No modifier means package( or default access) and is only accessible inside the package.


B. Member variable j.
public things (classes, methods and fields) are accessible from anywhere.


C. Member variable k.
Only if the accessing class is a subclass of TestClass.


D. Member variable k, but only for subclasses.
protected things (methods and fields) can be accessed from within the package and from subclasses


E. Member variable l.
private things are accessible only from the class that has it.


Explanation: 
public > protected > package (i.e. no modifier) > private

where public is least restrictive and private is most restrictive.



Remember:

protected is less restrictive than package access. So a method(or field) declared as protected will be accessible from a subclass even if the subclass is not in the same package.

The same is not true for package access.

A top level class can only have either public or no access modifier but a method or field can have all the four. Note that static, final, native and synchronized are not considered as access modifiers.

 
Back to Question without Answer
 



15.     QID - 2.831 : Working with Methods 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
        System.out.println(this.myValue);
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
        System.out.println(this.myValue);
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        ct.showTwo(200);
    }
}


 

Correct Option is :  C 

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


Explanation: 
There are a couple of important concepts in this question:



1. Within an instance method, you can access the current object of the same class using 'this'. Therefore, when you access this.myValue, you are accessing the instance member myValue of the ChangeTest instance.



2. Within the showOne() method, there are two variables accessible with the same name myValue. If you declare a local variable (or a method parameter) with the same name as the instance field name, the local variable "shadows" the member field. One is the method parameter and another is the member field of ChangeTest object. Ideally, you should be able to access the member field in the method directly by using the name of the member (in this example, myValue). However, because of shadowing, when you use myValue, it refers to the local variable instead of the instance field.



Therefore, when you do : myValue = myValue; you are actually assigning the value contained in method parameter myValue to itself. You are not changing the member field myValue. Hence, when you do System.out.println(this.myValue); in the next line, it prints 0.





Now, in showTwo(), you are assigning the value contained in myValue (i.e. 200) to this.myValue, which is the instance member.  Therefore, in the next line, when you print this.myValue, it prints 200.

 
Back to Question without Answer
 



16.     QID - 2.833 : Working with Methods 
 

What will the following program print when run?

public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showTwo(200);
        System.out.println(ct.myValue);
        ct.showOne(100);
        System.out.println(ct.myValue);
    }
}

 

Correct Option is :  E 

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


E. 200 followed by 200.
 


F. 200 followed by 100
 


Explanation: 
There are a couple of important concepts in this question:



1. Within an instance method, you can access the current object of the same class using 'this'. Therefore, when you access this.myValue, you are accessing the instance member myValue of the ChangeTest instance.



2. If you declare a local variable (or a method parameter) with the same name as the instance field name, the local variable "shadows" the member field. Ideally, you should be able to access the member field in the method directly by using the name of the member (in this example, myValue). However, because of shadowing, when you use myValue, it refers to the local variable instead of the instance field.



In showTwo method, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. Ideally, you should be able to access the member field in the method directly by using the name myValue but in this case, the method parameter shadows the member field because it has the same name.  So by doing this.myValue, you are changing the instance variable myValue by assigning it the value contained in local variable myValue, which is 200. So in the next line when you print ct.myValue, it prints 200.



Now, in the showOne method also, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. So when you use myValue, you are actually using the method parameter instead of the member field.



Therefore, when you do : myValue = myValue; you are actually assigning the value contained in method parameter myValue to itself. You are not changing the member field myValue. Hence, when you do System.out.println(ct.myValue); in the next line, it still prints 200.

 
Back to Question without Answer
 



17.     QID - 2.830 : Working with Methods 
 

Consider the following method :



public void myMethod(int m, Object p, double d){

  ... valid code here

}



Assuming that there is no other method with the same name, which of the following options are correct regarding the above method?
 

Correct Option is :  E 

A. If this method is called with two parameters, the value of d in the method will be 0.0.
 


B. If this method is called with one parameter, the value of p and d in the method will be null and 0.0 respectively.
 


C. If this method is called with one parameter, the call will throw a NullPointerException.
 


D. If this method is called with one parameter, the call will throw a NullPointerException only if the code in the method tries to access p.
 


E. If this method is called with two parameters, the code will not compile.
 


Explanation: 
To call myMethod(int m, Object p, double d), you must pass exactly three parameters. If you try to pass less (or more) number of parameters, the code will not compile. Note that method parameters are not assigned default values.



It is possible to declare a method that can take variable number of parameters. For example: 



 public static void someMethod(Object... params){

        System.out.println(params.length);

    }



You can call this method by passing any number of parameters. In this case, calling someMethod() without any parameter will print 0. i.e. the length of params array will be 0. params will NOT be null.

 
Back to Question without Answer
 



18.     QID - 3.1486 : Working with Methods 
 

What will happen on running the following program?



public class DatabaseWrapper

{

  static String url = "jdbc://derby://localhost:1527//mydb";

  static DatabaseWrapper getDatabase()

  {

     System.out.println("Getting DB");

     return null;

  }

  public static void main(String[ ] args)

  {

    System.out.println( getDatabase().url );

  }

}
 

Correct Option is :  A 

A. It will print Getting DB and jdbc://derby://localhost:1527//mydb without throwing an exception.
 


B. It will throw a NullpointerException at Runtime.
 


C. It will print jdbc://derby://localhost:1527//mydb but will NOT print Getting DB.
 


D. It will print Getting DB and then throw a NullPointerException.
 


E. It will print nothing.
 


Explanation: 
This question demonstrates that a null reference may be used to access a class (static) variable without causing an exception .

Note the method signature. It returns a reference to an object of class DatabaseWrapper. Thus, getDatabase().url means we are accessing url field of the object returned by the method. Now, since the class of the object returned by the method is DatabaseWrapper and the field url is a static field of the class, the compiler creates the instruction for the JVM to access this field directly using the class reference instead of the object reference returned by the method at runtime. Thus, the JVM does not need to depend on the actual object returned by the method at run time to access url. So even if the method returns null at run time, it doesn't matter because the JVM doesn't even access the reference returned by the method.

 
Back to Question without Answer
 



19.     QID - 2.1343 : Working with Methods 
 

Consider the following class...



class TestClass{

   int x;

   public static void main(String[] args){

      // lot of code.

   }

}
 

Correct Option is :  D 

A. By declaring x as static, main can access this.x
 


B. By declaring x as public, main can access this.x
 


C. By declaring x as protected, main can access this.x
 


D. main cannot access this.x as it is declared now.
Because main() is a static method. It does not have 'this'!


E. By declaring x as private, main can access this.x
 


Explanation: 
It is not possible to access x from main without making it static. Because main is a static method and only static members are accessible from static methods. There is no 'this' available in main so none of the this.x are valid.

 
Back to Question without Answer
 



20.     QID - 2.904 : Working with Methods 
 

Given:

class Triangle{
    public int base;
    public int height;
    private static double ANGLE;

    public static double getAngle();
    
    public static void Main(String[] args) {
        System.out.println(getAngle());
    }
}


Identify the correct statements:
 

Correct Option is :  C 

A. It will not compile because it does not implement setAngle method.
There is no requirement that a class has to have a setter as well as a getter.


B. It will not compile because ANGLE cannot be private.
Any field can be made private.


C. It will not compile because getAngle() has no body.
 


D. It will not compile because ANGLE field is not initialized.
Since it is a static field, it will get a default value of 0.0.


E. It will not compile because of the name of the method Main instead of main.
A class can have a method named Main. Although, since it is not same as main, it will not be considered the standard main method that the JVM can invoke when the program is executed.


 
Back to Question without Answer
 



21.     QID - 2.875 : Working with Methods 
 

What will the following code print when compiled and run:

class Data {

    int intVal = 0;
    String strVal = "default";
    public Data(int k){
        this.intVal = k; 
    }

}

public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d1 = new Data(10);
        d1.strVal = "D1";
        Data d2 = d1;
        d2.intVal = 20;
        System.out.println("d2 val = "+d2.strVal);
    }
}


 

Correct Option is :  C 

A. d2 val =
 


B. d2 val = default
 


C. d2 val = D1
 


D. Exception at run time.
 


Explanation: 
This is quite straight forward question. You are creating only one Data object. You are setting its strVal field to "D1". Next, you declare another Data variable d2 and assign to it the same Data object. 



Thus, when you access strVal using d2, you will get D1.



The "throws Exception" part is not required and is there just to confuse you.

 
Back to Question without Answer
 



22.     QID - 2.856 : Working with Methods 
 

Consider the following code:



public class MyClass {



  protected int value = 10;



}



Which of the following statements are correct regarding the field value?
 

Correct Option is :  D 

A. It cannot be accessed from any other class.
 


B. It can be read but cannot be modified from any other class.
 


C. It can be modified but only from a subclass of MyClass.
It can also be modified from any class defined in the same package.


D. It can be read and modified from any class within the same package or from any subclass of MyClass.
 


 
Back to Question without Answer
 



23.     QID - 2.1275 : Working with Methods 
 

How can you declare 'i' so that it is not visible outside the package test.


package test;
public class Test{
   XXX int i;
   /*  irrelevant code */
}


 

Correct Options are :  A D 

A. private
Note that the question does not require that 'i' should be accessible from test package. So private is fine.


B. public
Marking it public will make it accessible from all classes in all packages.


C. protected
It will make it available to a subclass even if the subclass is in a different package.


D. No access modifier
 


E. friend
There is no such modifier in Java.


 
Back to Question without Answer
 



24.     QID - 2.1362 : Working with Methods 
 

Which of the following statements are true?
 

Correct Options are :  B E 

A. private keyword can never be applied to a class.
private, protected and public can be applied to a nested class.



Although not too important for the exam, you should still know the following terminology: A top level class is a class that is not a nested class. A nested class is any class whose declaration occurs within the body of another class or interface.


B. synchronized keyword can never be applied to a class.
 


C. synchronized keyword may be applied to a non-primitive variable.
It can only be applied to a method or a block.


D. final keyword can never be applied to a class.
It can be applied to class, variable and methods.


E. A final variable can be hidden in a subclass.
If the class declares a field with a certain name, then the declaration of that field is said to hide any and all accessible declarations of fields with the same name in superclasses, and superinterfaces of the class.

For example,

class Base{

   int i=10;

}

class Sub extends Base{

  int i=20; //This i hides Base's i.   

}

...

Sub s = new Sub();

int k = s.i; //assigns 20 to k.



k = ((Base)s).i;//assigns 10 to k. The cast is used to show the Base's i.



Base b = new Sub();

k = b.i;//assigns 10 to k because which field is accessed depends on the class of the variable and not on the class of the actual object. Same rule applies to static methods but the opposite is true for instance methods.




Explanation: 
final keyword when applied to a class means the class cannot be subclassed, when applied to a method means the method cannot be overridden (it can be overloaded though) and when applied to a variable means that the variable is a constant.

 
Back to Question without Answer
 



25.     QID - 2.1092 : Working with Methods 
 

What will the following class print when compiled and run?


class Holder{
   int value = 1;
   Holder link;
   public Holder(int val){ this.value = val; }
   public static void main(String[] args){
	final Holder a = new Holder(5);
	Holder b = new Holder(10);
	a.link = b;
	b.link = setIt(a, b);
	System.out.println(a.link.value+" "+b.link.value);
   }
   
   public static Holder setIt(final Holder x, final Holder y){
       x.link = y.link;
       return x;
   }
   
}


 

Correct Option is :  E 

A. It will not compile because 'a' is final.
'a' is final is true, but that only means that a will keep pointing to the same object for the entire life of the program. The object's internal fields, however, can change.


B. It will not compile because method setIt() cannot change x.link.
Since x and y are final, the method cannot change x and y to point to some other object but it can change the objects' internal fields.


C. It will print 5, 10.
 


D. It will print 10, 10.
 


E. It will throw an exception when run.
When method setIt() executes, x.link = y.link, x.link becomes null because y.link is null so a.link.value throws NullPointerException.


 
Back to Question without Answer
 



26.     QID - 2.863 : Working with Methods 
 

Consider the following code appearing in the same file:


class Data {
    private int x = 0, y = 0;
    public Data(int x, int y){
        this.x = x; this.y = y;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        Data d = new Data(1, 1);
        //add code here
    }
}



Which of the following options when applied individually will change the Data object currently referred to by the variable d to contain 2, 2 as values for its data fields?
 

Correct Option is :  E 

A. Add the following two statements :

d.x = 2;

d.y = 2;
Note that x and y are private in class Data. Therefore, you cannot access these members from any other class.


B. Add the following statement:

d = new Data(2, 2);
This will create a new Data object and will not change the original Data object referred to be d.


C. Add the following two statements:

d.x += 1;

d.y += 1;
Note that x and y are private in class Data. Therefore, you cannot access these members from any other class.


D. Add the following method to Data class:

public void setValues(int x, int y){

  this.x.setInt(x);   this.y.setInt(y);

}



Then add the following statement:

d.setValues(2, 2);
x is primitive int.You cannot call any methods on a primitive. so this.x.setInt(...) or this.y.setInt(...) don't make any sense.


E. Add the following method to Data class:

public void setValues(int x, int y){

  this.x = x;   this.y = y;

}



Then add the following statement:

d.setValues(2, 2);
This is a good example of encapsulation where the data members of Data class are private and there is a method in Data class to manipulate its data. Compare this approach to making x and y as public and letting other classes directly modify the values.


 
Back to Question without Answer
 



27.     QID - 2.889 : Working with Methods 
 

What will the following code print when run?


class A{
    String value = "test";
    A(String val){
        this.value = val;
    }
}
public class TestClass {
    public static void main(String[] args) throws Exception {
        new A("new test").print();
    }
}

 

Correct Option is :  C 

A. test
 


B. new test
 


C. It will not compile.
There is no method named print() defined in class A. Further, there is no such method in class Object either.

To print the contents of an object you can use toString() method that returns a String:

System.out.println(a.toString());



However, for this to print a meaningful value, class A should override the Object class's toString() method to return a meaningful String.


D. It will throw an exception at run time.
 


 
Back to Question without Answer
 



28.     QID - 2.1131 : Working with Methods 
 

What would be the result of attempting to compile and run the following program?



class TestClass{

   static TestClass ref;

   String[] arguments;

   public static void main(String args[]){

      ref = new TestClass();

      ref.func(args);

   }

   public void func(String[] args){

      ref.arguments = args;

   }

}
 

Correct Option is :  E 

A. The program will fail to compile, since the static method main is trying to call the non-static method func.
The concept here is that a non-static method (i.e. an instance method) can only be called on an instance of that class. Whether the caller itself is a static method or not, is immaterial.



The main method is calling ref.func(); - this means the main method is calling a non-static method on an actual instance of the class TestClass (referred to by 'ref'). Hence, it is valid.

It is not trying calling it directly such as func() or this.func(), in which case, it would have been invalid.


B. The program will fail to compile, since the non-static method func cannot access the static member variable ref.
Non static methods can access static as well as non static methods of a class.


C. The program will fail to compile, since the argument args passed to the static method main cannot be passed on to the non-static method func.
It certainly can be.


D. The program will fail to compile, since method func is trying to assign to the non-static member variable 'arguments' through the static member variable ref.
 


E. The program will compile and run successfully.
 


 
Back to Question without Answer
 



29.     QID - 2.1228 : Working with Methods 
 

What will be the result of attempting to compile and run the following class?


public class InitTest{
   static String s1 = sM1("a");{
      s1 = sM1("b");
   }
   static{
      s1 = sM1("c");
   }
   public static void main(String args[]){
      InitTest it = new InitTest();
   }
   private static String sM1(String s){
      System.out.println(s);  return s;
   }
}


 

Correct Option is :  B 

A. The program will fail to compile.
 


B. The program will compile without error and will print a, c and b in that order when run.
 


C. The program will compile without error and will print a, b and c in that order when run.
 


D. The program will compile without error and will print c, a and b in that order when run.
 


E. The program will compile without error and will print b, c and a in that order when run.
 


Explanation: 
First, static statements/blocks are called IN THE ORDER they are defined. (Hence, a and c will be printed.)

Next, instance initializer statements/blocks are called IN THE ORDER they are defined. Finally, the constructor is called. So, then it prints b.

 
Back to Question without Answer
 



30.     QID - 2.832 : Working with Methods 
 

What will the following program print when run?


public class ChangeTest {

    private int myValue = 0;
    
    public void showOne(int myValue){
        myValue = myValue;
    }
    
    public void showTwo(int myValue){
        this.myValue = myValue;
    }    
    public static void main(String[] args) {
        ChangeTest ct = new ChangeTest();
        ct.showOne(100);
        System.out.println(ct.myValue);
        ct.showTwo(200);
        System.out.println(ct.myValue);
    }
}


 

Correct Option is :  C 

A. 0 followed by 100.
 


B. 100 followed by 100.
 


C. 0 followed by 200.
 


D. 100 followed by 200.
 


Explanation: 
There are a couple of important concepts in this question:



1. Within an instance method, you can access the current object of the same class using 'this'. Therefore, when you access this.myValue, you are accessing the instance member myValue of the ChangeTest instance.



2. If you declare a local variable (or a method parameter) with the same name as the instance field name, the local variable "shadows" the member field. Ideally, you should be able to access the member field in the method directly by using the name of the member (in this example, myValue). However, because of shadowing, when you use myValue, it refers to the local variable instead of the instance field.



Within the showOne() method, there are two variables accessible with the same name myValue. One is the method parameter and another is the member field of ChangeTest object. Ideally, you should be able to access the member field in the method directly by using the name myValue but in this case, the method parameter shadows the member field because it has the same name. So when you use myValue, you are actually using the method parameter instead of the member field.



Therefore, when you do : myValue = myValue; you are actually assigning the value contained in method parameter myValue to itself. You are not changing the member field myValue. Hence, when you do System.out.println(ct); in the next line, it prints 0.



Now, in showTwo(), you are assigning the value contained in myValue (i.e. 200) to this.myValue, which is the instance member.  Therefore, in the next line, when you print ct.myValue, it prints 200.

 
Back to Question without Answer
 



31.     QID - 2.1188 : Working with Methods 
 

What should be the return type of the following method?

public RETURNTYPE methodX( byte by){
    double d = 10.0;
    return (long) by/d*3;
}


 

Correct Option is :  C 

A. int
 


B. long
 


C. double
 


D. float
 


E. byte
 


Explanation: 
Note that the cast (long) applies to 'by' not to the whole expression.

 ( (long) by ) / d * 3;

Now, division operation on long gives you a double. So the return type should be double.

 
Back to Question without Answer
 



32.     QID - 2.966 : Working with Methods 
 

Select the correct order of restrictiveness for access modifiers...

(First one should be least restrictive)
 

Correct Option is :  A 

A. public < protected < package (i.e. no modifier) < private
That's right, protected is less restrictive than package.


B. public < package (i.e. no modifier) < protected < private
 


C. public < protected < private < package (i.e. no modifier)
The default accessibility is more restrictive than protected, but less restrictive than private.


D. protected < package (i.e. no modifier) < private < public
 


E. depends on the implementation of the class or method.
 


Explanation: 
Members with default accessibility are only accessible within the class itself and from classes in the same package.

Protected members are in addition accessible from subclasses. Members with private accessibility are only accessible

within the class itself.

 
Back to Question without Answer
 



33.     QID - 2.1283 : Working with Methods 
 

What is the correct declaration for an abstract method 'add' in a class that is accessible to any class, takes no arguments and returns nothing?
 

Correct Option is :  E 

A. public void add();
An abstract method must have the abstract keyword and must not have a method body i.e. { }.


B. abstract add();
A method that is not supposed to return anything must specify void as its return type.


C. abstract null add();
A method that is not supposed to return anything must specify void as its return type. null is not a  type, though it is a valid return value for any reference type.


D. abstract public void add(){ }
It is invalid because has a method body i.e. { }.


E. abstract public void add() throws Exception;
 


 
Back to Question without Answer
 



34.     QID - 2.1294 : Working with Methods 
 

What will the code shown below print when run?

class Wrapper{
        int w = 10;
}

public class TestClass{
    
    static Wrapper changeWrapper(Wrapper w){
        w = new Wrapper();
        w.w += 9;
        return w;
    }
        
    
    public static void main(String[] args){
        Wrapper w = new Wrapper();
        w.w = 20;
        changeWrapper(w);
        w.w += 30;
        System.out.println(w.w);
        w = changeWrapper(w);
        System.out.println(w.w);
     }
}

 

Correct Options are :  B F 

A. 9
 


B. 19
 


C. 30
 


D. 20
 


E. 29
 


F. 50
 


Explanation: 
Remember that when you pass an object in a method, only its reference is passed by value. So when changeWrapper() does w = new Wrapper(); and then w.w +=9; it does not affect the original wrapper object that was passed to this method. Therefore, it prints 50.



Calling w = changeWrapper(w); replaces the original Wrapper object with the one created in the changeWrapper(w); method. Therefore, in the second print statement, it prints 19.

 
Back to Question without Answer
 



Working with Methods - Overloading
 
Exam Objectives - 
 
Overloaded methods



01.     QID - 2.887 
 

Given:


class OverloadingTest{
    
    void m1(int x){
        System.out.println("m1 int");
    }
    
    void m1(double x){
        System.out.println("m1 double");
    }
    
    void m1(String x){
        System.out.println("m1 String");
    }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        OverloadingTest ot = new OverloadingTest();
        ot.m1(1.0);
    }
}


What will be the output?
 

Select 1 option

A. It will fail to compile.
 


B. m1 int
 


C. m1 double
 


D. m1 String
 


 
Check Answer
 



02.     QID - 2.1011 
 

Consider the following code:


public class TestClass{
   public void method(Object o){
      System.out.println("Object Version");
   }
   public void method(java.io.FileNotFoundException s){
      System.out.println("java.io.FileNotFoundException Version");
   }
   public void method(java.io.IOException s){
      System.out.println("IOException Version");
   }
   public static void main(String args[]){
      TestClass tc = new TestClass();
      tc.method(null);
   }
}



What would be the output when the above program is compiled and run?
(Assume that FileNotFoundException is a subclass of IOException, which in turn is a subclass of Exception)
 

Select 1 option

A. It will print Object Version
 


B. It will print java.io.IOException Version
 


C. It will print java.io.FileNotFoundException Version
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


 
Check Answer
 



03.     QID - 2.990 
 

Consider the following classes...


class Teacher{
      void teach(String student){
          /* lots of code */
      }
}
class Prof extends Teacher{
        //1
}


Which of the following methods can be inserted at line  //1 ?
 

Select 4 options

A. public void teach() throws Exception
 


B. private void teach(int i) throws Exception
 


C. protected void teach(String s)
 


D. public final void teach(String s)
 


E. public abstract void teach(String s)
 


 
Check Answer
 



04.     QID - 2.1483 
 

What should be placed in the two blanks so that the following code will compile without errors:



class XXX{

    public void m() {

        throw new RuntimeException();

    }

}

class YYY extends XXX{

    public void m() throws Exception{

      throw new Exception();

    }

}

public class TestClass {

    public static void main(String[] args) {

        ______ obj = new ______();

        obj.m();

    }

}
 

Select 1 option

A. XXX and YYY
 


B. XXX and XXX
 


C. YYY and YYY
 


D. YYY and XXX
 


E. None of the options will make the code compile.
 


 
Check Answer
 



05.     QID - 2.1460 
 

Consider the following class...

public class ParamTest {

  public static void printSum(int a, int b){ 

      System.out.println("In int "+(a+b));

  }

  

  public static void printSum(Integer a, Integer b){ 

      System.out.println("In Integer "+(a+b));

  }

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1, 2);

  }

}



What will be printed?
 

Select 1 option

A. In int 3
 


B. In Integer 3
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


 
Check Answer
 



06.     QID - 2.855 
 

What will be printed when the following code is compiled and run?


public class LoadTest{
    
    public static void main(String[] args) throws Exception {
         LoadTest t = new LoadTest();
         int i = t.getLoad();
         double d = t.getLoad();
         System.out.println( i + d );
    }

    public int getLoad() {
        return 1;
    }

    public double getLoad(){ 
        return 3.0;
    }

}

 

Select 1 option

A. 13.0
 


B. 4.0
 


C. 4
 


D. The code will not compile.
 


 
Check Answer
 



07.     QID - 2.1373 
 

Complete the following code by filling the two blanks - 

class XXX{

    public void m() throws Exception{

        throw new Exception();

    }

}

class YYY extends XXX{

    public void m(){ }

    

    public static void main(String[] args) {

        ________  obj = new ______();

        obj.m();

    }

}
 

Select 1 option

A. XXX XXX
 


B. XXX YYY
 


C. YYY XXX
 


D. YYY YYY
 


 
Check Answer
 



08.     QID - 2.924 
 

Consider the following class...


class TestClass{
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Object x) { System.out.println("In Object"); } //3 
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        String a = "hello"; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Select 1 option

A. In Integer
 


B. In Object
 


C. In Long
 


D. It will not compile
 


 
Check Answer
 



09.     QID - 2.1370 
 

What will the following code print when run?



class Baap {

    public int h = 4;

    public int getH() {

        System.out.println("Baap " + h);

        return h;

    }

}



public class Beta extends Baap {

    public int h = 44;

    public int getH() {

        System.out.println("Beta " + h);

        return h;

    }

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h + " " + b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h + " " + bb.getH());

    }

}
 

Select 1 option

A. Beta 44

4 44

Baap 44

44 44
 


B. Baap 44

4 44

Beta 44

44 44
 


C. Beta 44

4 44

Beta 44

4 44
 


D. Beta 44

4 44

Beta 44

44 44
 


 
Check Answer
 



10.     QID - 2.1074 
 

Consider the following class definition:


public class TestClass{
   public static void main(String[] args){  new TestClass().sayHello(); }   //1
   public static void sayHello(){ System.out.println("Static Hello World"); }  //2
   public void sayHello() { System.out.println("Hello World "); }  //3
}


What will be the result of compiling and running the class?
 

Select 1 option

A. It will print Hello World.
 


B. It will print Static Hello World.
 


C. Compilation error at line 2.
 


D. Compilation error at line 3.
 


E. Runtime Error.
 


 
Check Answer
 



11.     QID - 2.1100 
 

Consider the following class:


class TestClass{
    void probe(int... x) { System.out.println("In ..."); }  //1
    
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(long x) { System.out.println("In long"); } //3 
    
    void probe(Long x) { System.out.println("In LONG"); } //4
    
    public static void main(String[] args){
        Integer a = 4; new TestClass().probe(a); //5
        int b = 4; new TestClass().probe(b); //6
    }
}


What will it print when compiled and run?
 

Select 2 options

A. In Integer and In long
 


B. In ... and In LONG, if //2 and //3 are commented out.
 


C. In Integer and In ..., if //4 is commented out.
 


D. It will not compile, if //1, //2, and //3 are commented out.
 


E. In LONG and In long, if //1 and //2 are commented out.
 


 
Check Answer
 



12.     QID - 2.1406 
 

What will the following code print when run?



public class Noobs {

    public void m(int a){

        System.out.println("In int ");

    }

    public void m(char c){

        System.out.println("In char ");

    }

    public static void main(String[] args) {

        Noobs n = new Noobs();

        int a = 'a';

        char c = 6;

        n.m(a);

        n.m(c);

    }

}
 

Select 1 option

A. In int

In char
 


B. In char

In int
 


C. In int

In int
 


D. In char

In char
 


E. It will not compile.
 


 
Check Answer
 



13.     QID - 2.939 
 

Which of the following are true regarding overloading of a method?
 

Select 1 option

A. An overloading method must have a different parameter list and same return type as that of the overloaded method.
 


B. If there is another method with the same name but with a different number of arguments in a class then that method can be called as overloaded.
 


C. If there is another method with the same name and same number and type of arguments but with a different return type in a class then that method can be called as overloaded.
 


D. An overloaded method means a method with the same name and same number and type of arguments exists in the super class and sub class.
 


 
Check Answer
 



14.     QID - 2.1340 
 

Given the following code, which method declarations can be inserted at line 1 without any problems?


public class OverloadTest{
    public int sum(int i1, int i2) { return i1 + i2; }
    // 1
}


 

Select 3 options

A. public int sum(int a, int b) { return a + b; }
 


B. public int sum(long i1, long i2) { return (int) i1; }
 


C. public int sum(int i1, long i2) { return (int) i2; }
 


D. public long sum(long i1, int i2) { return i1 + i2; }
 


E. public long sum(int i1, int i2) { return i1 + i2; }
 


 
Check Answer
 



15.     QID - 2.962 
 

Consider the following method...



public int setVar(int a, int b, float c) { ...}



Which of the following methods correctly overload the above method?
 

Select 2 options

A. public int setVar(int a, float b, int c){

  return (int)(a + b + c);

}
 


B. public int setVar(int a, float b, int c){

  return this(a, c, b);

}


 


C. public int setVar(int x, int y, float z){

  return x+y;

}


 


D. public float setVar(int a, int b, float c){

  return c*a;

}
 


E. public float setVar(int a){

  return a;

}
 


 
Check Answer
 



16.     QID - 2.1461 
 

Consider the following class...

public class ParamTest {

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  public static void printSum(float a, float b){ 

      System.out.println("In float "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1.0, 2.0);

  }

}



What will be printed?
 

Select 1 option

A. In float 3
 


B. In float 3.0
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


 
Check Answer
 



17.     QID - 2.1008 
 

Given the following pairs of method declarations, which of the statements are true?



1.

void perform_work(int time){ }

int  perform_work(int time, int speed){ return time*speed ;}



2.

void perform_work(int time){ }

int  perform_work(int speed){return speed ;}



3.

void perform_work(int time){ }

void Perform_work(int time){ }


 

Select 2 options

A. The first pair of methods will compile correctly and overload the method 'perform_work'.
 


B. The second pair of methods will compile correctly and overload the method 'perform_work'.
 


C. The third pair of methods will compile correctly and overload the method 'perform_work'.
 


D. The second pair of methods will not compile correctly.
 


E. The third pair of methods will not compile correctly.
 


 
Check Answer
 



Working with Methods - Overloading (Answered)



01.     QID - 2.887 : Working with Methods - Overloading 
 

Given:


class OverloadingTest{
    
    void m1(int x){
        System.out.println("m1 int");
    }
    
    void m1(double x){
        System.out.println("m1 double");
    }
    
    void m1(String x){
        System.out.println("m1 String");
    }
    
}

public class TestClass {
    public static void main(String[] args) throws Exception {
        OverloadingTest ot = new OverloadingTest();
        ot.m1(1.0);
    }
}


What will be the output?
 

Correct Option is :  C 

A. It will fail to compile.
 


B. m1 int
 


C. m1 double
 


D. m1 String
 


Explanation: 
Here, m1() is overloading for three different argument types. So when you call ot.m1(1.0), the one with argument of type double will be invoked.

 
Back to Question without Answer
 



02.     QID - 2.1011 : Working with Methods - Overloading 
 

Consider the following code:


public class TestClass{
   public void method(Object o){
      System.out.println("Object Version");
   }
   public void method(java.io.FileNotFoundException s){
      System.out.println("java.io.FileNotFoundException Version");
   }
   public void method(java.io.IOException s){
      System.out.println("IOException Version");
   }
   public static void main(String args[]){
      TestClass tc = new TestClass();
      tc.method(null);
   }
}



What would be the output when the above program is compiled and run?
(Assume that FileNotFoundException is a subclass of IOException, which in turn is a subclass of Exception)
 

Correct Option is :  C 

A. It will print Object Version
 


B. It will print java.io.IOException Version
 


C. It will print java.io.FileNotFoundException Version
 


D. It will not compile.
 


E. It will throw an exception at runtime.
 


Explanation: 
The reason is quite simple, the most specific method depending upon the argument is called. Here, null can be passed to all the 3 methods but FileNotFoundException class is the subclass of IOException which in turn is the subclass of Object. So, FileNotFoundException class is the most specific class. So, this method is called.

Had there been two most specific methods, it would not even compile as the compiler will not be able to determine which method to call. For example:



public class TestClass{

   public void method(Object o){

      System.out.println("Object Version");

   }

   public void method(String s){

      System.out.println("String Version");

   }

   public void method(StringBuffer s){

      System.out.println("StringBuffer Version");

   }

   public static void main(String args[]){

      TestClass tc = new TestClass();

      tc.method(null);

   }

}





Here, null can be passed as both StringBuffer and String and none is more specific than the other. So, it will not compile.

 
Back to Question without Answer
 



03.     QID - 2.990 : Working with Methods - Overloading 
 

Consider the following classes...


class Teacher{
      void teach(String student){
          /* lots of code */
      }
}
class Prof extends Teacher{
        //1
}


Which of the following methods can be inserted at line  //1 ?
 

Correct Options are :  A B C D 

A. public void teach() throws Exception
It overloads the teach() method instead of overriding it.


B. private void teach(int i) throws Exception
It overloads the teach() method instead of overriding it.


C. protected void teach(String s)
This overrides Teacher's teach method. The overriding method can have more visibility. (It cannot have less. Here, it cannot be private.)


D. public final void teach(String s)
Overriding method may be made final.


E. public abstract void teach(String s)
This is wrong because class Prof has not been declared as abstract. Note that otherwise it is OK to override a method by an abstract method.


Explanation: 
Note that 'protected' is less restrictive than default 'no modifier'. So choice 3 is valid.

"public abstract void teach(String s)" would have been valid if class Prof had been declared abstract.

 
Back to Question without Answer
 



04.     QID - 2.1483 : Working with Methods - Overloading 
 

What should be placed in the two blanks so that the following code will compile without errors:



class XXX{

    public void m() {

        throw new RuntimeException();

    }

}

class YYY extends XXX{

    public void m() throws Exception{

      throw new Exception();

    }

}

public class TestClass {

    public static void main(String[] args) {

        ______ obj = new ______();

        obj.m();

    }

}
 

Correct Option is :  E 

A. XXX and YYY
 


B. XXX and XXX
 


C. YYY and YYY
 


D. YYY and XXX
 


E. None of the options will make the code compile.
Remember that an overriding method can only throw a subset of checked exceptions declared in the throws clause of the overridden method. Here, method m in XXX does not declare any checked exception in its throws clause, therefore, method m in YYY cannot declare any checked exception in its throws clause either.

Class YYY will, therefore, not compile.


 
Back to Question without Answer
 



05.     QID - 2.1460 : Working with Methods - Overloading 
 

Consider the following class...

public class ParamTest {

  public static void printSum(int a, int b){ 

      System.out.println("In int "+(a+b));

  }

  

  public static void printSum(Integer a, Integer b){ 

      System.out.println("In Integer "+(a+b));

  }

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1, 2);

  }

}



What will be printed?
 

Correct Option is :  A 

A. In int 3
 


B. In Integer 3
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


Explanation: 
The call to printSum(1, 2) will be bound to printSum(int, int) because 1 and 2 are ints, which are exact match to int, int. 



Note that if printSum(int, int) method were not there in the code, printSum(double, double) would have been invoked instead of printSum(Integer, Integer) because widening is preferred over boxing/unboxing.



We advise you to run this program and try out various combinations. The exam has questions on this pattern.

 
Back to Question without Answer
 



06.     QID - 2.855 : Working with Methods - Overloading 
 

What will be printed when the following code is compiled and run?


public class LoadTest{
    
    public static void main(String[] args) throws Exception {
         LoadTest t = new LoadTest();
         int i = t.getLoad();
         double d = t.getLoad();
         System.out.println( i + d );
    }

    public int getLoad() {
        return 1;
    }

    public double getLoad(){ 
        return 3.0;
    }

}

 

Correct Option is :  D 

A. 13.0
 


B. 4.0
 


C. 4
 


D. The code will not compile.
You cannot have more than one method in a class with the same signature. Method signature includes method name and the argument list but does not include return type. 

Therefore, the two getLoad() methods have the same signature and will not compile.



This shows that method overloading cannot be done on the basis of the return types.


 
Back to Question without Answer
 



07.     QID - 2.1373 : Working with Methods - Overloading 
 

Complete the following code by filling the two blanks - 

class XXX{

    public void m() throws Exception{

        throw new Exception();

    }

}

class YYY extends XXX{

    public void m(){ }

    

    public static void main(String[] args) {

        ________  obj = new ______();

        obj.m();

    }

}
 

Correct Option is :  D 

A. XXX XXX
 


B. XXX YYY
 


C. YYY XXX
 


D. YYY YYY
 


Explanation: 
This question is based on two concepts - 

1. The overriding method may choose to have no throws clause even if the overridden method has a throws clause. Thus, the method m in YYY is valid.



2. Whether a call needs to be wrapped in a try/catch or whether the enclosing method requires a throws clause depends on the class of the reference and not the class of the actual object. This is because it is the compiler that checks whether a call needs to have exception handling and the compiler knows only about the declared class of a variable. It doesn't know about the actual object referred to by that variable (which is known only to JVM at run time).



Here, if you define obj of type XXX, the call obj.m() will have to be wrapped into a try/catch because main() doesn't have a throws clause. But if you define obj of class YYY, there is no need of try catch because YYY's m() does not throw an exception.

Now, if the declared class of obj is YYY, you cannot assign it an object of class XXX because XXX is a superclass of YYY. So the only option left is to do:



YYY obj = new YYY();

 
Back to Question without Answer
 



08.     QID - 2.924 : Working with Methods - Overloading 
 

Consider the following class...


class TestClass{
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(Object x) { System.out.println("In Object"); } //3 
    
    void probe(Long x) { System.out.println("In Long"); } //4
    
    public static void main(String[] args){
        String a = "hello"; 
        new TestClass().probe(a); 
    }
}


What will be printed?
 

Correct Option is :  B 

A. In Integer
 


B. In Object
 


C. In Long
 


D. It will not compile
 


Explanation: 
Here, we have three overloaded probe methods but there is no probe method that takes a String parameter. The only one that is able to accept a String is the one that takes Object as a parameter. So that method will be called.



A String cannot be assigned to a variable of class Integer or Long variable, but it can be assigned to a variable of class Object.

 
Back to Question without Answer
 



09.     QID - 2.1370 : Working with Methods - Overloading 
 

What will the following code print when run?



class Baap {

    public int h = 4;

    public int getH() {

        System.out.println("Baap " + h);

        return h;

    }

}



public class Beta extends Baap {

    public int h = 44;

    public int getH() {

        System.out.println("Beta " + h);

        return h;

    }

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h + " " + b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h + " " + bb.getH());

    }

}
 

Correct Option is :  D 

A. Beta 44

4 44

Baap 44

44 44
 


B. Baap 44

4 44

Beta 44

44 44
 


C. Beta 44

4 44

Beta 44

4 44
 


D. Beta 44

4 44

Beta 44

44 44
 


Explanation: 
Always remember: Methods are overridden and variables are shadowed.

Here, b refers to an object of class Beta so b.getH() will always call the overridden (subclass's method). However, the type of reference of b is Baap. so b.h will always refer to Baap's h.



Further, inside Beta's getH(), Beta's h will be accessed instead of Baap's h because you are accessing this.h ('this' is implicit) and the type of this is Beta.

 
Back to Question without Answer
 



10.     QID - 2.1074 : Working with Methods - Overloading 
 

Consider the following class definition:


public class TestClass{
   public static void main(String[] args){  new TestClass().sayHello(); }   //1
   public static void sayHello(){ System.out.println("Static Hello World"); }  //2
   public void sayHello() { System.out.println("Hello World "); }  //3
}


What will be the result of compiling and running the class?
 

Correct Option is :  D 

A. It will print Hello World.
 


B. It will print Static Hello World.
 


C. Compilation error at line 2.
 


D. Compilation error at line 3.
It will say, method sayHello() is already defined.


E. Runtime Error.
 


Explanation: 
You cannot have two methods with the same signature (name and parameter types) in one class.

Also, even if you put one sayHello() method in other class which is a subclass of this class, it won't compile because you cannot override/hide a static method with a non static method and vice versa.

 
Back to Question without Answer
 



11.     QID - 2.1100 : Working with Methods - Overloading 
 

Consider the following class:


class TestClass{
    void probe(int... x) { System.out.println("In ..."); }  //1
    
    void probe(Integer x) { System.out.println("In Integer"); } //2
    
    void probe(long x) { System.out.println("In long"); } //3 
    
    void probe(Long x) { System.out.println("In LONG"); } //4
    
    public static void main(String[] args){
        Integer a = 4; new TestClass().probe(a); //5
        int b = 4; new TestClass().probe(b); //6
    }
}


What will it print when compiled and run?
 

Correct Options are :  A D 

A. In Integer and In long
 


B. In ... and In LONG, if //2 and //3 are commented out.
 


C. In Integer and In ..., if //4 is commented out.
 


D. It will not compile, if //1, //2, and //3 are commented out.
 


E. In LONG and In long, if //1 and //2 are commented out.
 


Explanation: 
To answer this type of questions, you need to know the following rules:



1. The compiler always tries to choose the most specific method available with least number of modifications to the arguments.



2. Java designers have decided that old code should work exactly as it used to work before boxing-unboxing functionality became available. 



3. Widening is preferred to boxing/unboxing (because of rule 2), which in turn, is preferred over var-args.





Thus, 

1. 

probe(Integer) will be bound to probe(Integer) (exact match). If that is not available, it will be bound to probe(long), and then with probe(int...) in that order of preference.

probe(long) is preferred over probe(int...) because unboxing an Integer gives an int and in pre 1.5 code probe(long) is compatible with an int (Rule 2).



It is never bound to probe(Long ) because Integer and Long are different object types and there is no IS-A relation between them. (This holds true for any two wrapper classes).

It could, however, be bound to probe(Object ) (if it existed), because Integer IS-A Object.



2.

probe(int) is bound to probe(long) (because of Rule 2) , then to probe(Integer ) because boxing an int qives you an Integer, which matches exactly to probe(Integer), and then to probe(int...).



It is never bound to probe(Long ) because int is not compatible with Long.



We advise you to run this program and try out various combinations. The exam has questions on this pattern but they are not this tough. If you have a basic understanding, you should be ok.

 
Back to Question without Answer
 



12.     QID - 2.1406 : Working with Methods - Overloading 
 

What will the following code print when run?



public class Noobs {

    public void m(int a){

        System.out.println("In int ");

    }

    public void m(char c){

        System.out.println("In char ");

    }

    public static void main(String[] args) {

        Noobs n = new Noobs();

        int a = 'a';

        char c = 6;

        n.m(a);

        n.m(c);

    }

}
 

Correct Option is :  A 

A. In int

In char
 


B. In char

In int
 


C. In int

In int
 


D. In char

In char
 


E. It will not compile.
 


Explanation: 
It looks confusing but it is a simple question. Remember that whenever two methods are applicable for a method call, the one that is most specific to the argument is chosen.

In case of m(a), a is an int, which cannot be passed as a char (because an int cannot fit into a char). Therefore, only m(int) is applicable. 

In case of m(c), c is a char, which can be passed as an int as well as a char. Therefore, both the methods are applicable. However, m(char) is most specific therefore that is chosen over m(int).

 
Back to Question without Answer
 



13.     QID - 2.939 : Working with Methods - Overloading 
 

Which of the following are true regarding overloading of a method?
 

Correct Option is :  B 

A. An overloading method must have a different parameter list and same return type as that of the overloaded method.
There is no restriction on the return type. If the parameters are different then the methods are totally different (other than the name) so their return types can be anything.


B. If there is another method with the same name but with a different number of arguments in a class then that method can be called as overloaded.
 


C. If there is another method with the same name and same number and type of arguments but with a different return type in a class then that method can be called as overloaded.
For overloading a method, the "signature" of the overloaded methods must be different. In simple terms, a method signature includes method name and the number and type of arguments that it takes. So if the parameter list of the two methods with the same name are different either in terms of number or in terms of the types of the parameters, then they are overloaded.



For example:

Method m1 is overloaded if you have two methods : void m1(int k); and void m1(double d); 

or if you have: void m1(int k); and void m1(int k, double d); 



Note that return type is not considered a part of the method signature.


D. An overloaded method means a method with the same name and same number and type of arguments exists in the super class and sub class.
This is called overriding and not overloading.


 
Back to Question without Answer
 



14.     QID - 2.1340 : Working with Methods - Overloading 
 

Given the following code, which method declarations can be inserted at line 1 without any problems?


public class OverloadTest{
    public int sum(int i1, int i2) { return i1 + i2; }
    // 1
}


 

Correct Options are :  B C D 

A. public int sum(int a, int b) { return a + b; }
Will cause duplicate method. Variable names don't matter. Only their types.


B. public int sum(long i1, long i2) { return (int) i1; }
 


C. public int sum(int i1, long i2) { return (int) i2; }
 


D. public long sum(long i1, int i2) { return i1 + i2; }
 


E. public long sum(int i1, int i2) { return i1 + i2; }
Only the return type is different so the compiler will complain about having duplicate method sum.


Explanation: 
The rule is that you cannot have methods that create ambiguity for the compiler in a class. It is illegal for a class to have two methods having same name and having same type of input parameters in the same order.

Name of the input variables and return type of the method are not looked into.

1. Option 1 is wrong because, then both the methods will be same (as their method name and the class/type and order of the input parameters will be same). So this amounts to duplicate method which is not allowed.

As mentioned, name of the input parameters does not matter. Only the type of parameters and their order matters.

2. 2 is valid because the type of input parameters are different. So this is a different method and does not amount to duplication.

3 and 4 are valid for the same reason

5 is not valid because it leads to duplicate method(as their method name and the class/type and order of the input parameters will be same). Note that as mentioned in the comments, return type does not matter.

 
Back to Question without Answer
 



15.     QID - 2.962 : Working with Methods - Overloading 
 

Consider the following method...



public int setVar(int a, int b, float c) { ...}



Which of the following methods correctly overload the above method?
 

Correct Options are :  A E 

A. public int setVar(int a, float b, int c){

  return (int)(a + b + c);

}
 


B. public int setVar(int a, float b, int c){

  return this(a, c, b);

}


this( ... ) can only be called in a constructor and that too as a first statement.


C. public int setVar(int x, int y, float z){

  return x+y;

}


It will not compile because it is same as the original method. The name of parameters do not matter.


D. public float setVar(int a, int b, float c){

  return c*a;

}
It will not compile as it is same as the original method. The return type does not matter.


E. public float setVar(int a){

  return a;

}
 


Explanation: 
A method is said to be overloaded when the other method's name is same and parameters ( either the number or their order) are different.

Option 2 is not valid Because of the line: return this(a, c, b); This is the syntax of calling a constructor and not a method. It should have been: return this.setVar(a, c, b);

 
Back to Question without Answer
 



16.     QID - 2.1461 : Working with Methods - Overloading 
 

Consider the following class...

public class ParamTest {

  

  public static void printSum(double a, double b){ 

      System.out.println("In double "+(a+b));

  }

  public static void printSum(float a, float b){ 

      System.out.println("In float "+(a+b));

  }

  

  public static void main(String[] args) {

      printSum(1.0, 2.0);

  }

}



What will be printed?
 

Correct Option is :  C 

A. In float 3
 


B. In float 3.0
 


C. In double 3.0
 


D. In double 3
 


E. It will not compile.
 


Explanation: 
The call to printSum(1.0, 2.0) will be bound to printSum(double, double ) because 1.0 and 2.0 are double, which are exact match to double, double. 



Note that if you call printSum(1, 2) , printSum(float, float) would have been invoked instead of printSum(double, double) because a float is closer than a double to an int.



We advise you to run this program and try out various combinations. The exam has questions on this pattern.

 
Back to Question without Answer
 



17.     QID - 2.1008 : Working with Methods - Overloading 
 

Given the following pairs of method declarations, which of the statements are true?



1.

void perform_work(int time){ }

int  perform_work(int time, int speed){ return time*speed ;}



2.

void perform_work(int time){ }

int  perform_work(int speed){return speed ;}



3.

void perform_work(int time){ }

void Perform_work(int time){ }


 

Correct Options are :  A D 

A. The first pair of methods will compile correctly and overload the method 'perform_work'.
 


B. The second pair of methods will compile correctly and overload the method 'perform_work'.
You cannot have two methods with the same signature (i.e. same name and same parameter list) in the same class.

Note that return type and names of the parameters don't matter while determining the signature.


C. The third pair of methods will compile correctly and overload the method 'perform_work'.
 


D. The second pair of methods will not compile correctly.
 


E. The third pair of methods will not compile correctly.
Both have different names (note the capital 'P' ) and so are different methods.


Explanation: 
Overloading of a method occurs when the name of more than one methods is exactly same but the parameter lists are different.



The first and the third pairs of methods will compile correctly as they follow the above stated rule.



The second pair of methods will not compile correctly, since their method signatures are same and the compiler cannot differentiate between the two methods as it does not look for return type. Also, only name and input parameters are the part of method declaration . Names of the parameters don't matter.



Both methods in the first pair are named perform_work but have different parameter list so they overload this method name i.e. perform_work.



The method named 'perform_work' is distinct from the method named 'Perform_work', as identifiers in Java are case-sensitive.

 
Back to Question without Answer
 



Working with Inheritance
 
Exam Objectives - 
 
Develop code that demonstrates the use of polymorphism; including overriding and object type versus reference type
Determine when casting is necessary
Use super and this to access objects and constructors
Use abstract classes and interfaces



01.     QID - 2.1138 
 

What will the following program print when run?



class Super{

  public String toString(){

     return "4";

  }

}

public class SubClass extends Super{

  public String toString(){

     return super.toString()+"3";

  }

  public static void main(String[] args){

    System.out.println( new SubClass() );

  }

}
 

Select 1 option

A. 43
 


B. 7
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



02.     QID - 2.1127 
 

Consider the following class and interface definitions (in separate files):



public class Sample implements IInt{

   public static void main(String[] args){

      Sample s = new Sample();  //1

      int j = s.thevalue;       //2

      int k = IInt.thevalue;    //3

      int l = thevalue;         //4

   }

}

public interface IInt{

      int thevalue = 0;

}





What will happen when the above code is compiled and run?
 

Select 1 option

A. It will give an error at compile time at line //1.
 


B. It will give an error at compile time at line //2.
 


C. It will give an error at compile time at line //3
 


D. It will give an error at compile time at line //4.
 


E. It will compile and run without any problem.
 


 
Check Answer
 



03.     QID - 2.1220 
 

Given the following classes and declarations, which of these statements about //1 and //2 are true?


class A{
   private int i = 10;
   public void  f(){}
   public void g(){}
}

class B extends A{
   public int i = 20;
   public void g(){}
}

public class C{
   A a = new A();//1
   A b = new B();//2
}

 

Select 1 option

A. System.out.println(b.i); will print 10.
 


B. The statement b.f( ); will give compile time error..
 


C. System.out.println(b.i); will print 20
 


D. All the above are correct.
 


E. None of the above statements is correct.
 


 
Check Answer
 



04.     QID - 2.993 
 

Which is the first line that will cause compilation to fail in the following program?


// Filename: A.java
class A{
   public static void main(String args[]){
      A a = new A();
      B b = new B();
      a = b;  // 1
      b = a;  // 2
      a = (B) b; // 3
      b = (B) a; // 4
   }
}
class B extends A { }


 

Select 1 option

A. At Line 1.
 


B. At Line 2.
 


C. At Line 3.
 


D. At Line 4.
 


E. None of the above.
 


 
Check Answer
 



05.     QID - 2.1147 
 

Given the following code, which statements are true?



class A{

   int i;

}

class B extends A{

   int j;

}


 

Select 3 options

A. Class B extends class A.
 


B. Class B is the superclass of class A.
 


C. Class A inherits from class B.
 


D. Class B is a subclass of class A.
 


E. Objects of class B will always have a member variable named i .
 


 
Check Answer
 



06.     QID - 2.839 
 

How can you fix the following code to make it compile:

import java.io.*;
class Great {
    public void doStuff() throws FileNotFoundException{
    }    
}

class Amazing extends Great { 
  public void doStuff() throws IOException, IllegalArgumentException{
  }    
}

public class TestClass {
    public static void main(String[] args) throws IOException{
        Great g = new Amazing();
        g.doStuff();
    }
}

Assume that changes suggested in a option are to be applied independent of other options.
 

Select 2 options

A. Change doStuff in Amazing to throw only IllegalArgumentException.
 


B. Change doStuff in Great to throw FileNotFoundException and IllegalArgumentException.
 


C. Change doStuff in Amazing to throw only IOException.
 


D. Change doStuff in Great to throw only IOException instead of FileNotFoundException.
 


E. Replace g.doStuff() to ((Amazing) g).doStuff().
 


 
Check Answer
 



07.     QID - 2.1217 
 

Consider the following classes in one file named A.java...



abstract class A{

   protected int m1(){ return 0; }

}

class B extends A{

   int m1(){ return 1; }

}



Which of the following statements are correct...
 

Select 1 option

A. The code will not compile as you cannot have more than 1 class in 1 file.
 


B. The code will not compile because class B does not override the method m1() correctly.
 


C. The code will not compile as A is an abstract class.
 


D. The code will not compile as A does not have any abstract method.
 


E. The code will compile fine.
 


 
Check Answer
 



08.     QID - 2.1113 
 

Which of the following is a legal return type of a method overriding the given method:



public Object  myMethod() {...}

(Select the best option.)
 

Select 1 option

A. Object
 


B. String
 


C. Return type can be any class since all objects can be cast to Object.
 


D. void
 


E. None of the above.
 


 
Check Answer
 



09.     QID - 2.1086 
 

What will be the result of compiling and running the following code?



class Base{

   public Object getValue(){ return new Object(); } //1

}



class Base2 extends Base{

   public String getValue(){ return "hello"; } //2

}



public class TestClass{

   public static void main(String[] args){

      Base b = new Base2();

      System.out.println(b.getValue()); //3

   }

}
 

Select 1 option

A. It will print the hash code of the object.
 


B. It will print hello.
 


C. Compile time error at //1.
 


D. Compile time error at //2.
 


E. Compile time error at //3.
 


 
Check Answer
 



10.     QID - 2.1309 
 

What can be inserted at //1 and //2 in the code below so that it can compile without errors:


class Doll{
    String name;
    Doll(String nm){
        this.name = nm;
    }
}

class Barbie extends Doll{
    Barbie(){
        //1 
    }
    Barbie(String nm){
        //2
    }
}
  public class TestClass {
       public static void main(String[] args) {
          Barbie b = new Barbie("mydoll");
       }
   }


 

Select 2 options

A. this("unknown"); at 1 and super(nm); at 2
 


B. super("unknown"); at 1 and super(nm); at 2
 


C. super(); at 1 and super(nm); at 2
 


D. super(); at 1 and Doll(nm); at 2
 


E. super("unknown"); at 1 and this(nm); at 2
 


F. Doll(); at 1 and Doll(nm); at 2
 


 
Check Answer
 



11.     QID - 2.1035 
 

Which of the following statements are true?
 

Select 2 options

A. The extends keyword is used to specify inheritance.
 


B. subclass of a non-abstract class cannot be declared abstract.
 


C. subclass of an abstract class can be declared abstract.
 


D. subclass of a final class cannot be abstract.
 


E. A class, in which all the members are declared private, cannot be declared public.
 


 
Check Answer
 



12.     QID - 2.1231 
 

Given the following interface definition, which definitions are valid?



interface I1{

   void setValue(String s);

   String getValue();

}
 

Select 2 options

A. class A extends I1{

   String s;

   void setValue(String val) { s = val; }

   String getValue() { return s; }

}
 


B. interface I2 extends I1{

   void analyse();

}
 


C. abstract class B implements I1{

   int getValue(int i) { return 0; }

}
 


D. interface I3 implements I1{

   void perform_work();

}
 


 
Check Answer
 



13.     QID - 2.1209 
 

Which statements concerning the following code are true?


class A{
  public A() {} // A1
  public A(String s) {  this();  System.out.println("A :"+s);  }  // A2
}

class B extends A{
  public int B(String s) {  System.out.println("B :"+s);  return 0; } // B1
}
class C extends B{
    private C(){ super(); } // C1
    public C(String s){  this();  System.out.println("C :"+s);  } // C2
    public C(int i){} // C3
}


 

Select 4 options

A. At least one of the constructors of each class is called as a result of constructing an object of class C.
 


B. Constructor at  //A2 will never be called in creation of an object of class C.
 


C. Class C can be instantiated only in two ways by users of this class.
 


D. //B1 will never be called in creation of objects of class A, B, or C.
 


E. The code will not compile.
 


 
Check Answer
 



14.     QID - 2.1056 
 

Which one of these is a proper definition of a class TestClass that cannot be sub-classed?
 

Select 1 option

A. final class TestClass { }
 


B. abstract class TestClass { }
 


C. native class TestClass { }
 


D. static class TestClass { }
 


E. private class TestClass { }
 


 
Check Answer
 



15.     QID - 2.998 
 

What will the following program print when compiled and run?


class Game{
  public void play() throws Exception{
    System.out.println("Playing...");
  }
}

public class Soccer extends Game{
   public void play(){
      System.out.println("Playing Soccer...");      
   }
   public static void main(String[] args){
       Game g = new Soccer();
       g.play();
   }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an Exception at runtime.
 


C. Playing Soccer...
 


D. Playing...
 


E. None of these.
 


 
Check Answer
 



16.     QID - 2.951 
 

Consider the following program...


class Super {  }
class Sub extends Super {  }
public class TestClass{
   public static void main(String[] args){
      Super s1 = new Super(); //1
      Sub s2 = new Sub();     //2
      s1 = (Super) s2;        //3
   }
}


Which of the following statements are correct?
 

Select 1 option

A. It will compile and run without any problems.
 


B. It will compile but WILL throw ClassCastException at runtime.
 


C. It will compile but MAY throw ClassCastException at runtime.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



17.     QID - 2.1399 
 

What will the following code print when compiled and run?



import java.util.*;

public class ClassnameTest {

    public static void main(String[] args) {

        List<String> list = new ArrayList<>();

        StringBuilder sb = new StringBuilder("mrx");

        String s = sb.toString();

        list.add(s);

        System.out.println(s.getClass());

        System.out.println(list.getClass());

    }

}


 

Select 1 option

A. class java.lang.String

class java.util.List
 


B. class java.lang.String

class java.util.Collection
 


C. class java.lang.String

class java.util.ArrayList
 


D. class java.lang.Object

class java.util.ArrayList
 


E. class java.lang.Object

class java.util.List
 


 
Check Answer
 



18.     QID - 2.961 
 

Which one of these is a proper definition of a class Car that cannot be sub-classed?
 

Select 1 option

A. class Car { }
 


B. abstract class Car { }
 


C. native class Car { }
 


D. static class Car { }
 


E. final class Car { }
 


 
Check Answer
 



19.     QID - 2.1222 
 

Consider the following class hierarchy


class A{
   public void m1() {   }
}
class B extends A{
   public void m1() {   }
}
class C extends B{
   public void m1(){
      /*  //1
      ... lot of code.
      */
   }
}

 

Select 2 options

A. You cannot access class A's m1() from class C for the same object ( i.e. this).
 


B. You can access class B's m1() using super.m1() from class C.
 


C. You can access class A's m1() using ( (A) this ).m1() from class C.
 


D. You can access class A's m1() using super.super.m1() from class C.
 


 
Check Answer
 



20.     QID - 2.1154 
 

Consider the following code:


class A{
 public XXX m1(int a){
   return a*10/4-30;
 }
}
class A2 extends A{
 public YYY m1(int a){
   return a*10/4.0;
 }
}


What can be substituted for XXX and YYY so that it can compile without any problems?
 

Select 1 option

A. int, int
 


B. int, double
 


C. double, double
 


D. double, int
 


E. Nothing, they are simply not compatible.
 


 
Check Answer
 



21.     QID - 2.1181 
 

What would be the result of attempting to compile and run the following code?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[]){
      B c = new C();
      System.out.println(c.max(10, 20));
   }
}
class A{
   int max(int x, int y)  { if (x>y) return x; else return y; }
}
class B extends A{
  int max(int x, int y)  {  return 2 * super.max(x, y) ; }
}
class C extends B{
  int max(int x, int y)  {  return super.max( 2*x, 2*y); }
}


 

Select 1 option

A. The code will fail to compile.
 


B. Runtime error.
 


C. The code will compile without errors and will print 80 when run.
 


D. The code will compile without errors and will print 40 when run.
 


E. The code will compile without errors and will print 20 when run.
 


 
Check Answer
 



22.     QID - 2.931 
 

Consider the following classes :


class A{
    public static void sM1() {  System.out.println("In base static"); }
}
class B extends A{
Line 1 :   // public static void sM1() {  System.out.println("In sub static"); }
Line 2 :   // public  void sM1() {  System.out.println("In sub non-static"); }
}


Which of the following statements are true?
 

Select 2 options

A. class B will not compile if line 1 is uncommented.
 


B. class B will not compile if line 2 is uncommented.
 


C. class B will not compile if line 1 and 2 are both uncommented.
 


D. Only the second option is correct.
 


E. Only the third option is correct.
 


 
Check Answer
 



23.     QID - 2.1219 
 

What will be the output of compiling and running the following program:


class TestClass implements I1, I2{
   public void m1() { System.out.println("Hello"); }
   public static void main(String[] args){
      TestClass tc = new TestClass();
      ( (I1) tc).m1();
   }
}
interface I1{
   int VALUE = 1;
   void m1();
}
interface I2{
   int VALUE = 2;
   void m1();
}


 

Select 1 option

A. It will print Hello.
 


B. There is no way to access any VALUE in TestClass.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



24.     QID - 2.1287 
 

Consider the following class hierarchy shown in the image. (B1 and B2 are subclasses of A and C1, C2 are subclasses of B1)



Assume that method public void m1(){ ... } is defined in all of these classes EXCEPT B1 and C1.



Assume that "objectOfXX" means a variable that points to an object of class XX. So, objectOfC1 means a reference variable that is pointing to an object of class C1.



Which of the following statements are correct?
 

[image: Class Diagram] 
 
Select 1 option

A. objectOfC1.m1(); will cause a compilation error.
 


B. objectOfC2.m1(); will cause A's m1() to be called.
 


C. objectOfC1.m1(); will cause A's m1() to be called.
 


D. objectOfB1.m1(); will cause an exception at runtime.
 


E. objectOfB2.m1(); will cause an exception at runtime.
 


 
Check Answer
 



25.     QID - 2.1143 
 

Which of the given statements are correct for a method that overrides the following method:



public Set getSet(int a) {...}
 

Select 3 options

A. Its return type must be declared as Set.
 


B. It may return HashSet.

(Assume that HashSet implements Set)
 


C. It can declare any Exception in throws clause
 


D. It can declare any RuntimeException in throws clause.
 


E. It can be abstract.
 


 
Check Answer
 



26.     QID - 2.905 
 

Given the following line of code:



   List students = new ArrayList();



Identify the correct statement:
 

Select 1 option

A. The reference type is List and the object type is ArrayList.
 


B. The reference type is ArrayList and the object type is ArrayList.
 


C. The reference type is ArrayList and the object type is List.
 


D. The reference type is List and the object type is List.
 


 
Check Answer
 



27.     QID - 2.1117 
 

Given the following classes, what will be the output of compiling and running the class Truck?


class Automobile{
   public void drive() {  System.out.println("Automobile: drive");   }
}

public class Truck extends Automobile{
   public void drive() {  System.out.println("Truck: drive");   }
   public static void main (String args [ ]){
      Automobile  a = new Automobile();
      Truck t  = new Truck();
      a.drive(); //1
      t.drive(); //2
      a = t;     //3
      a.drive(); //4
   }
}



//End of Code
 

Select 1 option

A. Compiler error at line 3.
 


B. Runtime error at line 3.
 


C. It will print: 

Automobile: drive 

Truck: drive 

Automobile: drive 

in that order.
 


D. It will print: 

Automobile: drive

Truck: drive

Truck: drive 

in that order.
 


E. It will print: 

Automobile: drive

Automobile: drive

Automobile: drive

in that order.
 


 
Check Answer
 



28.     QID - 2.1291 
 

What will be the result of attempting to compile and run class B?





class A{

   final int fi = 10;

}

public class B extends A{

   int fi = 15;

   public static void main(String[] args){

       B b = new B();

       b.fi = 20;

       System.out.println(b.fi);

       System.out.println(  (  (A) b  ).fi  );

   }

}
 

Select 1 option

A. It will not compile.
 


B. It will print 10 and then 10
 


C. It will print 20 and then 20
 


D. It will print 10 and then 20
 


E. It will print 20 and then 10
 


 
Check Answer
 



29.     QID - 2.996 
 

Consider the following program:


class Game {
  public void play() throws Exception   {
    System.out.println("Playing...");
  }
}

class Soccer extends Game {
   public void play(String ball)    {
      System.out.println("Playing Soccer with "+ball);      
   }
}

public class TestClass {
   public static void main(String[] args) throws Exception  {
       Game g = new Soccer();
       // 1
       Soccer s = (Soccer) g;
       // 2
   }
}


Which of the given options can be inserted at //1 and //2?
 

Select 2 options

A. It will not compile as it is.
 


B. It will throw an Exception at runtime if it is run as it is.
 


C. g.play(); at //1 and s.play("cosco"); at //2
 


D. g.play(); at //1 and s.play(); at //2
 


E. g.play("cosco"); at //1 and s.play("cosco"); at //2
 


 
Check Answer
 



30.     QID - 2.1308 
 

What is the result of compiling and running the following code ?



public class TestClass{

   static int si = 10;

   public static void main (String args[]){

      new TestClass();

   }

   public TestClass(){

      System.out.println(this);

   }

   public String toString(){

      return "TestClass.si = "+this.si;

   }

}


 

Select 1 option

A. The class will not compile because you cannot override toString() method.
 


B. The class will not compile as si being static, this.si is not a valid statement.
 


C. It will print TestClass@nnnnnnnn, where nnnnnnnn is the hash code of the TestClass object referred to by 'this'.
 


D. It will print TestClass.si = 10
 


E. None of the above.
 


 
Check Answer
 



31.     QID - 2.1015 
 

Which statement regarding the following code is correct?



class A{

   public int i = 10;

   private int j = 20;



}



class B extends A{

   private int i = 30; //1

   public int k = 40;



}



class C extends B{

}



public class TestClass{

   public static void main(String args[]){

      C c = new C();

      System.out.println(c.i); //2

      System.out.println(c.j); //3

      System.out.println(c.k); 

   }

}


 

Select 1 option

A. The code will print 10 and 40 if //3 is commented.
 


B. The code will print 40 if //2 and //3 are commented.
 


C. The code will not compile because of //1.
 


D. The code will compile if the line marked //2 is commented out.
 


E. None of these.
 


 
Check Answer
 



32.     QID - 2.1253 
 

Where, in a constructor, can you place a call to a super class's constructor ?
 

Select 1 option

A. Anywhere in the constructor's body.
 


B. As the first statement in the constructor.
 


C. Only as the first statement and it can be called just like any other method call i.e. ClassName( ... ).
 


D. You can't call super class's constructor in a base class as constructors are not inherited.
 


E. None of the above.
 


 
Check Answer
 



33.     QID - 2.1149 
 

Given the following class definitions :


interface MyIface{};
class A {};
class B extends A implements MyIface{};
class C implements MyIface{};



and the following object instantiations: 


  A a = new A();
  B b = new B();
  C c = new C();



Which of the following assignments are legal at compile time?
 

Select 1 option

A. b = c;
 


B. c = b;
 


C. MyIface i = c;
 


D. c = (C) b;
 


E. b = a;
 


 
Check Answer
 



34.     QID - 2.1047 
 

An overriding method must have a same parameter list and the same return type as that of the overridden method.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



35.     QID - 2.1208 
 

Given the following class definition:


class A{
  protected int i;
  A(int i) {    this.i = i;    }
 
}
// 1 : Insert code here


Which of the following would be a valid class that can be inserted at //1 ?
 

Select 2 options

A. class B {}
 


B. class B extends A {}
 


C. class B extends A {  B()  {  System.out.println("i = " + i); }  }
 


D. class B { B() {} }
 


 
Check Answer
 



36.     QID - 2.1140 
 

Which of the following are valid declarations in a class?
 

Select 1 option

A. abstract int absMethod(int param) throws Exception;
 


B. abstract native int absMethod(int param) throws Exception;
 


C. float native getVariance() throws Exception;
 


D. abstract private int absMethod(int param) throws Exception;
 


 
Check Answer
 



37.     QID - 2.1198 
 

What will be the output of the following program ?

class CorbaComponent{
    String ior;
    CorbaComponent(){ startUp("IOR"); }
    void startUp(String s){ ior  =  s; }
    void print(){ System.out.println(ior); }
}

class OrderManager extends CorbaComponent{
   OrderManager(){  }
   void startUp(String s){  ior = getIORFromURL(s);   }
   String getIORFromURL(String s){  return "URL://"+s; }
}

public class Application{
   public static void main(String args[]){ start(new OrderManager()); }
   static void start(CorbaComponent cc){ cc.print(); }
}

 

Select 1 option

A. It will throw an exception at run time.
 


B. It will print IOR
 


C. It will print URL://IOR
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



38.     QID - 2.1003 
 

Given the following code, which statements are true?


interface Automobile { String describe(); }

class FourWheeler implements Automobile{
   String name;
   public String describe(){ return " 4 Wheeler " + name; }
}

class TwoWheeler extends FourWheeler{
    String name;
    public String describe(){ return " 2 Wheeler " + name; }
}

 

Select 3 options

A. An instance of TwoWheeler is also an instance of FourWheeler.
 


B. An instance of TwoWheeler is a valid instance of Automobile.
 


C. The use of inheritance is not justified here because a TwoWheeler is not really a FourWheeler in the real world that the code is trying to model.
 


D. The code will compile only if name is removed from TwoWheeler.
 


E. The code will fail to compile.
 


 
Check Answer
 



39.     QID - 2.872 
 

Consider the following classes:


class A {
      public int getCode(){ return 2;}
}

class AA extends A { 
  public void doStuff() { 
  } 
}


Given the following two declarations, which of the options will compile?
   A a = null;
   AA aa = null;

 

Select 4 options

A. a = (AA)aa;
 


B. a = new AA();
 


C. aa = new A();
 


D. aa = (AA) a;
 


E. aa = a;
 


F. ((AA)a).doStuff();
 


 
Check Answer
 



40.     QID - 2.1250 
 

Which statements, when inserted in the code below, will cause an exception at run time?


class B {}
class B1 extends B {}
class B2 extends B {}
public class ExtendsTest{
  public static void main(String args[]){
     B b = new B();
     B1 b1 = new B1();
     B2 b2 = new B2();
     // insert statement here
  }
}

 

Select 1 option

A. b = b1;
 


B. b2 = b;
 


C. b1 = (B1) b;
 


D. b2 = (B2) b1;
 


E. b1 = (B) b1;
 


 
Check Answer
 



41.     QID - 2.1476 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Select 2 options

A. default void compute();
 


B. public void compute();
 


C. static void compute(){

   System.out.println("computing...");

 }
 


D. static void compute();
 


E. default static void compute(){

   System.out.println("computing...");

};
 


 
Check Answer
 



42.     QID - 2.952 
 

Which of the following lines of code that, when inserted at line 1, will make the overriding method in SubClass invoke the overridden method in BaseClass on the current object with the same parameter.


class BaseClass{
   public void print(String s) {  System.out.println("BaseClass :"+s); }
}
class SubClass extends BaseClass{
   public void print(String s){
      System.out.println("SubClass :"+s);
      // Line 1
   }
   public static void main(String args[]){
      SubClass sc = new SubClass();
      sc.print("location");
   }
}


 

Select 1 option

A. this.print(s);
 


B. super.print(s);
 


C. print(s);
 


D. BaseClass.print(s);
 


 
Check Answer
 



43.     QID - 2.1337 
 

Consider the following code:


class A{
   A() {  print();   }
   void print() { System.out.println("A"); }
}
class B extends A{
   int i =   4;
   public static void main(String[] args){
      A a = new B();
      a.print();
   }
   void print() { System.out.println(i); }
}


What will be the output when class B is run ?
 

Select 1 option

A. It will print A, 4.
 


B. It will print A, A
 


C. It will print 0, 4
 


D. It will print 4, 4
 


E. None of the above.
 


 
Check Answer
 



44.     QID - 2.836 
 

Which of the following statements are correct?
 

Select 3 options

A. An abstract class can be extended by an abstract or a concrete class.
 


B. A concrete class can be extended by an abstract or a concrete class.
 


C. An interface can be extended by another interface.
 


D. An interface can be extended by an abstract class.
 


E. An interface can be extended by a concrete class.
 


F. An abstract class cannot implement an interface.
 


 
Check Answer
 



45.     QID - 2.854 
 

What will be printed when the following code is compiled and run?


class A {
    public int getCode(){ return 2;}
}

class AA extends A { 
  public long getCode(){ return 3;}
}

public class TestClass {
    
    public static void main(String[] args) throws Exception {
         A a = new A();
        A aa = new AA();
        System.out.println(a.getCode()+" "+aa.getCode());
    }

    public int getCode() {
        return 1;
    }
}

 

Select 1 option

A. 2 3
 


B. 2 2
 


C. It will throw an exception at run time.
 


D. The code will not compile.
 


 
Check Answer
 



46.     QID - 2.1482 
 

What will the following code print when compiled and run?

class Baap{

    public int h = 4;

    public int getH(){ 

        System.out.println("Baap "+h); return h;

    }

}





public class Beta extends Baap{

    public int h = 44;

    public int getH(){ 

        System.out.println("Beta "+h); return h;

    }    

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h+" "+b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h+" "+bb.getH());

    }

}
 

Select 1 option

A. Baap 44

4 44

Beta 44

44 44
 


B. Beta 44

4 44

Baap 44

44 44
 


C. Beta 44

4 44

Beta 44

44 44
 


D. 4 44

Beta 44

44 44

Beta 44
 


E. 44 44

Beta 44

4 44

Beta 44
 


F. 4 44

Beta 44

4 44

Beta 44
 


 
Check Answer
 



47.     QID - 2.1145 
 

Assume the following declarations:



class A{ }

class B extends A{ }

class C extends B{ }



class X{

   B getB(){ return new B(); }

}



class Y extends X{

  //method declaration here 

}



Which of the following methods can be inserted in class Y?
 

Select 2 options

A. public C getB(){ return new B(); }
 


B. protected B getB(){ return new C(); }
 


C. C getB(){ return new C(); }
 


D.  A getB(){ return new A(); }
 


 
Check Answer
 



48.     QID - 2.970 
 

Consider the following classes...


class Car{
   public int gearRatio = 8;
   public String accelerate() {  return "Accelerate : Car";  }
}
class SportsCar extends Car{
   public int gearRatio = 9;
   public String accelerate() {  return  "Accelerate : SportsCar";  }
   public static void main(String[] args){
      Car c = new SportsCar();
      System.out.println( c.gearRatio+"  "+c.accelerate() );
   }
}


What will be printed when SportsCar is run?
 

Select 1 option

A. 8  Accelerate : Car
 


B. 9 Accelerate : Car
 


C. 8 Accelerate : SportsCar
 


D. 9 Accelerate : SportsCar
 


E. None of the above.
 


 
Check Answer
 



49.     QID - 2.1273 
 

What will be the result of attempting to compile and run the following program?





public class TestClass{

   public static void main(String args[ ] ){

      A o1 = new C( );

      B o2 = (B) o1;

      System.out.println(o1.m1( ) );

      System.out.println(o2.i );

   }

}

class A { int i = 10;  int m1( ) { return i; } }

class B extends A { int i = 20;  int m1() { return i; } }

class C extends B { int i = 30;  int m1() { return i; } }
 

Select 1 option

A. The program will fail to compile.
 


B. Class cast exception at runtime.
 


C. It will print 30, 20.
 


D. It will print 30, 30.
 


E. It will print 20, 20.
 


 
Check Answer
 



50.     QID - 2.1072 
 

What, if anything, is wrong with the following code?



//Filename: TestClass.java

class TestClass implements T1, T2{

   public void m1(){}

}

interface T1{

   int VALUE = 1;

   void m1();

}

interface T2{

   int VALUE = 2;

   void m1();

}
 

Select 1 option

A. TestClass cannot implement them both because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
 


D. The code will work fine only if m1() is removed from one of the interfaces.
 


E. None of the above.
 


 
Check Answer
 



51.     QID - 2.1329 
 

Which of the following method definitions will prevent overriding of that method?
 

Select 4 options

A. public final void m1()
 


B. public static void m1()
 


C. public static final void m1()
 


D. public abstract void m1()
 


E. private void m1()
 


 
Check Answer
 



52.     QID - 2.1201 
 

Consider the following interface definition:

interface Bozo{

         int type = 0;

         public void jump();

}





Now consider the following class:



public class Type1Bozo implements Bozo{

         public Type1Bozo(){

            type = 1;

         }



         public void jump(){

            System.out.println("jumping..."+type);

         }



         public static void main(String[] args){

            Bozo b = new Type1Bozo();

            b.jump();

         }

}



What will the program print when compiled and run?
 

Select 1 option

A. jumping...0
 


B. jumping...1
 


C. This program will not compile.
 


D. It will throw an exception at runtime.
 


 
Check Answer
 



53.     QID - 2.1150 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Select 2 options

A. void compute();
 


B. public void compute();
 


C. public final void compute();
 


D. static void compute();
 


E. protected void compute();
 


 
Check Answer
 



54.     QID - 2.1300 
 

An abstract method cannot be overridden.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



55.     QID - 2.1292 
 


 

 
 
Check Answer
 



56.     QID - 2.1390 
 

What can be inserted in the code below so that it will print UP UP UP?



public class Speak {

    public static void main(String[] args) {

        Speak s = new GoodSpeak();



        INSERT CODE HERE



    }

}

class GoodSpeak extends Speak implements Tone{

    public void up(){

        System.out.println("UP UP UP");

    }

}

interface Tone{

    void up();

}
 

Select 2 options

A. ((Tone)s).up();
 


B. s.up();
 


C. ((GoodSpeak)s).up();
 


D. (GoodSpeak)s.up();
 


E. (Tone)(GoodSpeak)s.up();
 


 
Check Answer
 



57.     QID - 2.1478 
 

Which statements about the following code contained in BankAccount.java are correct?



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

  public String getId();

}



public class BankAccount implements PremiumAccount{

  public static void main(String[] args) {

      Account acct = new BankAccount();

      System.out.println(acct.getId());

  }



}


 

Select 1 option

A. It will print 0000 when run.
 


B. It will compile if class BankAccount provides an implementation for getId method.
 


C. It will not compile unless interface PremiumAccount is marked abstract.
 


D. It will compile if getId method in PremiumAccount is replaced with:

public String getId(){ super.getId(); }
 


E. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super.getId(); }
 


F. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super(); }
 


 
Check Answer
 



58.     QID - 2.1002 
 

Given the following definitions and reference declarations:


interface I1 { }
interface I2 { }
class C1 implements I1 { }
class C2 implements I2 { }
class C3 extends C1 implements I2 { }
C1 o1;
C2 o2;
C3 o3;


Which of these statements are legal?
 

Select 3 options

A. class C4 extends C3 implements I1, I2 { }
 


B. o3 = o1;
 


C. o3 = o2;
 


D. I1 i1 = o3; I2 i2 = (I2) i1;
 


E. I1 b = o3;
 


 
Check Answer
 



59.     QID - 2.1256 
 

Which of these statements are true?
 

Select 2 options

A. A super( <appropriate list of arguments> ) or this( <appropriate list of arguments> ) call must always be provided explicitly as the first statement in the body of the constructor.
 


B. If a subclass does not have any declared constructors, the implicit default constructor of the subclass will have a call to super( ).
 


C. If neither super( ) or this( ) is declared as the first statement of the body of a constructor, then this( ) will implicitly be inserted as the first statement.
 


D. super(<appropriate list of arguments>) can only be called in the first line of the constructor but this(<appropriate list of arguments>) can be called from anywhere.
 


E. You can either call super(<appropriate list of arguments>) or this(<appropriate list of arguments>) but not both from a constructor.
 


 
Check Answer
 



60.     QID - 2.1334 
 

What will the following program print when run?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[] ){ A b = new B("good bye");  }
}
class A{
   A() { this("hello", " world");  }
   A(String s) { System.out.println(s); }
   A(String s1, String s2){ this(s1 + s2); }
}
class B extends A{
   B(){ super("good bye"); };
   B(String s){ super(s, " world"); }
   B(String s1, String s2){ this(s1 + s2 + " ! "); }
}

 

Select 1 option

A. It will print "good bye".
 


B. It will print "hello world".
 


C. It will print "good bye world".
 


D. It will print "good bye" followed by "hello world".
 


E. It will print "hello world" followed by "good bye".
 


 
Check Answer
 



61.     QID - 2.1095 
 

What will be the result of compiling and running the following code?


class Base{
   public short getValue(){ return 1; } //1
}
class Base2 extends Base{
   public byte getValue(){ return 2; } //2
}
public class TestClass{
   public static void main(String[] args){
      Base b = new Base2();
      System.out.println(b.getValue()); //3
   }
}

 

Select 1 option

A. It will print 1
 


B. It will print 2.
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


 
Check Answer
 



62.     QID - 2.910 
 

Consider the following code:





interface Flyer{ String getName(); }



class Bird implements Flyer{

    public String name;

    public Bird(String name){

        this.name = name;

    }

    public String getName(){ return name; }

}



class Eagle extends Bird { 

    public Eagle(String name){

        super(name);

    }

}



public class TestClass {

    public static void main(String[] args) throws Exception {

        Flyer f = new Eagle("American Bald Eagle");

        //PRINT NAME HERE

   }

}



Which of the following lines of code will print the name of the Eagle object?
 

Select 3 options

A. System.out.println(f.name);
 


B. System.out.println(f.getName());
 


C. System.out.println(((Eagle)f).name);
 


D. System.out.println(((Bird)f).getName());
 


E. System.out.println(Eagle.name);
 


F. System.out.println(Eagle.getName(f));
 


 
Check Answer
 



63.     QID - 2.1101 
 

Consider the following code:


class Base{
   private float f = 1.0f;
   void setF(float f1){ this.f = f1; }
}
class Base2 extends Base{
   private float f = 2.0f;
   //1
}


Which of the following options is/are valid example(s) of overriding?
 

Select 2 options

A. protected void setF(float f1){ this.f = 2*f1; }
 


B. public void setF(double f1){ this.f = (float) 2*f1; }
 


C. public void setF(float f1){ this.f = 2*f1; }
 


D. private void setF(float f1){ this.f = 2*f1; }
 


E. float setF(float f1){ this.f = 2*f1; return f;}
 


 
Check Answer
 



64.     QID - 2.1320 
 

What will the following code print when compiled and run?

class ABCD{
   int x = 10;
   static int y = 20;
}
class MNOP extends ABCD{
   int x = 30;
   static int y = 40;
}

public class TestClass {
   public static void main(String[] args) {
     System.out.println(new MNOP().x+", "+new MNOP().y);
   }
}


 

Select 1 option

A. 10, 40
 


B. 30, 20
 


C. 10, 20
 


D. 30, 40
 


E. 20, 30
 


F. Compilation error.
 


 
Check Answer
 



65.     QID - 2.1481 
 

Given:



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

   //INSERT CODE HERE

}



Which of the following options can be inserted in PremiumAccount independent of each other?
 

Select 2 options

A. static String getId(){

  return "1111";

}
 


B. String getId();
 


C. default String getId(){

   return "1111";

};
 


D. abstract static String getName();
 


E. static String getName();
 


F. default String getName();
 


 
Check Answer
 



66.     QID - 2.1009 
 

Consider the following code:


class Super { static String ID = "QBANK"; }

class Sub extends Super{
   static { System.out.print("In Sub"); }
}
public class Test{
   public static void main(String[] args){
      System.out.println(Sub.ID);
   }
}


What will be the output when class Test is run?
 

Select 1 option

A. It will print In Sub and QBANK.
 


B. It will print QBANK.
 


C. Depends on the implementation of JVM.
 


D. It will not even compile.
 


E. None of the above.
 


 
Check Answer
 



67.     QID - 2.1037 
 

What will the following code print when compiled and run?


class Base{
   void methodA(){
      System.out.println("base - MethodA");
   }
}

class Sub extends Base{
   public void methodA(){
      System.out.println("sub - MethodA");
   }
   public void methodB(){
      System.out.println("sub - MethodB");
   }
   public static void main(String args[]){
      Base b=new Sub(); //1
      b.methodA(); //2
      b.methodB(); //3
   }
}


 

Select 1 option

A. sub - MethodA and sub - MethodB
 


B. base - MethodA and sub - MethodB
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


 
Check Answer
 



68.     QID - 2.1123 
 

Consider the contents of following two files:



//In file A.java

package a;

public class A{

   A(){ }

   public void  print(){ System.out.println("A"); }

}



//In file B.java

package b;

import a.*;

public class B extends A{

   B(){ }

   public void  print(){ System.out.println("B"); }

   public static void main(String[] args){

      new B();

   }

}





What will be printed when you try to compile and run class B?
 

Select 1 option

A. It will print A.
 


B. It will print B.
 


C. It will not compile.
 


D. It will compile but will not run.
 


E. None of the above.
 


 
Check Answer
 



69.     QID - 2.1049 
 

Consider that you are writing a set of classes related to a new Data Transmission Protocol and have created your own exception hierarchy derived from java.lang.Exception as follows:

enthu.trans.ChannelException
              +-- enthu.trans.DataFloodingException, 
                    enthu.trans.FrameCollisionException



You have a TransSocket class that has the following method:


   long connect(String ipAddr) throws ChannelException




Now, you also want to write another "AdvancedTransSocket" class, derived from "TransSocket" which overrides the above mentioned method. Which of the following are valid declaration of the overriding method?
 

Select 2 options

A. int connect(String ipAddr) throws DataFloodingException
 


B. int connect(String ipAddr) throws ChannelException
 


C. long connect(String ipAddr) throws FrameCollisionException
 


D. long connect(String ipAddr) throws Exception
 


E. long connect(String str)
 


 
Check Answer
 



70.     QID - 2.1328 
 

Consider the following classes :


interface I{
}
class A implements I{
}

class B extends A {
}

class C extends B{
}


And the following declarations:
A a = new A();
B b = new B(); 

Identify options that will compile and run without error.
 

Select 1 option

A. a = (B)(I)b;
 


B. b = (B)(I) a;
 


C. a = (I) b;
 


D. I i = (C) a;
 


 
Check Answer
 



71.     QID - 2.983 
 

Consider the following classes:

class A implements Runnable{ ...}

class B extends A implements Observer { ...}

(Assume that Observer has no relation to Runnable.)



and the declarations :



  A a = new A() ;

  B b = new B();



Which of the following Java code fragments will compile and execute without throwing exceptions?
 

Select 2 options

A. Object o = a; Runnable r = o;
 


B. Object o = a; Runnable r = (Runnable) o;
 


C. Object o = a; Observer ob = (Observer) o ;
 


D. Object o = b; Observer o2 = o;
 


E. Object o = b; Runnable r = (Runnable) b;
 


 
Check Answer
 



72.     QID - 2.1144 
 

Consider the following interface definition:


public interface ConstTest{
	public int A = 1; //1
	int B = 1;          //2
	static int C = 1;  //3
	final int D = 1; 	 //4
	public static int E = 1; //5
	public final int F = 1;  //6
	static final int G = 1;    //7
	public static final int H = 1; //8
}


Which line(s) will cause a compilation error?
 

Select 1 option

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


H. 8
 


I. None of them will cause any error.
 


 
Check Answer
 



73.     QID - 2.1234 
 

Consider the following code:



public abstract class TestClass{

    public abstract void m1();

    public abstract void m2(){

        System.out.println("hello");

    }

}



Which of the following corrections can be applied to the above code (independently) so that it compiles without any error?
 

Select 2 options

A. Replace the method body of m2() with a ; (semi-colon).
 


B. Replace the ; at the end of m1() with a method body.
 


C. Remove abstract from m2().
 


D. Remove abstract from the class declaration.
 


 
Check Answer
 



74.     QID - 2.1306 
 

Which of these statements concerning interfaces are true?
 

Select 2 options

A. An interface may extend an interface.
 


B. An interface may extend a class and may implement an interface.
 


C. A class can implement an interface and extend a class.
 


D. A class can extend an interface and can implement a class.
 


E. An interface can only be implemented and cannot be extended.
 


 
Check Answer
 



75.     QID - 2.888 
 

What will the following code print when run?


class A {
}

class AA extends A { 
}


public class TestClass {
    public static void main(String[] args) throws Exception {
        A a = new A();
        AA aa = new AA();
        a = aa;
        System.out.println("a = "+a.getClass());
        System.out.println("aa = "+aa.getClass());
    }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw ClassCastException at runtime.
 


C. a = class AA

aa = class AA
 


D. a = class A

aa = class AA
 


 
Check Answer
 



76.     QID - 2.945 
 

Which of the following statements are true?
 

Select 2 options

A. Private methods cannot be overridden in subclasses.
 


B. A subclass can override any method in a non-final superclass.
 


C. An overriding method can declare that it throws a wider spectrum of checked exceptions than the method it is overriding.
 


D. The parameter list of an overriding method must be a subset of the parameter list of the method that it is overriding.
 


E. The overriding method may opt not to declare any throws clause even if the original method has a throws clause.
 


 
Check Answer
 



77.     QID - 2.1261 
 

Consider the following code:


public class SubClass extends SuperClass{
     int i, j, k;
     public SubClass( int m, int n )     {  i = m ;  j = m ;  } //1
     public SubClass( int m )  {   super(m );   } //2
 }


Which of the following constructors MUST exist in SuperClass for SubClass to compile correctly?
 

Select 2 options

A. It is ok even if no explicit constructor is defined in SuperClass
 


B. public SuperClass(int a, int b)
 


C. public SuperClass(int a)
 


D. public SuperClass()
 


E. only public SuperClass(int a) is required.
 


 
Check Answer
 



78.     QID - 2.1064 
 

Consider this code:


interface X1{ }
interface X2{ }
class A { }
class B extends A implements X1{ }
class C extends B implements X2{
   D d = new D();
}
class D { }



Which of the following statements are true?
 

Select 3 options

A. D is-a B.
 


B. B has-a D.
 


C. C is-a A
 


D. C is-a X1
 


E. C is-a X2
 


 
Check Answer
 



79.     QID - 2.900 
 

What, if anything, is wrong with the following code?





interface T1{

}

interface T2{

   int VALUE = 10;

   void m1();

}



interface T3 extends T1, T2{

   public void m1();

   public void m1(int x);

}
 

Select 1 option

A. T3 cannot implement both T1 and T2 because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from T2 interface.
 


D. The code will work fine only if m1() is removed from either T2 and T3.
 


E. None of the above.
 


 
Check Answer
 



80.     QID - 2.1135 
 

Which of the following statements is/are true?
 

Select 1 option

A. Subclasses must define all the abstract methods that the superclass defines.
 


B. A class implementing an interface must define all the methods of that interface.
 


C. A class cannot override the super class's constructor.
 


D. It is possible for two classes to be the superclass of each other.
 


E. An interface can implement multiple interfaces.
 


 
Check Answer
 



81.     QID - 2.1403 
 

Given:

//in file Movable.java

package p1;

public interface Movable {

  int location = 0;

  void move(int by);

  public void moveBack(int by);

}





//in file Donkey.java

package p2;

import p1.Movable;

public class Donkey implements Movable{

    int location = 200;

    public void move(int by) {

        location = location+by;

    }

    public void moveBack(int by) {

        location = location-by;

    }

}





//in file TestClass.java

package px;

import p1.Movable;

import p2.Donkey;

public class TestClass {

    public static void main(String[] args) {

        Movable m = new Donkey();

        m.move(10);

        m.moveBack(20);

        System.out.println(m.location);

    }

}

Identify the correct statement(s).
 

Select 1 option

A. Donkey.java will not compile.
 


B. TestClass.java will not compile.
 


C. Movable.java will not compile.
 


D. It will print 190 when TestClass is run.
 


E. It will print 0 when TestClass is run.
 


 
Check Answer
 



82.     QID - 2.1178 
 

Which of the following class definitions is/are legal definition(s) of a class that cannot be instantiated?


class Automobile{
   abstract void honk();  //(1)
}

abstract class Automobile{
   void honk();   //(2)
}

abstract class Automobile{
   void honk(){};   //(3)
}

abstract class Automobile{
   abstract void honk(){}   //(4)
}

abstract class Automobile{
   abstract void honk();   //(5)
}

 

Select 2 options

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


 
Check Answer
 



83.     QID - 2.1019 
 

You are modeling a class hierarchy for living things. You have a class LivingThing which has an abstract method reproduce().

Now, you want to have 2 concrete subclasses of LivingThing - Plant and Animal. Both do reproduce but the mechanisms are different. What would you do?
 

Select 1 option

A. Overload the reproduce method in Plant and Animal classes
 


B. Overload the reproduce method in LivingThing class.
 


C. Override the reproduce method in Plant and Animal classes
 


D. Either overload or override reproduce in Plant and Animal classes, it depends on the preference of the designer.
 


 
Check Answer
 



84.     QID - 2.1171 
 

Consider the following variable declaration within the definition of an interface:

  int i = 10;

Which of the following declarations defined in a non-abstract class, is equivalent to the above?
 

Select 1 option

A. public static int i = 10;
 


B. public final int i = 10;
 


C. public static final int i = 10;
 


D. public int i = 10;
 


E. final int i = 10;
 


 
Check Answer
 



85.     QID - 2.1203 
 

A method with no access modifier can be overridden by a method marked protected (assuming that it is not final).
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



Working with Inheritance (Answered)



01.     QID - 2.1138 : Working with Inheritance 
 

What will the following program print when run?



class Super{

  public String toString(){

     return "4";

  }

}

public class SubClass extends Super{

  public String toString(){

     return super.toString()+"3";

  }

  public static void main(String[] args){

    System.out.println( new SubClass() );

  }

}
 

Correct Option is :  A 

A. 43
 


B. 7
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
This is quite simple, toString() is called on the Object of class SubClass. Subclass's toString() calls super class's toString() which returns String 4 (not an integer 4!). It then appends "3" to it.

So the final value is "43".

 
Back to Question without Answer
 



02.     QID - 2.1127 : Working with Inheritance 
 

Consider the following class and interface definitions (in separate files):



public class Sample implements IInt{

   public static void main(String[] args){

      Sample s = new Sample();  //1

      int j = s.thevalue;       //2

      int k = IInt.thevalue;    //3

      int l = thevalue;         //4

   }

}

public interface IInt{

      int thevalue = 0;

}





What will happen when the above code is compiled and run?
 

Correct Option is :  E 

A. It will give an error at compile time at line //1.
 


B. It will give an error at compile time at line //2.
 


C. It will give an error at compile time at line //3
 


D. It will give an error at compile time at line //4.
 


E. It will compile and run without any problem.
 


Explanation: 
As a rule, fields defined in an interface are public, static, and final. The methods are public. 

Here, the interface IInt defines thevalue and thus any class that implements this interface gets this field. Therefore, it can be accessed using s.thevalue or just thevalue inside the class. Also, since it is static, it can also be accessed using IInt.thevalue or Sample.thevalue.

 
Back to Question without Answer
 



03.     QID - 2.1220 : Working with Inheritance 
 

Given the following classes and declarations, which of these statements about //1 and //2 are true?


class A{
   private int i = 10;
   public void  f(){}
   public void g(){}
}

class B extends A{
   public int i = 20;
   public void g(){}
}

public class C{
   A a = new A();//1
   A b = new B();//2
}

 

Correct Option is :  E 

A. System.out.println(b.i); will print 10.
Since variable b is declared as of class A, you cannot do b.i even if the actual object is of class B because i in A is private.


B. The statement b.f( ); will give compile time error..
class A has f() so b.f() is legal.


C. System.out.println(b.i); will print 20
Since variable b is declared as of class A, you cannot do b.i even if the actual object is of class B because i in A is private.


D. All the above are correct.
 


E. None of the above statements is correct.
 


Explanation: 
Remember that variables and static methods are not overridden and so access to variables and static methods is determined at compile time based on the type of the variable (instead of type of the object referred to by the variable, as is the case with instance methods.)

In the given code, if you declare b to be of type B i.e. B b = new B();, you can access b.i.

 
Back to Question without Answer
 



04.     QID - 2.993 : Working with Inheritance 
 

Which is the first line that will cause compilation to fail in the following program?


// Filename: A.java
class A{
   public static void main(String args[]){
      A a = new A();
      B b = new B();
      a = b;  // 1
      b = a;  // 2
      a = (B) b; // 3
      b = (B) a; // 4
   }
}
class B extends A { }


 

Correct Option is :  B 

A. At Line 1.
 


B. At Line 2.
Because 'a' is declared of class A and 'b' is of B which is a subclass of A. So an explicit cast is needed.


C. At Line 3.
 


D. At Line 4.
 


E. None of the above.
 


Explanation: 
Casting a base class to a subclass as in : b = (B) a; is also called as narrowing (as you are trying to narrow the base class object to a more specific class object) and needs explicit cast.

Casting a sub class to a base class as in: A a = b; is also called as widening and does not need any casting.



For example, consider two classes: Automobile and Car, where Car extends Automobile

Now, Automobile a = new Car(); is valid because a car is definitely an Automobile. So it does not need an explicit cast.



But, Car c = a; is not valid because 'a' is an Automobile and it may be a Car, a Truck, or a MotorCycle, so the programmer has to explicitly let the compiler know that at runtime 'a' will point to an object of class Car. Therefore, the programmer must use an explicit cast:

Car c = (Car) a;

 
Back to Question without Answer
 



05.     QID - 2.1147 : Working with Inheritance 
 

Given the following code, which statements are true?



class A{

   int i;

}

class B extends A{

   int j;

}


 

Correct Options are :  A D E 

A. Class B extends class A.
 


B. Class B is the superclass of class A.
A is the super class of B.


C. Class A inherits from class B.
B inherits from A


D. Class B is a subclass of class A.
Class B is a subclass of class A. Given the declaration "class B extends A" we can conclude that class B extends class A, class A is the superclass of class B, class B is a subclass of class A, and class B inherits from class A, which means that objects of class B also have all the members that objects of class A have.


E. Objects of class B will always have a member variable named i .
Note that 'i' is not public or protected. So it will be inherited only if both the classes are in same package.


Explanation: 
Here are a few good words from the Java Language Specification:

Members of a class that are declared private are not inherited by subclasses of that class. Only members of a class that are declared protected or public are inherited by subclasses declared in a package other than the one in which the class is declared.

Constructors and static initializers are not members and therefore are not inherited.

 
Back to Question without Answer
 



06.     QID - 2.839 : Working with Inheritance 
 

How can you fix the following code to make it compile:

import java.io.*;
class Great {
    public void doStuff() throws FileNotFoundException{
    }    
}

class Amazing extends Great { 
  public void doStuff() throws IOException, IllegalArgumentException{
  }    
}

public class TestClass {
    public static void main(String[] args) throws IOException{
        Great g = new Amazing();
        g.doStuff();
    }
}

Assume that changes suggested in a option are to be applied independent of other options.
 

Correct Options are :  A D 

A. Change doStuff in Amazing to throw only IllegalArgumentException.
IllegalArgumentException extends from RuntimeException. So you don't have to worry about it at least at compile time. You may or may not declare it in the throws clause. The caller doesn't have to catch it anyway.

The overriding method in the subclass is free to not throw any checked exception at all even if the overridden method throws a checked exception. No exception is a valid subset of exceptions thrown by the overridden method.


B. Change doStuff in Great to throw FileNotFoundException and IllegalArgumentException.
 


C. Change doStuff in Amazing to throw only IOException.
 


D. Change doStuff in Great to throw only IOException instead of FileNotFoundException.
 


E. Replace g.doStuff() to ((Amazing) g).doStuff().
 


Explanation: 
The rule is that an overriding method cannot throw an exception that is a super class of the exception thrown by the overridden method. 



Now, FileNotFoundException is a subclass of IOException. Therefore, Amazing's doStuff() cannot throw IOException if the base class's doStuff throws only FileNotFoundException. 



Think of it this way:



FileNotFoundException fne = new IOException(); // Will this work? No, because an IOException is NOT a FileNotFoundException.

IOException ioe = new FileNotFoundException(); // Will this work? Yes, because a FileNotFoundException is an IOException.



Therefore, overriding method must not throw an exception that cannot be assigned to a variable whose class is the class of the overridden method's exception.

 
Back to Question without Answer
 



07.     QID - 2.1217 : Working with Inheritance 
 

Consider the following classes in one file named A.java...



abstract class A{

   protected int m1(){ return 0; }

}

class B extends A{

   int m1(){ return 1; }

}



Which of the following statements are correct...
 

Correct Option is :  B 

A. The code will not compile as you cannot have more than 1 class in 1 file.
You can. But only one class can be public.


B. The code will not compile because class B does not override the method m1() correctly.
The overriding method cannot decrease the accessibility.


C. The code will not compile as A is an abstract class.
 


D. The code will not compile as A does not have any abstract method.
You need not have any 'abstract' method to make a class abstract. Putting 'abstract' keyword is enough.


E. The code will compile fine.
 


Explanation: 
The concept here is that an overriding method cannot make the overridden method more private.

The access hierarchy in increasing levels of accessibility is:

private->'no modifier'->protected->public ( public is accessible to all and private is accessible to none except itself.)

Here, class B has no modifier for m1() so it is trying to reduce the accessibility of protected to default.

'protected' means the method will be accessible to all the classes in the same package and all the subclasses (even if the subclass is in a different package).

No modifier (which is the default level) means the method will be accessible only to all the classes in the same package. (i.e. not even to the subclass if the subclass is in a different package.)

 
Back to Question without Answer
 



08.     QID - 2.1113 : Working with Inheritance 
 

Which of the following is a legal return type of a method overriding the given method:



public Object  myMethod() {...}

(Select the best option.)
 

Correct Option is :  C 

A. Object
 


B. String
 


C. Return type can be any class since all objects can be cast to Object.
Note that the return type cannot be a primitive such as int or char. It must be a class. So it can be Integer or Character as well.


D. void
 


E. None of the above.
 


Explanation: 
Version 1.5 onwards, Java allows covariant return types, which means that an overriding method can have its return type as any subclass of the return type of the overridden method.



Here, since the return type of the original method is Object, the overriding method can return any object type because all classes in Java ultimately extend from Object. 

Note that covariant return types is not applicable to primitives. So for example, if the overridden method returns int, the overriding method's return type must also be int. It cannot be short or long. It cannot even be Integer.

 
Back to Question without Answer
 



09.     QID - 2.1086 : Working with Inheritance 
 

What will be the result of compiling and running the following code?



class Base{

   public Object getValue(){ return new Object(); } //1

}



class Base2 extends Base{

   public String getValue(){ return "hello"; } //2

}



public class TestClass{

   public static void main(String[] args){

      Base b = new Base2();

      System.out.println(b.getValue()); //3

   }

}
 

Correct Option is :  B 

A. It will print the hash code of the object.
 


B. It will print hello.
Covariant returns are allowed since Java 1.5, which means that an overriding method can change the return type to a subclass of the return type declared in the overridden method. But remember than covarient returns does not apply to primitives.


C. Compile time error at //1.
 


D. Compile time error at //2.
 


E. Compile time error at //3.
 


Explanation: 
Observe that at run time b points to an object of class Base2. Further, Base2 overrides getValue(). Therefore, Base2's getValue() will be invoked and it will return hello.

 
Back to Question without Answer
 



10.     QID - 2.1309 : Working with Inheritance 
 

What can be inserted at //1 and //2 in the code below so that it can compile without errors:


class Doll{
    String name;
    Doll(String nm){
        this.name = nm;
    }
}

class Barbie extends Doll{
    Barbie(){
        //1 
    }
    Barbie(String nm){
        //2
    }
}
  public class TestClass {
       public static void main(String[] args) {
          Barbie b = new Barbie("mydoll");
       }
   }


 

Correct Options are :  A B 

A. this("unknown"); at 1 and super(nm); at 2
 


B. super("unknown"); at 1 and super(nm); at 2
 


C. super(); at 1 and super(nm); at 2
super(); at 1 will not compile because super class Doll does not have a no args constructor.


D. super(); at 1 and Doll(nm); at 2
super(); at 1 will not compile because super class Doll does not have a no args constructor. Doll(nm); at 2 is an invalid syntax for calling the super class's constructor.


E. super("unknown"); at 1 and this(nm); at 2
this(nm); at 2 will not compile because it is a recursive call to the same constructor.


F. Doll(); at 1 and Doll(nm); at 2
Both are using invalid syntax for calling the super class's constructor.


Explanation: 
Since the super class Doll explicitly defines a constructor, compiler will not provide the default no-args constructor. Therefore, each of Barbie's constructors must directly or indirectly call Doll's string argument constructor, otherwise it will not compile. 

Although not relevant for this question, it is interesting to know that super(name); at //1 or //2, would not be valid because name is defined in the superclass and so it cannot be used by a subclass until super class's constructor has executed. For the same reason, this(name); cannot be used either.

 
Back to Question without Answer
 



11.     QID - 2.1035 : Working with Inheritance 
 

Which of the following statements are true?
 

Correct Options are :  A C 

A. The extends keyword is used to specify inheritance.
 


B. subclass of a non-abstract class cannot be declared abstract.
 


C. subclass of an abstract class can be declared abstract.
 


D. subclass of a final class cannot be abstract.
final class cannot be subclassed.


E. A class, in which all the members are declared private, cannot be declared public.
There is no such rule.


Explanation: 
The extends clause is used to specify that a class extends another class and thereby inherits all non-private instance members of that class.



A subclass can be declared abstract regardless of whether the superclass was declared abstract. A class cannot be declared abstract and final at the same time. This restriction makes sense because abstract classes need to be subclassed to be useful and final forbids subclasses. 



The visibility of the class is not limited by the visibility of its members. A class with all the members declared private can still be declared public or a class having all public members may be declared private.

 
Back to Question without Answer
 



12.     QID - 2.1231 : Working with Inheritance 
 

Given the following interface definition, which definitions are valid?



interface I1{

   void setValue(String s);

   String getValue();

}
 

Correct Options are :  B C 

A. class A extends I1{

   String s;

   void setValue(String val) { s = val; }

   String getValue() { return s; }

}
Classes do not extend interfaces, they implement interfaces.


B. interface I2 extends I1{

   void analyse();

}
 


C. abstract class B implements I1{

   int getValue(int i) { return 0; }

}
 


D. interface I3 implements I1{

   void perform_work();

}
Interfaces do not implement anything, they can extend multiple interfaces.


Explanation: 
The getValue(int i) method of class B in option c, is different than the method defined in the interface because their parameters are different. Therefore, this class does not actually implement the method of the interface and that is why it needs to be declared abstract. Further, they have "default" access whereas the interface methods are always public.

 
Back to Question without Answer
 



13.     QID - 2.1209 : Working with Inheritance 
 

Which statements concerning the following code are true?


class A{
  public A() {} // A1
  public A(String s) {  this();  System.out.println("A :"+s);  }  // A2
}

class B extends A{
  public int B(String s) {  System.out.println("B :"+s);  return 0; } // B1
}
class C extends B{
    private C(){ super(); } // C1
    public C(String s){  this();  System.out.println("C :"+s);  } // C2
    public C(int i){} // C3
}


 

Correct Options are :  A B C D 

A. At least one of the constructors of each class is called as a result of constructing an object of class C.
To create any object one and only one constructor of that class and each of the super classes is called. (A constructor may as well delegate the construction to another constructor of the same class by calling this(...) as the first statement, just like calling a method.)


B. Constructor at  //A2 will never be called in creation of an object of class C.
Because B has no defined constructor and so a default no-argument constructor will be called, which will call the no-argument constructor of A


C. Class C can be instantiated only in two ways by users of this class.
Since one constructor is private, users of this class can use only the other two public constructors from outside this class.


D. //B1 will never be called in creation of objects of class A, B, or C.
Because //B1 is not a constructor. Note that it is returning an int. A constructor does not have any return type, not even void.


E. The code will not compile.
 


 
Back to Question without Answer
 



14.     QID - 2.1056 : Working with Inheritance 
 

Which one of these is a proper definition of a class TestClass that cannot be sub-classed?
 

Correct Option is :  A 

A. final class TestClass { }
 


B. abstract class TestClass { }
 


C. native class TestClass { }
 


D. static class TestClass { }
 


E. private class TestClass { }
 


Explanation: 
A final class cannot be subclassed.

Although declaring a method static usually implies that it is also final, this is not true for classes. An inner class can be declared static and still be extended.

Note that for classes, final means it cannot be extended, while for methods, final means it cannot be overridden in a subclass.

The native keyword can only be used on methods, not on classes and or variables.

 
Back to Question without Answer
 



15.     QID - 2.998 : Working with Inheritance 
 

What will the following program print when compiled and run?


class Game{
  public void play() throws Exception{
    System.out.println("Playing...");
  }
}

public class Soccer extends Game{
   public void play(){
      System.out.println("Playing Soccer...");      
   }
   public static void main(String[] args){
       Game g = new Soccer();
       g.play();
   }
}

 

Correct Option is :  A 

A. It will not compile.
 


B. It will throw an Exception at runtime.
 


C. Playing Soccer...
 


D. Playing...
 


E. None of these.
 


Explanation: 
Observe that play() in Game declares Exception in its throws clause. Further, class Soccer overrides the play() method without any throws clause. This is valid because a list of no exception is a valid subset of a list of exceptions thrown by the superclass method. 

Now, even though the actual object referred to by 'g' is of class Soccer, the class of the variable g is of class Game. Therefore, at compile time, compiler assumes that g.play() might throw an exception, because Game's play method declares it, and thus expects this call to be either wrapped in a try-catch or the main method to have a throws clause for the main() method.

 
Back to Question without Answer
 



16.     QID - 2.951 : Working with Inheritance 
 

Consider the following program...


class Super {  }
class Sub extends Super {  }
public class TestClass{
   public static void main(String[] args){
      Super s1 = new Super(); //1
      Sub s2 = new Sub();     //2
      s1 = (Super) s2;        //3
   }
}


Which of the following statements are correct?
 

Correct Option is :  A 

A. It will compile and run without any problems.
 


B. It will compile but WILL throw ClassCastException at runtime.
 


C. It will compile but MAY throw ClassCastException at runtime.
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
Note that s2 is a variable of class Sub, which is a subclass of Super. s1 is a variable of class Super. A subclass can ALWAYS be assigned to a super class variable without any cast. It will always compile and run without any exception.



For example, a Dog  "IS A" Animal, so you don't need to cast it.

But an Animal may not always be a Dog. So you need to cast it to make it compile and during the runtime the actual object referenced by animal should be a Dog  otherwise it will throw a ClassCastException.

 
Back to Question without Answer
 



17.     QID - 2.1399 : Working with Inheritance 
 

What will the following code print when compiled and run?



import java.util.*;

public class ClassnameTest {

    public static void main(String[] args) {

        List<String> list = new ArrayList<>();

        StringBuilder sb = new StringBuilder("mrx");

        String s = sb.toString();

        list.add(s);

        System.out.println(s.getClass());

        System.out.println(list.getClass());

    }

}


 

Correct Option is :  C 

A. class java.lang.String

class java.util.List
 


B. class java.lang.String

class java.util.Collection
 


C. class java.lang.String

class java.util.ArrayList
 


D. class java.lang.Object

class java.util.ArrayList
 


E. class java.lang.Object

class java.util.List
 


Explanation: 
The getClass method always returns the Class object for the actual object on which the method is called irrespective of the type of the reference. Since s refers to an object of class String, s.getClass returns Class object for String  and similarly list.getClass returns Class object for ArrayList.

 
Back to Question without Answer
 



18.     QID - 2.961 : Working with Inheritance 
 

Which one of these is a proper definition of a class Car that cannot be sub-classed?
 

Correct Option is :  E 

A. class Car { }
This can be subclassed.


B. abstract class Car { }
it cannot be instantiated but it can be subclassed.


C. native class Car { }
Classes and variables can't be declared native. Only methods can be native.


D. static class Car { }
package level classes can't be declared static.


E. final class Car { }
final keyword prevents a class from being subclassed and a method from being overridden.


Explanation: 
A class can be extended unless it is declared final. 

An inner class can be declared static and still be extended. Notice the distinction. For classes, final means it cannot be extended, while for methods, final means it cannot be overridden in a subclass.

The native keyword can only be used on methods, not on classes and instance variables.

 
Back to Question without Answer
 



19.     QID - 2.1222 : Working with Inheritance 
 

Consider the following class hierarchy


class A{
   public void m1() {   }
}
class B extends A{
   public void m1() {   }
}
class C extends B{
   public void m1(){
      /*  //1
      ... lot of code.
      */
   }
}

 

Correct Options are :  A B 

A. You cannot access class A's m1() from class C for the same object ( i.e. this).
 


B. You can access class B's m1() using super.m1() from class C.
 


C. You can access class A's m1() using ( (A) this ).m1() from class C.
Note that selection of method to be executed depends upon the actual object class. So no matter what you do, in class C you can only access C's m1() even by casting this to B or A. So, this option will not work.


D. You can access class A's m1() using super.super.m1() from class C.
 


Explanation: 
super.super is an invalid construct. So, there is no way you can access m1() of A from C.

 
Back to Question without Answer
 



20.     QID - 2.1154 : Working with Inheritance 
 

Consider the following code:


class A{
 public XXX m1(int a){
   return a*10/4-30;
 }
}
class A2 extends A{
 public YYY m1(int a){
   return a*10/4.0;
 }
}


What can be substituted for XXX and YYY so that it can compile without any problems?
 

Correct Option is :  C 

A. int, int
a*10/4.0; generates a double so, A2's m1() cannot return an int. (It will need a cast otherwise: return (int) (a*10/4.0);)


B. int, double
The return type should be same for overridden and overriding method.


C. double, double
a*10/4-30; generates an int which can be returned as a double without any cast.


D. double, int
The return type should be same for overridden and overriding method.


E. Nothing, they are simply not compatible.
 


Explanation: 
Note that when a method returns objects (as opposed to primitives, like in this question), the principle of covariant returns applies. Meaning, the overriding method is allowed to return a subclass of the return type defined in the overridden method. Thus, if a base class's method is: public A m(); then a subclass is free to override it with: public A1 m(); if A1 extends A.

 
Back to Question without Answer
 



21.     QID - 2.1181 : Working with Inheritance 
 

What would be the result of attempting to compile and run the following code?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[]){
      B c = new C();
      System.out.println(c.max(10, 20));
   }
}
class A{
   int max(int x, int y)  { if (x>y) return x; else return y; }
}
class B extends A{
  int max(int x, int y)  {  return 2 * super.max(x, y) ; }
}
class C extends B{
  int max(int x, int y)  {  return super.max( 2*x, 2*y); }
}


 

Correct Option is :  C 

A. The code will fail to compile.
 


B. Runtime error.
 


C. The code will compile without errors and will print 80 when run.
 


D. The code will compile without errors and will print 40 when run.
 


E. The code will compile without errors and will print 20 when run.
 


Explanation: 
When the program is run, the main() method will call the max() method in C with parameters 10 and 20 because the actual object referenced by 'c' is of class C. This method will call the max() method in B with the parameters 20 and 40. The max() method in B will in turn call the max() method in A with the parameters 20 and 40. The max() method in A will return 40 to the max() method in B. The max() method in B will return 80 to the max() method in C. And finally the max() of C will return 80 in main() which will be printed out.

 
Back to Question without Answer
 



22.     QID - 2.931 : Working with Inheritance 
 

Consider the following classes :


class A{
    public static void sM1() {  System.out.println("In base static"); }
}
class B extends A{
Line 1 :   // public static void sM1() {  System.out.println("In sub static"); }
Line 2 :   // public  void sM1() {  System.out.println("In sub non-static"); }
}


Which of the following statements are true?
 

Correct Options are :  B C 

A. class B will not compile if line 1 is uncommented.
static method sM1() can be shadowed by a static method sM1() in the subclass.


B. class B will not compile if line 2 is uncommented.
static method cannot be overridden by a non-static method and vice versa


C. class B will not compile if line 1 and 2 are both uncommented.
 


D. Only the second option is correct.
 


E. Only the third option is correct.
 


Explanation: 
Another concept (although not related to this question but about static methods) is that static methods are never overridden. They are HIDDEN or SHADOWED just like static or non-static fields. For example, 

class A{
  int i = 10;
  public static void m1(){  }
  public void m2() { }
}
class B extends A{
  int i = 20;
  public static void m1() {  }
  public void m2() { }
}



Here, UNLIKE m2, m1() of B does not override m1() of A, it just shadows it, as proven by the following code:

A a  = new B();
System.out.println(a.i)  //will print 10 instead of 20
a.m1();  //will call A's m1
a.m2();  //will call B's m2 as m2() is not static and so overrides A's m2()



 
Back to Question without Answer
 



23.     QID - 2.1219 : Working with Inheritance 
 

What will be the output of compiling and running the following program:


class TestClass implements I1, I2{
   public void m1() { System.out.println("Hello"); }
   public static void main(String[] args){
      TestClass tc = new TestClass();
      ( (I1) tc).m1();
   }
}
interface I1{
   int VALUE = 1;
   void m1();
}
interface I2{
   int VALUE = 2;
   void m1();
}


 

Correct Option is :  A 

A. It will print Hello.
 


B. There is no way to access any VALUE in TestClass.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
It works even now.


D. It will not compile.
 


E. None of the above.
 


Explanation: 
Having ambiguous fields does not cause any problems but referring to such fields in an ambiguous way will cause a compile time error. So you cannot call : System.out.println(VALUE) as it will be ambiguous.

  as there is no ambiguity in referring the field:

TestClass tc = new TestClass();

System.out.println(( ( I1) tc).VALUE);

So, any of the VALUE fields can be accessed by casting.

 
Back to Question without Answer
 



24.     QID - 2.1287 : Working with Inheritance 
 

Consider the following class hierarchy shown in the image. (B1 and B2 are subclasses of A and C1, C2 are subclasses of B1)



Assume that method public void m1(){ ... } is defined in all of these classes EXCEPT B1 and C1.



Assume that "objectOfXX" means a variable that points to an object of class XX. So, objectOfC1 means a reference variable that is pointing to an object of class C1.



Which of the following statements are correct?
 

[image: Class Diagram] 
 
Correct Option is :  C 

A. objectOfC1.m1(); will cause a compilation error.
C1 will inherit B1's m1() which in turn inherits m1() from A.


B. objectOfC2.m1(); will cause A's m1() to be called.
C2 has m1(), so its m1() will override A's m1().


C. objectOfC1.m1(); will cause A's m1() to be called.
C1 will inherit B1's m1() which in turn inherits m1() from A.


D. objectOfB1.m1(); will cause an exception at runtime.
B1 will inherit m1() from A. So this is valid.


E. objectOfB2.m1(); will cause an exception at runtime.
B2 overrides m1() of A. So there will be no exception.


 
Back to Question without Answer
 



25.     QID - 2.1143 : Working with Inheritance 
 

Which of the given statements are correct for a method that overrides the following method:



public Set getSet(int a) {...}
 

Correct Options are :  B D E 

A. Its return type must be declared as Set.
Return type may also be a subclass/subinterface. So it can also return SortedSet, TreeSet, HashSet, or any other class that implements or subclasses a Set.


B. It may return HashSet.

(Assume that HashSet implements Set)
 


C. It can declare any Exception in throws clause
Since the original (overridden) method does not have any throws clause, the overriding method cannot declare any checked exceptions.


D. It can declare any RuntimeException in throws clause.
A method can throw any RuntimeException (such as a NullPointerException) even without declaring it in its throws clause.


E. It can be abstract.
Yes, you can make it abstract!! You would have to make the class as abstract as well though.


Explanation: 
To override a method in the subclass, the overriding method (i.e. the one in the subclass) MUST HAVE:

.same name

.same return type in case of primitives (a subclass is allowed for classes, this is also known as covariant return types).

.same type and order of parameters

.it may throw only those exceptions that are declared in the throws clause of the superclass's method or exceptions that are subclasses of the declared exceptions. It may also choose NOT to throw any exception.

The names of the parameter types do not matter. For example, void methodX(int i) is same as void methodX(int k)

 
Back to Question without Answer
 



26.     QID - 2.905 : Working with Inheritance 
 

Given the following line of code:



   List students = new ArrayList();



Identify the correct statement:
 

Correct Option is :  A 

A. The reference type is List and the object type is ArrayList.
Since you are doing new ArrayList, you are creating an object of class ArrayList. You are assigning this object to variable "students", which is declared of class List. Reference type means the declared type of the variable.


B. The reference type is ArrayList and the object type is ArrayList.
 


C. The reference type is ArrayList and the object type is List.
 


D. The reference type is List and the object type is List.
 


 
Back to Question without Answer
 



27.     QID - 2.1117 : Working with Inheritance 
 

Given the following classes, what will be the output of compiling and running the class Truck?


class Automobile{
   public void drive() {  System.out.println("Automobile: drive");   }
}

public class Truck extends Automobile{
   public void drive() {  System.out.println("Truck: drive");   }
   public static void main (String args [ ]){
      Automobile  a = new Automobile();
      Truck t  = new Truck();
      a.drive(); //1
      t.drive(); //2
      a = t;     //3
      a.drive(); //4
   }
}



//End of Code
 

Correct Option is :  D 

A. Compiler error at line 3.
 


B. Runtime error at line 3.
 


C. It will print: 

Automobile: drive 

Truck: drive 

Automobile: drive 

in that order.
 


D. It will print: 

Automobile: drive

Truck: drive

Truck: drive 

in that order.
 


E. It will print: 

Automobile: drive

Automobile: drive

Automobile: drive

in that order.
 


Explanation: 
Since Truck is a subclass of Automobile, a = t will be valid at compile time as well at runtime. But a cast is needed to make t = (Truck) a; work. This will be ok at compile time but if at run time 'a' does not refer to an object of class Truck, a ClassCastException will be thrown. Now, method to be executed is decided at run time and it depends on the actual class of object referred to by the variable. Here, at line 4, variable a refers to an object of class Truck. So Truck's drive() will be called which prints Truck: drive. This is polymorphism in action!

 
Back to Question without Answer
 



28.     QID - 2.1291 : Working with Inheritance 
 

What will be the result of attempting to compile and run class B?





class A{

   final int fi = 10;

}

public class B extends A{

   int fi = 15;

   public static void main(String[] args){

       B b = new B();

       b.fi = 20;

       System.out.println(b.fi);

       System.out.println(  (  (A) b  ).fi  );

   }

}
 

Correct Option is :  E 

A. It will not compile.
 


B. It will print 10 and then 10
 


C. It will print 20 and then 20
 


D. It will print 10 and then 20
 


E. It will print 20 and then 10
 


Explanation: 
Note that a final variable can be shadowed. Here, although fi in A is final, it is shadowed by fi of B. So b.fi = 20; is valid since B's fi is not final.

 
Back to Question without Answer
 



29.     QID - 2.996 : Working with Inheritance 
 

Consider the following program:


class Game {
  public void play() throws Exception   {
    System.out.println("Playing...");
  }
}

class Soccer extends Game {
   public void play(String ball)    {
      System.out.println("Playing Soccer with "+ball);      
   }
}

public class TestClass {
   public static void main(String[] args) throws Exception  {
       Game g = new Soccer();
       // 1
       Soccer s = (Soccer) g;
       // 2
   }
}


Which of the given options can be inserted at //1 and //2?
 

Correct Options are :  C D 

A. It will not compile as it is.
There is no problem with the existing code.


B. It will throw an Exception at runtime if it is run as it is.
Soccer s = (Soccer) g; is a valid because g does refer to an object of class Soccer at run time. So there will be no exception at run time.


C. g.play(); at //1 and s.play("cosco"); at //2
This is valid because g is of type Game, which has the no-args play method and s is of type Soccer, which has defined play(String ) method.


D. g.play(); at //1 and s.play(); at //2
This is valid because g is of type Game, which has the no-args play method and s is of type Soccer, which inherits that method.


E. g.play("cosco"); at //1 and s.play("cosco"); at //2
g.play("cosco") is not valid because even though the object referred to by g is of class Soccer, the reference type of g is Game, which does not have play(String ) method.


 
Back to Question without Answer
 



30.     QID - 2.1308 : Working with Inheritance 
 

What is the result of compiling and running the following code ?



public class TestClass{

   static int si = 10;

   public static void main (String args[]){

      new TestClass();

   }

   public TestClass(){

      System.out.println(this);

   }

   public String toString(){

      return "TestClass.si = "+this.si;

   }

}


 

Correct Option is :  D 

A. The class will not compile because you cannot override toString() method.
You sure can. toString() is defined as public and non-final method in Object class.


B. The class will not compile as si being static, this.si is not a valid statement.
static member can be accessed by static and non-static methods both. Non-static can only be accessed by non-static.


C. It will print TestClass@nnnnnnnn, where nnnnnnnn is the hash code of the TestClass object referred to by 'this'.
It would have been correct if toString() were not overridden. This is the behavior of the toString() provided by Object class.


D. It will print TestClass.si = 10
 


E. None of the above.
 


Explanation: 
The toString method for class Object returns a String consisting of the name of the class of which the object is an instance, the at-sign character '@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())

 
Back to Question without Answer
 



31.     QID - 2.1015 : Working with Inheritance 
 

Which statement regarding the following code is correct?



class A{

   public int i = 10;

   private int j = 20;



}



class B extends A{

   private int i = 30; //1

   public int k = 40;



}



class C extends B{

}



public class TestClass{

   public static void main(String args[]){

      C c = new C();

      System.out.println(c.i); //2

      System.out.println(c.j); //3

      System.out.println(c.k); 

   }

}


 

Correct Option is :  B 

A. The code will print 10 and 40 if //3 is commented.
 


B. The code will print 40 if //2 and //3 are commented.
 


C. The code will not compile because of //1.
 


D. The code will compile if the line marked //2 is commented out.
Just commenting out //2 is not enough. It will still fail compilation because of //3.


E. None of these.
 


Explanation: 
You cannot access c.i because i is private in B. But you can access ( (A)c).i because i is public in A. Remember that member variables are hidden and not overridden. So, B's i hides A's i and since B's i is private, you can't access A's i unless you cast the reference to A.

You cannot access c.j because j is private in A.

 
Back to Question without Answer
 



32.     QID - 2.1253 : Working with Inheritance 
 

Where, in a constructor, can you place a call to a super class's constructor ?
 

Correct Option is :  B 

A. Anywhere in the constructor's body.
 


B. As the first statement in the constructor.
 


C. Only as the first statement and it can be called just like any other method call i.e. ClassName( ... ).
No. You have to do super( ...) instead of ClassName(...)


D. You can't call super class's constructor in a base class as constructors are not inherited.
That constructors are not inherited is true but you can call them using super(...). You can call the super class's constructor only from a constructor and only as the first statement.


E. None of the above.
 


Explanation: 
A constructor of a class is meant to initialize the instance of that class. It is an opportunity for the programmer to make the instance ready for use by others. Therefore, when you create an object of a class using the new keyword, the JVM invokes that class's constructor as per the supplied arguments. It is so important that if you don't have any thing that you want to do to the instance and decide to not write a constructor, the compiler automatically creates one constructor for that class.



Remember that an instance of a class is also an instance of its super class. Therefore, the fields of its super class need to be initialized as well. Now, observe that a sub class is always aware of its super class and so it can make use of the fields of its super class (depending on accessibility) but a super class has no knowledge of its subclasses. Therefore, the fields defined by the super class must be initialized before the fields of the subclass can be initialized because a subclass constructor may utilize the fields of the super class. This means that a super class constructor must execute before a sub class constructor. This logic applies to all the super classes in the chain right up to java.lang.Object class, since Object class is the root class of all objects. Obviously then, the Object class's constructor must be the first one to execute.



The compiler ensures this order of execution of constructors by checking that each constructor of a class first calls either a constructor of its super class or another constructor of the same class. If a constructor of a class doesn't explicitly do that (i.e. it neither calls super class's constructor nor calls another one of its own constructors as the first thing), the compiler automatically inserts a call to the default no-args constructor of the super class. This is same as writing super(); as the first statement in the constructor of the class.



Now, what if the super class doesn't have a no-args constructor? Obviously, the automatic call to super(); inserted by the compiler will fail and therefore, the sub class code will fail to compile.

 
Back to Question without Answer
 



33.     QID - 2.1149 : Working with Inheritance 
 

Given the following class definitions :


interface MyIface{};
class A {};
class B extends A implements MyIface{};
class C implements MyIface{};



and the following object instantiations: 


  A a = new A();
  B b = new B();
  C c = new C();



Which of the following assignments are legal at compile time?
 

Correct Option is :  C 

A. b = c;
There is no relation between b and c.


B. c = b;
There is no relation between b and c.


C. MyIface i = c;
Because C implements MyIFace.


D. c = (C) b;
Compiler can see that in no case can an object referred to by b can be of class c. So it is a compile time error.


E. b = a;
It will fail at compile time because a is of class A and can potentially refer to an object of class A, which cannot be assigned to b, which is a variable of class B. To make it compile, you have to put an explicit cast, which assures the compiler that a will point to an object of class B (or a subclass of B) at run time. Note that, in this case, an explicit cast can take it through the compiler but it will then fail at run time because a does not actually refer to an object of class B (or a subclass of B), so the JVM will throw a ClassCastException.


Explanation: 
The statements c = b and b = c are illegal, since neither of the classes C and B is a subclass of the other. Even though a cast is provided, the statement c = (C) b is illegal because the object referred to by b cannot ever be of type C.

 
Back to Question without Answer
 



34.     QID - 2.1047 : Working with Inheritance 
 

An overriding method must have a same parameter list and the same return type as that of the overridden method.
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
This would have been true prior to Java 1.5. But from Java 1.5, an overriding method is allowed to change the return type to any subclass of the original return type, also known as covariant return type. This does not apply to primitives, in which case, the return type of the overriding method must match exactly to the return type of the overridden method.

 
Back to Question without Answer
 



35.     QID - 2.1208 : Working with Inheritance 
 

Given the following class definition:


class A{
  protected int i;
  A(int i) {    this.i = i;    }
 
}
// 1 : Insert code here


Which of the following would be a valid class that can be inserted at //1 ?
 

Correct Options are :  A D 

A. class B {}
 


B. class B extends A {}
Since class B does not have any constructor, the compiler will try to insert the default constructor, which will look like this:

 B(){ 

    super();  //Notice that it is trying to call the no args constructor of the super class, A.

 }

Since A doesn't have any no-args constructor, the above code will fail to compile.


C. class B extends A {  B()  {  System.out.println("i = " + i); }  }
It has the same problem as the one above.


D. class B { B() {} }
 


Explanation: 
Notice that class A does not define a no-argument constructor. Also note that the class B does not define a constructor. Thus, class B relies on the default constructor B(). Class B's default constructor looks like this:
 B() {} //It is not public because class B is not public

However, Constructors implicitly (if an explicit call to the superclass's constructor is not present) call their superclass's constructor super(). So, class B's default constructor actually looks like this:

 B(){
  super();
}



Now, since class A does not define a no-argument constructor the above code will not compile.
However, class B would be correct if changed to:


class B extends A{
  B(){
    super(1); // pass it any integer
  }
  // or
  B(int number){
    super(number);
  }
}



You could also add a no-argument constructor to class A and leave class B as is.

 
Back to Question without Answer
 



36.     QID - 2.1140 : Working with Inheritance 
 

Which of the following are valid declarations in a class?
 

Correct Option is :  A 

A. abstract int absMethod(int param) throws Exception;
 


B. abstract native int absMethod(int param) throws Exception;
native method cannot be abstract.


C. float native getVariance() throws Exception;
return type should always be on the immediate left of method name.


D. abstract private int absMethod(int param) throws Exception;
private method cannot be abstract. A private method is not inherited so how can a subclass implement it?


 
Back to Question without Answer
 



37.     QID - 2.1198 : Working with Inheritance 
 

What will be the output of the following program ?

class CorbaComponent{
    String ior;
    CorbaComponent(){ startUp("IOR"); }
    void startUp(String s){ ior  =  s; }
    void print(){ System.out.println(ior); }
}

class OrderManager extends CorbaComponent{
   OrderManager(){  }
   void startUp(String s){  ior = getIORFromURL(s);   }
   String getIORFromURL(String s){  return "URL://"+s; }
}

public class Application{
   public static void main(String args[]){ start(new OrderManager()); }
   static void start(CorbaComponent cc){ cc.print(); }
}

 

Correct Option is :  C 

A. It will throw an exception at run time.
 


B. It will print IOR
 


C. It will print URL://IOR
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
Observer that method startUp(String s) of CorbaComponent is overridden by the subclass OrderManager.



When an object of class OrderManager is constructed, the default no args constructor of CorbaComponent is called. This constructor calls the startUp(String s) with "IOR" as parameter. Now, there are two eligible methods which can be called - CorbaComponent's startUp and OrderManager's startUp. 



The method selection is done on the basis of the actual class of the object (which is OrderManager here). So OrderManager's startUp is called, which sets the ior variable to URL://IOR.



Unlike instance method selection, variable (and static method) selection is done on the basis of declared class of the variable and not on the actual class of object that it is referring to.

 
Back to Question without Answer
 



38.     QID - 2.1003 : Working with Inheritance 
 

Given the following code, which statements are true?


interface Automobile { String describe(); }

class FourWheeler implements Automobile{
   String name;
   public String describe(){ return " 4 Wheeler " + name; }
}

class TwoWheeler extends FourWheeler{
    String name;
    public String describe(){ return " 2 Wheeler " + name; }
}

 

Correct Options are :  A B C 

A. An instance of TwoWheeler is also an instance of FourWheeler.
 


B. An instance of TwoWheeler is a valid instance of Automobile.
 


C. The use of inheritance is not justified here because a TwoWheeler is not really a FourWheeler in the real world that the code is trying to model.
 


D. The code will compile only if name is removed from TwoWheeler.
 


E. The code will fail to compile.
 


Explanation: 
The use of inheritance in this code is not justifiable, since conceptually, a TwoWheeler is-not-a FourWheeler.

 
Back to Question without Answer
 



39.     QID - 2.872 : Working with Inheritance 
 

Consider the following classes:


class A {
      public int getCode(){ return 2;}
}

class AA extends A { 
  public void doStuff() { 
  } 
}


Given the following two declarations, which of the options will compile?
   A a = null;
   AA aa = null;

 

Correct Options are :  A B D F 

A. a = (AA)aa;
 


B. a = new AA();
 


C. aa = new A();
 


D. aa = (AA) a;
a is declared as a reference of class A and therefore, at run time, it is possible for a to point to an object of class AA (because A is a super class of AA). 

Hence, the compiler will not complain. Although if a does not point to an object of class AA at run time, a ClassCastException will be thrown.


E. aa = a;
A cast is required because the compiler needs to be assured that at run time a will point to an object of class AA.


F. ((AA)a).doStuff();
Once you cast a to AA, you can call methods defined in AA. Of course, if a does not point to an object of class AA at runtime, a ClassCastException will be thrown.

In this particular case, a NullPointerException will be thrown because a points to null and a null can be cast to any class.


 
Back to Question without Answer
 



40.     QID - 2.1250 : Working with Inheritance 
 

Which statements, when inserted in the code below, will cause an exception at run time?


class B {}
class B1 extends B {}
class B2 extends B {}
public class ExtendsTest{
  public static void main(String args[]){
     B b = new B();
     B1 b1 = new B1();
     B2 b2 = new B2();
     // insert statement here
  }
}

 

Correct Option is :  C 

A. b = b1;
There won't be a problem anytime because B1 is a B


B. b2 = b;
It fails at Compile time as an object referenced by b may not be a B2, so an explicit cast will be needed.


C. b1 = (B1) b;
It will pass at compile time but fail at run time as the actual object referenced by b is not a B1.


D. b2 = (B2) b1;
It will not compile because b1 can never point to an object of class B2.


E. b1 = (B) b1;
This won't compile. By casting b1 to B, you are telling the compiler that b1 points to an object of class B. But you are then trying to assign this reference to b1, which is of class B1. Compiler will complain against this assignment because there is no guarantee that an object of class B will also be of class B1. To be able to assign an object of class B to a reference of class B1, you need to confirm to the compiler that the reference will actually point to an object of class B1. Therefore, another cast is needed. i.e. b1 = (B1) (B) b1;


 
Back to Question without Answer
 



41.     QID - 2.1476 : Working with Inheritance 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Correct Options are :  B C 

A. default void compute();
When you mark a method in an interface as default, you are basically trying to provide a default implementation of that method so that any class that implements this interface doesn't necessarily have to provide its own implementation. Thus, a default method without a method body doesn't make sense. 

default void compute(){ } would be valid.



Remember that default keyword can occur for a method only in an interface and NOT in an abstract class.


B. public void compute();
 


C. static void compute(){

   System.out.println("computing...");

 }
This is a valid static method in an interface. Note that all members of an interface (i.e. fields as well as methods) are always public.


D. static void compute();
An interface can have a static method but the method must have a body in that case because a static method cannot be abstract.


E. default static void compute(){

   System.out.println("computing...");

};
An interface method cannot be default and static at the same time because a default method is always an instance method.


 
Back to Question without Answer
 



42.     QID - 2.952 : Working with Inheritance 
 

Which of the following lines of code that, when inserted at line 1, will make the overriding method in SubClass invoke the overridden method in BaseClass on the current object with the same parameter.


class BaseClass{
   public void print(String s) {  System.out.println("BaseClass :"+s); }
}
class SubClass extends BaseClass{
   public void print(String s){
      System.out.println("SubClass :"+s);
      // Line 1
   }
   public static void main(String args[]){
      SubClass sc = new SubClass();
      sc.print("location");
   }
}


 

Correct Option is :  B 

A. this.print(s);
 


B. super.print(s);
This is the right syntax to call the base class's overridden method. However, note that there is no way to call a method if it has been overriden more than once. For example, if you make BaseClass extend from another base class SubBase, and if SubBase also has the same method, then there is no way to invoke SubBase's print method from SubClass's print method. You cannot have something like super.super.print(s);


C. print(s);
This will call the same method and will cause a recursion.


D. BaseClass.print(s);
print is not a static method.


 
Back to Question without Answer
 



43.     QID - 2.1337 : Working with Inheritance 
 

Consider the following code:


class A{
   A() {  print();   }
   void print() { System.out.println("A"); }
}
class B extends A{
   int i =   4;
   public static void main(String[] args){
      A a = new B();
      a.print();
   }
   void print() { System.out.println(i); }
}


What will be the output when class B is run ?
 

Correct Option is :  C 

A. It will print A, 4.
 


B. It will print A, A
 


C. It will print 0, 4
 


D. It will print 4, 4
 


E. None of the above.
 


Explanation: 
Note that method print() is overridden in class B. Due to polymorphism, the method to be executed is selected depending on the class of the actual object.

Here, when an object of class B is created, first A's constructor is called, which in turn calls print(). Now, since the class of actual object is B, B's print() is selected. At this point of time, variable i has not been initialized (because we are still initializing A at this point), so its default value i.e. 0 is printed.

This happens because the method print() is non-private, hence polymorphic.



Finally, 4 is printed.

 
Back to Question without Answer
 



44.     QID - 2.836 : Working with Inheritance 
 

Which of the following statements are correct?
 

Correct Options are :  A B C 

A. An abstract class can be extended by an abstract or a concrete class.
 


B. A concrete class can be extended by an abstract or a concrete class.
 


C. An interface can be extended by another interface.
 


D. An interface can be extended by an abstract class.
A class "implements" an interface. It does not "extend" an interface.


E. An interface can be extended by a concrete class.
 


F. An abstract class cannot implement an interface.
Any class, whether abstract or concrete, can implement any interface.


 
Back to Question without Answer
 



45.     QID - 2.854 : Working with Inheritance 
 

What will be printed when the following code is compiled and run?


class A {
    public int getCode(){ return 2;}
}

class AA extends A { 
  public long getCode(){ return 3;}
}

public class TestClass {
    
    public static void main(String[] args) throws Exception {
         A a = new A();
        A aa = new AA();
        System.out.println(a.getCode()+" "+aa.getCode());
    }

    public int getCode() {
        return 1;
    }
}

 

Correct Option is :  D 

A. 2 3
 


B. 2 2
 


C. It will throw an exception at run time.
 


D. The code will not compile.
Class AA is trying to override getCode() method of class A but its return type is incompatible with the A's getCode.



When the return type of the overridden method (i.e. the method in the base/super class) is a primitive, the return type of the overriding method (i.e. the method in the sub class) must match the return type of the overridden method.



In case of Objects, the base class method can have a covariant return type, which means, it can return either return the same class or a sub class object. For example, if base class method is:

   public A getA(){ ... }

a subclass can override it with:

  public AA getA(){ ... } because AA is a subclass of A.


 
Back to Question without Answer
 



46.     QID - 2.1482 : Working with Inheritance 
 

What will the following code print when compiled and run?

class Baap{

    public int h = 4;

    public int getH(){ 

        System.out.println("Baap "+h); return h;

    }

}





public class Beta extends Baap{

    public int h = 44;

    public int getH(){ 

        System.out.println("Beta "+h); return h;

    }    

    public static void main(String[] args) {

        Baap b = new Beta();

        System.out.println(b.h+" "+b.getH());

        Beta bb = (Beta) b;

        System.out.println(bb.h+" "+bb.getH());

    }

}
 

Correct Option is :  C 

A. Baap 44

4 44

Beta 44

44 44
 


B. Beta 44

4 44

Baap 44

44 44
 


C. Beta 44

4 44

Beta 44

44 44
 


D. 4 44

Beta 44

44 44

Beta 44
 


E. 44 44

Beta 44

4 44

Beta 44
 


F. 4 44

Beta 44

4 44

Beta 44
 


Explanation: 
Always remember: Instance methods are overridden and variables are hidden. Which method is invoked depends on the class of the actual object, while which field is accessed depends on the class of the variable.

Here, b refers to an object of class Beta so b.getH() will always call the overridden (subclass's method). However, the type of reference of b is Baap. so b.h will always refer to Baap's h. Further, inside Beta's getH(), Beta's h will be accessed instead of Baap's h because you are accessing this.h ('this' is implicit) and the type of this is Beta.



The class of bb, on the other hand, is Beta. Thus, bb.h will always refer to Beta's h.

 
Back to Question without Answer
 



47.     QID - 2.1145 : Working with Inheritance 
 

Assume the following declarations:



class A{ }

class B extends A{ }

class C extends B{ }



class X{

   B getB(){ return new B(); }

}



class Y extends X{

  //method declaration here 

}



Which of the following methods can be inserted in class Y?
 

Correct Options are :  B C 

A. public C getB(){ return new B(); }
Its return type is specified as C, but it is actually returning an object of type B. Since B is NOT a C, this will not compile.


B. protected B getB(){ return new C(); }
Since C is-a B, this is valid. Also, an overriding method can be made less restrictive. protected is less restrictive than 'default' access.


C. C getB(){ return new C(); }
Covariant returns are allowed in Java 1.5, which means that an overriding method can change the return type of the overridden method to a subclass of the original return type. Here, C is a subclass of B. So this is valid.


D.  A getB(){ return new A(); }
An overriding method cannot return a superclass object of the return type defined in the overridden method. A subclass is allowed in Java 1.5.


 
Back to Question without Answer
 



48.     QID - 2.970 : Working with Inheritance 
 

Consider the following classes...


class Car{
   public int gearRatio = 8;
   public String accelerate() {  return "Accelerate : Car";  }
}
class SportsCar extends Car{
   public int gearRatio = 9;
   public String accelerate() {  return  "Accelerate : SportsCar";  }
   public static void main(String[] args){
      Car c = new SportsCar();
      System.out.println( c.gearRatio+"  "+c.accelerate() );
   }
}


What will be printed when SportsCar is run?
 

Correct Option is :  C 

A. 8  Accelerate : Car
 


B. 9 Accelerate : Car
 


C. 8 Accelerate : SportsCar
 


D. 9 Accelerate : SportsCar
 


E. None of the above.
 


Explanation: 
The concept is : variables are hidden and methods are overridden.

Method to be executed depends on the class of the actual object the variable is referencing to. Here, c refers to object of class SportsCar so SportsCar's accelerate() is selected.

 
Back to Question without Answer
 



49.     QID - 2.1273 : Working with Inheritance 
 

What will be the result of attempting to compile and run the following program?





public class TestClass{

   public static void main(String args[ ] ){

      A o1 = new C( );

      B o2 = (B) o1;

      System.out.println(o1.m1( ) );

      System.out.println(o2.i );

   }

}

class A { int i = 10;  int m1( ) { return i; } }

class B extends A { int i = 20;  int m1() { return i; } }

class C extends B { int i = 30;  int m1() { return i; } }
 

Correct Option is :  C 

A. The program will fail to compile.
 


B. Class cast exception at runtime.
 


C. It will print 30, 20.
 


D. It will print 30, 30.
 


E. It will print 20, 20.
 


Explanation: 
Remember : variables are SHADOWED and methods are OVERRIDDEN.

Which variable will be used depends on the class that the variable is declared of.

Which method will be used depends on the actual class of the object that is referenced by the variable.

So, in line o1.m1(), the actual class of the object is C, so C's m1() will be used. So it returns 30.

In line o2.i, o2 is declared to be of class B, so B's i is used. So it returns 20.

 
Back to Question without Answer
 



50.     QID - 2.1072 : Working with Inheritance 
 

What, if anything, is wrong with the following code?



//Filename: TestClass.java

class TestClass implements T1, T2{

   public void m1(){}

}

interface T1{

   int VALUE = 1;

   void m1();

}

interface T2{

   int VALUE = 2;

   void m1();

}
 

Correct Option is :  B 

A. TestClass cannot implement them both because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from one of the interfaces.
 


D. The code will work fine only if m1() is removed from one of the interfaces.
 


E. None of the above.
 


Explanation: 
Having ambiguous fields or methods does not cause any problems by itself but referring to such fields/methods in an ambiguous way will cause a compile time error. So you cannot call : System.out.println(VALUE); because it will be ambiguous (there are two VALUE definitions). But the following lines are valid :



TestClass tc = new TestClass();

System.out.println(( ( T1) tc).VALUE);



However, explicit cast is not required for calling the method m1() : ( ( T2) tc).m1();

tc.m1() is also fine because even though m1() is declared in both the interfaces, the definition to both resolves unambiguously to only one m1(), which is defined in TestClass.

 
Back to Question without Answer
 



51.     QID - 2.1329 : Working with Inheritance 
 

Which of the following method definitions will prevent overriding of that method?
 

Correct Options are :  A B C E 

A. public final void m1()
final methods cannot be overridden. That is the purpose of final keyword.


B. public static void m1()
 


C. public static final void m1()
Keep in mind that static methods are not overridden, they are shadowed.


D. public abstract void m1()
 


E. private void m1()
private methods are not inherited at all so there is no question of overriding a private method.


 
Back to Question without Answer
 



52.     QID - 2.1201 : Working with Inheritance 
 

Consider the following interface definition:

interface Bozo{

         int type = 0;

         public void jump();

}





Now consider the following class:



public class Type1Bozo implements Bozo{

         public Type1Bozo(){

            type = 1;

         }



         public void jump(){

            System.out.println("jumping..."+type);

         }



         public static void main(String[] args){

            Bozo b = new Type1Bozo();

            b.jump();

         }

}



What will the program print when compiled and run?
 

Correct Option is :  C 

A. jumping...0
 


B. jumping...1
 


C. This program will not compile.
 


D. It will throw an exception at runtime.
 


Explanation: 
Fields defined in an interface are ALWAYS considered as public, static, and final. Even if you don't explicitly define them as such. In fact, you cannot even declare a field to be private or protected in an interface. Therefore, you cannot assign any value to 'type' outside the interface definition.

 
Back to Question without Answer
 



53.     QID - 2.1150 : Working with Inheritance 
 

Which of the following are valid declarations inside an interface independent of each other?
 

Correct Options are :  A B 

A. void compute();
All interface methods have to be public. No access control keyword in the method declaration also means public in an interface. (Note that the absence of access control keyword in the method declaration in a class means package protected.)


B. public void compute();
 


C. public final void compute();
final is not allowed.


D. static void compute();
An interface can have a static method but the method must have a body in that case.


E. protected void compute();
All interface methods have to be public.


 
Back to Question without Answer
 



54.     QID - 2.1300 : Working with Inheritance 
 

An abstract method cannot be overridden.
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
Abstract methods are meant to be overridden in the subclass. Abstract methods describe a behavior but do not implement it. So the subclasses have to override it to actually implement the behavior. A subclass may chose not to override it, in which case, the subclass will have to be abstract too.

 
Back to Question without Answer
 



55.     QID - 2.1292 : Working with Inheritance 
 


 

 
Explanation: 
Even though class Klass implements m1(), it does not declare that it implements I. Therefore, for a subclass to 'implement' I, it must have 'implements I' in its declaration.

Further, m1() in Klass is not public. So even though Subclass inherits m1() from Klass, it will not be a valid implementation of I because interface methods must be public. Therefore, SubClass must override m1() and make it public.

 
Back to Question without Answer
 



56.     QID - 2.1390 : Working with Inheritance 
 

What can be inserted in the code below so that it will print UP UP UP?



public class Speak {

    public static void main(String[] args) {

        Speak s = new GoodSpeak();



        INSERT CODE HERE



    }

}

class GoodSpeak extends Speak implements Tone{

    public void up(){

        System.out.println("UP UP UP");

    }

}

interface Tone{

    void up();

}
 

Correct Options are :  A C 

A. ((Tone)s).up();
 


B. s.up();
It will not compile because the class of reference s is Speak, which does not have the method up().


C. ((GoodSpeak)s).up();
 


D. (GoodSpeak)s.up();
Incorrect syntax. It will not compile.


E. (Tone)(GoodSpeak)s.up();
Incorrect syntax. It will not compile. The following would have been valid:

((Tone)(GoodSpeak)s).up();


 
Back to Question without Answer
 



57.     QID - 2.1478 : Working with Inheritance 
 

Which statements about the following code contained in BankAccount.java are correct?



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

  public String getId();

}



public class BankAccount implements PremiumAccount{

  public static void main(String[] args) {

      Account acct = new BankAccount();

      System.out.println(acct.getId());

  }



}


 

Correct Option is :  B 

A. It will print 0000 when run.
 


B. It will compile if class BankAccount provides an implementation for getId method.
Since interface PremiumAccount redeclares getId method as abstract, the BankAccount class must either provide an implementation for this method or be marked as abstract. 

In this case, making the class abstract will not help because of the statement - Account acct = new BankAccount();


C. It will not compile unless interface PremiumAccount is marked abstract.
Interfaces are always abstract. You can but you don't have to mark them abstract. Methods of an interface that are not marked default or static are also always abstract. You don't have to mark them as abstract.


D. It will compile if getId method in PremiumAccount is replaced with:

public String getId(){ super.getId(); }
1. You cannot provide a method body in an interface method unless you mark it as default (or static).

2. You cannot use super keyword in an interface's method to invoke a method defined in its super interface.


E. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super.getId(); }
super.methodName is a valid way to invoke a super class's method from anywhere within a subclass's method. But it works only for classes. To invoke an interface's default method, you need to use the name of that interface as well. Like this: Account.super.getId();



A class (or an interface) can invoke a default method of an interface that is explicitly mentioned in the class's implements clause (or the interface's extends clause) by using the same syntax i.e. <InterfaceName>.super.<methodName>.



However, this technique cannot be used to invoke a default method provided by an interface that is not directly implemented (or extended) by the caller. 

Here is an example:



interface A {

   default void hello() {

   }

}



interface B extends A {

   default void hello() {

       super.hello();    //This is NOT valid.

       A.super.hello();    //This is valid.

   }

}



public class TestClass implements B {

   public void hello() {

      super.hello();//This is NOT valid.

      A.super.hello(); //This is NOT valid because TestClass does not implement A directly.

      B.super.hello(); //This is valid.

   }

}




F. It will compile if getId method in PremiumAccount is replaced with:

public default String getId(){ super(); }
super(); is used to invoke the super class's constructor. So, if present, it can only be the first statement of a constructor. Calling super(); does not invoke the super class's method.


 
Back to Question without Answer
 



58.     QID - 2.1002 : Working with Inheritance 
 

Given the following definitions and reference declarations:


interface I1 { }
interface I2 { }
class C1 implements I1 { }
class C2 implements I2 { }
class C3 extends C1 implements I2 { }
C1 o1;
C2 o2;
C3 o3;


Which of these statements are legal?
 

Correct Options are :  A D E 

A. class C4 extends C3 implements I1, I2 { }
Although, the implements I1, I2 is redundant here because C3 already implements I1 and I2, it is not invalid.


B. o3 = o1;
superclass reference cannot be assigned to subclass reference without explicit cast.


C. o3 = o2;
There is no way a reference of class C2 (which is o2) can point to an object of class C3 because C2 and C3 have no inheritance relationship. So this assignment is rejected at compile time itself.


D. I1 i1 = o3; I2 i2 = (I2) i1;
This is valid because at run time i1 actually refers to an object that implements I2.


E. I1 b = o3;
Because C3 extends C1 which implements I1.


 
Back to Question without Answer
 



59.     QID - 2.1256 : Working with Inheritance 
 

Which of these statements are true?
 

Correct Options are :  B E 

A. A super( <appropriate list of arguments> ) or this( <appropriate list of arguments> ) call must always be provided explicitly as the first statement in the body of the constructor.
super(); is automatically added if the sub class constructor doesn't call any of the super class's constructors.


B. If a subclass does not have any declared constructors, the implicit default constructor of the subclass will have a call to super( ).
 


C. If neither super( ) or this( ) is declared as the first statement of the body of a constructor, then this( ) will implicitly be inserted as the first statement.
super() is added and not this()


D. super(<appropriate list of arguments>) can only be called in the first line of the constructor but this(<appropriate list of arguments>) can be called from anywhere.
 


E. You can either call super(<appropriate list of arguments>) or this(<appropriate list of arguments>) but not both from a constructor.
 


Explanation: 
Note that calling super(); will not always work because if the super class has defined a constructor with arguments and has not defined a no args constructor then no args constructor will not be provided by the compiler. It is provided only to the class that does not define ANY constructor explicitly.

 
Back to Question without Answer
 



60.     QID - 2.1334 : Working with Inheritance 
 

What will the following program print when run?


// Filename: TestClass.java
public class TestClass{
   public static void main(String args[] ){ A b = new B("good bye");  }
}
class A{
   A() { this("hello", " world");  }
   A(String s) { System.out.println(s); }
   A(String s1, String s2){ this(s1 + s2); }
}
class B extends A{
   B(){ super("good bye"); };
   B(String s){ super(s, " world"); }
   B(String s1, String s2){ this(s1 + s2 + " ! "); }
}

 

Correct Option is :  C 

A. It will print "good bye".
 


B. It will print "hello world".
 


C. It will print "good bye world".
 


D. It will print "good bye" followed by "hello world".
 


E. It will print "hello world" followed by "good bye".
 


Explanation: 
new B("good bye"); will call class B's one args constructor which in turn calls super(s, " world"); (i.e. class A's two args constructor) which in turn calls this(s1 + s2); (i.e. class A's one arg constructor with parameter "good bye world") which prints it.

 
Back to Question without Answer
 



61.     QID - 2.1095 : Working with Inheritance 
 

What will be the result of compiling and running the following code?


class Base{
   public short getValue(){ return 1; } //1
}
class Base2 extends Base{
   public byte getValue(){ return 2; } //2
}
public class TestClass{
   public static void main(String[] args){
      Base b = new Base2();
      System.out.println(b.getValue()); //3
   }
}

 

Correct Option is :  D 

A. It will print 1
 


B. It will print 2.
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


Explanation: 
In case of overriding, the return type of the overriding method must match exactly to the return type of the overridden method if the return type is a primitive.

(In case of objects, the return type of the overriding method may be a subclass of the return type of the overridden method.)

 
Back to Question without Answer
 



62.     QID - 2.910 : Working with Inheritance 
 

Consider the following code:





interface Flyer{ String getName(); }



class Bird implements Flyer{

    public String name;

    public Bird(String name){

        this.name = name;

    }

    public String getName(){ return name; }

}



class Eagle extends Bird { 

    public Eagle(String name){

        super(name);

    }

}



public class TestClass {

    public static void main(String[] args) throws Exception {

        Flyer f = new Eagle("American Bald Eagle");

        //PRINT NAME HERE

   }

}



Which of the following lines of code will print the name of the Eagle object?
 

Correct Options are :  B C D 

A. System.out.println(f.name);
 


B. System.out.println(f.getName());
 


C. System.out.println(((Eagle)f).name);
 


D. System.out.println(((Bird)f).getName());
 


E. System.out.println(Eagle.name);
name is not a static field in class Eagle.


F. System.out.println(Eagle.getName(f));
This option doesn't make any sense.


Explanation: 
While accessing a method or variable, the compiler will only allow you to access a method or variable that is visible through the class of the reference.



When you try to use f.name, the class of the reference f is Flyer and Flyer has no field named "name", thus, it will not compile. But when you cast f to Bird (or Eagle), the compiler sees that the class Bird (or Eagle, because Eagle inherits from Bird) does have a field named "name" so ((Eagle)f).name or ((Bird)f).name will work fine.



f.getName() will work because Flyer does have a getName() method.

 
Back to Question without Answer
 



63.     QID - 2.1101 : Working with Inheritance 
 

Consider the following code:


class Base{
   private float f = 1.0f;
   void setF(float f1){ this.f = f1; }
}
class Base2 extends Base{
   private float f = 2.0f;
   //1
}


Which of the following options is/are valid example(s) of overriding?
 

Correct Options are :  A C 

A. protected void setF(float f1){ this.f = 2*f1; }
protected is less restrictive than default, so it is valid.


B. public void setF(double f1){ this.f = (float) 2*f1; }
Since the parameter type is different, it is overloading not overriding.


C. public void setF(float f1){ this.f = 2*f1; }
public is less restrictive than default, so it is valid.


D. private void setF(float f1){ this.f = 2*f1; }
private is more restrictive than default, so it is NOT valid.


E. float setF(float f1){ this.f = 2*f1; return f;}
return types must match.


Explanation: 
An overriding method can be made less restrictive than the overridden method. The restrictiveness of access modifiers is as follows:

private>default>protected>public (where private is most restrictive and public is least restrictive).



Note that there is no modifier named default. The absence of any access modifiers implies default access.

 
Back to Question without Answer
 



64.     QID - 2.1320 : Working with Inheritance 
 

What will the following code print when compiled and run?

class ABCD{
   int x = 10;
   static int y = 20;
}
class MNOP extends ABCD{
   int x = 30;
   static int y = 40;
}

public class TestClass {
   public static void main(String[] args) {
     System.out.println(new MNOP().x+", "+new MNOP().y);
   }
}


 

Correct Option is :  D 

A. 10, 40
 


B. 30, 20
 


C. 10, 20
 


D. 30, 40
 


E. 20, 30
 


F. Compilation error.
 


Explanation: 
Access to static and instance fields and static methods depends on the class of reference variable and not the actual object to which the variable points to. Observe that this is opposite of what happens in the case of instance methods.  In case of instance methods the method of the actual class of the object is called.



Therefore, in case of System.out.println(new MNOP().x); the reference is of type MNOP and so MNOP's x will be accessed. 



Had it been like this:

   ABCD a = new MNOP();

   System.out.println(a.x);

   System.out.println(a.y);

ABCD's x and y would have been accessed because a is of type ABCD even though the actual object is of type MNOP.

 
Back to Question without Answer
 



65.     QID - 2.1481 : Working with Inheritance 
 

Given:



interface Account{

  public default String getId(){

     return "0000";

  }

}



interface PremiumAccount extends Account{

   //INSERT CODE HERE

}



Which of the following options can be inserted in PremiumAccount independent of each other?
 

Correct Options are :  B C 

A. static String getId(){

  return "1111";

}
Trying to override a static method with a non-static method (and vice-versa) in a class will result in a compilation error. Even in case of interfaces, a subinterface not override a default method with a static method.



You can, however, have a default method in a subinterface with the same signature as a static method of its super interface.

Example:

interface I{

   public default void valid(){ }

   public static void invalid(){ }

}

interface I2 extends I{

   public static void valid(){ } //this is ok

   public default void invalid(){ } //WILL NOT COMPILE

}


B. String getId();
An interface can redeclare a default method and also make it abstract.


C. default String getId(){

   return "1111";

};
An interface can redeclare a default method and provide a different implementation.


D. abstract static String getName();
1. static methods can never be abstract (neither in an interface not in a class).

2. An interface can have a static method but the method must have a body.


E. static String getName();
An interface can have a static method but the method must have a body.


F. default String getName();
A default method must have a body.


 
Back to Question without Answer
 



66.     QID - 2.1009 : Working with Inheritance 
 

Consider the following code:


class Super { static String ID = "QBANK"; }

class Sub extends Super{
   static { System.out.print("In Sub"); }
}
public class Test{
   public static void main(String[] args){
      System.out.println(Sub.ID);
   }
}


What will be the output when class Test is run?
 

Correct Option is :  B 

A. It will print In Sub and QBANK.
 


B. It will print QBANK.
 


C. Depends on the implementation of JVM.
 


D. It will not even compile.
 


E. None of the above.
 


Explanation: 
As per Section 12.4.1 given here: http://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html



A class or interface type T will be initialized immediately before the first occurrence of any one of the following:



T is a class and an instance of T is created.



T is a class and a static method declared by T is invoked.



A static field declared by T is assigned.



A static field declared by T is used and the field is not a constant variable (§4.12.4).



T is a top level class (§7.6), and an assert statement (§14.10) lexically nested within T (§8.1.3) is executed.



A reference to a static field (§8.3.1.1) causes initialization of only the class or interface that actually declares it, even though it might be referred to through the name of a subclass, a subinterface, or a class that implements an interface.



Invocation of certain reflective methods in class Class and in package java.lang.reflect also causes class or interface initialization.



A class or interface will not be initialized under any other circumstance.

 
Back to Question without Answer
 



67.     QID - 2.1037 : Working with Inheritance 
 

What will the following code print when compiled and run?


class Base{
   void methodA(){
      System.out.println("base - MethodA");
   }
}

class Sub extends Base{
   public void methodA(){
      System.out.println("sub - MethodA");
   }
   public void methodB(){
      System.out.println("sub - MethodB");
   }
   public static void main(String args[]){
      Base b=new Sub(); //1
      b.methodA(); //2
      b.methodB(); //3
   }
}


 

Correct Option is :  E 

A. sub - MethodA and sub - MethodB
 


B. base - MethodA and sub - MethodB
 


C. Compile time error at //1
 


D. Compile time error at //2
 


E. Compile time error at //3
 


Explanation: 
The point to understand here is, b is declared to be a reference of class Base and methodB() is not defined in Base. So the compiler cannot accept the statement b.methodB() because it only verifies the validity of a call by looking at the declared class of the reference.

For example, the compiler is able to verify that b.methodA() is a valid call because class Base has method methodA. But it does not "bind" the call. Call binding is done at runtime by the jvm and the jvm looks for the actual class of object referenced by the variable before invoking the method.

 
Back to Question without Answer
 



68.     QID - 2.1123 : Working with Inheritance 
 

Consider the contents of following two files:



//In file A.java

package a;

public class A{

   A(){ }

   public void  print(){ System.out.println("A"); }

}



//In file B.java

package b;

import a.*;

public class B extends A{

   B(){ }

   public void  print(){ System.out.println("B"); }

   public static void main(String[] args){

      new B();

   }

}





What will be printed when you try to compile and run class B?
 

Correct Option is :  C 

A. It will print A.
 


B. It will print B.
 


C. It will not compile.
Because A() is not accessible in B.


D. It will compile but will not run.
 


E. None of the above.
 


Explanation: 
Note that there is no modifier for A's constructor. So it has default access. This means only classes in package a can use it. Also note that class B is in a different package and is extending from A. In B's constructor the compiler will automatically add super() as the first line. But since A() is not accessible in B, this code will not compile.

 
Back to Question without Answer
 



69.     QID - 2.1049 : Working with Inheritance 
 

Consider that you are writing a set of classes related to a new Data Transmission Protocol and have created your own exception hierarchy derived from java.lang.Exception as follows:

enthu.trans.ChannelException
              +-- enthu.trans.DataFloodingException, 
                    enthu.trans.FrameCollisionException



You have a TransSocket class that has the following method:


   long connect(String ipAddr) throws ChannelException




Now, you also want to write another "AdvancedTransSocket" class, derived from "TransSocket" which overrides the above mentioned method. Which of the following are valid declaration of the overriding method?
 

Correct Options are :  C E 

A. int connect(String ipAddr) throws DataFloodingException
The return type must match. Otherwise the method is OK.


B. int connect(String ipAddr) throws ChannelException
The return type must match. Otherwise the method is OK.


C. long connect(String ipAddr) throws FrameCollisionException
 


D. long connect(String ipAddr) throws Exception
This option is invalid because Exception is a super class of ChannelException so it cannot be thrown by the overriding method.


E. long connect(String str)
 


Explanation: 
There are 2 important concepts involved here:

1. The overriding method must have same return type in case of primitives (a subclass is allowed in case of classes)  (Therefore, the choices returning int are not valid.) and the parameter list must be the same (The name of the parameter does not matter, just the Type is important). 



2. The overriding method can throw a subset of the exception or subclass of the exceptions thrown by the overridden class. Having no throws clause is also valid since an empty set is a valid subset.

 
Back to Question without Answer
 



70.     QID - 2.1328 : Working with Inheritance 
 

Consider the following classes :


interface I{
}
class A implements I{
}

class B extends A {
}

class C extends B{
}


And the following declarations:
A a = new A();
B b = new B(); 

Identify options that will compile and run without error.
 

Correct Option is :  A 

A. a = (B)(I)b;
class B does implement I because it extends A, which implements I. A reference of type I can be cast to any class at compile time. Since B is-a A, it can be assigned to a.


B. b = (B)(I) a;
This will fail at run time because a does not point to an object of class B.


C. a = (I) b;
An I is not an A. Therefore, it will not compile.


D. I i = (C) a;
It will compile because a C is-a A, which is-a I, and a reference of class A can point to an object of class C. But it will fail at runtime because a does not point to an object of class C.


 
Back to Question without Answer
 



71.     QID - 2.983 : Working with Inheritance 
 

Consider the following classes:

class A implements Runnable{ ...}

class B extends A implements Observer { ...}

(Assume that Observer has no relation to Runnable.)



and the declarations :



  A a = new A() ;

  B b = new B();



Which of the following Java code fragments will compile and execute without throwing exceptions?
 

Correct Options are :  B E 

A. Object o = a; Runnable r = o;
The declared class of o is Object while the declared type of the target of the assignment i.e. r is Runnable. Although, at run time, o does point to a Runnable, the compiler doesn't know about it and so it can't let you assign o to r unless you assure the compiler that o will point to a Runnable object at run time. You can do so by putting an explicit cast. i.e. 

Object o = a; Runnable r = (Runnable) o;


B. Object o = a; Runnable r = (Runnable) o;
Here you are explicitly telling the compiler that o refers to an object that is Runnable.


C. Object o = a; Observer ob = (Observer) o ;
It will compile but will fail at run time as at runtime 'a' does not refer to an object that is an Observer.


D. Object o = b; Observer o2 = o;
This has the same problem as option 1.


E. Object o = b; Runnable r = (Runnable) b;
Since b is declared of a type that indirectly implements Runnable, the compiler can figure out that b will always point to an object that is assignable to a Runnable. Therefore, explicit cast is not required here. It will still work fine with the explicit cast though.


Explanation: 
Although you know that o will refer to an object that is a Runnable at runtime, the compiler doesn't know about it. That is why, you have to do: Runnable r = (Runnable) o;

You can assign a subclass object reference to superclass reference without a cast but to assign a super class object reference to a subclass (or interface) reference you need an explicit cast as in option 2.

 
Back to Question without Answer
 



72.     QID - 2.1144 : Working with Inheritance 
 

Consider the following interface definition:


public interface ConstTest{
	public int A = 1; //1
	int B = 1;          //2
	static int C = 1;  //3
	final int D = 1; 	 //4
	public static int E = 1; //5
	public final int F = 1;  //6
	static final int G = 1;    //7
	public static final int H = 1; //8
}


Which line(s) will cause a compilation error?
 

Correct Option is :  I 

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. 5
 


F. 6
 


G. 7
 


H. 8
 


I. None of them will cause any error.
Any field in an interface is implicitly public, static, and final, whether these keywords are specified or not.


 
Back to Question without Answer
 



73.     QID - 2.1234 : Working with Inheritance 
 

Consider the following code:



public abstract class TestClass{

    public abstract void m1();

    public abstract void m2(){

        System.out.println("hello");

    }

}



Which of the following corrections can be applied to the above code (independently) so that it compiles without any error?
 

Correct Options are :  A C 

A. Replace the method body of m2() with a ; (semi-colon).
 


B. Replace the ; at the end of m1() with a method body.
 


C. Remove abstract from m2().
A method that has a body cannot be abstract. In other words, an abstract method cannot have a body. So either remove the method body (as in m1()) or remove abstract keyword.


D. Remove abstract from the class declaration.
 


 
Back to Question without Answer
 



74.     QID - 2.1306 : Working with Inheritance 
 

Which of these statements concerning interfaces are true?
 

Correct Options are :  A C 

A. An interface may extend an interface.
Unlike a class, an interface can extend from multiple interfaces.


B. An interface may extend a class and may implement an interface.
An interface cannot implement another interface. It can extend another interface but not a class.


C. A class can implement an interface and extend a class.
 


D. A class can extend an interface and can implement a class.
 


E. An interface can only be implemented and cannot be extended.
It can be extended by another interface.


Explanation: 
The keyword implements is used when a class inherits method prototypes from an interface. The keyword extends is used when an interface inherits from another interface, or a class inherits from another class.

 
Back to Question without Answer
 



75.     QID - 2.888 : Working with Inheritance 
 

What will the following code print when run?


class A {
}

class AA extends A { 
}


public class TestClass {
    public static void main(String[] args) throws Exception {
        A a = new A();
        AA aa = new AA();
        a = aa;
        System.out.println("a = "+a.getClass());
        System.out.println("aa = "+aa.getClass());
    }
}

 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw ClassCastException at runtime.
 


C. a = class AA

aa = class AA
 


D. a = class A

aa = class AA
 


Explanation: 
getClass is a public instance method in Object class. That means it is polymorphic. In other words, this method is bound at run time and so it returns the name of the class of the actual object to which the reference points. 

Here, at run time, both - a and aa, point to an object of class AA. So both will print AA.

 
Back to Question without Answer
 



76.     QID - 2.945 : Working with Inheritance 
 

Which of the following statements are true?
 

Correct Options are :  A E 

A. Private methods cannot be overridden in subclasses.
Only methods that are inherited can be overridden and private methods are not inherited.


B. A subclass can override any method in a non-final superclass.
Only the methods that are not declared to be final can be overridden. Further, private methods are not inherited so they cannot be overridden either.


C. An overriding method can declare that it throws a wider spectrum of checked exceptions than the method it is overriding.
 


D. The parameter list of an overriding method must be a subset of the parameter list of the method that it is overriding.
An overriding method (the method that is trying to override the base class’s method) must have the same parameters.


E. The overriding method may opt not to declare any throws clause even if the original method has a throws clause.
No exception (i.e. an empty set of exceptions) is a valid subset of the set of exceptions thrown by the original method so an overriding method can choose to not have any throws clause.


Explanation: 
A method can be overridden by defining a method with the same signature(i.e. name and parameter list) and return type as the method in a superclass. The return type can also be a subclass of the original method's return type.



Only methods that are accessible can be overridden. A private method cannot, therefore, be overridden in subclasses, but the subclasses are allowed to define a new method with exactly the same signature. 



A final method cannot be overridden. 



An overriding method cannot exhibit behavior that contradicts the declaration of the original method. An overriding method therefore cannot return a different type (except a subtype) or throw a wider spectrum of exceptions than the original method in the superclass. This, of course, applies only to checked exceptions because unchecked exceptions are not required to be declared at all.



A subclass may have a static method with the same signature as a static method in the base class but it is not called overriding. It is called hiding because the concept of polymorphism doesn't apply to static members.

 
Back to Question without Answer
 



77.     QID - 2.1261 : Working with Inheritance 
 

Consider the following code:


public class SubClass extends SuperClass{
     int i, j, k;
     public SubClass( int m, int n )     {  i = m ;  j = m ;  } //1
     public SubClass( int m )  {   super(m );   } //2
 }


Which of the following constructors MUST exist in SuperClass for SubClass to compile correctly?
 

Correct Options are :  C D 

A. It is ok even if no explicit constructor is defined in SuperClass
The //2 will fail as it needs a constructor taking an int!


B. public SuperClass(int a, int b)
It is not used anywhere so it is not necessary.


C. public SuperClass(int a)
Because it is called in the second constructor of SubClass.


D. public SuperClass()
The default no args constructor will not be provided because SuperClass has to define one arg constructor.


E. only public SuperClass(int a) is required.
You'll have to explicitly define a no args constructor because it is needed in the first constructor of SubClass.


 
Back to Question without Answer
 



78.     QID - 2.1064 : Working with Inheritance 
 

Consider this code:


interface X1{ }
interface X2{ }
class A { }
class B extends A implements X1{ }
class C extends B implements X2{
   D d = new D();
}
class D { }



Which of the following statements are true?
 

Correct Options are :  C D E 

A. D is-a B.
 


B. B has-a D.
C has-a D.


C. C is-a A
Because C 'is-a' B and B 'is-a' A.


D. C is-a X1
Because C is-a B and B is-a X1.


E. C is-a X2
Because C implements X2


Explanation: 
Consider this code:



class C extends B implements X2{

   D d = new D();

}



Now, Inheritance defines an is-a relation , so C is-a B because C extends B. This actually means that C can be used in all the places where B is used. C can substitute for B anywhere because C is-a B. As all objects have Object as their super class, every object 'is-a' Object.



Since C implements X2, it is sometimes said that C 'is-like-a' X2. That is, although C is not an X2 but for all purposes C is like an X2. The distinction between is-a and is-like-a is not important for the exam. For the purpose of the exam, is-like-a is same as is-a. Therefore, C is-a X2 as well.



Aggregation defines a has-a relation. Here, D is a member object in C. In other words, D is contained within C. It is therefore said that C 'has-a' D.



All Java objects have the class Object as the ultimate superclass, and so Object is always at the root of any inheritance hierarchy.

 
Back to Question without Answer
 



79.     QID - 2.900 : Working with Inheritance 
 

What, if anything, is wrong with the following code?





interface T1{

}

interface T2{

   int VALUE = 10;

   void m1();

}



interface T3 extends T1, T2{

   public void m1();

   public void m1(int x);

}
 

Correct Option is :  B 

A. T3 cannot implement both T1 and T2 because it leads to ambiguity.
 


B. There is nothing wrong with the code.
 


C. The code will work fine only if VALUE is removed from T2 interface.
 


D. The code will work fine only if m1() is removed from either T2 and T3.
 


E. None of the above.
 


Explanation: 
Having ambiguous fields or methods does not cause any problem by itself but referring to such fields or methods in an ambiguous way will cause a compile time error. 

T3.m1() is also fine because even though m1() is declared in T2 as well as T3 , the definition to both resolves unambiguously to only one m1(). Explicit cast is not required for calling the method m1() : ( ( T2) t).m1();



m1(int x) is valid because it is a totally independent method declared by T3.

 
Back to Question without Answer
 



80.     QID - 2.1135 : Working with Inheritance 
 

Which of the following statements is/are true?
 

Correct Option is :  C 

A. Subclasses must define all the abstract methods that the superclass defines.
Not if the subclass is also defined abstract!


B. A class implementing an interface must define all the methods of that interface.
Not if the class is defined abstract. Further, Java 8 allows an interface to have default and static methods, which need not be implemented by a non-abstract class that says it implements that interface.


C. A class cannot override the super class's constructor.
Because constructors are not inherited.


D. It is possible for two classes to be the superclass of each other.
 


E. An interface can implement multiple interfaces.
Interface cannot "implement" another interfaces. It can extend multiple interfaces. The following is a valid declaration : 

interface I1 extends I2, I3, I4 { }


 
Back to Question without Answer
 



81.     QID - 2.1403 : Working with Inheritance 
 

Given:

//in file Movable.java

package p1;

public interface Movable {

  int location = 0;

  void move(int by);

  public void moveBack(int by);

}





//in file Donkey.java

package p2;

import p1.Movable;

public class Donkey implements Movable{

    int location = 200;

    public void move(int by) {

        location = location+by;

    }

    public void moveBack(int by) {

        location = location-by;

    }

}





//in file TestClass.java

package px;

import p1.Movable;

import p2.Donkey;

public class TestClass {

    public static void main(String[] args) {

        Movable m = new Donkey();

        m.move(10);

        m.moveBack(20);

        System.out.println(m.location);

    }

}

Identify the correct statement(s).
 

Correct Option is :  E 

A. Donkey.java will not compile.
 


B. TestClass.java will not compile.
 


C. Movable.java will not compile.
 


D. It will print 190 when TestClass is run.
 


E. It will print 0 when TestClass is run.
 


Explanation: 
There is no problem with the code. All variables in an interface are implicitly public, static, and final. All methods in an interface are public. There is no need to define them so explicitly. Therefore, the location variable in Movable is public and static and the move() method is public.



Now, when you call m.move(10) and m.moveBack(20), the instance member location of Donkey is updated to 190 because  the reference m refers to a Donkey at run time and so move and moveBack methods of Donkey are invoked at runtime. However, when you print m.location, it is the Movable's location (which is never updated) that is printed.

 
Back to Question without Answer
 



82.     QID - 2.1178 : Working with Inheritance 
 

Which of the following class definitions is/are legal definition(s) of a class that cannot be instantiated?


class Automobile{
   abstract void honk();  //(1)
}

abstract class Automobile{
   void honk();   //(2)
}

abstract class Automobile{
   void honk(){};   //(3)
}

abstract class Automobile{
   abstract void honk(){}   //(4)
}

abstract class Automobile{
   abstract void honk();   //(5)
}

 

Correct Options are :  C E 

A. 1
It will not compile as one of its method is abstract but the class itself is not abstract.


B. 2
It will not compile as the method doesn't have the body and also is not declared abstract.


C. 3
This is a valid abstract class although it doesn't have any abstract method.


D. 4
An abstract method cannot have a method body. {} constitutes a valid method body.


E. 5
This is a valid abstract class


Explanation: 
Here are some points to remember:



A class is uninstantiable if the class is declared abstract. 

If a method has been declared as abstract, it cannot provide an implementation (i.e. it cannot have a method body ) and the class containing that method must be declared abstract). 

If a method is not declared abstract, it must provide a method body (the class can be abstract but not necessarily so). 

If any method in a class is declared abstract, then the whole class must be declared abstract.

An class can still be made abstract even if it has no abstract method.

 
Back to Question without Answer
 



83.     QID - 2.1019 : Working with Inheritance 
 

You are modeling a class hierarchy for living things. You have a class LivingThing which has an abstract method reproduce().

Now, you want to have 2 concrete subclasses of LivingThing - Plant and Animal. Both do reproduce but the mechanisms are different. What would you do?
 

Correct Option is :  C 

A. Overload the reproduce method in Plant and Animal classes
 


B. Overload the reproduce method in LivingThing class.
 


C. Override the reproduce method in Plant and Animal classes
 


D. Either overload or override reproduce in Plant and Animal classes, it depends on the preference of the designer.
 


Explanation: 
This kind of scenario where the subclass HAS the behavior of the base class but implements it in a different way is called as overriding. Here, both Plant and Animal reproduce, so they have the behavior of the base class but they do it differently, so you have to override the base class method in their code. Inheritance is always involved in overriding.

Overloading is quite different, when you want to do similar (not same) things but the inputs are different then you overload a method. For example, you may have two add methods:

add(int i1, int i2) and add(ComplexNo c1, ComplexNo c2). Here both are doing similar things (that is why both are named as add) but inputs are different. Both are two entirely different methods and there is no inheritance involved.

 
Back to Question without Answer
 



84.     QID - 2.1171 : Working with Inheritance 
 

Consider the following variable declaration within the definition of an interface:

  int i = 10;

Which of the following declarations defined in a non-abstract class, is equivalent to the above?
 

Correct Option is :  C 

A. public static int i = 10;
 


B. public final int i = 10;
 


C. public static final int i = 10;
 


D. public int i = 10;
 


E. final int i = 10;
 


Explanation: 
Fields in an interface are implicitly public, static and final. Although you can put these words in the interface definition but it is not a good practice to do so.

 
Back to Question without Answer
 



85.     QID - 2.1203 : Working with Inheritance 
 

A method with no access modifier can be overridden by a method marked protected (assuming that it is not final).
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
An Overriding method is allowed to make the overridden method more accessible, and since protected is more accessible than default (package), this is allowed. Note that protected access will allow access to the subclass even if the subclass is in a different package but package access will not.

 
Back to Question without Answer
 



Working with Inheritance - instanceof
 
Exam Objectives - 
 
Although instanceof operator is not mentioned explicitly in exam objectives, it is closely tied with the topic of inheritance. Understanding of polymorphism and inheritance would be incomplete without understanding how instanceof works. For this reason, we have included a few questions on this operator.



01.     QID - 2.1136 
 

Which of the given statements are correct about the following code?



//Filename: TestClass.java

class TestClass{

   public static void main(String[] args){

      A a = new A();

      B b = new B();

   };

}

class A implements T1, T2{}

class B extends A implements T1{}

interface T1 { }

interface T2 { }


 

Select 4 options

A. (a instanceof T1) will return true.
 


B. (a instanceof T2) will return true.
 


C. (b instanceof T1) will return true.
 


D. (b instanceof T2) will return true.
 


E. (b instanceof A) will return false.
 


 
Check Answer
 



02.     QID - 2.1295 
 

Given the following class definitions and declaration:



  class A {}

  class B extends A {}

  class C extends B {}

  class D extends C {}



  D d = new D();



the expression (d instanceof A) will return true.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



03.     QID - 2.1195 
 

Which letters will be printed when the following program is run?



public class TestClass{

  public static void main(String args[]){

    B b = new C();

    A a = b;

    if (a instanceof A) System.out.println("A");

    if (a instanceof B) System.out.println("B");

    if (a instanceof C) System.out.println("C");

    if (a instanceof D) System.out.println("D");

  }

}

class A { }

class B extends A { }

class C extends B { }

class D extends C { }


 

Select 3 options

A. A will be printed.
 


B. B will be printed.
 


C. C will be printed.
 


D. D will be printed.
 


 
Check Answer
 



04.     QID - 2.930 
 

Expression (s instanceof java.util.Date) will return false if 's' is declared as a variable of class java.lang.String.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



05.     QID - 2.1206 
 

If a.equals(b) returns true, b instanceof ClassOfA must always be true.



(Assume that ClassOfA is the name of the class of the variable a.)
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



06.     QID - 2.837 
 

Consider the following code:


interface Flyer{ }
class Bird implements Flyer { }
class Eagle extends Bird { }
class Bat { }

public class TestClass {
    
    public static void main(String[] args) {
        Flyer f = new Eagle();
        Eagle e = new Eagle();
        Bat b = new Bat();
        
        if(f instanceof Bird) System.out.println("f is a Bird");
        if(e instanceof Flyer) System.out.println("e is a Flyer");
        if(b instanceof Flyer) System.out.println("b is a Flyer");
    }
}


What will be printed when the above code is compiled and run?
 

Select 1 option

A. It will not compile.
 


B. It will throw an exception when run.
 


C. f is a Bird

e is a Flyer
 


D. f is a Bird
 


E. e is a Flyer
 


 
Check Answer
 



07.     QID - 2.1177 
 

Which of the following statements are true?
 

Select 1 option

A. For any non-null reference o1, the expression (o1 instanceof o1) will always yield true.
 


B. For any non-null reference o1, the expression (o1 instanceof Object) will always yield true.
 


C. For any non-null reference o1, the expression (o1 instanceof o1) will always yield false.
 


D. For any non-null reference o1, the expression (o1 instanceof Object) may yield false.
 


E. None of the above.
 


 
Check Answer
 



08.     QID - 2.1087 
 

Which of the given lines can be inserted at //1 of the following program ?



public class TestClass{    

   public static void main(String[] args){

     short s = 9;

     //1

   }

 }
 

Select 2 options

A. Short k = new Short(9); System.out.println(k instanceof Short);
 


B. System.out.println(s instanceof Short);
 


C. Short k = 9; System.out.println( k instanceof s);
 


D. int i = 9; System.out.println(s == i);
 


E. Boolean b = s instanceof Number;
 


F. Short k = 9; Integer i = 9; System.out.println(k == i);
 


G. Integer i = 9; System.out.println( s == i );
 


 
Check Answer
 



09.     QID - 2.1168 
 

Consider the following class hierarchy:

A
|
B1,  B2
|
C1, C2


(B1 and B2 are subclasses of A and C1, C2 are subclasses of B1)
Which of the following statements are correct?

Assume that objectOfA, objectOfC1, etc. are objects of classes A and C1 respectively.
 

Select 1 option

A. objectOfC2 instanceof B2 will return true.
 


B. objectOfC1 instanceof B1 will return true.
 


C. objectOfA instanceof B1 will return true.
 


D. C1 c1 = objectOfA; is a valid statement.
 


E. B1 b1 = objectOfB2; is a valid statement.
 


 
Check Answer
 



10.     QID - 2.1241 
 

Consider :

class A {}

class B extends A {}

class C extends B {}



Which of these boolean expressions correctly identifies when an object 'o' actually refers to an object of class B and not of C?
 

Select 2 options

A. (o instanceof B) && (!(o instanceof A))
 


B. !((o instanceof A) || (o instanceof B))
 


C. (o instanceof B) && (!(o instanceof C))
 


D. ! ( !(o instanceof B) || (o instanceof C))
 


E. (o instanceof B) && !((o instanceof A) || (o instanceof C))
 


 
Check Answer
 



11.     QID - 2.980 
 

Given the following class definitions, the expression 



 (obj instanceof A) && ! (obj instanceof C) && ! (obj instanceof D) 



correctly identifies whether the object referred to by obj was created by instantiating class B rather than classes A, C and D?



  class A {}

  class B extends A {}

  class C extends B {}

  class D extends C {}


 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



Working with Inheritance - instanceof (Answered)



01.     QID - 2.1136 : Working with Inheritance - instanceof 
 

Which of the given statements are correct about the following code?



//Filename: TestClass.java

class TestClass{

   public static void main(String[] args){

      A a = new A();

      B b = new B();

   };

}

class A implements T1, T2{}

class B extends A implements T1{}

interface T1 { }

interface T2 { }


 

Correct Options are :  A B C D 

A. (a instanceof T1) will return true.
 


B. (a instanceof T2) will return true.
 


C. (b instanceof T1) will return true.
 


D. (b instanceof T2) will return true.
 


E. (b instanceof A) will return false.
It will return true because B extends A and 'b' is referring to an object of class B.


Explanation: 
Since A implements both T1 and T2, 1 and 2 are correct.

b instanceof A will return true as B is a subclass of A. Note that it is 'A' and not 'a'.

( b instanceof a ) will not compile.

 
Back to Question without Answer
 



02.     QID - 2.1295 : Working with Inheritance - instanceof 
 

Given the following class definitions and declaration:



  class A {}

  class B extends A {}

  class C extends B {}

  class D extends C {}



  D d = new D();



the expression (d instanceof A) will return true.
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
D extends C, which extends B, which extends A. This means, D is-a C, C is-a B, and B is-a A. Therefore, D is-a A. Hence, d instanceof A will return true.

 
Back to Question without Answer
 



03.     QID - 2.1195 : Working with Inheritance - instanceof 
 

Which letters will be printed when the following program is run?



public class TestClass{

  public static void main(String args[]){

    B b = new C();

    A a = b;

    if (a instanceof A) System.out.println("A");

    if (a instanceof B) System.out.println("B");

    if (a instanceof C) System.out.println("C");

    if (a instanceof D) System.out.println("D");

  }

}

class A { }

class B extends A { }

class C extends B { }

class D extends C { }


 

Correct Options are :  A B C 

A. A will be printed.
 


B. B will be printed.
 


C. C will be printed.
 


D. D will be printed.
 


Explanation: 
The program will print A, B and C when run. The object denoted by reference a is of type C. The object is also an instance of A and B, since C is a subclass of B and B is a subclass of A. The object is not an instance of D.

 
Back to Question without Answer
 



04.     QID - 2.930 : Working with Inheritance - instanceof 
 

Expression (s instanceof java.util.Date) will return false if 's' is declared as a variable of class java.lang.String.
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
It will not even compile because the compiler knows that 's' (which is declared as of class String) can NEVER refer to an object of class java.util.Date. So, it will not accept this code.

Had 's' been declared as a variable of type Object, this code would have compiled because compiler sees that at run time it is possible for s to refer to an object of class Date.

 
Back to Question without Answer
 



05.     QID - 2.1206 : Working with Inheritance - instanceof 
 

If a.equals(b) returns true, b instanceof ClassOfA must always be true.



(Assume that ClassOfA is the name of the class of the variable a.)
 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
This may not always be correct because equals() method can be overridden. By default, it tests reference assignment, but any subclass of Object is free to redefine equals() as it deems fit. So, it is possible that an equals method may return true even if the class of the passed object has no relation to this object.

 
Back to Question without Answer
 



06.     QID - 2.837 : Working with Inheritance - instanceof 
 

Consider the following code:


interface Flyer{ }
class Bird implements Flyer { }
class Eagle extends Bird { }
class Bat { }

public class TestClass {
    
    public static void main(String[] args) {
        Flyer f = new Eagle();
        Eagle e = new Eagle();
        Bat b = new Bat();
        
        if(f instanceof Bird) System.out.println("f is a Bird");
        if(e instanceof Flyer) System.out.println("e is a Flyer");
        if(b instanceof Flyer) System.out.println("b is a Flyer");
    }
}


What will be printed when the above code is compiled and run?
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw an exception when run.
 


C. f is a Bird

e is a Flyer
At run time, f points to an object of class Eagle. Now, Eagle extends Bird so f instanceof Bird returns true.

e points to an object of class Eagle. Eagle extends Bird, which in turn implements Flyer. So an Eagle is a Flyer. Therefore, e instanceof Flyer will also return true.



b points to an object of class Bat, which does not extend from Bird. Therefore, b instanceof Flyer returns false.


D. f is a Bird
 


E. e is a Flyer
 


Explanation: 
Note that there is no compilation issue with b instanceof Flyer because Flyer is an interface and it is possible for b to point to an object of a class that is a sub class of Bat and also implements Flyer. So the compiler doesn't complain. If you make Bat class as final, b instanceof Flyer will not compile because the compiler knows that it is not possible for b to point to an object of a class that implements Flyer.

 
Back to Question without Answer
 



07.     QID - 2.1177 : Working with Inheritance - instanceof 
 

Which of the following statements are true?
 

Correct Option is :  B 

A. For any non-null reference o1, the expression (o1 instanceof o1) will always yield true.
instanceof operator does not accept objects as the right hand side operand. The operand at the right hand side should be a class. Therefore, this expression will not compile.


B. For any non-null reference o1, the expression (o1 instanceof Object) will always yield true.
Because all objects in Java derive from Object class.


C. For any non-null reference o1, the expression (o1 instanceof o1) will always yield false.
It is wrong for the same reason as option 1.


D. For any non-null reference o1, the expression (o1 instanceof Object) may yield false.
Since all objects in Java derive from Object class, there is no way it will ever return false.


E. None of the above.
 


Explanation: 
You should understand here that instanceof operator returns true even if the Right Hand Side is a super class.

For example,

  class Animal {}

  class Dog extends Animal { }

  Dog d = new Dog();

Now, d instanceof Animal will be true because even though d is actually an instance of Dog, since Dog is a subclass of Animal, Dog IS-A Animal.

 
Back to Question without Answer
 



08.     QID - 2.1087 : Working with Inheritance - instanceof 
 

Which of the given lines can be inserted at //1 of the following program ?



public class TestClass{    

   public static void main(String[] args){

     short s = 9;

     //1

   }

 }
 

Correct Options are :  D G 

A. Short k = new Short(9); System.out.println(k instanceof Short);
9 is considered an int and there is no constructor in Short that takes an int.

Short s = new Short( (short) 9 ); will work.


B. System.out.println(s instanceof Short);
The left operand of instanceof MUST be an object and not a primitive.


C. Short k = 9; System.out.println( k instanceof s);
Right operand of instanceof MUST be a class name.


D. int i = 9; System.out.println(s == i);
Any two integral primitives can be compared using == operator.


E. Boolean b = s instanceof Number;
Left operand of instanceof MUST be an object and not a primitive.


F. Short k = 9; Integer i = 9; System.out.println(k == i);
This will not compile because k and i are referring to objects that have no IS-A relationship among themselves.


G. Integer i = 9; System.out.println( s == i );
 


 
Back to Question without Answer
 



09.     QID - 2.1168 : Working with Inheritance - instanceof 
 

Consider the following class hierarchy:

A
|
B1,  B2
|
C1, C2


(B1 and B2 are subclasses of A and C1, C2 are subclasses of B1)
Which of the following statements are correct?

Assume that objectOfA, objectOfC1, etc. are objects of classes A and C1 respectively.
 

Correct Option is :  B 

A. objectOfC2 instanceof B2 will return true.
objectOfC2 is an instance of C2 and as C2 extends B1, it cannot be a subclass of B2 and so objectOfC2 instanceof B2 cannot be true.


B. objectOfC1 instanceof B1 will return true.
This is because C1 extends B1. Therefore, anything that is a C1 is a B1. It is like saying a Dog is a Pet or a Cat is a Pet, if Dog and Cat extend from Pet.


C. objectOfA instanceof B1 will return true.
 


D. C1 c1 = objectOfA; is a valid statement.
Since c1 is declared of type C1, an object of class A, cannot be assigned to c1 because A is not a C1. A C1 is an A. So A a = objectOfC1; would have been valid.


E. B1 b1 = objectOfB2; is a valid statement.
B2 does not extend from B1 and so there is no is-a relation between B1 and B2. Therefore, an object of class B2 cannot be assigned to a variable of class B1.


 
Back to Question without Answer
 



10.     QID - 2.1241 : Working with Inheritance - instanceof 
 

Consider :

class A {}

class B extends A {}

class C extends B {}



Which of these boolean expressions correctly identifies when an object 'o' actually refers to an object of class B and not of C?
 

Correct Options are :  C D 

A. (o instanceof B) && (!(o instanceof A))
This will return false if o refers to an Object of class A, B, or C because (o instanceof A) will be true for all the three.


B. !((o instanceof A) || (o instanceof B))
 


C. (o instanceof B) && (!(o instanceof C))
 


D. ! ( !(o instanceof B) || (o instanceof C))
This is the complement of "(o instanceof B) && (!(o instanceof C))" prefixed with a '!'. So in effect, both are same.


E. (o instanceof B) && !((o instanceof A) || (o instanceof C))
 


Explanation: 
The expression (o instanceof B) will return true if the object referred to by o is of type B or a subtype of B. The expression (! (o instanceof C)) will return true unless the object referred to by o is of type C or a subtype of C. Thus, the expression (o instanceof B) && (!(o instanceof C)) will only return true if the object is of type B or a subtype of B that is not C or a subtype of C.

Given objects of classes A, B and C, this expression will only return true for objects of class B.

 
Back to Question without Answer
 



11.     QID - 2.980 : Working with Inheritance - instanceof 
 

Given the following class definitions, the expression 



 (obj instanceof A) && ! (obj instanceof C) && ! (obj instanceof D) 



correctly identifies whether the object referred to by obj was created by instantiating class B rather than classes A, C and D?



  class A {}

  class B extends A {}

  class C extends B {}

  class D extends C {}


 

Correct Option is :  B 

A. True
 


B. False
 


Explanation: 
The given expression will not be able to distinguish between an object of class A and an object of class B. It will return true in both the cases. Also, The last part !(obj instanceof D) of the given expression is redundant because anything which is not instance of C cannot be an instanceof D either!



Correct expression would be (obj instanceof B) && ! (obj instanceof C). This will return true only if obj points to an object of class B and not of A, C, or D.

 
Back to Question without Answer
 



Handling Exceptions
 
Exam Objectives - 
 
Differentiate among checked exceptions, RuntimeExceptions and Errors
Create a try-catch block and determine how exceptions alter normal program flow
Describe the advantages of Exception handling 
Create and Invoke a method that throws an exception
Recognize common exception classes (such as NullPointerException, ArithmeticExcpetion, ArrayIndexOutOfBoundsException, ClassCastException)



01.     QID - 2.1000 
 

What will the following code print when run?





public class Test {



    static String s = "";



    public static void m0(int a, int b) {

        s += a;

        m2();

        m1(b);

    }



    public static void m1(int i) {

        s += i;

    }



    public static void m2() {

        throw new NullPointerException("aa");

    }



    public static void m() {

        m0(1, 2);

        m1(3);

    }



    public static void main(String args[]) {

        try {

            m();

        } catch (Exception e) {

        }

        System.out.println(s);

    }

}


 

Select 1 option

A. 1
 


B. 12
 


C. 123
 


D. 2
 


E. It will throw exception at runtime.
 


 
Check Answer
 



02.     QID - 2.1097 
 

What will be the output of the following program?



class TestClass{

   public static void main(String[] args) throws Exception{

      try{

         amethod();

         System.out.println("try ");

      }

      catch(Exception e){

         System.out.print("catch ");

      }

      finally   {

         System.out.print("finally ");

      }

      System.out.print("out ");

   }

   public static void amethod(){ }

}


 

Select 1 option

A. try finally
 


B. try finally out
 


C. try out
 


D. catch finally out
 


E. It will not compile because amethod() does not throw any exception.
 


 
Check Answer
 



03.     QID - 2.1348 
 

Which digits and in what order will be printed when the following program is run?

public class TestClass{
   public static void main(String args[]){
      int k = 0;
      try{
         int i = 5/k;
      }
      catch (ArithmeticException e){
         System.out.println("1");
      }
      catch (RuntimeException e){
         System.out.println("2");
         return ;
      }
      catch (Exception e){
         System.out.println("3");
      }
      finally{
         System.out.println("4");
      }
      System.out.println("5");
   }
}


 

Select 1 option

A. The program will print 5.
 


B. The program will print 1 and 4, in that order.
 


C. The program will print 1, 2 and 4, in that order.
 


D. The program will print 1, 4 and 5, in that order.
 


E. The program will print 1,2, 4 and 5, in that order.
 


 
Check Answer
 



04.     QID - 2.1412 
 

Checked exceptions are meant for...
 

Select 1 option

A. exceptional conditions external to an application that a well written application should anticipate and from which it can recover.
 


B. exceptional conditions external to the program  that a well written program cannot anticipate but should recover from.
 


C. exceptional conditions from which recovery is difficult or impossible.
 


D. exceptional situations internal to an application that the application can anticipate but cannot recover from.
 


 
Check Answer
 



05.     QID - 2.1345 
 

Assume that a method named 'method1' contains code which may raise a non-runtime (checked) Exception.

What is/are the possible way(s) to declare this method so that it indicates that it expects the caller to handle that exception?
 

Select 2 options

A. public void method1() throws Throwable
 


B. public void method1() throw Exception
 


C. public void method1() throw new Exception
 


D. public void method1() throws Exception
 


E. public void method1()
 


 
Check Answer
 



06.     QID - 2.1223 
 

Consider the following hierarchy of Exception classes :



java.lang.RuntimeException

  +-------- IndexOutOfBoundsException

                  +---------ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException



Which of the following statements are correct for a method that can throw ArrayIndexOutOfBounds as well as StringIndexOutOfBounds Exceptions but does not have try catch blocks to catch the same?
 

Select 3 options

A. The method calling this method will either have to catch these 2 exceptions or declare them in its throws clause.
 


B. It is ok if it declares just throws ArrayIndexOutOfBoundsException
 


C. It must declare throws ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException
 


D. It is ok if it declares just throws IndexOutOfBoundsException
 


E. It does not need to declare any throws clause.
 


 
Check Answer
 



07.     QID - 2.834 
 

Consider the following


public class TestClass {
    public static void main(String[] args) {
        TestClass tc = new TestClass();
        tc.myMethod();
    }
    
    public void myMethod() {
        yourMethod();
    }
    
    public void yourMethod() {
        throw new Exception();
    }    
}


What changes can be done to make the above code compile?
 

Select 1 option

A. Change declaration of main to :

public static void main(String[] args) throws Exception 
 


B. Change declaration of myMethod to 

public void myMethod throws Exception 
 


C. Change declaration of yourMethod to 

public void yourMethod throws Exception 
 


D. Change declaration of main and yourMethod to :

public static void main(String[] args) throws Exception and

public void yourMethod throws Exception 
 


E. Change declaration of all the three method to include throws Exception.
 


 
Check Answer
 



08.     QID - 2.1031 
 


 

 
 
Check Answer
 



09.     QID - 2.1033 
 

A try statement must always have a ............. associated with it.
 

Select 1 option

A. catch
 


B. throws
 


C. finally
 


D. catch, finally or both
 


E. throw
 


 
Check Answer
 



10.     QID - 2.881 
 

Java's Exception mechanism helps in which of the following ways?
 

Select 2 options

A. It allows creation of new exceptions that are custom to a particular application domain.
 


B. It improves code because error handling code is clearly separated from the main program logic.
 


C. It enhances the security of the application by reporting errors in the logs.
 


D. It improves the code because the exception is handled right at the place where it occured.
 


E. It provides a vast set of standard exceptions that covers all possible exceptions.
 


 
Check Answer
 



11.     QID - 2.866 
 

What can be the type of a catch argument ?
 

Select 1 option

A. Any class that extends java.lang.Exception
 


B. Any class that extends java.lang.Exception except any class that extends java.lang.RuntimeException
 


C. Any class that is-a Throwable.
 


D. Any Object
 


E. Any class that extends Error
 


 
Check Answer
 



12.     QID - 2.1350 
 

What will the following code snippet print:

Float f = null;

try{

   f = Float.valueOf("12.3");

   String s = f.toString();

   int i = Integer.parseInt(s);

   System.out.println("i = "+i);

}

catch(Exception e){

   System.out.println("trouble : "+f);

}
 

Select 1 option

A. 12
 


B. 13
 


C. trouble : null
 


D. trouble : 12.3
 


E. trouble : 0.0
 


 
Check Answer
 



13.     QID - 2.1347 
 

Consider the following code...



class MyException extends Exception {}



public class TestClass{

     public void myMethod() throws XXXX{

         throw new MyException();

     }

}



What can replace XXXX?
 

Select 3 options

A. MyException
 


B. Exception
 


C. No throws clause is necessary
 


D. Throwable
 


E. RuntimeException
 


 
Check Answer
 



14.     QID - 2.1005 
 

Consider the following code:


class A {
    public void doA(int k) throws Exception {  // 0
        for(int i=0; i< 10; i++) {
            if(i == k) throw new Exception("Index of k is "+i); // 1
        }
    }
    public void doB(boolean f) { // 2
        if(f) {
            doA(15); // 3
        }
        else return;
    }
    public static void main(String[] args) { // 4
        A a = new A();
        a.doB(args.length>0); // 5
    }
 }


Which of the following statements are correct?
 

Select 1 option

A. This will compile and run without any errors or exception.
 


B. This will compile if throws Exception is added at line //2
 


C. This will compile if throws Exception is added at line //4
 


D. This will compile if throws Exception is added at line //2 as well as //4
 


E. This will compile if  line marked // 1 is enclosed in a try - catch block.
 


 
Check Answer
 



15.     QID - 2.1254 
 

What will the following code print when run?



public class Test{

 static String j = "";

 public static void method( int i){

  try{

   if(i == 2){

     throw new Exception();

   }

   j += "1";

  }

  catch (Exception e){

   j += "2";

   return;

  }

  finally{

   j += "3";

  }

  j += "4";

 }

 public static void main(String args[]){

  method(1);

  method(2);

  System.out.println(j);

 }

}


 

Select 1 option

A. 13432
 


B. 13423
 


C. 14324
 


D. 12434
 


E. 12342
 


 
Check Answer
 



16.     QID - 2.1236 
 

What will the following program print?





public class TestClass{

  public static void main(String[] args){

     int x = 1;

     int y = 0;

     if( x/y ) System.out.println("Good");

     else  System.out.println("Bad");

  }

}
 

Select 1 option

A. Good
 


B. Bad
 


C. Exception at runtime saying division by Zero.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



17.     QID - 2.984 
 

Following is a supposedly robust method to parse an input for a float : 


public float parseFloat(String s){
   float f = 0.0f;
   try{
      f = Float.valueOf(s).floatValue();
      return f ;
   }
   catch(NumberFormatException nfe){
      System.out.println("Invalid input " + s);
      f = Float.NaN ;
      return f;
   }
   finally { System.out.println("finally");  }
   return f ;
}


Which of the following statements about the above method is/are true?
 

Select 1 option

A. If input is 0.1 then it will return 0.1 and print finally.
 


B. If input is 0x.1 then it will return Float.NaN and print Invalid input 0x.1 and finally.
 


C. If input is 1 then it will return 1.0 and print finally.
 


D. If input is 0x1 then it will return 0.0 and print Invalid input 0x1 and finally.
 


E. The code will not compile.
 


 
Check Answer
 



18.     QID - 2.1385 
 

What will the following code print when compiled and run?

(Assume that MySpecialException is an unchecked exception.)



1. public class ExceptionTest {

2.    public static void main(String[] args) {

3.        try {

4.            doSomething();

5.        } catch (MySpecialException e) {

6.            System.out.println(e);

7.        }

8.    }

9.

10.    static void doSomething() {

11.        int[] array = new int[4];

12.        array[4] = 4;

13.        doSomethingElse();

14.    }

15.

16.    static void doSomethingElse() {

17.        throw new MySpecialException("Sorry, can't do something else");

18.    }

}


 

Select 1 option

A. It will not compile.
 


B. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


C. Exception in thread "main" MySpecialException: 4

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


D. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


E. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:13)

    at ExceptionTest.main(ExceptionTest.java:4)
 


 
Check Answer
 



19.     QID - 2.826 
 

What will be the output when the following program is run?



package exceptions;

public class TestClass {

    public static void main(String[] args) {

        try{

            doTest();

        }

        catch(MyException me){

            System.out.println(me);

        }

    }

    

    static void doTest() throws MyException{

        int[] array = new int[10];

        array[10] = 1000;

        doAnotherTest();

    }

    

    static void doAnotherTest() throws MyException{

        throw new MyException("Exception from doAnotherTest");

    }

}

class MyException extends Exception {

    public MyException(String msg){

     super(msg);

    }

}



(Assume that there is no error in the line numbers given in the options.)
 

Select 1 option

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:14)

    at exceptions.TestClass.main(TestClass.java:5)
 


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
 


C. exceptions.MyException: Exception from doAnotherTest
 


D. exceptions.MyException: Exception from doAnotherTest

    at exceptions.TestClass.doAnotherTest(TestClass.java:29)

    at exceptions.TestClass.doTest(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
 


 
Check Answer
 



20.     QID - 2.1172 
 

Considering the following program, which of the options are true?



public class FinallyTest{

   public static void main(String args[]){

      try{

          if (args.length == 0) return;

          else throw new Exception("Some Exception");

      }

      catch(Exception e){

          System.out.println("Exception in Main");

      }

      finally{

          System.out.println("The end");

      }

   }

}


 

Select 2 options

A. If run with no arguments, the program will only print 'The end'.
 


B. If run with one argument, the program will only print 'The end'.
 


C. If run with one argument, the program will print 'Exception in Main' and 'The end'.
 


D. If run with one argument, the program will only print 'Exception in Main'.
 


E. If run with no arguments, the program will not print anything.
 


F. If run with no arguments, the program will generate a stack trace on the console.
 


 
Check Answer
 



21.     QID - 2.1006 
 

What will be the result of compiling and running the following program ?



class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{

   public static void main(String [] args) throws Exception{

      try{

         m2();

      }

      finally{ m3(); }

    }

    public static void m2() throws NewException{  throw new NewException();  }

    public static void m3() throws AnotherException{  throw new AnotherException();  }

}


 

Select 1 option

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



22.     QID - 2.1365 
 

Which of the following standard java exception classes extend java.lang.RuntimeException?
 

Select 4 options

A. java.lang.SecurityException
 


B. java.lang.ClassCastException
 


C. java.lang.NullPointerException
 


D. java.lang.CloneNotSupportedException
 


E. java.lang.IndexOutOfBoundsException
 


 
Check Answer
 



23.     QID - 2.1023 
 


 

 
 
Check Answer
 



24.     QID - 2.1112 
 

What will be the result of compiling and running the following program ?


class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{
    public static void main(String[] args) throws Exception{
        try{
            m2();
        }
        finally{
            m3();
        }
        catch (NewException e){}
    }

    public static void m2() throws NewException { throw new NewException(); }

    public static void m3() throws AnotherException{ throw new AnotherException(); }

}


 

Select 1 option

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



25.     QID - 2.1034 
 


 

 
 
Check Answer
 



26.     QID - 2.1148 
 

What will the following code print?



public class Test{

   public int luckyNumber(int seed){

      if(seed > 10) return seed%10;

         int x = 0;

            try{

               if(seed%2 == 0) throw new Exception("No Even no.");

               else return x;

            }

            catch(Exception e){

               return 3;

            }

            finally{

               return 7;

            }

         }



        public static void main(String args[]){

           int amount = 100, seed = 6;

           switch( new Test().luckyNumber(6) ){

               case 3: amount = amount * 2;

               case 7: amount = amount * 2;

               case 6: amount = amount + amount;

               default :

           }

          System.out.println(amount);

       }

}


 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. 800
 


D. 200
 


E. 400
 


 
Check Answer
 



27.     QID - 2.1211 
 

What will be the result of attempting to compile and run the following program?



public class TestClass{

   public static void main(String args[]){

      Exception e = null;

      throw e;

   }

}
 

Select 1 option

A. The code will fail to compile.
 


B. The program will fail to compile, since it cannot throw a null.
 


C. The program will compile without error and will throw an Exception when run.
 


D. The program will compile without error and will throw java.lang.NullPointerException when run
 


E. The program will compile without error and will run and terminate without any output.
 


 
Check Answer
 



28.     QID - 2.1301 
 

What is wrong with the following code written in a single file named TestClass.java?



class SomeThrowable extends Throwable { }

class MyThrowable extends SomeThrowable { }

public class TestClass{

   public static void main(String args[]) throws SomeThrowable{

      try{

         m1();

      }catch(SomeThrowable e){

         throw e;

      }finally{

         System.out.println("Done");

      }

   }

   public static void m1() throws MyThrowable{

      throw new MyThrowable();

   }

}


 

Select 1 option

A. The main declares that it throws SomeThrowable but throws MyThrowable.
 


B. You cannot have more than 2 classes in one file.
 


C. The catch block in the main method must declare that it catches MyThrowable rather than SomeThrowable.
 


D. There is nothing wrong with the code and Done will be printed.
 


 
Check Answer
 



29.     QID - 2.880 
 

Which of the following are standard Java exception classes?
 

Select 2 options

A. java.io.FileNotFoundException
 


B. java.io.InputException
 


C. java.lang.CPUError
 


D. java.lang.MemoryException
 


E. java.lang.SecurityException
 


 
Check Answer
 



30.     QID - 2.1093 
 

Which statements regarding the following code are correct ?





class Base{

   void method1() throws java.io.IOException, NullPointerException{

      someMethod("arguments");

      // some I/O operations

   }

   int someMethod(String str){

      if(str == null) throw new NullPointerException();

      else return str.length();

   }

}

public class NewBase extends Base{

      void method1(){

           someMethod("args");

      }

}


 

Select 2 options

A. method1 in class NewBase does not need to specify any exceptions.
 


B. The code will not compile because RuntimeExceptions cannot be specified in the throws clause.
 


C. method1 in class NewBase must at least specify IOException in its throws clause.
 


D. method1 in class NewBase must at least specify NullPointerException in its throws clause.
 


E. There is no problem with the code.
 


 
Check Answer
 



31.     QID - 2.1046 
 

What will be the output of the following program:



public class TestClass{

   public static void main(String args[]){

      try{

         m1();

      }catch(IndexOutOfBoundsException e){

         System.out.println("1");

         throw new NullPointerException();

      }catch(NullPointerException e){

         System.out.println("2");

         return;

      }catch (Exception e) {

         System.out.println("3");

      }finally{

         System.out.println("4");

      }

      System.out.println("END");

   }



   static void m1(){

      System.out.println("m1 Starts");

      throw new IndexOutOfBoundsException( "Big Bang " );

   }

}


 

Select 3 options

A. The program will print m1 Starts.
 


B. The program will print m1 Starts, 1 and 4, in that order.
 


C. The program will print m1 Starts, 1 and  2, in that order.
 


D. The program will print m1 Starts, 1, 2 and 4 in that order.
 


E. END will not be printed.
 


 
Check Answer
 



32.     QID - 2.979 
 

What will be the output when the following code is compiled and run?



//in file Test.java

class E1 extends Exception{ }

class E2 extends E1 { }

class Test{

   public static void main(String[] args){

      try{

         throw new E2();

      }

      catch(E1 e){

         System.out.println("E1");

      }

      catch(Exception e){

         System.out.println("E");

      }

      finally{

         System.out.println("Finally");

      }

   }

}
 

Select 1 option

A. It will not compile.
 


B. It will print E1 and Finally.
 


C. It will print E1, E and Finally.
 


D. It will print E and Finally.
 


E. It will print Finally.
 


 
Check Answer
 



33.     QID - 2.1133 
 

Objects of which of the following classes can be thrown using a throw statement?
 

Select 3 options

A. Event
 


B. Object
 


C. Throwable
 


D. Exception
 


E. RuntimeException
 


 
Check Answer
 



34.     QID - 2.954 
 

What class of objects can be declared by the throws clause?
 

Select 3 options

A. Exception
 


B. Error
 


C. Event
 


D. Object
 


E. RuntimeException
 


 
Check Answer
 



35.     QID - 2.827 
 

What will be the output when the following program is run?


package exceptions;
public class TestClass{
    public static void main(String[] args) {
        try{
            hello();
        }
        catch(MyException me){
            System.out.println(me);
        }
    }
    
    static void hello() throws MyException{
        int[] dear = new int[7];
        dear[0] = 747;
        foo();
    }
    
    static void foo() throws MyException{
        throw new MyException("Exception from foo");
    }
}

class MyException extends Exception {
    public MyException(String msg){
        super(msg);
    }
}


(Assume that line numbers printed in the messages given below are correct.)
 

Select 1 option

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:24)

    at exceptions.TestClass.main(TestClass.java:14)
 


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
 


C. exceptions.MyException: Exception from foo
 


D. exceptions.MyException: Exception from foo

    at exceptions.TestClass.foo(TestClass.java:29)

    at exceptions.TestClass.hello(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
 


 
Check Answer
 



36.     QID - 2.895 
 

What two changes can you do, independent of each other, to make the following code compile:



//assume appropriate imports

class PortConnector {



    public PortConnector(int port) {

        if (Math.random() > 0.5) {

            throw new IOException();

        }



        throw new RuntimeException();

    }

}





public class TestClass {



    public static void main(String[] args) {

        try {

            PortConnector pc = new PortConnector(10);

        } catch (RuntimeException re) {

            re.printStackTrace();

        }

    }

}


 

Select 2 options

A. add throws IOException to the main method.
 


B. add throws IOException to PortConnector constructor.
 


C. add throws IOException to the main method as well as to PortConnector constructor.
 


D. Change RuntimeException to java.io.IOException.
 


E. add throws Exception to PortConnector constructor and change catch(RuntimeException re) to catch(Exception re) in the main method.
 


 
Check Answer
 



37.     QID - 2.1235 
 

A Java programmer is developing a desktop application. Which of the following exceptions would be appropriate for him to throw explicitly from his code?
 

Select 1 option

A. NullPointerException
 


B. ClassCastException
 


C. ArrayIndexOutOfBoundsException
 


D. Exception
 


E. NoClassDefFoundError
 


 
Check Answer
 



38.     QID - 2.1260 
 

What will be the output of the following class.





class Test{

   public static void main(String[] args){

      int j = 1;

      try{

         int i = doIt() / (j = 2);

      } catch (Exception e){

         System.out.println(" j = " + j);

      }

   }

   public static int doIt() throws Exception {  throw new Exception("FORGET IT");  }

}


 

Select 1 option

A. It will print j = 1;
 


B. It will print j = 2;
 


C. The value of j cannot be determined.
 


D. It will not compile.
 


E. None of the above.
 


 
Check Answer
 



39.     QID - 2.864 
 

Java Exceptions is a mechanism ..
 

Select 2 options

A. for dealing with unexpected user inputs.
 


B. that you can use to determine what to do when something unexpected happens.
 


C. for logging unexpected behavior.
 


D. to ensure that the program runs even if something unexpected happens.
 


E. that the VM uses to exit the program when something unexpected happens.
 


 
Check Answer
 



40.     QID - 2.1048 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      try{
         RuntimeException re = null;
         throw re;
      }
      catch(Exception e){
         System.out.println(e);
      }
   }
}


 

Select 1 option

A. The code will fail to compile, since RuntimeException cannot be caught by catching an Exception.
 


B. The program will fail to compile, since re is null.
 


C. The program will compile without error and will print java.lang.RuntimeException when run.
 


D. The program will compile without error and will print java.lang.NullPointerException when run.
 


E. The program will compile without error and will run and print null.
 


 
Check Answer
 



41.     QID - 2.964 
 

What letters, and in what order, will be printed when the following program is compiled and run?



public class FinallyTest{

   public static void main(String args[]) throws Exception{

       try{

          m1();

          System.out.println("A");

       }

       finally{

          System.out.println("B");

       }

       System.out.println("C");

   }

   public static void m1() throws Exception { throw new Exception(); }

}


 

Select 1 option

A. It will print C and B, in that order.
 


B. It will print A and B, in that order.
 


C. It will print B and throw Exception.
 


D. It will print A, B and C in that order.
 


E. Compile time error.
 


 
Check Answer
 



42.     QID - 2.841 
 

You have a method that currently does not handle any exception thrown from the code contained in its method body. You are now changing this method to call another method that throws IOException.



What changes, independent of each other, can you make to your method so that it will compile?
 

Select 2 options

A. Set the exception to null and don't rethrow it.
 


B. Declare IOException in the throws clause of your method.
 


C. Wrap the call to another method within a try-catch block that catches RuntimeException.
 


D. Wrap the call to another method within a try-catch block that catches Exception.
 


 
Check Answer
 



43.     QID - 2.1255 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      loop :         // 1
      {
         System.out.println("Loop Lable line");
         try{
            for (  ;  true ;  i++ ){
               if( i >5) break loop;       // 2
            }
         }
         catch(Exception e){
            System.out.println("Exception in loop.");
         }
         finally{
            System.out.println("In Finally");      // 3
         }
      }
   }
}


 

Select 1 option

A. Compilation error at line 1 as this is an invalid syntax for defining a label.
 


B. Compilation error at line 2 as 'loop' is not visible here.
 


C. No compilation error and line 3 will be executed.
 


D. No compilation error and line 3 will NOT be executed.
 


E. Only the line with the label loop will be printed.
 


 
Check Answer
 



44.     QID - 2.1167 
 

Given that SomeException is a checked exception, consider the following code:



//in file A.java

public class A{ 

   protected void m() throws SomeException{} 

}



//in file B.java

public class B extends A{ 

   public void m(){ } 

}



//in file TestClass.java

public class TestClass{

   public static void main(String[] args){

      //insert code here. //1

   }

}



Which of the following options can be inserted at //1 without resulting in any compilation or runtime errors?
 

Select 1 option

A. B b =  new A();

b.m();
 


B. A a = new B();

a.m();
 


C. A a = new B();

( ( B) a ).m();
 


D. Object o = new B();

o.m();
 


E. None of these.
 


 
Check Answer
 



45.     QID - 2.1094 
 

What will the following program print when run?



public class TestClass{

  public static void main(String[] args){

     try{

        System.exit(0);

     }

     finally{

         System.out.println("finally is always executed!");

     }

  }

}


 

Select 1 option

A. It will print  "finally is always executed!"
 


B. It will not compile as there is no catch block.
 


C. It will not print anything.
 


D. An exception will be thrown
 


E. None of the above.
 


 
Check Answer
 



46.     QID - 2.1323 
 

What is the result of compiling and running this code?



class MyException extends Throwable{}

class MyException1 extends MyException{}

class MyException2 extends MyException{}

class MyException3 extends MyException2{}

public class ExceptionTest{

   void myMethod() throws MyException{

      throw new MyException3();

   }

   public static void main(String[] args){

      ExceptionTest et = new ExceptionTest();

      try{

         et.myMethod();

      }

      catch(MyException me){

         System.out.println("MyException thrown");

      }

      catch(MyException3 me3){

         System.out.println("MyException3 thrown");

      }

      finally{

         System.out.println(" Done");

      }

   }

}


 

Select 1 option

A. MyException thrown
 


B. MyException3 thrown
 


C. MyException thrown Done
 


D. MyException3 thrown Done
 


E. It fails to compile
 


 
Check Answer
 



47.     QID - 2.1200 
 

What can be done to get the following code to compile and run?
(Assume that the options are independent of each other.)


public float parseFloat( String s ){
     float f = 0.0f;      // 1
     try{
          f = Float.valueOf( s ).floatValue();    // 2
          return f ;      // 3
     }
     catch(NumberFormatException nfe){
        f = Float.NaN ;    // 4
       return f;     // 5
     }
     finally {
         return f;     // 6
     }
     return f ;    // 7
 }

 

Select 4 options

A. Remove line 3, 6
 


B. Remove line 5
 


C. Remove line 5, 6
 


D. Remove line 7
 


E. Remove line 3, 7
 


 
Check Answer
 



48.     QID - 2.1372 
 

Identify the exceptions that will be received when the following code snippets are executed.



1. int factorial(int n){

       if(n==1) return 1;

      else return n*factorial(n-1);

   }

Assume that it is called with a very large integer.



2. void printMe(Object[] oa){

       for(int i=0; i<=oa.length; i++)

       System.out.println(oa[i]);

    }

Assume that it is called as such: printMe(null);



3. Object m1(){

       return new Object(); 

    }

    void m2(){

       String s = (String) m1();

    }

Assume that method m2 is invoked.
 

Select 1 option

A. ClassCastException

ArrayIndexOutOfBoundsException

StackOverflowError
 


B. ClassCastException

ArrayIndexOutOfBoundsException

SecurityException
 


C. No Exception Will Be Thrown

SecurityException

Will Not Compile
 


D. StackOverflowError

NullPointerException

No Exception Will Be Thrown
 


E. StackOverflowError

ArrayIndexOutOfBoundsException

ClassCastException
 


F. StackOverflowError

NullPointerException

NullPointerException
 


G. SecurityException

NullPointerException

No Exception Will Be Thrown
 


H. StackOverflowError

NullPointerException

ClassCastException
 


 
Check Answer
 



49.     QID - 2.1026 
 

Given the class

// Filename: Test.java
public class Test{
   public static void main(String args[]){
      for(int i = 0; i< args.length; i++){
         System.out.print("  "+args[i]);
      }
   }
}


Now consider the following 3 options for running the program:

a: java Test
b: java Test param1
c: java Test param1 param2


Which of the following statements are true?
 

Select 2 options

A. The program will throw java.lang.ArrayIndexOutOfBoundsException on option a.
 


B. The program will throw java.lang.NullPointerException on option a.
 


C. The program will print Test param1 on option b.
 


D. It will print param1 param2 on option c.
 


E. It will not print anything on option a.
 


 
Check Answer
 



50.     QID - 2.1276 
 

What is wrong with the following code?

class MyException extends Exception {}
public class TestClass{
   public static void main(String[] args){
      TestClass tc = new TestClass();
      try{
         tc.m1();
      }
      catch (MyException e){
         tc.m1();
      }
      finally{
         tc.m2();
      }
   }
   public void m1() throws MyException{
      throw new MyException();
   }
   public void m2() throws RuntimeException{
      throw new NullPointerException();
   }
}


 

Select 1 option

A. It will not compile because you cannot throw an exception in finally block.
 


B. It will not compile because you cannot throw an exception in catch block.
 


C. It will not compile because NullPointerException cannot be created this way.
 


D. It will not compile because of unhandled exception.
 


E. It will compile but will throw an exception when run.
 


 
Check Answer
 



51.     QID - 2.1311 
 

Which exact exception class will the following class throw when compiled and run?



class Test{

   public static void main(String[] args) throws Exception{

      int[] a = null;

      int i = a [ m1() ];

   }

   public static int m1() throws Exception{

      throw new Exception("Some Exception");

   }

}
 

Select 1 option

A. NullPointerException
 


B. ArrayIndexOutOfBoundsException
 


C. Exception
 


D. RuntimeException
 


 
Check Answer
 



52.     QID - 2.967 
 

What will the following code print when compiled and run?





abstract class Calculator{

   abstract void calculate();

   public static void main(String[] args){

      System.out.println("calculating");

      Calculator x = null;

      x.calculate();

   }

}


 

Select 1 option

A. It will not compile.
 


B. It will not print anything and will throw NullPointerException
 


C. It will print calculating and then throw NullPointerException.
 


D. It will print calculating and will throw NoSuchMethodError
 


E. It will print calculating and will throw MethodNotImplementedException
 


 
Check Answer
 



53.     QID - 2.959 
 

What will the following class print ?

class Test{
   public static void main(String[] args){
      int[][] a = { { 00, 01 }, { 10, 11 } };
      int i = 99;
      try {
         a[val()][i = 1]++;
      } catch (Exception e) {
         System.out.println( i+", "+a[1][1]);
      }
   }
   static int val() throws Exception {  
     throw new Exception("unimplemented");  
   }
}


 

Select 1 option

A. 99 , 11
 


B. 1 , 11
 


C. 1 and an unknown value.
 


D. 99 and an unknown value.
 


E. It will throw an exception at Run time.
 


 
Check Answer
 



54.     QID - 2.1305 
 

Which of these statements are true?
 

Select 2 options

A. If a RuntimeException is not caught, the method will terminate and normal execution of the thread will resume.
 


B. An overriding method must declare that it throws the same exception classes as the method it overrides.
 


C. The main method of a program can declare that it throws checked exceptions.
 


D. A method declaring that it throws a certain exception class may throw instances of any subclass of that exception class.
 


E. finally blocks are executed if and only if an exception gets thrown while inside the corresponding try block.
 


 
Check Answer
 



Handling Exceptions (Answered)



01.     QID - 2.1000 : Handling Exceptions 
 

What will the following code print when run?





public class Test {



    static String s = "";



    public static void m0(int a, int b) {

        s += a;

        m2();

        m1(b);

    }



    public static void m1(int i) {

        s += i;

    }



    public static void m2() {

        throw new NullPointerException("aa");

    }



    public static void m() {

        m0(1, 2);

        m1(3);

    }



    public static void main(String args[]) {

        try {

            m();

        } catch (Exception e) {

        }

        System.out.println(s);

    }

}


 

Correct Option is :  A 

A. 1
 


B. 12
 


C. 123
 


D. 2
 


E. It will throw exception at runtime.
 


Explanation: 
Try to follow the control flow:



1. m() calls m0(1, 2). 

2. m0(1, 2) first executes s += 1 (so s is now 1) and then calls m2(). 

3. Now, m2() throws an exception which is not caught by m2() so it is propagated back to m0(1, 2). Since, within m0 method, the call to m2() is not wrapped in a try catch block, this exception further propagates up to m(). ( The next line in m0(1, 2), which is m1(2), is not executed ). 

4. Again, m() also does not have the try catch block so the same exception is further propagated up to the main() method. (The next line in m(), which is a call to m1(3) is not called). 

4. In main method, the call to m() is wrapped in a try catch block and so the exception is handled here. 

5. Finally, s stays as "1".



The point to note here is that if you do not catch an exception, it is propagated up the stack of method calls until it is handled. If nobody handles it, the JVM handles that exception and kills the thread. If that thread is the only user thread running, the program ends.

 
Back to Question without Answer
 



02.     QID - 2.1097 : Handling Exceptions 
 

What will be the output of the following program?



class TestClass{

   public static void main(String[] args) throws Exception{

      try{

         amethod();

         System.out.println("try ");

      }

      catch(Exception e){

         System.out.print("catch ");

      }

      finally   {

         System.out.print("finally ");

      }

      System.out.print("out ");

   }

   public static void amethod(){ }

}


 

Correct Option is :  B 

A. try finally
 


B. try finally out
 


C. try out
 


D. catch finally out
 


E. It will not compile because amethod() does not throw any exception.
 


Explanation: 
Since the method amethod() does not throw any exception, try is printed and the control goes to finally which prints finally. After that out is printed.

 
Back to Question without Answer
 



03.     QID - 2.1348 : Handling Exceptions 
 

Which digits and in what order will be printed when the following program is run?

public class TestClass{
   public static void main(String args[]){
      int k = 0;
      try{
         int i = 5/k;
      }
      catch (ArithmeticException e){
         System.out.println("1");
      }
      catch (RuntimeException e){
         System.out.println("2");
         return ;
      }
      catch (Exception e){
         System.out.println("3");
      }
      finally{
         System.out.println("4");
      }
      System.out.println("5");
   }
}


 

Correct Option is :  D 

A. The program will print 5.
 


B. The program will print 1 and 4, in that order.
 


C. The program will print 1, 2 and 4, in that order.
 


D. The program will print 1, 4 and 5, in that order.
 


E. The program will print 1,2, 4 and 5, in that order.
 


Explanation: 
Division by 0 throws a java.lang.ArithmeticException, which is a RuntimeException. This is caught by the first catch clause because it is the first block that can handle ArithmeticException. This prints 1. Now, as the exception is already handled, control goes to finally which prints 4 and then the try/catch/finally ends and 5 is printed.

Remember : finally is always executed even if try or catch return; (Except when there is System.exit() in try or catch.)

 
Back to Question without Answer
 



04.     QID - 2.1412 : Handling Exceptions 
 

Checked exceptions are meant for...
 

Correct Option is :  A 

A. exceptional conditions external to an application that a well written application should anticipate and from which it can recover.
Note that here recovery doesn't necessarily mean to keep functioning normally. It means that the program shouldn't just crash. If it absolutely cannot proceed, it should notify the user appropriately and then end gracefully.


B. exceptional conditions external to the program  that a well written program cannot anticipate but should recover from.
 


C. exceptional conditions from which recovery is difficult or impossible.
Errors are meant for this purpose.


D. exceptional situations internal to an application that the application can anticipate but cannot recover from.
Generally, if the exception is caused by problems internal to the program, a RuntimeException is used.


Explanation: 
There are multiple view points regarding checked and and unchecked exceptions. As per the official Java tutorial ( http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html ) :  If a client can reasonably be expected to recover from an exception, make it a checked exception. If a client cannot do anything to recover from the exception, make it an unchecked exception.

Here, the client basically means the caller of a method.



Another way to look at exceptions is to see the cause of the exception in terms of whether it is internal or external to the program's code. For example, an incorrectly written code may try to access a reference pointing to null, or it may try to access an array beyond its length. These are internal sources of exception. Here, using runtime exceptions is appropriate because ideally these problems should be identified while testing and should not occur when the program is ready for deployment. 



On the other hand, a program interacting with files may not be able to do its job at all if a file is not available but it should anticipate this situation. This is an external source of an exception and has nothing to do with a program's code as such. It is therefore appropriate to use a checked exception here.

 
Back to Question without Answer
 



05.     QID - 2.1345 : Handling Exceptions 
 

Assume that a method named 'method1' contains code which may raise a non-runtime (checked) Exception.

What is/are the possible way(s) to declare this method so that it indicates that it expects the caller to handle that exception?
 

Correct Options are :  A D 

A. public void method1() throws Throwable
 


B. public void method1() throw Exception
Note that it should be 'throws' and not 'throw'


C. public void method1() throw new Exception
This is not the right syntax.


D. public void method1() throws Exception
 


E. public void method1()
Non runtime exception must be declared in the throws clause.


 
Back to Question without Answer
 



06.     QID - 2.1223 : Handling Exceptions 
 

Consider the following hierarchy of Exception classes :



java.lang.RuntimeException

  +-------- IndexOutOfBoundsException

                  +---------ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException



Which of the following statements are correct for a method that can throw ArrayIndexOutOfBounds as well as StringIndexOutOfBounds Exceptions but does not have try catch blocks to catch the same?
 

Correct Options are :  B D E 

A. The method calling this method will either have to catch these 2 exceptions or declare them in its throws clause.
 


B. It is ok if it declares just throws ArrayIndexOutOfBoundsException
 


C. It must declare throws ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException
 


D. It is ok if it declares just throws IndexOutOfBoundsException
 


E. It does not need to declare any throws clause.
 


Explanation: 
Note that both the exceptions are RuntimeExceptions so there is no need to catch these. But it is ok even if the method declares them explicitly.

 
Back to Question without Answer
 



07.     QID - 2.834 : Handling Exceptions 
 

Consider the following


public class TestClass {
    public static void main(String[] args) {
        TestClass tc = new TestClass();
        tc.myMethod();
    }
    
    public void myMethod() {
        yourMethod();
    }
    
    public void yourMethod() {
        throw new Exception();
    }    
}


What changes can be done to make the above code compile?
 

Correct Option is :  E 

A. Change declaration of main to :

public static void main(String[] args) throws Exception 
 


B. Change declaration of myMethod to 

public void myMethod throws Exception 
 


C. Change declaration of yourMethod to 

public void yourMethod throws Exception 
 


D. Change declaration of main and yourMethod to :

public static void main(String[] args) throws Exception and

public void yourMethod throws Exception 
 


E. Change declaration of all the three method to include throws Exception.
 


Explanation: 
java.lang.Exception is a checked Exception. Which means, the method that throws this exception must declare it in the throws clause. Hence, yourMethod must declare throws Exception in its throws clause.



Now, since the call to yourMethod in myMethod can also potentially throw an exception, myMethod must also declare it in its throws clause. By the same logic, main method should also declare it in its throws clause.



Another alternative is to catch this exception in myMethod:



public void myMethod(){



   try{

     yourMethod();

   }

   catch(Exception e){  // since you are catching the exception thrown by yourMethod, there is no need to declare it in the throws clause of myMethod.

      e.printStackTrace();

   }

}



Further, since a call to myMethod cannot throw Exception anymore, main method does not need to declare it either.



Yet another alternative is to catch the exception in the main method:



    public static void main(String[] args) {

        TestClass tc = new TestClass();

        try{

          tc.myMethod();

        }

       catch(Exception e){  // since you are catching the exception thrown by myMethod, there is no need to declare it in the throws clause of main.

         e.printStackTrace();

       }

    }

    

    public void myMethod()  throws Exception{ //Notice the throws clause here.

        yourMethod();

    }

 
Back to Question without Answer
 



08.     QID - 2.1031 : Handling Exceptions 
 


 

 
Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

Note that the question is not asking what exception you need to put in the catch(...) part or throws clause. It is just asking what exceptions will be thrown by the code fragments when they are executed.

 
Back to Question without Answer
 



09.     QID - 2.1033 : Handling Exceptions 
 

A try statement must always have a ............. associated with it.
 

Correct Option is :  D 

A. catch
 


B. throws
 


C. finally
 


D. catch, finally or both
 


E. throw
 


Explanation: 
A try without resources must have either a catch or a finally. It may have both as well.

Thus, the following constructs are valid:



1.

try{

}

catch(Exception e){  }          // no finally



2.

try{

}

finally{  }          // no catch



3.

try{

}

catch(Exception e){  }

finally{  }



4. A catch can catch multiple exceptions:

try{

}

catch(Exception1|Exception2|Exception3 e){  } 



Note: try with resources (which is not on this exam) may omit catch as well as finally blocks.

 
Back to Question without Answer
 



10.     QID - 2.881 : Handling Exceptions 
 

Java's Exception mechanism helps in which of the following ways?
 

Correct Options are :  A B 

A. It allows creation of new exceptions that are custom to a particular application domain.
You can define your own exceptions based of your application business domain. For example, in a banking application, you might want to create a InsufficientFundsException. This increases code clarity as compared to having a single (or a few standard) exception class(es) and looking at the exception code to determine what happened.


B. It improves code because error handling code is clearly separated from the main program logic.
The error handling logic is put in the catch block, which makes the main flow of the program clean and easily understandable.


C. It enhances the security of the application by reporting errors in the logs.
Exception handling as such has nothing to do with the security of the application but good exception handling in an application can prevent security holes.


D. It improves the code because the exception is handled right at the place where it occured.
Just the opposite is true. It improves the code because the code does not have to include error handling code if it is not capable of handling it. It can propagate the exception up the chain and it can be handled at a somewhere at a more appropriate place.


E. It provides a vast set of standard exceptions that covers all possible exceptions.
Although it does provide a vast set of standard exceptions, they cannot cover all scenarios. But you can always create new exceptions tailored for your application.


 
Back to Question without Answer
 



11.     QID - 2.866 : Handling Exceptions 
 

What can be the type of a catch argument ?
 

Correct Option is :  C 

A. Any class that extends java.lang.Exception
 


B. Any class that extends java.lang.Exception except any class that extends java.lang.RuntimeException
 


C. Any class that is-a Throwable.
The catch argument type declares the type of exception that the handler can handle and must be the name of a class that extends Throwable or Throwable itself.


D. Any Object
 


E. Any class that extends Error
 


Explanation: 
You must remember the hierarchy of exception classes:



The base class of all exceptions is java.lang.Throwable. java.lang.Error and java.lang.Exception are the only two subclasses of Throwable. 



Error is used by the JVM to throw exception that have nothing to do with the program code as such but occur because of environment. For example, OutOfMemoryError. It indicates serious problems that a reasonable application should not try to catch. Most such errors are abnormal conditions. Error and its subclasses are regarded as unchecked exceptions for the purposes of compile-time checking of exceptions.





Exception is used by the programmer as well as the JVM when it encounters exceptional situation in the program. Exception and its subclasses (except RuntimeException) are called Checked Exceptions. Checked exceptions need to be declared in a method or constructor's throws clause if they can be thrown by the execution of the method or constructor and propagate outside the method or constructor boundary. For example, java.io.IOException.



RuntimeException extends Exception, which is used to report exceptional situations that cannot be predetermined at compile time. For example, IndexOutOfBoundsException or NullPointerException. RuntimeException and its subclasses are unchecked exceptions. Unchecked exceptions do not need to be declared in a method or constructor's throws clause.

 
Back to Question without Answer
 



12.     QID - 2.1350 : Handling Exceptions 
 

What will the following code snippet print:

Float f = null;

try{

   f = Float.valueOf("12.3");

   String s = f.toString();

   int i = Integer.parseInt(s);

   System.out.println("i = "+i);

}

catch(Exception e){

   System.out.println("trouble : "+f);

}
 

Correct Option is :  D 

A. 12
 


B. 13
 


C. trouble : null
 


D. trouble : 12.3
 


E. trouble : 0.0
 


Explanation: 
f = Float.valueOf("12.3"); executes without any problem.

int i = Integer.parseInt(s); throws a NumberFormatException because 12.3 is not an integer.

Thus, the catch block prints trouble : 12.3

 
Back to Question without Answer
 



13.     QID - 2.1347 : Handling Exceptions 
 

Consider the following code...



class MyException extends Exception {}



public class TestClass{

     public void myMethod() throws XXXX{

         throw new MyException();

     }

}



What can replace XXXX?
 

Correct Options are :  A B D 

A. MyException
 


B. Exception
Because Exception is a superclass of MyException.


C. No throws clause is necessary
It is needed because MyException is a checked exception. Any exception that extends java.lang.Exception but is not a subclass of java.lang.RuntimeException is a checked exception.


D. Throwable
Because Throwable is a super class of Exception.


E. RuntimeException
 


Explanation: 
You can use Throwable as well as Exception as both of them are super classes of MyException.

RuntimeException (and its subclasses such as NullPointerException and ArrayIndexOutOfBoundsException) is not a checked exception. So it cannot cover for MyException which is a checked exception.

You cannot use Error as well because it is not in the hierarchy of MyException, which is Object <- Throwable <- Exception <- MyException.

 
Back to Question without Answer
 



14.     QID - 2.1005 : Handling Exceptions 
 

Consider the following code:


class A {
    public void doA(int k) throws Exception {  // 0
        for(int i=0; i< 10; i++) {
            if(i == k) throw new Exception("Index of k is "+i); // 1
        }
    }
    public void doB(boolean f) { // 2
        if(f) {
            doA(15); // 3
        }
        else return;
    }
    public static void main(String[] args) { // 4
        A a = new A();
        a.doB(args.length>0); // 5
    }
 }


Which of the following statements are correct?
 

Correct Option is :  D 

A. This will compile and run without any errors or exception.
 


B. This will compile if throws Exception is added at line //2
 


C. This will compile if throws Exception is added at line //4
 


D. This will compile if throws Exception is added at line //2 as well as //4
 


E. This will compile if  line marked // 1 is enclosed in a try - catch block.
Even if // 1 is enclosed in a try block, the method still has throws Exception in its declaration, which will force the caller of this method to either declare Exception in its throws clause or put the call within a try block.


Explanation: 
Any checked exceptions must either be handled using a try block or the method that generates the exception must declare that it throws that exception. 

In this case, doA() declares that it throws Exception. doB() is calling doA but it is not handling the exception generated by doA(). So, it must declare that it throws Exception. Now, the main() method is calling doB(), which generates an exception (due to a call to doA()). Therefore, main() must also either wrap the call to doB() in a try block or declare it in its throws clause.



The main(String[] args) method is the last point in your program where any unhandled checked exception can bubble up to. After that the exception is thrown to the JVM and the JVM kills the thread.

 
Back to Question without Answer
 



15.     QID - 2.1254 : Handling Exceptions 
 

What will the following code print when run?



public class Test{

 static String j = "";

 public static void method( int i){

  try{

   if(i == 2){

     throw new Exception();

   }

   j += "1";

  }

  catch (Exception e){

   j += "2";

   return;

  }

  finally{

   j += "3";

  }

  j += "4";

 }

 public static void main(String args[]){

  method(1);

  method(2);

  System.out.println(j);

 }

}


 

Correct Option is :  B 

A. 13432
 


B. 13423
 


C. 14324
 


D. 12434
 


E. 12342
 


Explanation: 
Try to follow the flow of control :

1. in method(1) : i is not 2 so, j gets "1" then finally is executed which makes j = "13" and then the last statement (j +=4) is executed which makes j = "134".

2. in method(2) : i is 2, so it goes in the if block which throws an exception. So none of the statements of try block are executed and control goes to catch which makes j = "1342", then finally makes j = "13423" and the control is returned. Note that the last statement ( j+=4) is not executed as there was an exception thrown in the try block, which cause the control to go to the catch block, which in turn has a return.

 
Back to Question without Answer
 



16.     QID - 2.1236 : Handling Exceptions 
 

What will the following program print?





public class TestClass{

  public static void main(String[] args){

     int x = 1;

     int y = 0;

     if( x/y ) System.out.println("Good");

     else  System.out.println("Bad");

  }

}
 

Correct Option is :  D 

A. Good
 


B. Bad
 


C. Exception at runtime saying division by Zero.
 


D. It will not compile.
You need a boolean in the 'if' condition. Here, compiler sees that there is no way x/y can produce a boolean so it generates an error at compile time.


E. None of the above.
 


 
Back to Question without Answer
 



17.     QID - 2.984 : Handling Exceptions 
 

Following is a supposedly robust method to parse an input for a float : 


public float parseFloat(String s){
   float f = 0.0f;
   try{
      f = Float.valueOf(s).floatValue();
      return f ;
   }
   catch(NumberFormatException nfe){
      System.out.println("Invalid input " + s);
      f = Float.NaN ;
      return f;
   }
   finally { System.out.println("finally");  }
   return f ;
}


Which of the following statements about the above method is/are true?
 

Correct Option is :  E 

A. If input is 0.1 then it will return 0.1 and print finally.
 


B. If input is 0x.1 then it will return Float.NaN and print Invalid input 0x.1 and finally.
 


C. If input is 1 then it will return 1.0 and print finally.
 


D. If input is 0x1 then it will return 0.0 and print Invalid input 0x1 and finally.
 


E. The code will not compile.
Note that the return statement after finally block is unreachable. Otherwise, if this line were not there, choices 1, 2, 3 are valid.


 
Back to Question without Answer
 



18.     QID - 2.1385 : Handling Exceptions 
 

What will the following code print when compiled and run?

(Assume that MySpecialException is an unchecked exception.)



1. public class ExceptionTest {

2.    public static void main(String[] args) {

3.        try {

4.            doSomething();

5.        } catch (MySpecialException e) {

6.            System.out.println(e);

7.        }

8.    }

9.

10.    static void doSomething() {

11.        int[] array = new int[4];

12.        array[4] = 4;

13.        doSomethingElse();

14.    }

15.

16.    static void doSomethingElse() {

17.        throw new MySpecialException("Sorry, can't do something else");

18.    }

}


 

Correct Option is :  B 

A. It will not compile.
 


B. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


C. Exception in thread "main" MySpecialException: 4

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


D. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:12)

    at ExceptionTest.main(ExceptionTest.java:4)
 


E. Exception in thread "main" MySpecialException: Sorry, can't do something else

    at ExceptionTest.doSomethingElse(ExceptionTest.java:17)

    at ExceptionTest.doSomething(ExceptionTest.java:13)

    at ExceptionTest.main(ExceptionTest.java:4)
 


Explanation: 
Since the length of array is only 4, you can't do array[4], because that would access the 5th element. Hence, an ArrayIndexOutOfBoundsException will be thrown at line 12. Line 13 will not even be executed.

Since the exception is not caught anywhere, it will be thrown out to the JVM, which will print the stack trace of the exception.

 
Back to Question without Answer
 



19.     QID - 2.826 : Handling Exceptions 
 

What will be the output when the following program is run?



package exceptions;

public class TestClass {

    public static void main(String[] args) {

        try{

            doTest();

        }

        catch(MyException me){

            System.out.println(me);

        }

    }

    

    static void doTest() throws MyException{

        int[] array = new int[10];

        array[10] = 1000;

        doAnotherTest();

    }

    

    static void doAnotherTest() throws MyException{

        throw new MyException("Exception from doAnotherTest");

    }

}

class MyException extends Exception {

    public MyException(String msg){

     super(msg);

    }

}



(Assume that there is no error in the line numbers given in the options.)
 

Correct Option is :  A 

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:14)

    at exceptions.TestClass.main(TestClass.java:5)
You are creating an array of length 10. Since array numbering starts with 0, the last element would be array[9]. 

array[10] would be outside the range of the array and therefore an ArrayIndexOutOfBoundsException will be thrown, which cannot be caught by catch(MyException ) clause.

The exception is thus thrown out of the main method and is handled by the JVM's uncaught exception handling mechanism, which prints the stack trace.


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
java.lang.ArrayIndexOutOfBoundsException extends java.lang.IndexOutOfBoundsException, which extends java.lang.RuntimeException, and which in turn extends java.lang.Exception. 

Therefore, ArrayIndexOutOfBoundsException is an Exception and not an Error.


C. exceptions.MyException: Exception from doAnotherTest
 


D. exceptions.MyException: Exception from doAnotherTest

    at exceptions.TestClass.doAnotherTest(TestClass.java:29)

    at exceptions.TestClass.doTest(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
 


Explanation: 
Note that there are a few questions in the exam that test your knowledge about how exception messages are printed. 



When you use System.out.println(exception), a stack trace is not printed. Just the name of the exception class and the message is printed.

When you use exception.printStackTrace(), a complete chain of the names of the methods called, along with the line numbers, is printed. It contains the names of the methods in the chain of method calls that led to the place where the exception was created going back up to the point where the thread, in which the exception was created, was started.

 
Back to Question without Answer
 



20.     QID - 2.1172 : Handling Exceptions 
 

Considering the following program, which of the options are true?



public class FinallyTest{

   public static void main(String args[]){

      try{

          if (args.length == 0) return;

          else throw new Exception("Some Exception");

      }

      catch(Exception e){

          System.out.println("Exception in Main");

      }

      finally{

          System.out.println("The end");

      }

   }

}


 

Correct Options are :  A C 

A. If run with no arguments, the program will only print 'The end'.
 


B. If run with one argument, the program will only print 'The end'.
 


C. If run with one argument, the program will print 'Exception in Main' and 'The end'.
 


D. If run with one argument, the program will only print 'Exception in Main'.
 


E. If run with no arguments, the program will not print anything.
 


F. If run with no arguments, the program will generate a stack trace on the console.
 


Explanation: 
There are two points to understand here:

1. Even if the program is executed without any arguments, the 'args' is NOT NULL. In such case it will be initialized to an array of Strings containing zero elements.

2. The finally block is always executed, no matter how control leaves the try block. Only if, in a try or catch block, System.exit() is called then finally will not be executed.

 
Back to Question without Answer
 



21.     QID - 2.1006 : Handling Exceptions 
 

What will be the result of compiling and running the following program ?



class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{

   public static void main(String [] args) throws Exception{

      try{

         m2();

      }

      finally{ m3(); }

    }

    public static void m2() throws NewException{  throw new NewException();  }

    public static void m3() throws AnotherException{  throw new AnotherException();  }

}


 

Correct Option is :  A 

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
m2() throws NewException, which is not caught anywhere. But before exiting out of the main method, finally must be executed. Since finally throw AnotherException (due to a call to m3() ), the NewException thrown in the try block ( due to call to m2() ) is ignored and AnotherException is thrown from the main method.

 
Back to Question without Answer
 



22.     QID - 2.1365 : Handling Exceptions 
 

Which of the following standard java exception classes extend java.lang.RuntimeException?
 

Correct Options are :  A B C E 

A. java.lang.SecurityException
SecurityException extends RuntimeException: It is thrown by the security manager upon security violation. For example, when a java program runs in a sandbox (such as an applet) and it tries to use prohibited APIs such as File I/O, the security manager throws this exception.

Since this exception is explicitly thrown using the new keyword by a security manager class, it can be considered to be thrown by the application programmer.


B. java.lang.ClassCastException
ClassCastException extends RuntimeException: Usually thrown by the JVM. Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an instance. For example, the following code generates a ClassCastException: 

     Object x = new Integer(0);

     System.out.println((String)x);


C. java.lang.NullPointerException
NullPointerException extends RuntimeException: Usually thrown by the JVM. Thrown when an application attempts to use null in a case where an object is required. These include: 

  Calling the instance method of a null object. 

  Accessing or modifying the field of a null object. 

  Taking the length of null as if it were an array. 

  Accessing or modifying the slots of null as if it were an array. 

  Throwing null as if it were a Throwable value. 

Applications should throw instances of this class to indicate other illegal uses of the null object.


D. java.lang.CloneNotSupportedException
public class CloneNotSupportedException extends Exception

Thrown to indicate that the clone method in class Object has been called to clone an object, but that the object's class does not implement the Cloneable interface.

Applications that override the clone method can also throw this exception to indicate that an object could not or should not be cloned.


E. java.lang.IndexOutOfBoundsException
IndexOutOfBoundsException extends RuntimeException: 

 Usually thrown by the JVM. Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out of range.  Applications can subclass this class to indicate similar exceptions.

ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException both extend IndexOutOfBoundsException.


Explanation: 
The other two exceptions you should know about are:

IllegalArgumentException extends RuntimeException: If a parameter passed to a method is not valid. Usually thrown by the application.



IllegalStateException extends RuntimeException: Signals that a method has been invoked at an illegal or inappropriate time. In other words, the Java environment or Java application is not in an appropriate state for the requested operation. Usually thrown by the application.

 
Back to Question without Answer
 



23.     QID - 2.1023 : Handling Exceptions 
 


 

 
Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

 
Back to Question without Answer
 



24.     QID - 2.1112 : Handling Exceptions 
 

What will be the result of compiling and running the following program ?


class NewException extends Exception {}

class AnotherException extends Exception {}

public class ExceptionTest{
    public static void main(String[] args) throws Exception{
        try{
            m2();
        }
        finally{
            m3();
        }
        catch (NewException e){}
    }

    public static void m2() throws NewException { throw new NewException(); }

    public static void m3() throws AnotherException{ throw new AnotherException(); }

}


 

Correct Option is :  D 

A. It will compile but will throw AnotherException when run.
 


B. It will compile but will throw NewException when run.
 


C. It will compile and run without throwing any exceptions.
 


D. It will not compile.
Because a catch block cannot follow a finally block!


E. None of the above.
 


Explanation: 
Syntax of try/catch/finally is:



try{

}

catch(Exception1 e) {... }

catch(Exception2 e) {... }

...

catch(ExceptionN e) {... }

finally { ...  }



With a try, either a catch and or finally or both can occur. 

A try MUST be followed by at least one catch or finally. (Unless it is a try with resources statement, which is not in scope for this exam.)



In Java 7, you can collapse the catch blocks into a single one: 



try {     

  ...

} 

catch (SQLException | IOException | RuntimeException e) {     

  //In this block, the class of the actual exception object will be whatever exception is thrown at runtime.

  //But the class of the reference e will be the closest common super class of all the exceptions in the catch block.

  //In this case, it will be java.lang.Exception because that is the most specific class that is a super class for all the three exceptions.

  e.printStackTrace(); 

} 

 
Back to Question without Answer
 



25.     QID - 2.1034 : Handling Exceptions 
 


 

 
Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

 
Back to Question without Answer
 



26.     QID - 2.1148 : Handling Exceptions 
 

What will the following code print?



public class Test{

   public int luckyNumber(int seed){

      if(seed > 10) return seed%10;

         int x = 0;

            try{

               if(seed%2 == 0) throw new Exception("No Even no.");

               else return x;

            }

            catch(Exception e){

               return 3;

            }

            finally{

               return 7;

            }

         }



        public static void main(String args[]){

           int amount = 100, seed = 6;

           switch( new Test().luckyNumber(6) ){

               case 3: amount = amount * 2;

               case 7: amount = amount * 2;

               case 6: amount = amount + amount;

               default :

           }

          System.out.println(amount);

       }

}


 

Correct Option is :  E 

A. It will not compile.
 


B. It will throw an exception at runtime.
 


C. 800
 


D. 200
 


E. 400
 


Explanation: 
When you pass 6 to luckyNumber(), if(seed%2 == 0) throw new Exception("No Even no."); is executed and the exception is caught by the catch block where it tries to return 3; But as there is a finally associated with the try/catch block, it is executed before anything is returned. Now, as finally has return 7;, this value supersedes 3.

In fact, this method will always return 7 if seed <= 10.



Now, in the switch there is no break statement. So both -

case 7: amount = amount * 2;

and

case 6: amount = amount + amount;

are executed. so the final amount becomes 400.

 
Back to Question without Answer
 



27.     QID - 2.1211 : Handling Exceptions 
 

What will be the result of attempting to compile and run the following program?



public class TestClass{

   public static void main(String args[]){

      Exception e = null;

      throw e;

   }

}
 

Correct Option is :  A 

A. The code will fail to compile.
 


B. The program will fail to compile, since it cannot throw a null.
 


C. The program will compile without error and will throw an Exception when run.
 


D. The program will compile without error and will throw java.lang.NullPointerException when run
 


E. The program will compile without error and will run and terminate without any output.
 


Explanation: 
You are throwing an exception and there is no try or catch block, or a throws clause. So it will not compile. 

If you either put a try catch block or declare a throws clause for the method then it will throw a NullPointerException at run time because e is null.

A method that throws a 'checked' exception i.e. an exception that is not a subclass of Error or RuntimeException, either must declare it in throws clause or put the code that throws the exception in a try/catch block.

 
Back to Question without Answer
 



28.     QID - 2.1301 : Handling Exceptions 
 

What is wrong with the following code written in a single file named TestClass.java?



class SomeThrowable extends Throwable { }

class MyThrowable extends SomeThrowable { }

public class TestClass{

   public static void main(String args[]) throws SomeThrowable{

      try{

         m1();

      }catch(SomeThrowable e){

         throw e;

      }finally{

         System.out.println("Done");

      }

   }

   public static void m1() throws MyThrowable{

      throw new MyThrowable();

   }

}


 

Correct Option is :  D 

A. The main declares that it throws SomeThrowable but throws MyThrowable.
That's OK. You can put a Super class in the throws clause and then you can throw any subclass exception.


B. You cannot have more than 2 classes in one file.
You sure can. The only limitation is you can have only one top level public class in a file.


C. The catch block in the main method must declare that it catches MyThrowable rather than SomeThrowable.
You can catch a subclass exception in the catch clause that catches a super class.


D. There is nothing wrong with the code and Done will be printed.
Done will be followed by an exception. Finally is always executed (Only exception is System.exit();)


 
Back to Question without Answer
 



29.     QID - 2.880 : Handling Exceptions 
 

Which of the following are standard Java exception classes?
 

Correct Options are :  A E 

A. java.io.FileNotFoundException
 


B. java.io.InputException
There is an java.io.IOException but no InputException or OutputException.


C. java.lang.CPUError
There is no such class.


D. java.lang.MemoryException
There is a java.lang.OutOfMemoryError but no MemoryException. There is also a java.lang.StackOverflowError.


E. java.lang.SecurityException
Java has a java.lang.SecurityException. This exception extends RuntimeException and is thrown by the security manager upon security violation. For example, when a java program runs in a sandbox (such as an applet) and it tries to use prohibited APIs such as File I/O, the security manager throws this exception.

Since this exception is explicitly thrown using the new keyword by a security manager class, it can be considered to be thrown by the application programmer.


 
Back to Question without Answer
 



30.     QID - 2.1093 : Handling Exceptions 
 

Which statements regarding the following code are correct ?





class Base{

   void method1() throws java.io.IOException, NullPointerException{

      someMethod("arguments");

      // some I/O operations

   }

   int someMethod(String str){

      if(str == null) throw new NullPointerException();

      else return str.length();

   }

}

public class NewBase extends Base{

      void method1(){

           someMethod("args");

      }

}


 

Correct Options are :  A E 

A. method1 in class NewBase does not need to specify any exceptions.
 


B. The code will not compile because RuntimeExceptions cannot be specified in the throws clause.
Any Exception can be specified in the throws clause.


C. method1 in class NewBase must at least specify IOException in its throws clause.
 


D. method1 in class NewBase must at least specify NullPointerException in its throws clause.
This is not needed because NullPointerException is a RuntimeException.


E. There is no problem with the code.
 


Explanation: 
Overriding method only needs to specify a subset of the list of exception classes the overridden method can throw. A set of no classes is a valid subset of that list.



Remember that  NullPointerException is a subclass of RuntimeException, while IOException is a subclass of Exception.

 
Back to Question without Answer
 



31.     QID - 2.1046 : Handling Exceptions 
 

What will be the output of the following program:



public class TestClass{

   public static void main(String args[]){

      try{

         m1();

      }catch(IndexOutOfBoundsException e){

         System.out.println("1");

         throw new NullPointerException();

      }catch(NullPointerException e){

         System.out.println("2");

         return;

      }catch (Exception e) {

         System.out.println("3");

      }finally{

         System.out.println("4");

      }

      System.out.println("END");

   }



   static void m1(){

      System.out.println("m1 Starts");

      throw new IndexOutOfBoundsException( "Big Bang " );

   }

}


 

Correct Options are :  A B E 

A. The program will print m1 Starts.
 


B. The program will print m1 Starts, 1 and 4, in that order.
 


C. The program will print m1 Starts, 1 and  2, in that order.
 


D. The program will print m1 Starts, 1, 2 and 4 in that order.
 


E. END will not be printed.
 


Explanation: 
The IndexOutOfBoundsException is handled by the first catch block. Inside this block, a new NullPointerException is thrown. As this exception is not thrown inside the try block, it will not be caught by any of the remaining catch blocks. It will actually be sent to the caller of the main() method after the finally block is executed. (Hence '4' in the output.)



The code that prints END is never reached, since the NullPointerException remains uncaught after the execution of the finally block.



At the end a stack trace for the NullPointerException will be printed.

 
Back to Question without Answer
 



32.     QID - 2.979 : Handling Exceptions 
 

What will be the output when the following code is compiled and run?



//in file Test.java

class E1 extends Exception{ }

class E2 extends E1 { }

class Test{

   public static void main(String[] args){

      try{

         throw new E2();

      }

      catch(E1 e){

         System.out.println("E1");

      }

      catch(Exception e){

         System.out.println("E");

      }

      finally{

         System.out.println("Finally");

      }

   }

}
 

Correct Option is :  B 

A. It will not compile.
 


B. It will print E1 and Finally.
 


C. It will print E1, E and Finally.
 


D. It will print E and Finally.
 


E. It will print Finally.
 


Explanation: 
Since E2 is a sub class of E1, catch(E1 e) will be able to catch exceptions of class E2. Therefore, E1 is printed. Once the exception is caught the rest of the catch blocks at the same level (that is the ones associated with the same try block) are ignored. So E is not printed. finally is always executed (except in case of System.exit()), so Finally is also printed.

 
Back to Question without Answer
 



33.     QID - 2.1133 : Handling Exceptions 
 

Objects of which of the following classes can be thrown using a throw statement?
 

Correct Options are :  C D E 

A. Event
 


B. Object
 


C. Throwable
 


D. Exception
 


E. RuntimeException
 


Explanation: 
You can only throw a Throwable using a throws clause. Exception and Error are two main subclasses of Throwable.

 
Back to Question without Answer
 



34.     QID - 2.954 : Handling Exceptions 
 

What class of objects can be declared by the throws clause?
 

Correct Options are :  A B E 

A. Exception
 


B. Error
 


C. Event
 


D. Object
 


E. RuntimeException
 


Explanation: 
You can declare anything that is a Throwable or a subclass of Throwable, in the throws clause.

 
Back to Question without Answer
 



35.     QID - 2.827 : Handling Exceptions 
 

What will be the output when the following program is run?


package exceptions;
public class TestClass{
    public static void main(String[] args) {
        try{
            hello();
        }
        catch(MyException me){
            System.out.println(me);
        }
    }
    
    static void hello() throws MyException{
        int[] dear = new int[7];
        dear[0] = 747;
        foo();
    }
    
    static void foo() throws MyException{
        throw new MyException("Exception from foo");
    }
}

class MyException extends Exception {
    public MyException(String msg){
        super(msg);
    }
}


(Assume that line numbers printed in the messages given below are correct.)
 

Correct Option is :  C 

A. Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

    at exceptions.TestClass.doTest(TestClass.java:24)

    at exceptions.TestClass.main(TestClass.java:14)
You are creating an array of length 7. Since array numbering starts with 0, the first element would be array[0]. So ArrayIndexOutOfBoundsException will NOT be thrown.


B. Error in thread "main" java.lang.ArrayIndexOutOfBoundsException
java.lang.ArrayIndexOutOfBoundsException extends java.lang.RuntimeException, which in turn extends java.lang.Exception. Therefore, ArrayIndexOutOfBoundsException is an Exception and not an Error.


C. exceptions.MyException: Exception from foo
 


D. exceptions.MyException: Exception from foo

    at exceptions.TestClass.foo(TestClass.java:29)

    at exceptions.TestClass.hello(TestClass.java:25)

    at exceptions.TestClass.main(TestClass.java:14)
me.printStackTrace() would have produced this output.


Explanation: 
Note that there are a few questions in the exam that test your knowledge about how exception messages are printed. 



When you use System.out.println(exception), a stack trace is not printed. Just the name of the exception class and the message is printed.

When you use exception.printStackTrace(), a complete chain of the names of the methods called, along with the line numbers, is printed. It contains the names of the methods in the chain of method calls that led to the place where the exception was created going back up to the point where the thread, in which the exception was created, was started.

 
Back to Question without Answer
 



36.     QID - 2.895 : Handling Exceptions 
 

What two changes can you do, independent of each other, to make the following code compile:



//assume appropriate imports

class PortConnector {



    public PortConnector(int port) {

        if (Math.random() > 0.5) {

            throw new IOException();

        }



        throw new RuntimeException();

    }

}





public class TestClass {



    public static void main(String[] args) {

        try {

            PortConnector pc = new PortConnector(10);

        } catch (RuntimeException re) {

            re.printStackTrace();

        }

    }

}


 

Correct Options are :  C E 

A. add throws IOException to the main method.
 


B. add throws IOException to PortConnector constructor.
 


C. add throws IOException to the main method as well as to PortConnector constructor.
 


D. Change RuntimeException to java.io.IOException.
 


E. add throws Exception to PortConnector constructor and change catch(RuntimeException re) to catch(Exception re) in the main method.
 


Explanation: 
IOException is a checked exception and since the PortConnector constructor throws IOException, this exception (or its superclass) must be present in the throws clause of the constructor.



Now, the main method has two options, either catch IOException (or whatever exception PortConnector throws) in its catch block (i.e. option 5) or put that exception in its throws clause (i.e. option 3).

 
Back to Question without Answer
 



37.     QID - 2.1235 : Handling Exceptions 
 

A Java programmer is developing a desktop application. Which of the following exceptions would be appropriate for him to throw explicitly from his code?
 

Correct Option is :  D 

A. NullPointerException
 


B. ClassCastException
 


C. ArrayIndexOutOfBoundsException
 


D. Exception
 


E. NoClassDefFoundError
NoClassDefFoundError is thrown by the JVM when it attempts to load a class and is unable to find the class file. 

Note that it extends java.lang.Error and Errors are always thrown by the JVM. A programmer should never throw an Error explicitly.


Explanation: 
Observe that all the exceptions given in the options other than Exception and NoClassDefFoundError are RuntimeExceptions. These are usually thrown implicitly. A programmer should not throw these exceptions explicitly. java.lang.Exception and its subclasses (except RuntimeException) should be used by the programmer to reflect known exceptional situations, while RuntimeExceptions are used to reflect unforseen or unrecoverable exceptional situations.



Note: There is no hard and fast rule that says RuntimeExceptions (such as the ones mentioned in this questions)  must not be thrown explicitly. It is ok to throw these exceptions explicitly in certain situations. For example, framework/library classes such as Struts, Spring, and Hibernate, and standard JDK classes throw these exceptions explicitly. But for the purpose of the exam, it is a good way to determine if a given application should be thrown explicitly by the programmer or not.

 
Back to Question without Answer
 



38.     QID - 2.1260 : Handling Exceptions 
 

What will be the output of the following class.





class Test{

   public static void main(String[] args){

      int j = 1;

      try{

         int i = doIt() / (j = 2);

      } catch (Exception e){

         System.out.println(" j = " + j);

      }

   }

   public static int doIt() throws Exception {  throw new Exception("FORGET IT");  }

}


 

Correct Option is :  A 

A. It will print j = 1;
 


B. It will print j = 2;
 


C. The value of j cannot be determined.
 


D. It will not compile.
 


E. None of the above.
 


Explanation: 
If evaluation of the left-hand operand of a binary operator completes abruptly, no part of the right-hand operand appears to have been evaluated.

So, as doIt() throws exception, j = 2 never gets executed.

 
Back to Question without Answer
 



39.     QID - 2.864 : Handling Exceptions 
 

Java Exceptions is a mechanism ..
 

Correct Options are :  B C 

A. for dealing with unexpected user inputs.
 


B. that you can use to determine what to do when something unexpected happens.
Exceptions provide the means to separate the details of what to do when something out of the ordinary happens from the main logic of a program.

Once you get an exception, you can catch it and in the catch block you can determine what actions should be taken based on the situation. Thus, the actions that you have to take under exceptional circumstances are isolated from the main flow of the program and improves clarity of the code.


C. for logging unexpected behavior.
once you catch an exception, you can log the details.


D. to ensure that the program runs even if something unexpected happens.
While it is possible to keep the program "running", in case of an exception, that is not what exceptions mechanism is meant for. Exceptions provide the means to separate the details of what to do when something out of the ordinary happens from the main logic of a program.


E. that the VM uses to exit the program when something unexpected happens.
 


Explanation: 
The actual exam contains several questions on exceptions that contain vague statements. It is not possible to determine what exactly is meant by a particular option and so our answers are based on our interpretation of the options. To answer such questions, we recommend you to go through the following trail that explains the exceptions from Oracle's perspective:

http://docs.oracle.com/javase/tutorial/essential/exceptions/

 
Back to Question without Answer
 



40.     QID - 2.1048 : Handling Exceptions 
 

What will be the result of attempting to compile and run the following program?


public class TestClass{
   public static void main(String args[]){
      try{
         RuntimeException re = null;
         throw re;
      }
      catch(Exception e){
         System.out.println(e);
      }
   }
}


 

Correct Option is :  D 

A. The code will fail to compile, since RuntimeException cannot be caught by catching an Exception.
RuntimeException can be caught by catch(Exception e) statement because RuntimeException is a subclass of Exception.


B. The program will fail to compile, since re is null.
 


C. The program will compile without error and will print java.lang.RuntimeException when run.
 


D. The program will compile without error and will print java.lang.NullPointerException when run.
A NullPointerException will be thrown if the expression given to the throw statement results in a null pointer.


E. The program will compile without error and will run and print null.
 


Explanation: 
The try block generates NullPointerException which will be caught by the catch block.

 
Back to Question without Answer
 



41.     QID - 2.964 : Handling Exceptions 
 

What letters, and in what order, will be printed when the following program is compiled and run?



public class FinallyTest{

   public static void main(String args[]) throws Exception{

       try{

          m1();

          System.out.println("A");

       }

       finally{

          System.out.println("B");

       }

       System.out.println("C");

   }

   public static void m1() throws Exception { throw new Exception(); }

}


 

Correct Option is :  C 

A. It will print C and B, in that order.
 


B. It will print A and B, in that order.
 


C. It will print B and throw Exception.
 


D. It will print A, B and C in that order.
 


E. Compile time error.
 


Explanation: 
An exception is thrown in method m1() so println("A") will not be executed.

As there is no catch block, the exception will not be handled and the main() method will throw the exception to the caller. Therefore, println("C"); will also not be executed.

'finally' block is always executed (even if there is a return in try but not if there is System.exit() ) so println("B") is executed.

 
Back to Question without Answer
 



42.     QID - 2.841 : Handling Exceptions 
 

You have a method that currently does not handle any exception thrown from the code contained in its method body. You are now changing this method to call another method that throws IOException.



What changes, independent of each other, can you make to your method so that it will compile?
 

Correct Options are :  B D 

A. Set the exception to null and don't rethrow it.
This option doesn't make sense. To get the exception, you first need to catch it.


B. Declare IOException in the throws clause of your method.
 


C. Wrap the call to another method within a try-catch block that catches RuntimeException.
java.io.IOException extends Exception. It cannot be caught by a catch block that catches RuntimeException.


D. Wrap the call to another method within a try-catch block that catches Exception.
Since IOException is an Exception, you can catch it with a catch block that catches Exception.


 
Back to Question without Answer
 



43.     QID - 2.1255 : Handling Exceptions 
 

What will be the result of attempting to compile and run the following program?


class TestClass{
   public static void main(String args[]){
      int i = 0;
      loop :         // 1
      {
         System.out.println("Loop Lable line");
         try{
            for (  ;  true ;  i++ ){
               if( i >5) break loop;       // 2
            }
         }
         catch(Exception e){
            System.out.println("Exception in loop.");
         }
         finally{
            System.out.println("In Finally");      // 3
         }
      }
   }
}


 

Correct Option is :  C 

A. Compilation error at line 1 as this is an invalid syntax for defining a label.
You can apply a label to any code block or a block level statement (such as a for statement) but not to declarations. For example: loopX : int i = 10;


B. Compilation error at line 2 as 'loop' is not visible here.
 


C. No compilation error and line 3 will be executed.
Even if the break takes the control out of the block, the finally clause will be executed.


D. No compilation error and line 3 will NOT be executed.
 


E. Only the line with the label loop will be printed.
 


Explanation: 
A break without a label breaks the current loop (i.e. no iterations any more) and a break with a label tries to pass the control to the given label.

'Tries to' means that if the break is in a try block and the try block has a finally clause associated with it then it will be executed.

 
Back to Question without Answer
 



44.     QID - 2.1167 : Handling Exceptions 
 

Given that SomeException is a checked exception, consider the following code:



//in file A.java

public class A{ 

   protected void m() throws SomeException{} 

}



//in file B.java

public class B extends A{ 

   public void m(){ } 

}



//in file TestClass.java

public class TestClass{

   public static void main(String[] args){

      //insert code here. //1

   }

}



Which of the following options can be inserted at //1 without resulting in any compilation or runtime errors?
 

Correct Option is :  C 

A. B b =  new A();

b.m();
B b = new A(); is not valid because a superclass object can never be assigned to a base class reference.


B. A a = new B();

a.m();
A's m() declares 'throws SomeException', which is a checked exception, while the main() method doesn't. So a.m() must be wrapped in a try/catch block.


C. A a = new B();

( ( B) a ).m();
Due to explicit casting of 'a' to B, the compiler knows that 'a' will point to an object of class B (or its subclass), whose method m() does not throw an exception. So there is no need for a try catch block here.


D. Object o = new B();

o.m();
Object class does not have method m(). So o.m() will not compile. You can do ( (B) o ).m();


E. None of these.
 


 
Back to Question without Answer
 



45.     QID - 2.1094 : Handling Exceptions 
 

What will the following program print when run?



public class TestClass{

  public static void main(String[] args){

     try{

        System.exit(0);

     }

     finally{

         System.out.println("finally is always executed!");

     }

  }

}


 

Correct Option is :  C 

A. It will print  "finally is always executed!"
 


B. It will not compile as there is no catch block.
 


C. It will not print anything.
 


D. An exception will be thrown
 


E. None of the above.
 


Explanation: 
finally is always executed (even if you throw an exception in try or catch) but this is the exception to the rule.

When you call System.exit(...); The JVM exits so there is no way to execute the finally block.

 
Back to Question without Answer
 



46.     QID - 2.1323 : Handling Exceptions 
 

What is the result of compiling and running this code?



class MyException extends Throwable{}

class MyException1 extends MyException{}

class MyException2 extends MyException{}

class MyException3 extends MyException2{}

public class ExceptionTest{

   void myMethod() throws MyException{

      throw new MyException3();

   }

   public static void main(String[] args){

      ExceptionTest et = new ExceptionTest();

      try{

         et.myMethod();

      }

      catch(MyException me){

         System.out.println("MyException thrown");

      }

      catch(MyException3 me3){

         System.out.println("MyException3 thrown");

      }

      finally{

         System.out.println(" Done");

      }

   }

}


 

Correct Option is :  E 

A. MyException thrown
 


B. MyException3 thrown
 


C. MyException thrown Done
 


D. MyException3 thrown Done
 


E. It fails to compile
 


Explanation: 
You can have multiple catch blocks to catch different kinds of exceptions, including exceptions that are subclasses of other exceptions. However, the catch clause for more specific exceptions (i.e. a SubClassException) should come before the catch clause for more general exceptions ( i.e. a SuperClassException). Failure to do so results in a compiler error as the more specific exception is unreachable.



In this case, catch for MyException3 cannot follow catch for MyException because if MyException3 is thrown, it will be caught by the catch clause for MyException. And so, there is no way the catch clause for MyException3 can ever execute. And so it becomes an unreachable statement.

 
Back to Question without Answer
 



47.     QID - 2.1200 : Handling Exceptions 
 

What can be done to get the following code to compile and run?
(Assume that the options are independent of each other.)


public float parseFloat( String s ){
     float f = 0.0f;      // 1
     try{
          f = Float.valueOf( s ).floatValue();    // 2
          return f ;      // 3
     }
     catch(NumberFormatException nfe){
        f = Float.NaN ;    // 4
       return f;     // 5
     }
     finally {
         return f;     // 6
     }
     return f ;    // 7
 }

 

Correct Options are :  A C D E 

A. Remove line 3, 6
 


B. Remove line 5
 


C. Remove line 5, 6
 


D. Remove line 7
 


E. Remove line 3, 7
 


Explanation: 
Basically, an unreachable statement causes a compilation error (There is one exception: if(false) { ... } is valid.). As such, line 7 is unreachable because of the return statement in finally. This is because finally is always executed and there it returns a value, so there is no way line 7 can be executed!

    

When you remove the lines suggested by the options, all the lines of code are executed in one case or another. For example, in option 1, if you comment line 3 and 6, Line 7 will be executed if no exception is thrown in the try block.



We suggest you to try working out other scenarios yourself in a similar manner.

 
Back to Question without Answer
 



48.     QID - 2.1372 : Handling Exceptions 
 

Identify the exceptions that will be received when the following code snippets are executed.



1. int factorial(int n){

       if(n==1) return 1;

      else return n*factorial(n-1);

   }

Assume that it is called with a very large integer.



2. void printMe(Object[] oa){

       for(int i=0; i<=oa.length; i++)

       System.out.println(oa[i]);

    }

Assume that it is called as such: printMe(null);



3. Object m1(){

       return new Object(); 

    }

    void m2(){

       String s = (String) m1();

    }

Assume that method m2 is invoked.
 

Correct Option is :  H 

A. ClassCastException

ArrayIndexOutOfBoundsException

StackOverflowError
 


B. ClassCastException

ArrayIndexOutOfBoundsException

SecurityException
 


C. No Exception Will Be Thrown

SecurityException

Will Not Compile
 


D. StackOverflowError

NullPointerException

No Exception Will Be Thrown
 


E. StackOverflowError

ArrayIndexOutOfBoundsException

ClassCastException
 


F. StackOverflowError

NullPointerException

NullPointerException
 


G. SecurityException

NullPointerException

No Exception Will Be Thrown
 


H. StackOverflowError

NullPointerException

ClassCastException
 


Explanation: 
Please read ExceptionClassSummary document in the "Study References" section.

 
Back to Question without Answer
 



49.     QID - 2.1026 : Handling Exceptions 
 

Given the class

// Filename: Test.java
public class Test{
   public static void main(String args[]){
      for(int i = 0; i< args.length; i++){
         System.out.print("  "+args[i]);
      }
   }
}


Now consider the following 3 options for running the program:

a: java Test
b: java Test param1
c: java Test param1 param2


Which of the following statements are true?
 

Correct Options are :  D E 

A. The program will throw java.lang.ArrayIndexOutOfBoundsException on option a.
 


B. The program will throw java.lang.NullPointerException on option a.
 


C. The program will print Test param1 on option b.
Unlike in C++, Name of the file is not passed in args because for a public class it is always same as the name of the class.


D. It will print param1 param2 on option c.
 


E. It will not print anything on option a.
 


Explanation: 
It will not throw NullPointerException because args[] is never null. If no argument is given (as in option a) then the length of args is 0.

 
Back to Question without Answer
 



50.     QID - 2.1276 : Handling Exceptions 
 

What is wrong with the following code?

class MyException extends Exception {}
public class TestClass{
   public static void main(String[] args){
      TestClass tc = new TestClass();
      try{
         tc.m1();
      }
      catch (MyException e){
         tc.m1();
      }
      finally{
         tc.m2();
      }
   }
   public void m1() throws MyException{
      throw new MyException();
   }
   public void m2() throws RuntimeException{
      throw new NullPointerException();
   }
}


 

Correct Option is :  D 

A. It will not compile because you cannot throw an exception in finally block.
You can, but then you have to declare it in the method's throws clause.


B. It will not compile because you cannot throw an exception in catch block.
You can, but then you have to declare it in the method's throws clause.


C. It will not compile because NullPointerException cannot be created this way.
It does have a no args constructor.


D. It will not compile because of unhandled exception.
 


E. It will compile but will throw an exception when run.
 


Explanation: 
The catch block is throwing a checked exception (i.e. non-RuntimeException) which must be handled by either a try catch block or declared in the throws clause of the enclosing method.

Note that finally is also throwing an exception here, but it is a RuntimeException so there is no need to handle it or declare it in the throws clause.

 
Back to Question without Answer
 



51.     QID - 2.1311 : Handling Exceptions 
 

Which exact exception class will the following class throw when compiled and run?



class Test{

   public static void main(String[] args) throws Exception{

      int[] a = null;

      int i = a [ m1() ];

   }

   public static int m1() throws Exception{

      throw new Exception("Some Exception");

   }

}
 

Correct Option is :  C 

A. NullPointerException
 


B. ArrayIndexOutOfBoundsException
 


C. Exception
 


D. RuntimeException
 


Explanation: 
A NullPointerException never occurs because the index expression must be completely evaluated before any part of the indexing operation occurs, and that includes the check as to whether the value of the left-hand operand is null.

If the array reference expression produces null instead of a reference to an array, then a NullPointerException is thrown at runtime, but only after all parts of the array reference expression have been evaluated and only if these evaluations completed normally. 



In an array access, the expression to the left of the brackets appears to be fully evaluated before any part of the expression within the brackets is evaluated.

Note that if evaluation of the expression to the left of the brackets completes abruptly, no part of the expression within the brackets will appear to have been evaluated.



Here, m1() is called first, which throws Exception and so a is never accessed and NullPointerException is never thrown.

 
Back to Question without Answer
 



52.     QID - 2.967 : Handling Exceptions 
 

What will the following code print when compiled and run?





abstract class Calculator{

   abstract void calculate();

   public static void main(String[] args){

      System.out.println("calculating");

      Calculator x = null;

      x.calculate();

   }

}


 

Correct Option is :  C 

A. It will not compile.
It will compile without any issue.


B. It will not print anything and will throw NullPointerException
 


C. It will print calculating and then throw NullPointerException.
After printing, when it tries to call calculate() on x, it will throw NullPointerException since x is null.


D. It will print calculating and will throw NoSuchMethodError
 


E. It will print calculating and will throw MethodNotImplementedException
 


 
Back to Question without Answer
 



53.     QID - 2.959 : Handling Exceptions 
 

What will the following class print ?

class Test{
   public static void main(String[] args){
      int[][] a = { { 00, 01 }, { 10, 11 } };
      int i = 99;
      try {
         a[val()][i = 1]++;
      } catch (Exception e) {
         System.out.println( i+", "+a[1][1]);
      }
   }
   static int val() throws Exception {  
     throw new Exception("unimplemented");  
   }
}


 

Correct Option is :  A 

A. 99 , 11
 


B. 1 , 11
 


C. 1 and an unknown value.
 


D. 99 and an unknown value.
 


E. It will throw an exception at Run time.
 


Explanation: 
If evaluation of a dimension expression completes abruptly, no part of any dimension expression to its right will appear to have been evaluated.

Thus, while evaluating a[val()][i=1]++,  val() throws an exception and i=1 will not be executed. Therefore, i remains 99 and a[1][1] will print 11.

 
Back to Question without Answer
 



54.     QID - 2.1305 : Handling Exceptions 
 

Which of these statements are true?
 

Correct Options are :  C D 

A. If a RuntimeException is not caught, the method will terminate and normal execution of the thread will resume.
Any remaining code of the method will not be executed. Further, any uncaught exception will cause the JVM to kill the thread.


B. An overriding method must declare that it throws the same exception classes as the method it overrides.
It can throw any subset of the exceptions thrown by overridden class.


C. The main method of a program can declare that it throws checked exceptions.
Any method can do that !


D. A method declaring that it throws a certain exception class may throw instances of any subclass of that exception class.
Note that it cannot throw the instances of any superclasses of the exception.


E. finally blocks are executed if and only if an exception gets thrown while inside the corresponding try block.
Finally is ALWAYS executed. (Only exception is System.exit() )


Explanation: 
Normal execution will not resume if an exception is uncaught by a method. The exception will propagate up the method invocation stack until some method handles it. If no one handles it then the exception will be handled by the JVM and the JVM will terminated that thread.



An overriding method only needs to declare that it can throw a subset of the exceptions the overridden method can throw. Having no throws clause in the overriding method is OK.

 
Back to Question without Answer
 



Lambda Expressions
 
Exam Objectives - 
 
Write a simple Lambda expression that consumes a Lambda Predicate expression



01.     QID - 2.1470 
 

Which of the following are correct about java.util.function.Predicate?
 

Select 1 option

A. It is an interface that has only one method with the signature - 

public void test(T t);
 


B. It is an interface that has only one method with the signature - 

public boolean test(T t);
 


C. It is an abstract class that has only one abstract method with the signature - 

public abstract void test(T t);
 


D. It is an abstract class that has only one abstract method with the signature - 

public abstract boolean test(T t);
 


 
Check Answer
 



02.     QID - 2.1473 
 

What can be inserted in the code below so that it will print true when run?



public class TestClass{



   public static boolean checkList(List list, Predicate<List> p){

      return p.test(list);

   }

  

   public static void main(String[] args) {

      boolean b = //WRITE CODE HERE

      System.out.println(b);

   }

}
 

Select 2 options

A. checkList(new ArrayList(), al -> al.isEmpty());
 


B. checkList(new ArrayList(), ArrayList al -> al.isEmpty());
 


C. checkList(new ArrayList(), al -> return al.size() == 0);
 


D. checkList(new ArrayList(), al -> al.add("hello"));
 


E.  checkList(new ArrayList(), (ArrayList al) -> al.isEmpty());
 


 
Check Answer
 



03.     QID - 2.1468 
 

Given :



interface Process{

    public void process(int a, int b);

}



public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void processList(ArrayList<Data> dataList, Process p){

   for(Data d: dataList){

        p.process(d.value, d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 1 4 9?
 

Select 3 options

A. processList(al, a, b->System.out.println(a*b));
 


B. processList(al, (int a, int b)->System.out.println(a*b) );
 


C. processList(al, (int a, int b)->System.out.println(a*b); );
 


D. processList(al, (a, b)->System.out.println(a*b));
 


E. processList(al, (a, b) ->{  System.out.println(a*b); } );
 


 
Check Answer
 



04.     QID - 2.1474 
 

Given:

import java.util.*;

class Data{

    int value;

    public Data(int x){ this.value = x; }

    public String toString(){ return ""+value; }

}



class MyFilter {

  public boolean test(Data d){

     return d.value == 0;

  }

}



public class TestClass{

    

   public static void filterData(ArrayList<Data> dataList, MyFilter f){

      Iterator<Data> i = dataList.iterator();

      while(i.hasNext()){

           if(f.test(i.next())){

                i.remove();

           }

       }

   }



  public static void main(String[] args) {

        ArrayList<Data> al = new ArrayList<Data>();

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(0); al.add(d);



        filterData(al, new MyFilter());  //1 



        System.out.println(al);

    }

}



How can you use a lambda expression to achieve the same result?
 

Select 1 option

A. Replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


B. Add implements java.util.function.Predicate to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


C. Add implements java.util.function.Predicate<Data> to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


D. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


E. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate<Data> in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


 
Check Answer
 



05.     QID - 2.1475 
 

Given:

interface Runner {

  public void run();

}



Which of the following is/are valid lambda expression(s) that capture(s) the above interface?
 

Select 2 options

A. -> System.out.println("running...");
 


B. void -> System.out.println("running...")
 


C. () -> System.out.println("running...")
 


D. () -> { System.out.println("running..."); return; }
 


E. (void) -> System.out.println("running...")
 


F. -> System.out.println("running...")
 


 
Check Answer
 



06.     QID - 2.1466 
 

Which of the following statements are correct regarding a functional interface?
 

Select 1 option

A. It has exactly one method and it must be abstract.
 


B. It has exactly one method and it may or may not be abstract.
 


C. It must have exactly one abstract method and may have other default or static methods.
 


D. It must have exactly one static method and may have other default or abstract methods.
 


 
Check Answer
 



07.     QID - 2.1467 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void printUsefulData(ArrayList<Data> dataList, Predicate<Data> p){

   for(Data d: dataList){

        if(p.test(d)) System.out.println(d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 3?
 

Select 2 options

A. printUsefulData(al, (Data d)-> { return d.value>2; }  );
 


B. printUsefulData(al, d-> d.value>2 );
 


C. printUsefulData(al, (d)-> return d.value>2;  );
 


D. printUsefulData(al, Data d-> d.value>2  );
 


E. printUsefulData(al, d -> d.value>2;   );
 


 
Check Answer
 



08.     QID - 2.1469 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

    public String toString(){ return ""+value; }

}



and the following code fragments:

public  void filterData(ArrayList<Data> dataList, Predicate<Data> p){

   Iterator<Data> i = dataList.iterator();

   while(i.hasNext()){

        if(p.test(i.next())){

             i.remove();

    }

   }

}

....

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(3); al.add(d);



        //INSERT METHOD CALL HERE

       System.out.println(al);





Which of the following options can be inserted above so that it will print [1, 3]?
 

Select 1 option

A. filterData(al, d -> d.value%2 == 0 );
 


B. filterData(al, (Data x) -> x.value%2 == 0 );
 


C. filterData(al, (Data y) -> y.value%2  );
 


D. filterData(al, d -> return d.value%2 );
 


 
Check Answer
 



Lambda Expressions (Answered)



01.     QID - 2.1470 : Lambda Expressions 
 

Which of the following are correct about java.util.function.Predicate?
 

Correct Option is :  B 

A. It is an interface that has only one method with the signature - 

public void test(T t);
 


B. It is an interface that has only one method with the signature - 

public boolean test(T t);
 


C. It is an abstract class that has only one abstract method with the signature - 

public abstract void test(T t);
 


D. It is an abstract class that has only one abstract method with the signature - 

public abstract boolean test(T t);
 


Explanation: 
java.util.function.Predicate is one of the several functional interfaces that have been added to Java 8. This interface has exactly one abstract method named test, which takes any object as input and returns a boolean. This comes in very handy when you have a collection of objects and you want to go through each object of that collection and see if that object satisfies some criteria. For example, you may have a collection of Employee objects and, in one place of your application, you want to remove all such employees whose age is below 50, while in other place, you want to remove all such employees whose salary is above 100,000. In both the cases, you want to go through your collection of employees, and check each Employee object to determine if it fits the criteria. This can be implemented by writing an interface named CheckEmployee and having a method check(Employee ) which would return true if the passed object satisfies the criteria. The following code fragments illustrate how it can be done - 

 



//define the interface for creating criteria

interface CheckEmployee {

  boolean check(Employee e );

}



...



//write a method that filters Employees based on given criteria.

public void filterEmployees(ArrayList<Employee> dataList, CheckEmployee p){

   Iterator<Employee> i = dataList.iterator();

   while(i.hasNext()){

        if(p.check(i.next())){

             i.remove();

    }

   }

}



...



//create a specific criteria by defining a class that implements CheckEmployee

class MyCheckEmployee implements CheckEmployee{

   public boolean check(Employee e){

       return e.getSalary()>100000;

   }

};

...



//use the filter method with the specific criteria to filter the collection.

filterEmployees(employeeList, new MyCheckEmployee());





This is a very common requirement across applications. The purpose of Predicate interface (and other standard functional interfaces) is to eliminate the need for every application to write a customized interface.  For example, you can do the same thing with the Predicate interface as follows - 





public void filterEmployees(ArrayList<Employee> dataList, Predicate<Employee> p){

   Iterator<Employee> i = dataList.iterator();

   while(i.hasNext()){

        if(p.test(i.next())){

             i.remove();

    }

   }

}



...



// Instead of defining a MyPredicate class (like we did with MyCheckEmployee), we could also define and instantiate an anonymous inner class to reduce code clutter

Predicate<Employee> p = new Predicate<Employee>(){

  public boolean test(Employee e){

     return e.getSalary()>100000;

  }

};

...



filterEmployees(employeeList, p);





Note that both the interfaces (CheckEmployee and Predicate) can be used with lambda expressions in exactly the same way.  Instead of creating an anonymous inner class that implements the CheckEmployee or Predicate interface, you could just do -



filterEmployees(employeeList, e->e.getSalary()>100000);



The benefit with Predicate is that you don't have to write it. It is already there in the standard java library.

 
Back to Question without Answer
 



02.     QID - 2.1473 : Lambda Expressions 
 

What can be inserted in the code below so that it will print true when run?



public class TestClass{



   public static boolean checkList(List list, Predicate<List> p){

      return p.test(list);

   }

  

   public static void main(String[] args) {

      boolean b = //WRITE CODE HERE

      System.out.println(b);

   }

}
 

Correct Options are :  A D 

A. checkList(new ArrayList(), al -> al.isEmpty());
The test method of Predicate returns a boolean. So all you need for your  body part in your lambda expression is an expression that returns a boolean. 

isEmpty() is a valid method of ArrayList, which returns true if there are no elements in the list. Therefore, al.isEmpty() constitutes a valid body for the lambda expression in this case.


B. checkList(new ArrayList(), ArrayList al -> al.isEmpty());
You need to put the parameter list of the lambda expression in brackets if you want to use the parameter type. For example,

 checkList(new ArrayList(), (List al) -> al.isEmpty());

Remember that specifying the parameter type is optional ( as shown in option 1) because the compiler can figure out the parameter types by looking at the signature of the abstract method of any functional interface (here, Predicate's test method).


C. checkList(new ArrayList(), al -> return al.size() == 0);
You need to put the body withing curly braces if you want to use the return keyword. For example,

checkList(new ArrayList(), al -> { return al.size() == 0; });


D. checkList(new ArrayList(), al -> al.add("hello"));
The add method of ArrayList returns a boolean. Further, it returns true if the list is altered because of the call to add. In this case, al.add("hello") indeed alters the list because a new element is added to the list.


E.  checkList(new ArrayList(), (ArrayList al) -> al.isEmpty());
Predicate is typed to List (not ArrayList) in the checkList method, therefore, the parameter type in the lambda expression must also be List. It cannot be ArrayList.


 
Back to Question without Answer
 



03.     QID - 2.1468 : Lambda Expressions 
 

Given :



interface Process{

    public void process(int a, int b);

}



public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void processList(ArrayList<Data> dataList, Process p){

   for(Data d: dataList){

        p.process(d.value, d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 1 4 9?
 

Correct Options are :  B D E 

A. processList(al, a, b->System.out.println(a*b));
Observe that without the brackets over a, b, it would imply that you are trying to pass 3 arguments to processList method - a, b, and b->System.out.println(a*b), which is incorrect. You actually want to pass only two arguments - a and the lambda expression. Therefore, whenever the method of a functional interface takes more than one parameter, you need to put the arguments within brackets. 



If the method of a functional interface takes one parameter, you can omit the brackets. For example, x -> expression and (x) -> expression are equivalent.



If the method of a functional interface takes no parameter, you must write empty brackets. For example, ( ) -> expression


B. processList(al, (int a, int b)->System.out.println(a*b) );
 


C. processList(al, (int a, int b)->System.out.println(a*b); );
When your method body comprises only a single expression, you must omit the semi-colon.


D. processList(al, (a, b)->System.out.println(a*b));
It is ok to omit the parameter types in case of a functional interface because the compiler can determine the type of the parameters by looking at the interface method.


E. processList(al, (a, b) ->{  System.out.println(a*b); } );
If you enclose your method body within curly braces, you must write complete lines of code including the semi-colon. 

FYI, if the method is supposed to return a value, then you must include a return statement just like you do in a regular method if you are using the curly braces syntax.


Explanation: 
There is a simple trick to identify invalid lambda constructs. When you write a lambda expression for a functional interface, you are essentially providing an implementation of the method declared in that interface but in a very concise manner.  Therefore, the lambda expression code that you write must contain all the pieces of the regular method code except the ones that the compiler can easily figure out on its own such as the parameter types, return keyword, and brackets. So, in a lambda expression, just check that all the information is there and that the expression follows the basic syntax - 



(parameter list) OR single_variable_without_type -> { regular lines of code } OR just_an_expression_without_semicolon



For a complete discussion on this topic please see this short tutorial - http://enthuware.com/index.php/home/115

 
Back to Question without Answer
 



04.     QID - 2.1474 : Lambda Expressions 
 

Given:

import java.util.*;

class Data{

    int value;

    public Data(int x){ this.value = x; }

    public String toString(){ return ""+value; }

}



class MyFilter {

  public boolean test(Data d){

     return d.value == 0;

  }

}



public class TestClass{

    

   public static void filterData(ArrayList<Data> dataList, MyFilter f){

      Iterator<Data> i = dataList.iterator();

      while(i.hasNext()){

           if(f.test(i.next())){

                i.remove();

           }

       }

   }



  public static void main(String[] args) {

        ArrayList<Data> al = new ArrayList<Data>();

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(0); al.add(d);



        filterData(al, new MyFilter());  //1 



        System.out.println(al);

    }

}



How can you use a lambda expression to achieve the same result?
 

Correct Option is :  E 

A. Replace the line at //1 with:

filterData(al, x -> x.value==0);  
This would not work because MyFilter is not a functional interface.


B. Add implements java.util.function.Predicate to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
This would not work because MyFilter would still not be a functional interface.


C. Add implements java.util.function.Predicate<Data> to MyFilter definition and replace the line at //1 with:

filterData(al, x -> x.value==0);  
This would not work because MyFilter would still not be a functional interface.


D. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
Predicate is a generified interface. So you need to type it to Data before you can use this lambda expression. Otherwise, the compiler will assume that the type of x is Object and since value is not a valid field in Object class, x.value will cause a the compilation to fail.


E. Remove MyFilter class altogether. 

Change type of f from MyFilter to java.util.function.Predicate<Data> in filterData method and replace the line at //1 with:

filterData(al, x -> x.value==0);  
 


 
Back to Question without Answer
 



05.     QID - 2.1475 : Lambda Expressions 
 

Given:

interface Runner {

  public void run();

}



Which of the following is/are valid lambda expression(s) that capture(s) the above interface?
 

Correct Options are :  C D 

A. -> System.out.println("running...");
 


B. void -> System.out.println("running...")
 


C. () -> System.out.println("running...")
 


D. () -> { System.out.println("running..."); return; }
 


E. (void) -> System.out.println("running...")
 


F. -> System.out.println("running...")
 


Explanation: 
Runner is a valid functional interface because it has exactly one abstract method. 

Since this method does not take any parameter, the parameter list part of the lambda expression must be (). Further, since it does not return anything, the body part should ideally be such that it does not return anything either. Thus, you can either use a method call that returns void or some code enclosed within { and } that does not return anything. In this case, however, since there is only one interface with one method, it is ok even if the body of the lambda expression returns a value as illustrated by the following code:





interface Runner {

  public void run();

}

public class TestClass {



   public static void main(String[] args) {

        run(() -> voidMethod()); //will invoke run(Runner ) method.

        run(() -> intMethod());//will also invoke run(Runner ) method.

    }



    public static void run(Runner x) {

        x.run();

    }



    public static void voidMethod() {

        System.out.println("voidMethod");

    }

    public static int intMethod() {

        System.out.println("intMethod");

        return 0;

    }

}





The return type of the lambda expression's body becomes important in the following code though:



interface Runner {

  public void run();

}

interface Runner2 {

  public int run();

}



public class TestClass {

    

   public static void main(String[] args) {

        run(() -> voidMethod()); //will invoke run(Runner ) method.

        run(() -> intMethod());  //will not invoke run(Runner ) method.

    }



    public static void run(Runner x) {

       System.out.println("In runner");

        x.run();

    }

    public static void run(Runner2 x) {

        System.out.println("In runner2");

        x.run();

    }



    public static void voidMethod() {

        System.out.println("voidMethod");

    }

    public static int intMethod() {

        System.out.println("intMethod");

        return 0;

    }

}



 
Back to Question without Answer
 



06.     QID - 2.1466 : Lambda Expressions 
 

Which of the following statements are correct regarding a functional interface?
 

Correct Option is :  C 

A. It has exactly one method and it must be abstract.
 


B. It has exactly one method and it may or may not be abstract.
 


C. It must have exactly one abstract method and may have other default or static methods.
 


D. It must have exactly one static method and may have other default or abstract methods.
 


Explanation: 
A functional interface is an interface that contains exactly one abstract method. It may contain zero or more default methods and/or static methods. Because a functional interface contains exactly one abstract method, you can omit the name of that method when you implement it using a lambda expression. For example, consider the following interface - 

interface Predicate<T> {

    boolean test(T t);

}



The purpose of this interface is to provide a method that operates on an object of class T and return a boolean.



You could have a method that takes an instance of class that implements this interface defined like this - 

public void printImportantData(ArrayList<Data> dataList, Predicate<Data> p){

   for(Data d: dataList){

      if(p.test(d)) System.out.println(d);

   }

}



where Data class could be as simple as public class Data{ public int value; }



Now, you can call the above method as follows:



        printImportantData(al, (Data d)->{ return d.value>1; } ); 

Notice the lack of method name here. This is possible because the interface has only one abstract method so the compiler can figure out the name. This can be shortened to:



        printImportantData(al, (Data d)->d.value>1);  

Notice the lack of curly brackets, the return keywordm, and the semicolon. This is possible because the method returns a boolean and the expression d.value>1 also returns a boolean. The compiler is therefore able to figure out that the value of this expression is to be returned from the method. This can be shortened even more to:



        printImportantData(al, d->d.value>1); 

Notice that there is no declaration of d! The compiler can figure out all information it needs because the interface has only one abstract method and that method has only one parameter. So you don't need to write all those things in your code.

        



Compare the above approach to the old style using an inner class that does the same thing - 



       printImportantData(al,  new Predicate<Data>(){ 

                            public boolean test(Data d){ 

                                 return d.value>1; 

                             }   }   );



The Predicate interface described above can be used anywhere there is a need to "do something with an object and return a boolean" and is actually provided by the standard java library in java.util.function package. This package provides a few other useful functional interfaces. 



Predicate<T>    Represents a predicate (boolean-valued function) of one argument of type T.

Consumer<T> Represents an operation that accepts a single input argument of type T and returns no result.

Function<T,R> Represents a function that accepts one argument of type T and produces a result of type R

Supplier<T> Represents a supplier of results of type T.



For the exam, you only need to be aware of Predicate. 



Please see http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html for learning Lambda expressions in Java.

 
Back to Question without Answer
 



07.     QID - 2.1467 : Lambda Expressions 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

}



and the following code fragments:

public void printUsefulData(ArrayList<Data> dataList, Predicate<Data> p){

   for(Data d: dataList){

        if(p.test(d)) System.out.println(d.value);

   }

}



....

        ArrayList<Data> al = new ArrayList<Data>();

        al.add(new Data(1));al.add(new Data(2));al.add(new Data(3));



        //INSERT METHOD CALL HERE







Which of the following options can be inserted above so that it will print 3?
 

Correct Options are :  A B 

A. printUsefulData(al, (Data d)-> { return d.value>2; }  );
 


B. printUsefulData(al, d-> d.value>2 );
1. Compiler already knows the parameter types, so Data can be omitted from the parameter list.

2. When there is only one parameter in the method, you can omit the brackets because the compiler can associate the -> sign with the parameter list without any ambiguity.

3. When all your method does is return the value of an expression, you can omit the curly braces, the return keyword, and the semi-colon from the method body part. Thus, instead of { return d.value>2; }, you can just write d.value>2


C. printUsefulData(al, (d)-> return d.value>2;  );
If you write return, the compiler assumes that you are writing the complete method body and so it expects the curly braces as well as the semi-colon.


D. printUsefulData(al, Data d-> d.value>2  );
If you write parameter type, the compiler assumes that you are writing the complete parameter list of the method and so it expects the brackets i.e. (Data d) instead of just Data d.


E. printUsefulData(al, d -> d.value>2;   );
The semi-colon in the method body should not be there because the line of code is not enclosed within curly braces.


Explanation: 
There is a simple trick to identify invalid lambda constructs. When you write a lambda expression for a functional interface, you are essentially providing an implementation of the method declared in that interface but in a very concise manner.  Therefore, the lambda expression code that you write must contain all the pieces of the regular method code except the ones that the compiler can easily figure out on its own such as the parameter types, return keyword, and brackets. So, in a lambda expression, just check that all the information is there and that the expression follows the basic syntax - 



(parameter list) OR single_variable_without_type -> { regular lines of code } OR just_an_expression_without_semicolon



For a complete discussion on this topic please see this short tutorial - http://enthuware.com/index.php/home/115

 
Back to Question without Answer
 



08.     QID - 2.1469 : Lambda Expressions 
 

Given :



//In Data.java

public class Data{

    int value;

    Data(int value){

        this.value = value;

    }

    public String toString(){ return ""+value; }

}



and the following code fragments:

public  void filterData(ArrayList<Data> dataList, Predicate<Data> p){

   Iterator<Data> i = dataList.iterator();

   while(i.hasNext()){

        if(p.test(i.next())){

             i.remove();

    }

   }

}

....

        Data d = new Data(1); al.add(d);

        d = new Data(2); al.add(d);

        d = new Data(3); al.add(d);



        //INSERT METHOD CALL HERE

       System.out.println(al);





Which of the following options can be inserted above so that it will print [1, 3]?
 

Correct Option is :  B 

A. filterData(al, d -> d.value%2 == 0 );
Syntactically, this lambda expression is correct. However, remember that a lambda expression does not create a new scope for variables. Therefore, you cannot reuse the variable names that have already been used to define new variables in your argument list . 

Here, observe that the variable d is already defined so your argument list cannot use d as a variable name. It would be like defining the same variable twice in the same scope.


B. filterData(al, (Data x) -> x.value%2 == 0 );
When all your method does is return the value of an expression, you can omit the curly braces, the return keyword, and the semi-colon from the method body part. Thus, instead of { return x.value%2 == 0; }, you can just write x.value%2 == 0


C. filterData(al, (Data y) -> y.value%2  );
java.util.function.Predicate interface has one method named test and this method returns a boolean. Therefore, the body of the lambda expression that satisfies this method must return a boolean. Here, y.value%2 is an int and not a boolean.


D. filterData(al, d -> return d.value%2 );
This is invalid because of three reasons - 

1. You cannot use d as the name for your parameter as explained in option 1.

2. If you write return statement in your method body, you must enclose it within curly braces and include the semi-colon.

3. To satisfy the Predicate interface, your lambda expression must return a boolean not an int as explained in option 3.


Explanation: 
There is a simple trick to identify invalid lambda constructs. When you write a lambda expression for a functional interface, you are essentially providing an implementation of the method declared in that interface but in a very concise manner.  Therefore, the lambda expression code that you write must contain all the pieces of the regular method code except the ones that the compiler can easily figure out on its own such as the parameter types, return keyword, and brackets. So, in a lambda expression, just check that all the information is there and that the expression follows the basic syntax - 



(parameter list) OR single_variable_without_type -> { regular lines of code } OR just_an_expression_without_semicolon



For a complete discussion on this topic please see this short tutorial - http://enthuware.com/index.php/home/115

 
Back to Question without Answer
 



Working with Java API - ArrayList
 
Exam Objectives - 
 
Declare and use an ArrayList of a given type



01.     QID - 2.1407 
 

What will the following code print when compiled and run?



import java.util.*;

public class TestClass {

    public static void main(String[] args) throws Exception {

        List list = new ArrayList();

        list.add("val1"); //1

        list.add(2, "val2"); //2

        list.add(1, "val3"); //3

        System.out.println(list);

     }

}
 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
 


D. It will throw an exception at run time because of line //3
 


E. null
 


 
Check Answer
 



02.     QID - 2.1264 
 

What sequence of characters will the following program print?


import java.util.* ;
public class ListTest{
   public static void main(String args[]){
      List s1 = new ArrayList( );
      s1.add("a");
      s1.add("b");
      s1.add(1, "c");
      List s2 = new ArrayList(  s1.subList(1, 1) );
      s1.addAll(s2);
      System.out.println(s1);
   }
}


 

Select 1 option

A. The sequence a, b, c is printed.
 


B. The sequence a, b, c, b is printed.
 


C. The sequence a, c, b, c is printed.
 


D. The sequence a, c, b is printed.
 


E. None of the above.
 


 
Check Answer
 



03.     QID - 2.870 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<String> al = new ArrayList<String>();
        al.add("111");
        al.add("222");
        System.out.println(al.get(al.size()));
     }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw a NullPointerException at run time.
 


C. It will throw an IndexOutOfBoundsException at run time.
 


D. 222
 


E. null
 


 
Check Answer
 



04.     QID - 2.911 
 

Given the complete contents of TestClass.java file:


package x;
public class TestClass {
    ArrayList<String> al;
    public void init(){
        al = new ArrayList<>();
        al.add("Name 1");
        al.add("Name 2");
    }
    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.init();
        System.out.println("Size = "+tc.al.size());
    }
}



Which import statement should be added to make it compile?
 

Select 1 option

A. import java.lang.*;
 


B. import java.lang.ArrayList;
 


C. import java.util.ArrayList;
 


D. import java.collections.ArrayList;
 


E. No import is necessary.
 


 
Check Answer
 



05.     QID - 2.871 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        List  al = new ArrayList(); //1
        al.add(111); //2
        System.out.println(al.get(al.size()));  //3
     }
}

 

Select 1 option

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
 


D. It will throw an exception at run time because of line //3
 


E. null.
 


 
Check Answer
 



06.     QID - 2.1458 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will compile?
 

Select 2 options

A. ArrayList<Vehicle> al1 = new ArrayList<>();

SUV s = al1.get(0);
 


B. ArrayList<Drivable> al2 = new ArrayList<>();

Car c1 = al2.get(0);
 


C. ArrayList<SUV> al3 = new ArrayList<>();

Drivable d1 = al3.get(0);
 


D. ArrayList<SUV> al4 = new ArrayList<>();

Car c2 = al4.get(0);
 


E. ArrayList<Vehicle> al5 = new ArrayList<>();

Drivable d2 = al5.get(0);
 


 
Check Answer
 



07.     QID - 2.1465 
 

What will the following code snippet print?



        List s1 = new ArrayList( );

        try{

            while(true){

                s1.add("sdfa");

            }

        }catch(RuntimeException e){

            e.printStackTrace();

        }

        System.out.println(s1.size());
 

Select 1 option

A. It will not compile.
 


B. It will print a RuntimeException stack trace from the catch clause.
 


C. It will throw an error at runtime that will not be caught by the catch block.
 


D. It will print a stack trace from the catch clause and a number depending on the memory available in the system.
 


E. It will only print a number depending on the memory available in the system.
 


 
Check Answer
 



08.     QID - 2.1457 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will fail to compile?
 

Select 1 option

A. ArrayList<Vehicle> al1 = new ArrayList<>();

al1.add(new SUV());
 


B. ArrayList<Drivable> al2 = new ArrayList<>();

al2.add(new Car());
 


C. ArrayList<Drivable> al3 = new ArrayList<>();

al3.add(new SUV());
 


D. ArrayList<SUV> al4 = new ArrayList<>();

al4.add(new Car());
 


E. ArrayList<Vehicle> al5 = new ArrayList<>();

al5.add(new Car());
 


 
Check Answer
 



09.     QID - 2.873 
 

Which of the following are benefits of ArrayList over an array?
 

Select 1 option

A. You do not have to worry about the size of the ArrayList while appending elements.
 


B. It consumes less memory space.
 


C. You do not have to worry about thread safety.
 


D. It allows you to write type safe code.
 


 
Check Answer
 



10.     QID - 2.874 
 

Which of the following are benefits of an array over an ArrayList ?
 

Select 2 options

A. It consumes less memory.
 


B. Accessing an element in an array is faster than in ArrayList.
 


C. You do not have to worry about thread safety.
 


D. It implements Collection interface and can thus be passed where ever a Collection is required.
 


 
Check Answer
 



11.     QID - 2.850 
 

Identify the correct statements about ArrayList?
 

Select 3 options

A. ArrayList extends java.util.AbstractList.
 


B. It allows you to access its elements in random order.
 


C. You must specify the class of objects you want to store in ArrayList when you declare a variable of type ArrayList.
 


D. ArrayList does not implement RandomAccess.
 


E. You can sort its elements using Collections.sort() method.
 


 
Check Answer
 



12.     QID - 2.1463 
 

What will the following code print?



List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

if(s1.remove("a")){

    if(s1.remove("a")){

        s1.remove("b");

    }else{

        s1.remove("c");

    }

}

System.out.println(s1);
 

Select 1 option

A. [b]
 


B. [c]
 


C. [b, c, a]
 


D. [a, b, c, a]
 


E. Exception at runtime
 


 
Check Answer
 



Working with Java API - ArrayList (Answered)



01.     QID - 2.1407 : Working with Java API - ArrayList 
 

What will the following code print when compiled and run?



import java.util.*;

public class TestClass {

    public static void main(String[] args) throws Exception {

        List list = new ArrayList();

        list.add("val1"); //1

        list.add(2, "val2"); //2

        list.add(1, "val3"); //3

        System.out.println(list);

     }

}
 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
This line is trying to put a value in an ArrayList at index 2 (i.e. 3rd position). To be able to put a value at index 2, the ArrayList must have atleast 2 values already. Therefore, it will throw java.lang.IndexOutOfBoundsException exception.


D. It will throw an exception at run time because of line //3
 


E. null
 


 
Back to Question without Answer
 



02.     QID - 2.1264 : Working with Java API - ArrayList 
 

What sequence of characters will the following program print?


import java.util.* ;
public class ListTest{
   public static void main(String args[]){
      List s1 = new ArrayList( );
      s1.add("a");
      s1.add("b");
      s1.add(1, "c");
      List s2 = new ArrayList(  s1.subList(1, 1) );
      s1.addAll(s2);
      System.out.println(s1);
   }
}


 

Correct Option is :  D 

A. The sequence a, b, c is printed.
 


B. The sequence a, b, c, b is printed.
 


C. The sequence a, c, b, c is printed.
 


D. The sequence a, c, b is printed.
add(1, "c") will insert 'c' between 'a' and 'b' . subList(1 , 1) will return an empty list.


E. None of the above.
 


Explanation: 
First, "a" and "b" are appended to an empty list. Next, "c" is added between "a" and "b".

Then a new list s2 is created using the sublist view allowing access to elements from index 1 to index 1(exclusive) (i.e. no elements ).

Now, s2 is added to s1.

So s1 remains :a, c, b

 
Back to Question without Answer
 



03.     QID - 2.870 : Working with Java API - ArrayList 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        ArrayList<String> al = new ArrayList<String>();
        al.add("111");
        al.add("222");
        System.out.println(al.get(al.size()));
     }
}

 

Correct Option is :  C 

A. It will not compile.
 


B. It will throw a NullPointerException at run time.
 


C. It will throw an IndexOutOfBoundsException at run time.
size() method of ArrayList returns the number of elements. Here, it returns 2. Since numbering in ArrayList starts with 0. al.get(2) will cause an IndexOutOfBoundsException to be thrown because only 0 and 1 are valid indexes for a list of size 2.


D. 222
 


E. null
 


 
Back to Question without Answer
 



04.     QID - 2.911 : Working with Java API - ArrayList 
 

Given the complete contents of TestClass.java file:


package x;
public class TestClass {
    ArrayList<String> al;
    public void init(){
        al = new ArrayList<>();
        al.add("Name 1");
        al.add("Name 2");
    }
    public static void main(String[] args) throws Exception {
        TestClass tc = new TestClass();
        tc.init();
        System.out.println("Size = "+tc.al.size());
    }
}



Which import statement should be added to make it compile?
 

Correct Option is :  C 

A. import java.lang.*;
 


B. import java.lang.ArrayList;
 


C. import java.util.ArrayList;
 


D. import java.collections.ArrayList;
 


E. No import is necessary.
 


Explanation: 
Only java.lang package and the package in which the current class exists are automatically imported.

Class ArrayList is in java.util package, which is not imported automatically.



Note that classes in the default package (i.e. the package with no name) cannot be imported by classes in other (i.e. non default) packages. This is why you should not use the default package for creating classes.

 
Back to Question without Answer
 



05.     QID - 2.871 : Working with Java API - ArrayList 
 

What will the following code print when compiled and run?


import java.util.*;
public class TestClass {
    public static void main(String[] args) throws Exception {
        List  al = new ArrayList(); //1
        al.add(111); //2
        System.out.println(al.get(al.size()));  //3
     }
}

 

Correct Option is :  D 

A. It will not compile.
 


B. It will throw an exception at run time because of line //1
 


C. It will throw an exception at run time because of line //2
Although 111 is a primitive, it will automatically be boxed into an Integer object. So there will be no exception because of this.


D. It will throw an exception at run time because of line //3
It will throw an IndexOutOfBoundsException at run time because of this line. 

The size() method of ArrayList returns the number of elements. Here, it returns 1. Since numbering in ArrayList starts with 0. al.get(1) will cause an IndexOutOfBoundsException to be thrown because only 0 is a valid index for a list of size 1.


E. null.
 


 
Back to Question without Answer
 



06.     QID - 2.1458 : Working with Java API - ArrayList 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will compile?
 

Correct Options are :  C D 

A. ArrayList<Vehicle> al1 = new ArrayList<>();

SUV s = al1.get(0);
Since a Vehicle is not an SUV, you cannot assign an instance of a Vehicle directly to a variable of type SUV without a cast.


B. ArrayList<Drivable> al2 = new ArrayList<>();

Car c1 = al2.get(0);
Since an Drivable is not a Car, you cannot assign an instance of a Drivable directly to a variable of type Car without a cast.


C. ArrayList<SUV> al3 = new ArrayList<>();

Drivable d1 = al3.get(0);
Since an SUV is-a Drivable, you can assign an instance of an SUV to a variable of type Drivable.


D. ArrayList<SUV> al4 = new ArrayList<>();

Car c2 = al4.get(0);
Since an SUV is a Car, you can assign an instance of an SUV to a variable of type Car.


E. ArrayList<Vehicle> al5 = new ArrayList<>();

Drivable d2 = al5.get(0);
Since a Vehicle is not a Drivable, you cannot assign an instance of a Vehicle to variable of type Drivable without a cast.


Explanation: 
Although generics are not included in this exam, some candidates have reported getting similar questions that incidently touch generic syntax but are not really about generics.



This question is based on your understand of is-a relationship. When class A extends or implements B directly or indirectly, you can say that A is-a B. Here, Car directly extends Vehicle and directly implements Drivable. Therefore, a Car is-a Vehicle and a Car is-a Drivable.

Similarly, an SUV is-a Car and since Car is-a Vehicle and is-a Drivable, SUV is also a Vehicle and a Drivable.



Now, the rule is that if you have a container that is known to contain A, then the elements that you take out from it are only known to be of type A. For example, if you have an ArrayList of Cars (ArrayList<Car>) and if you take out an element from it, you know for sure that it will be a Car. It could be also be an SUV but you are not sure about that. Therefore, you cannot assign that element to a variable of type SUV without a cast. But since a Car is-a Vehicle, you can assign that element to a variable of type Vehicle.

 
Back to Question without Answer
 



07.     QID - 2.1465 : Working with Java API - ArrayList 
 

What will the following code snippet print?



        List s1 = new ArrayList( );

        try{

            while(true){

                s1.add("sdfa");

            }

        }catch(RuntimeException e){

            e.printStackTrace();

        }

        System.out.println(s1.size());
 

Correct Option is :  C 

A. It will not compile.
 


B. It will print a RuntimeException stack trace from the catch clause.
 


C. It will throw an error at runtime that will not be caught by the catch block.
It will throw a java.lang.OutOfMemoryError. Note that this is not a subclass of RuntimeException or even Exception. It is a subclass of java.lang.Error.


D. It will print a stack trace from the catch clause and a number depending on the memory available in the system.
 


E. It will only print a number depending on the memory available in the system.
 


 
Back to Question without Answer
 



08.     QID - 2.1457 : Working with Java API - ArrayList 
 

Given:

abstract class Vehicle{ }

interface Drivable{ }

class Car extends Vehicle implements Drivable{ }

class SUV extends Car { }



Which of the following options will fail to compile?
 

Correct Option is :  D 

A. ArrayList<Vehicle> al1 = new ArrayList<>();

al1.add(new SUV());
Since an SUV is-a Vehicle, you can add instances of SUV in an ArrayList of Vehicles.


B. ArrayList<Drivable> al2 = new ArrayList<>();

al2.add(new Car());
Since an Car is-a Drivable, you can add instances of Car in an ArrayList of Drivables.


C. ArrayList<Drivable> al3 = new ArrayList<>();

al3.add(new SUV());
Since an SUV is-a Drivable, you can add instances of SUV in an ArrayList of Drivables.


D. ArrayList<SUV> al4 = new ArrayList<>();

al4.add(new Car());
Since a Car is not an SUV, you cannot add instances of Car in an ArrayList of SUVs.


E. ArrayList<Vehicle> al5 = new ArrayList<>();

al5.add(new Car());
Since an Car is-a Vehicle, you can add instances of Car in an ArrayList of Vehicles.


Explanation: 
Although generics are not included in this exam, some candidates have reported getting similar questions that incidently touch generic syntax but are not really about generics.



This question is based on your understand of is-a relationship. When class A extends or implements B directly or indirectly, you can say that A is-a B. Here, Car directly extends Vehicle and directly implements Drivable. Therefore, a Car is-a Vehicle and a Car is-a Drivable.

Similarly, an SUV is-a Car and since Car is-a Vehicle and is-a Drivable, SUV is also a Vehicle and a Drivable.



Now, the rule is that if you have a container that is meant to contain A, then you can add anything that is-a A to that container. For example, if you have ArrayList<Car>, you can add a SUV to it because an SUV is-a Car. But if you have ArrayList<SUV>, you cannot add a Car to it because a Car is not an SUV.

 
Back to Question without Answer
 



09.     QID - 2.873 : Working with Java API - ArrayList 
 

Which of the following are benefits of ArrayList over an array?
 

Correct Option is :  A 

A. You do not have to worry about the size of the ArrayList while appending elements.
An ArrayList resized dynamically at run time as per the situation. An array cannot be resized once created. This reduces the amount of boiler plate code that is required to do the same task using an array.


B. It consumes less memory space.
This is an ambiguous option because in certain situation an ArrayList may consume a little bit more memory than an array (because of additional internal data structure and pointers), while in some other situation it may consume less (when your array is only half full).


C. You do not have to worry about thread safety.
An ArrayList, just like an array is not thread safe. If you have multiple threads trying to add and remove elements from an ArrayList, you have to write additional code to ensure thread safety.


D. It allows you to write type safe code.
Since ArrayList is a generics enabled class, it helps you write type safe code. For example, if you have:

  ArrayList<String> al = new ArrayList<>();

al.add(new Integer(10)); will not compile because the compiler knows that al can only contain Strings.



However, this is not an advantage over an array because arrays are also type safe. For example, if you have:

 String[] sa = new String[10];

you cannot do sa[0] = new Integer(10); either.



But you can do Object[] oa = sa; and oa[0]  = new Integer(10); This will compile fine but will fail at runtime. This is a hole in the type safety provided by arrays.


Explanation: 
Some candidates have reported getting a similar question with ambiguous options such as "An ArrayList implements Collection API". It is anybody's guess as to what is the correct answer.

 
Back to Question without Answer
 



10.     QID - 2.874 : Working with Java API - ArrayList 
 

Which of the following are benefits of an array over an ArrayList ?
 

Correct Options are :  A B 

A. It consumes less memory.
This is an ambiguous option because in certain situation an ArrayList may consume a little bit more memory than an array (because of additional internal data structure and pointers), while in some other situation it may consume less (when your array is only half full).


B. Accessing an element in an array is faster than in ArrayList.
Although very little, but a direct array access using an index is faster than calling a method on ArrayList.


C. You do not have to worry about thread safety.
Neither an ArrayList nor an array is thread safe. If you have multiple threads trying to add and remove elements from an ArrayList or an array, you have to write additional code to ensure thread safety.


D. It implements Collection interface and can thus be passed where ever a Collection is required.
arrays do not implement Collection interface. ArrayList does. This is actually an advantage of an ArrayList over an array.


Explanation: 
An ArrayList resized dynamically at run time as per the situation. An array cannot be resized once created. This reduces the amount of boiler plate code that is required to do the same task using an array.



Some candidates have reported getting a similar question with ambiguous options such as "An ArrayList implements Collection API". It is anybody's guess as to what is the correct answer.

 
Back to Question without Answer
 



11.     QID - 2.850 : Working with Java API - ArrayList 
 

Identify the correct statements about ArrayList?
 

Correct Options are :  A B E 

A. ArrayList extends java.util.AbstractList.
ArrayList is a subclass of AbstractList.

java.lang.Object
 -  java.util.AbstractCollection<E>
   -    java.util.AbstractList<E>
     -      java.util.ArrayList<E>


All Implemented Interfaces: 
Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess



B. It allows you to access its elements in random order.
This is true because you can directly access any element using get(index) method. (This is unlike a LinkedList, in which you have to go through all the elements occuring before Nth element before you can access the Nth element.)


C. You must specify the class of objects you want to store in ArrayList when you declare a variable of type ArrayList.
This is not true because you can still use non-generic form. For example, instead of using

ArrayList<String> listOfStrings;

you can use:

ArrayList listOfStrings;



Of course, if you use non generic version, you will lose the compile time type checking.


D. ArrayList does not implement RandomAccess.
It does.

RandomAccess is a marker interface used by List implementations to indicate that they support fast (generally constant time) random access. The primary purpose of this interface is to allow generic algorithms to alter their behavior to provide good performance when applied to either random or sequential access lists.


E. You can sort its elements using Collections.sort() method.
An ArrayList is a List so you can use it where ever a List is required. This include Collections methods such as sort, reverse, and shuffle.


 
Back to Question without Answer
 



12.     QID - 2.1463 : Working with Java API - ArrayList 
 

What will the following code print?



List s1 = new ArrayList( );

s1.add("a");

s1.add("b");

s1.add("c");

s1.add("a");

if(s1.remove("a")){

    if(s1.remove("a")){

        s1.remove("b");

    }else{

        s1.remove("c");

    }

}

System.out.println(s1);
 

Correct Option is :  B 

A. [b]
 


B. [c]
 


C. [b, c, a]
 


D. [a, b, c, a]
 


E. Exception at runtime
 


Explanation: 
ArrayList's remove(Object ) method removes the first occurence of the given element and returns true if found. It does not remove all occurences of the element. In this case, the first call to s1.remove("a"); will remove only the first "a" and return true, the second call to remove("a") will remove the second "a" and return true. Finally, the call to remove("b") will remove "b". Therefore, only "c" will be left in the list.



The JavaDoc API description of this method is important for the exam - 



public boolean remove(Object o)

Removes the first occurrence of the specified element from this list, if it is present (optional operation). If this list does not contain the element, it is unchanged. More formally, removes the element with the lowest index i such that (o==null ? get(i)==null : o.equals(get(i))) (if such an element exists). Returns true if this list contained the specified element (or equivalently, if this list changed as a result of the call).

 
Back to Question without Answer
 



Working with Java API - String, StringBuilder
 
Exam Objectives - 
 
Manipulate data using the StringBuilder class and its methods
Creating and manipulating Strings



01.     QID - 2.999 
 

Which of the following method calls can be applied to a String object?
 

Select 3 options

A. equals(Object)
 


B. equalsIgnoreCase(String)
 


C. prune()
 


D. append()
 


E. intern()
 


 
Check Answer
 



02.     QID - 2.1175 
 

Which of the following statements will evaluate to true?
 

Select 1 option

A. "String".replace('g','G') == "String".replace('g','G')
 


B. "String".replace('g','g') == new String("String").replace('g','g')
 


C. "String".replace('g','G')=="StrinG"
 


D. "String".replace('g','g')=="String"
 


E. None of these.
 


 
Check Answer
 



03.     QID - 2.1185 
 

What will the following code print?



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    sb.append(s.substring(4)).delete(3, 5);

    System.out.println(sb);
 

Select 1 option

A. blorbloo
 


B. bloper
 


C. bloerper
 


D. blooperper
 


E. bloo
 


 
Check Answer
 



04.     QID - 2.1422 
 

What will the following code print when compiled and run?



class StringWrapper {

   private String theVal;

   public StringWrapper(String str){ this.theVal = str; }

}

public class Tester{

    public static void main(String[] args) {

        StringWrapper sw = new StringWrapper("How are you?");

        StringBuilder sb = new StringBuilder("How are you?");

        System.out.println("Hello, "+sw);

        System.out.println("Hello, "+sb);

   }

}


 

Select 1 option

A. Hello, How are you?

Hello, How are you?
 


B. Hello, StringWrapper@<hashcode>

Hello, How are you?
 


C. Hello, How are you?

Hello, StringBuilder@<hashcode>
 


D. Hello, How are you?

Hello, java.lang.StringBuilder@<hashcode>
 


E. Hello, StringWrapper@<hashcode>

Hello, java.lang.StringBuilder@<hashcode>
 


 
Check Answer
 



05.     QID - 2.988 
 

What will the following code print?



public class Test{

    public static void stringTest(String s){

        s.replace('h', 's');

    }

    public static void stringBuilderTest(StringBuilder s){

        s.append("o");

    }

    public static void main(String[] args){

        String s = "hell";

        StringBuilder sb = new StringBuilder("well");

        stringTest(s);

        stringBuilderTest(sb);

        System.out.println(s + sb);

    }

}
 

Select 1 option

A. sellwello
 


B. hellwello
 


C. hellwell
 


D. sellwell
 


E. None of these.
 


 
Check Answer
 



06.     QID - 2.1444 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing the same number except its last four digits will be masked with xxxx?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Select 3 options

A. return new StringBuilder(fullPhoneNumber).substring(0, 8)+"xxxx";
 


B. return new StringBuilder(fullPhoneNumber).replace(8, 12, "xxxx").toString();
 


C. return new StringBuilder(fullPhoneNumber).append("xxxx", 8, 12).toString();
 


D. return new StringBuilder("xxxx").append(fullPhoneNumber, 0, 8).toString();


 


E. return new StringBuilder("xxxx").insert(0, fullPhoneNumber, 0, 8).toString();
 


 
Check Answer
 



07.     QID - 2.1392 
 

Given:





package strings;

public class StringFromChar {

    

    public static void main(String[] args) {

        String myStr = "good";

        char[] myCharArr = {'g', 'o', 'o', 'd' };

        

        String newStr = null;

        for(char ch : myCharArr){

            newStr = newStr + ch;

        }



        System.out.println((newStr == myStr)+ " " + (newStr.equals(myStr)));

        

    }

}



What will it print when compiled and run?
 

Select 1 option

A. true true
 


B. true false
 


C. false true
 


D. false false
 


 
Check Answer
 



08.     QID - 2.1246 
 

What will the following statement return?



"    hello java guru   ".trim();
 

Select 1 option

A. The line of code will not compile.
 


B. "hellojavaguru"
 


C. "hello java guru"
 


D. "hello java guru   "
 


E. None of the above
 


 
Check Answer
 



09.     QID - 2.1187 
 

Which of the following methods can be called on a String object?
 

Select 3 options

A. substring(int i)
 


B. substring(int i, int j)
 


C. substring(int i, int j, int k)
 


D. equals(Object o)
 


 
Check Answer
 



10.     QID - 2.989 
 

Consider the following code:



public class Logger{

    private StringBuilder sb = new StringBuilder();

    

    public void logMsg(String location, String message){

    sb.append(location);

    sb.append("-");

    sb.append(message);

    }

    

    public void dumpLog(){

    System.out.println(sb.toString());

    //Empty the contents of sb here

    }

    

}



Which of the following options will empty the contents of the StringBuilder referred to by variable sb in method dumpLog()?
 

Select 1 option

A. sb.delete(0, sb.length());
 


B. sb.clear();
 


C. sb.empty();
 


D. sb.removeAll();
 


E. sb.deleteAll();
 


 
Check Answer
 



11.     QID - 2.968 
 

Which of these expressions will obtain the substring "456" from a string defined by String str = "01234567"?
 

Select 1 option

A. str.substring(4, 7)
 


B. str.substring(4)
 


C. str.substring(3, 6)
 


D. str.substring(4, 6)
 


E. str.substring(4, 3)
 


 
Check Answer
 



12.     QID - 2.1302 
 

What will be the result of attempting to compile and run the following program?

 

public class TestClass{

   public static void main(String args[ ] ){

      StringBuilder sb = new StringBuilder("12345678");

      sb.setLength(5);

      sb.setLength(10);

      System.out.println(sb.length());

   }

}
 

Select 1 option

A. It will print 5.
 


B. It will print 10.
 


C. It will print 8.
 


D. Compilation error.
 


E. None of the above.
 


 
Check Answer
 



13.     QID - 2.1304 
 

Which of these are not part of the StringBuilder class?
 

Select 1 option

A. trim( )
 


B. ensureCapacity(int )
 


C. append(boolean)
 


D. reverse( )
 


E. setLength(int)
 


 
Check Answer
 



14.     QID - 2.1155 
 

Which line will print the string "MUM"?



public class TestClass{

   public static void main(String args []){

      String s = "MINIMUM";

      System.out.println(s.substring(4, 7)); //1

      System.out.println(s.substring(5)); //2

      System.out.println(s.substring(s.indexOf('I', 3))); //3

      System.out.println(s.substring(s.indexOf('I', 4))); //4

   }

}
 

Select 1 option

A. 1
 


B. 2
 


C. 3
 


D. 4
 


E. None of these.
 


 
Check Answer
 



15.     QID - 2.1174 
 

What will the following program print?



public class TestClass{

  static String str = "Hello World";

  public static void changeIt(String s){

    s = "Good bye world";

  }

  public static void main(String[] args){

    changeIt(str);

    System.out.println(str);

  }

}
 

Select 1 option

A. "Hello World"
 


B. "Good bye world"
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


 
Check Answer
 



16.     QID - 2.1186 
 

What will the following code print when compiled and run?



public class TestClass {

  public static void main(String[] args) {



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    s.append("whopper");

    sb.append("shopper");

    

    System.out.println(s);

    System.out.println(sb);

  }

}
 

Select 1 option

A. blooper and bloopershopper
 


B. blooperwhopper and bloopershopper
 


C. blooper and blooperwhoppershopper
 


D. It will not compile.
 


 
Check Answer
 



17.     QID - 2.1336 
 

Which of these methods are not a part of the String class?
 

Select 1 option

A. trim
 


B. length
 


C. concat
 


D. hashCode
 


E. reverse
 


 
Check Answer
 



18.     QID - 2.861 
 

You want to find out whether two strings are equal or not,  in terms of the actual characters within the strings. What is the best way to do this?
 

Select 1 option

A. use String's equals method.
 


B. use String's equalsIgnoreCase method.
 


C. Use == operator.
 


D. Use String's match method.
 


 
Check Answer
 



19.     QID - 2.1424 
 

What will the following code print when compiled and run?



public class TestClass{

    

    public static void main(String[] args) {



        System.out.println(getMsg((char)10)); 



    }



    public static String getMsg(char x){

        String msg = "Input value must be ";

        msg = msg.concat("smaller than X");

        msg.replace('X', x);

        String rest = " and larger than 0";

        msg.concat(rest);

        return msg;

    }

}


 

Select 1 option

A. Input value must be smaller than X and larger than 0
 


B. Input value must be smaller than 10 and larger than 0
 


C. Input value must be smaller than X
 


D. Input value must be smaller than 10
 


 
Check Answer
 



20.     QID - 2.1152 
 

Which of these expressions will return true?
 

Select 4 options

A. "hello world".equals("hello world")
 


B. "HELLO world".equalsIgnoreCase("hello world")
 


C. "hello".concat(" world").trim().equals("hello world")
 


D. "hello world".compareTo("Hello world") < 0
 


E. "Hello world".toLowerCase( ).equals("hello world")
 


 
Check Answer
 



21.     QID - 2.1225 
 

Which of these statements concerning the charAt() method of the String class are true?
 

Select 2 options

A. The charAt( ) method can take a char value as an argument.
 


B. The charAt( ) method returns a Character object.
 


C. The expression char ch = "12345".charAt(3) will assign 3 to ch.
 


D. The expression char ch = str.charAt(str.length()) where str is "12345", will assign 3 to ch.
 


E. The index of the first character is 0.
 


F. It throws StringIndexOutOfBoundsException if passed a value higher than or equal to the length of the string (or less than 0).
 


G. It throws ArrayIndexOutOfBoundsException if passed an value higher than or equal to the length of the string (or less than 0).
 


 
Check Answer
 



22.     QID - 2.868 
 

How can you initialize a StringBuilder to have a capacity of at least 100 characters?
 

Select 2 options

A. StringBuilder sb = new StringBuilder(100);
 


B. StringBuilder sb = StringBuilder.getInstance(100);
 


C. StringBuilder sb = new StringBuilder();

sb.setCapacity(100);
 


D. StringBuilder sb = new StringBuilder();

sb.ensureCapacity(100);
 


 
Check Answer
 



23.     QID - 2.1284 
 

What will the following class print when run?
 
public class Sample{
   public static void main(String[] args)  {
     String s1 = new String("java");
     StringBuilder s2 = new StringBuilder("java");
     replaceString(s1);
     replaceStringBuilder(s2);
     System.out.println(s1 + s2);
  }
  static void replaceString(String s) {
     s = s.replace('j', 'l');
  }
  static void replaceStringBuilder(StringBuilder s) {
     s.append("c");
  }
}


 

Select 1 option

A. javajava
 


B. lavajava
 


C. javajavac
 


D. lavajavac
 


E. None of these.
 


 
Check Answer
 



24.     QID - 2.1109 
 

Which of the following statements are true?
 

Select 2 options

A. method length() of String class is a final method.
 


B. You can make mutable subclasses of the String class.
 


C. StringBuilder extends String.
 


D. StringBuilder is a final class.
 


E. String class is not final.
 


 
Check Answer
 



25.     QID - 2.1248 
 

Which of these are valid expressions to create a string of value "hello world" ?
 

Select 3 options

A. " hello world".trim()
 


B. ("hello" + new String("world"))
 


C. "hello".concat(" world")
 


D. new StringBuilder("world").insert(0, "hello ").toString();
 


E. new StringBuilder("world").append(0, "hello ").toString();
 


F. new StringBuilder("world").append("hello ", 0 , 6).toString();
 


G. new StringBuilder("world").add(0, "hello ").toString();
 


 
Check Answer
 



26.     QID - 2.1445 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing "xxx-xxx-"+dddd, where dddd represents the same four digits in the original number?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Select 2 options

A. String mask = "xxx-xxx-";

mask.append(fullPhoneNumber.substring(8)); 

return mask;
 


B. return new StringBuilder("xxx-xxx-")+fullPhoneNumber.substring(8); 
 


C. return new StringBuilder(fullPhoneNumber).replace(0, 7, "xxx-xxx-").toString(); 
 


D. return "xxx-xxx-"+fullPhoneNumber.substring(8, 12);
 


 
Check Answer
 



27.     QID - 2.1285 
 

Which of the following operators can be used in conjunction with a String object?
 

Select 3 options

A. +
 


B. ++
 


C. +=
 


D. .
 


E. *
 


 
Check Answer
 



28.     QID - 2.1363 
 

In Java, Strings are immutable. A direct implication of this is...
 

Select 2 options

A. you cannot call methods like "1234".replace('1', '9'); and expect to change the original String.
 


B. you cannot change a String object, once it is created.
 


C. you can change a String object only by the means of its methods.
 


D. you cannot extend String class.
 


E. you cannot compare String objects.
 


 
Check Answer
 



29.     QID - 2.1054 
 

What will be written to the standard output when the following program is run?



public class TrimTest{

   public static void main(String args[]){

      String blank  = " ";  // one space

      String line = blank + "hello" + blank + blank;

      line.concat("world");

      String newLine  =  line.trim();

      System.out.println((int)(line.length() + newLine.length()));

   }

}
 

Select 1 option

A. 25
 


B. 24
 


C. 23
 


D. 22
 


E. None of the above.
 


 
Check Answer
 



30.     QID - 2.1022 
 

What will be the output of the following program (excluding the quotes)?



public class SubstringTest{

   public static void main(String args[]){

      String String = "string isa string";

      System.out.println(String.substring(3, 6));

   }

}
 

Select 1 option

A. It will not compile.
 


B. "ing is"
 


C. "ing isa"
 


D. "ing " (There is a space after g)
 


E. None of the above.
 


 
Check Answer
 



31.     QID - 2.941 
 

What will the following code print?



    String abc = "";

    abc.concat("abc");

    abc.concat("def");

    System.out.print(abc);


 

Select 1 option

A. abc
 


B. abcdef
 


C. def
 


D. It will print empty string (or in other words, nothing).
 


E. It will not compile because there is no concat() method in String class.
 


 
Check Answer
 



32.     QID - 2.1184 
 


 

 
 
Check Answer
 



33.     QID - 2.1303 
 

Consider following classes:
 

//In File Other.java
package other;
public class Other { public static String hello = "Hello"; }

//In File Test.java
package testPackage;
import other.*;
class Test{
   public static void main(String[] args){
      String hello = "Hello", lo = "lo";
      System.out.print((testPackage.Other.hello == hello) + " ");    //line 1
      System.out.print((other.Other.hello == hello) + " ");   //line 2
      System.out.print((hello == ("Hel"+"lo")) + " ");           //line 3
      System.out.print((hello == ("Hel"+lo)) + " ");              //line 4
      System.out.println(hello == ("Hel"+lo).intern());          //line 5
   }
}
class Other { static String hello = "Hello"; }


What will be the output of running class Test?
 

Select 1 option

A. false false true false true
 


B. false true true false true
 


C. true true true true true
 


D. true true true false true
 


E. None of the above.
 


 
Check Answer
 



34.     QID - 2.852 
 

What will the following code print?



System.out.println("12345".charAt(6));
 

Select 1 option

A. 5
 


B. null
 


C. -1
 


D. It will throw an ArrayIndexOutOfBoundsException.
 


E. It will throw a StringOutOfBoundsException.
 


F. It will throw an IndexOutOfBoundsException
 


 
Check Answer
 



35.     QID - 2.956 
 

Consider the following class...



class MyString extends String{

   MyString(){ super(); }

}





The above code will not compile.
 

Select 1 option

A. True
 


B. False
 


 
Check Answer
 



Working with Java API - String, StringBuilder (Answered)



01.     QID - 2.999 : Working with Java API - String, StringBuilder 
 

Which of the following method calls can be applied to a String object?
 

Correct Options are :  A B E 

A. equals(Object)
 


B. equalsIgnoreCase(String)
 


C. prune()
There is no such method.


D. append()
This method is in StringBuffer and StringBuilder but not in String.


E. intern()
 


Explanation: 
public String intern()

Returns a canonical representation for the string object.

A pool of strings, initially empty, is maintained privately by the class String.

When the intern method is invoked, if the pool already contains a string equal to this String object as determined by the equals(Object) method, then the string from the pool is returned. Otherwise, this String object is added to the pool and a reference to this String object is returned.

It follows that for any two strings s and t, s.intern() == t.intern() is true if and only if s.equals(t) is true.

All literal strings and string-valued constant expressions are interned. String literals are defined in 3.10.5 of the Java Language Specification

Returns:

a string that has the same contents as this string, but is guaranteed to be from a pool of unique strings.

 
Back to Question without Answer
 



02.     QID - 2.1175 : Working with Java API - String, StringBuilder 
 

Which of the following statements will evaluate to true?
 

Correct Option is :  D 

A. "String".replace('g','G') == "String".replace('g','G')
replace creates a new string object.


B. "String".replace('g','g') == new String("String").replace('g','g')
 


C. "String".replace('g','G')=="StrinG"
replace creates a new string object.


D. "String".replace('g','g')=="String"
replace returns the same object if there is no change.


E. None of these.
 


Explanation: 
There are 2 points to remember:

1. replace() method creates a new String object.

2. replace() method returns the same String object if both the parameters are same, i.e. if there is no change.

 
Back to Question without Answer
 



03.     QID - 2.1185 : Working with Java API - String, StringBuilder 
 

What will the following code print?



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    sb.append(s.substring(4)).delete(3, 5);

    System.out.println(sb);
 

Correct Option is :  C 

A. blorbloo
 


B. bloper
 


C. bloerper
s.substring(4) => "blooper".substring(4) => per

sb.append(s.substring(4)).delete(3, 5); => "blooperper".delete(3, 5) => bloerper


D. blooperper
 


E. bloo
 


Explanation: 
Please read the following description of substring method of String and delete method of StringBuilder:



public String substring(int beginIndex)

  Returns a new string that is a substring of this string. The substring begins with the character at the specified index and extends to the end of this string. 

Examples: 

 "unhappy".substring(2) returns "happy"

 "Harbison".substring(3) returns "bison"

 "emptiness".substring(9) returns "" (an empty string)





public StringBuilder delete(int start, int end)

  Removes the characters in a substring of this sequence. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. If start is equal to end, no changes are made.

 
Back to Question without Answer
 



04.     QID - 2.1422 : Working with Java API - String, StringBuilder 
 

What will the following code print when compiled and run?



class StringWrapper {

   private String theVal;

   public StringWrapper(String str){ this.theVal = str; }

}

public class Tester{

    public static void main(String[] args) {

        StringWrapper sw = new StringWrapper("How are you?");

        StringBuilder sb = new StringBuilder("How are you?");

        System.out.println("Hello, "+sw);

        System.out.println("Hello, "+sb);

   }

}


 

Correct Option is :  B 

A. Hello, How are you?

Hello, How are you?
 


B. Hello, StringWrapper@<hashcode>

Hello, How are you?
 


C. Hello, How are you?

Hello, StringBuilder@<hashcode>
 


D. Hello, How are you?

Hello, java.lang.StringBuilder@<hashcode>
 


E. Hello, StringWrapper@<hashcode>

Hello, java.lang.StringBuilder@<hashcode>
 


Explanation: 
1. When one of the operands of the + operator is a String and other is an object (other than String), toString method is called on the other operand and then both the Strings are concatenated to produce the result of the operation.

2. Object class contains an implementation of toString that returns the name of the class (including the package name) and the hash code of the object in the format <classname>@<hashcode>. For example, System.out.println("Hello, "+new Object()); will print Hello, java.lang.Object@3cd1a2f1, where 3cd1a2f1 is the hash code of the object.

3. StringBuilder class provides its own implementation of toString method, which returns the String value of its contents.



In this question, StringWrapper class does not implement toString method and so Object class's version is used.

 
Back to Question without Answer
 



05.     QID - 2.988 : Working with Java API - String, StringBuilder 
 

What will the following code print?



public class Test{

    public static void stringTest(String s){

        s.replace('h', 's');

    }

    public static void stringBuilderTest(StringBuilder s){

        s.append("o");

    }

    public static void main(String[] args){

        String s = "hell";

        StringBuilder sb = new StringBuilder("well");

        stringTest(s);

        stringBuilderTest(sb);

        System.out.println(s + sb);

    }

}
 

Correct Option is :  B 

A. sellwello
 


B. hellwello
 


C. hellwell
 


D. sellwell
 


E. None of these.
 


Explanation: 
A String is immutable while a StringBuilder is not. So in stringTest(), "hell".replace('h', 's') will produce a new String "sell" but will not affect the original String that was passed to the method.

However, the append() method of StringBuilder appends to the original String object. So, "well" becomes "wello".

 
Back to Question without Answer
 



06.     QID - 2.1444 : Working with Java API - String, StringBuilder 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing the same number except its last four digits will be masked with xxxx?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Correct Options are :  A B E 

A. return new StringBuilder(fullPhoneNumber).substring(0, 8)+"xxxx";
 


B. return new StringBuilder(fullPhoneNumber).replace(8, 12, "xxxx").toString();
 


C. return new StringBuilder(fullPhoneNumber).append("xxxx", 8, 12).toString();
This will actually throw an IndexOutOfBoundsException because the call to append will look for characters starting from index 8 to 11 in string "xxxx", which has only 4 characters.


D. return new StringBuilder("xxxx").append(fullPhoneNumber, 0, 8).toString();


This will return xxxxddd-ddd-.


E. return new StringBuilder("xxxx").insert(0, fullPhoneNumber, 0, 8).toString();
 


Explanation: 
This is a simple question if you know how the various methods of StringBuilder operate. You need to go through the JavaDoc API descriptions of the methods used in this question. This is important for the exam. The following are the details for your convenience - 

--------------------------

public StringBuilder append(CharSequence s, int start, int end)

Appends a subsequence of the specified CharSequence to this sequence.

Characters of the argument s, starting at index start, are appended, in order, to the contents of this sequence up to the (exclusive) index end. The length of this sequence is increased by the value of end - start.

Let n be the length of this character sequence just prior to execution of the append method. Then the character at index k in this character sequence becomes equal to the character at index k in this sequence, if k is less than n; otherwise, it is equal to the character at index k+start-n in the argument s.

If s is null, then this method appends characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

s - the sequence to append. start - the starting index of the subsequence to be appended. end - the end index of the subsequence to be appended. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if start is negative, or start is greater than end or end is greater than s.length()



--------------------------



public StringBuilder insert(int dstOffset, CharSequence s, int start, int end)

Inserts a subsequence of the specified CharSequence into this sequence.

The subsequence of the argument s specified by start and end are inserted, in order, into this sequence at the specified destination offset, moving up any characters originally above that position. The length of this sequence is increased by end - start.

The character at index k in this sequence becomes equal to:

the character at index k in this sequence, if k is less than dstOffset

the character at index k+start-dstOffset in the argument s, if k is greater than or equal to dstOffset but is less than dstOffset+end-start

the character at index k-(end-start) in this sequence, if k is greater than or equal to dstOffset+end-start

The dstOffset argument must be greater than or equal to 0, and less than or equal to the length of this sequence.

The start argument must be nonnegative, and not greater than end.

The end argument must be greater than or equal to start, and less than or equal to the length of s.

If s is null, then this method inserts characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

dstOffset - the offset in this sequence. s - the sequence to be inserted. start - the starting index of the subsequence to be inserted. end - the end index of the subsequence to be inserted. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if dstOffset is negative or greater



--------------------------



public StringBuilder replace(int start, int end, String str)

Replaces the characters in a substring of this sequence with characters in the specified String. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. First the characters in the substring are removed and then the specified String is inserted at start. (This sequence will be lengthened to accommodate the specified String if necessary.)



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. str - String that will replace previous contents. 



Returns:

This object. 



Throws:

StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than end.



--------------------------



public String substring(int start, int end)

Returns a new String that contains a subsequence of characters currently contained in this sequence. The substring begins at the specified start and extends to the character at index end - 1.



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. 



Returns:

The new string. 



Throws:

StringIndexOutOfBoundsException - if start or end are negative or greater than length(), or start is greater than end.

 
Back to Question without Answer
 



07.     QID - 2.1392 : Working with Java API - String, StringBuilder 
 

Given:





package strings;

public class StringFromChar {

    

    public static void main(String[] args) {

        String myStr = "good";

        char[] myCharArr = {'g', 'o', 'o', 'd' };

        

        String newStr = null;

        for(char ch : myCharArr){

            newStr = newStr + ch;

        }



        System.out.println((newStr == myStr)+ " " + (newStr.equals(myStr)));

        

    }

}



What will it print when compiled and run?
 

Correct Option is :  D 

A. true true
 


B. true false
 


C. false true
 


D. false false
 


Explanation: 
Since newStr is null at the beginning, the first iteration of the loop assigns "nullg" to newStr. Therefore, at the end of the loop, myStr is actually "nullgood".

Had newStr been defined as String newStr = ""; then the program would have printed false for newStr == myStr because both the references are pointing to two different objects, and true for newStr.equals(myStr) because both the objects contain the exact same String.

 
Back to Question without Answer
 



08.     QID - 2.1246 : Working with Java API - String, StringBuilder 
 

What will the following statement return?



"    hello java guru   ".trim();
 

Correct Option is :  C 

A. The line of code will not compile.
"    hello java guru   " is a valid String and trim() is a valid method in String class.


B. "hellojavaguru"
trim() does not remove spaces in within the string but the spaces at the beginning and at the end.


C. "hello java guru"
 


D. "hello java guru   "
It returns a string in which both the leading and trailing white space of the original string are removed.


E. None of the above
 


 
Back to Question without Answer
 



09.     QID - 2.1187 : Working with Java API - String, StringBuilder 
 

Which of the following methods can be called on a String object?
 

Correct Options are :  A B D 

A. substring(int i)
returns substring starting from i to end.


B. substring(int i, int j)
returns substring starting from i to j-1.


C. substring(int i, int j, int k)
 


D. equals(Object o)
Since Object class has this method, every java class inherits it.


 
Back to Question without Answer
 



10.     QID - 2.989 : Working with Java API - String, StringBuilder 
 

Consider the following code:



public class Logger{

    private StringBuilder sb = new StringBuilder();

    

    public void logMsg(String location, String message){

    sb.append(location);

    sb.append("-");

    sb.append(message);

    }

    

    public void dumpLog(){

    System.out.println(sb.toString());

    //Empty the contents of sb here

    }

    

}



Which of the following options will empty the contents of the StringBuilder referred to by variable sb in method dumpLog()?
 

Correct Option is :  A 

A. sb.delete(0, sb.length());
 


B. sb.clear();
 


C. sb.empty();
 


D. sb.removeAll();
 


E. sb.deleteAll();
 


Explanation: 
public StringBuilder delete(int start, int end)

Removes the characters in a substring of this sequence. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. If start is equal to end, no changes are made.

Parameters:

start - The beginning index, inclusive.

end - The ending index, exclusive. 

Returns:

This object. 

Throws: 

StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than end.

 
Back to Question without Answer
 



11.     QID - 2.968 : Working with Java API - String, StringBuilder 
 

Which of these expressions will obtain the substring "456" from a string defined by String str = "01234567"?
 

Correct Option is :  A 

A. str.substring(4, 7)
 


B. str.substring(4)
It will return "4567".


C. str.substring(3, 6)
It will return "345".


D. str.substring(4, 6)
It will return "45".


E. str.substring(4, 3)
Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of range: -1


Explanation: 
Read this carefully:

public String substring(int beginIndex, int endIndex)

    Returns a new string that is a substring of this string. The substring begins at the specified beginIndex and extends to the character at index endIndex - 1. Thus the length of the substring is endIndex-beginIndex. 



 "hamburger".substring(4, 8) returns "urge"

 "smiles".substring(1, 5) returns "mile"

 "unhappy".substring(2) returns "happy"

 "Harbison".substring(3) returns "bison"

 "emptiness".substring(9) returns "" (an empty string)

 
Back to Question without Answer
 



12.     QID - 2.1302 : Working with Java API - String, StringBuilder 
 

What will be the result of attempting to compile and run the following program?

 

public class TestClass{

   public static void main(String args[ ] ){

      StringBuilder sb = new StringBuilder("12345678");

      sb.setLength(5);

      sb.setLength(10);

      System.out.println(sb.length());

   }

}
 

Correct Option is :  B 

A. It will print 5.
Although it truncates the string to length 5 but setLength(10) will append 5 spaces (actually null chars i.e. \u0000).


B. It will print 10.
 


C. It will print 8.
 


D. Compilation error.
 


E. None of the above.
The program will compile without error and will print 10 when run.


Explanation: 
If you do System.out.println(sb); it will indeed print "12345     " (without quotes) but the length will be 10.



From javadocs:



public void setLength(int newLength)

Sets the length of the character sequence. The sequence is changed to a new character sequence whose length is specified by the argument. For every nonnegative index k less than newLength, the character at index k in the new character sequence is the same as the character at index k in the old sequence if k is less than the length of the old character sequence; otherwise, it is the null character '\u0000'. In other words, if the newLength argument is less than the current length, the length is changed to the specified length.

If the newLength argument is greater than or equal to the current length, sufficient null characters ('\u0000') are appended so that length becomes the newLength argument.



The newLength argument must be greater than or equal to 0.



Parameters:

newLength - the new length

Throws:

IndexOutOfBoundsException - if the newLength argument is negative.

 
Back to Question without Answer
 



13.     QID - 2.1304 : Working with Java API - String, StringBuilder 
 

Which of these are not part of the StringBuilder class?
 

Correct Option is :  A 

A. trim( )
This method is in String class.


B. ensureCapacity(int )
Ensures that the capacity of the buffer is at least equal to the specified minimum.


C. append(boolean)
It has all sorts of overloaded append methods !!!


D. reverse( )
 


E. setLength(int)
Sets the length of this String buffer. This string buffer is altered to represent a new character sequence whose length is specified by the argument. For every nonnegative index k less than newLength, the character at index k in the new character sequence is the same as the character at index k in the old sequence if k is less than the length of the old character sequence; otherwise, it is the null character '' (\u0000). In other words, if the newLength argument is less than the current length of the string buffer, the string buffer is truncated to contain exactly the number of characters given by the newLength argument.

If the newLength argument is greater than or equal to the current length, sufficient null characters ('\u0000') are appended to the string buffer so that length becomes the newLength argument.

The newLength argument must be greater than or equal to 0.

Parameters:

newLength - the new length of the buffer.

Throws:

IndexOutOfBoundsException - if the newLength argument is negative.


 
Back to Question without Answer
 



14.     QID - 2.1155 : Working with Java API - String, StringBuilder 
 

Which line will print the string "MUM"?



public class TestClass{

   public static void main(String args []){

      String s = "MINIMUM";

      System.out.println(s.substring(4, 7)); //1

      System.out.println(s.substring(5)); //2

      System.out.println(s.substring(s.indexOf('I', 3))); //3

      System.out.println(s.substring(s.indexOf('I', 4))); //4

   }

}
 

Correct Option is :  A 

A. 1
 


B. 2
It will print UM.


C. 3
It will print IMUM. as s.indexOf('I', 3) will return 3.


D. 4
It will throw an exception as s.indexOf('I', 4) will return -1.


E. None of these.
 


Explanation: 
You should know how substring and indexOf methods of String class work.



String substring(int beginIndex) 

          Returns a new string that is a substring of this string. 

String substring(int beginIndex, int endIndex) 

          Returns a new string that is a substring of this string. 





int indexOf(int ch) 

          Returns the index within this string of the first occurrence of the specified character. 

 int indexOf(int ch, int fromIndex) 

          Returns the index within this string of the first occurrence of the specified character, starting the search at the specified index. 

 int indexOf(String str) 

          Returns the index within this string of the first occurrence of the specified substring. 

 int indexOf(String str, int fromIndex) 

          Returns the index within this string of the first occurrence of the specified substring, starting at the specified index.

 
Back to Question without Answer
 



15.     QID - 2.1174 : Working with Java API - String, StringBuilder 
 

What will the following program print?



public class TestClass{

  static String str = "Hello World";

  public static void changeIt(String s){

    s = "Good bye world";

  }

  public static void main(String[] args){

    changeIt(str);

    System.out.println(str);

  }

}
 

Correct Option is :  A 

A. "Hello World"
 


B. "Good bye world"
 


C. It will not compile.
 


D. It will throw an exception at runtime.
 


E. None of the above.
 


Explanation: 
Theoretically, java supports Pass by Value for everything ( i.e. primitives as well as Objects). 



  . Primitives are always passed by value. 

  . Object "references" are passed by value. So it looks like the object is passed by reference but actually it is the value of the reference that is passed. 



        An  example: 

        Object o1 = new Object(); //Let us say, the object is stored at memory location 15000. 

        //Since o1 actually stores the address of the memory location where the object is stored, it contains 15000. 



        Now, when you call someMethod(o1); the value 15000 is passed to the method. 



        Inside the method someMethod():



        someMethod( Object localVar) { 

            /*localVar now contains 15000, which means it also points to the same memory location where the object is stored.

            Therefore, when you call a method on localVar, it will be executed on the same object.

            However, when you change the value of localVar itself, for example if you do localVar=null, 

            it then starts pointing to a different memory location. But the original variable o1 still 

            contains 15000 so it still points to the same object. */

        }

  

This is what happens in the this question.

In the method changeIt(...) you are giving a new value to the local variable but the original reference remains the same. 

If you need even more detailed explanation, please check http://www.javaranch.com/campfire/StoryPassBy.jsp

 
Back to Question without Answer
 



16.     QID - 2.1186 : Working with Java API - String, StringBuilder 
 

What will the following code print when compiled and run?



public class TestClass {

  public static void main(String[] args) {



    String s = "blooper";

    StringBuilder sb = new StringBuilder(s);

    s.append("whopper");

    sb.append("shopper");

    

    System.out.println(s);

    System.out.println(sb);

  }

}
 

Correct Option is :  D 

A. blooper and bloopershopper
 


B. blooperwhopper and bloopershopper
 


C. blooper and blooperwhoppershopper
 


D. It will not compile.
append() method does not exist in String class. It exits only in StringBuffer and StringBuilder. The value of sb will be bloopershopper though.


 
Back to Question without Answer
 



17.     QID - 2.1336 : Working with Java API - String, StringBuilder 
 

Which of these methods are not a part of the String class?
 

Correct Option is :  E 

A. trim
 


B. length
 


C. concat
 


D. hashCode
 


E. reverse
The String class has no reverse( ) method but StringBuffer (and StringBuilder) do have this method.


 
Back to Question without Answer
 



18.     QID - 2.861 : Working with Java API - String, StringBuilder 
 

You want to find out whether two strings are equal or not,  in terms of the actual characters within the strings. What is the best way to do this?
 

Correct Option is :  A 

A. use String's equals method.
For example:

String x1 = "a";

String x2 = new String("a");



x1.equals(x2) will return true. Because even though x1 and x2 are pointing to different objects, the content of the objects are same, which is what String's equals method checks.



x1 == x2 will return false, because == only checks if the two references are pointing to the same object or not. In this case, they are not.


B. use String's equalsIgnoreCase method.
If you use this method, "a" will be considered equal to "A", which is not what the question is asking for.


C. Use == operator.
== checks for the equality of the references and not for the equality of the objects themselves. Therefore, this will return true only if two string references are pointing to the same String object, which is not what the question is asking for.


D. Use String's match method.
There is no method named match in String class.

There is a matches method, which checks whether the String matches a regular expression but that is beyond the scope of this exam.



public boolean matches(String regex)

Tells whether or not this string matches the given regular expression.

An invocation of this method of the form str.matches(regex) yields exactly the same result as the expression Pattern.matches(regex, str)


 
Back to Question without Answer
 



19.     QID - 2.1424 : Working with Java API - String, StringBuilder 
 

What will the following code print when compiled and run?



public class TestClass{

    

    public static void main(String[] args) {



        System.out.println(getMsg((char)10)); 



    }



    public static String getMsg(char x){

        String msg = "Input value must be ";

        msg = msg.concat("smaller than X");

        msg.replace('X', x);

        String rest = " and larger than 0";

        msg.concat(rest);

        return msg;

    }

}


 

Correct Option is :  C 

A. Input value must be smaller than X and larger than 0
 


B. Input value must be smaller than 10 and larger than 0
 


C. Input value must be smaller than X
 


D. Input value must be smaller than 10
 


Explanation: 
Remember that a String once created cannot be changed. Therefore, when you call replace or concat methods on a String, a new String object is created. The old String remains as it is.

Here, the first call to concat returns a new String object containing "Input value must be smaller than X" and it is assigned back to msg. The original String referred to by msg is now lost (i.e. there is no reference to it anymore).

The first call to replace also creates a new String object but it is not assigned to any reference and is therefore lost and msg keeps pointing to the same String object. The same thing happens to the second call to concat. It create a new String object but it is not assigned back to msg, therefore, msg keeps pointing to the same object i.e.  "Input value must be smaller than X" 

 
Back to Question without Answer
 



20.     QID - 2.1152 : Working with Java API - String, StringBuilder 
 

Which of these expressions will return true?
 

Correct Options are :  A B C E 

A. "hello world".equals("hello world")
 


B. "HELLO world".equalsIgnoreCase("hello world")
equalsIgnoreCase() method treats both cases (upper and lower) as same.


C. "hello".concat(" world").trim().equals("hello world")
"hello".concat(" world") will return "hello world" and trim() won't do any change because there is no space at the beginning or end of the string.


D. "hello world".compareTo("Hello world") < 0
Notice that the Strings differ at the first position. The value returned by compareTo is (Unicode value of the left hand side - Unicode value of the right hand side).



Although not required for the exam, it is good to know that for English alphabets, the unicode value of any lower case letter is always 32 more than the unicode value of the same letter in upper case. So, 'a' - 'A' or 'h' - 'H' is 32.


E. "Hello world".toLowerCase( ).equals("hello world")
toLowerCase() converts all uppercase letters to lower case.


Explanation: 
compareTo() does a lexicographical (like a dictionary) comparison. It stops at the first place where the strings have different letters.

If left hand side is bigger, it returns a positive number otherwise it returns a negative number. The value is equal to the difference of their unicode values.

If there is no difference then it returns zero. In this case,  it will return ( 'h' - 'H') which is 32.

 
Back to Question without Answer
 



21.     QID - 2.1225 : Working with Java API - String, StringBuilder 
 

Which of these statements concerning the charAt() method of the String class are true?
 

Correct Options are :  A E 

A. The charAt( ) method can take a char value as an argument.
Yes, it can because it takes an int and char will be implicitly promoted to int.


B. The charAt( ) method returns a Character object.
It returns char.


C. The expression char ch = "12345".charAt(3) will assign 3 to ch.
It will assign 4 as indexing starts from 0.


D. The expression char ch = str.charAt(str.length()) where str is "12345", will assign 3 to ch.
It will throw IndexOutOfBoundsException as str.length() is 5 and there is no str.charAt(5);


E. The index of the first character is 0.
 


F. It throws StringIndexOutOfBoundsException if passed a value higher than or equal to the length of the string (or less than 0).
 


G. It throws ArrayIndexOutOfBoundsException if passed an value higher than or equal to the length of the string (or less than 0).
 


Explanation: 
Since indexing starts with 0, the maximum value that you can pass to charAt is length-1.



As per the API documentation for charAt, it throws IndexOutOfBoundsException if you pass an invalid value.



Both - ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException, extend IndexOutOfBoundsException and although in practice, the charAt method throws StringIndexOutOfBoundsException, it is not a valid option because the implementation is free to throw some other exception as long as it is an IndexOutOfBoundsException. There are questions in the exam on this aspect.

 
Back to Question without Answer
 



22.     QID - 2.868 : Working with Java API - String, StringBuilder 
 

How can you initialize a StringBuilder to have a capacity of at least 100 characters?
 

Correct Options are :  A D 

A. StringBuilder sb = new StringBuilder(100);
public StringBuilder(int capacity)

Constructs a string builder with no characters in it and an initial capacity specified by the capacity argument.


B. StringBuilder sb = StringBuilder.getInstance(100);
 


C. StringBuilder sb = new StringBuilder();

sb.setCapacity(100);
There is no setCapacity method in StringBuilder.


D. StringBuilder sb = new StringBuilder();

sb.ensureCapacity(100);
public void ensureCapacity(int minimumCapacity)

Ensures that the capacity is at least equal to the specified minimum. If the current capacity is less than the argument, then a new internal array is allocated with greater capacity. The new capacity is the larger of: 

The minimumCapacity argument. 

Twice the old capacity, plus 2. 

If the minimumCapacity argument is nonpositive, this method takes no action and simply returns.


Explanation: 
Observe that the question says "at least 100 characters". In the exam, you may get a question that says "100 characters", in that case, ensureCapacity() may not be a valid option.

 
Back to Question without Answer
 



23.     QID - 2.1284 : Working with Java API - String, StringBuilder 
 

What will the following class print when run?
 
public class Sample{
   public static void main(String[] args)  {
     String s1 = new String("java");
     StringBuilder s2 = new StringBuilder("java");
     replaceString(s1);
     replaceStringBuilder(s2);
     System.out.println(s1 + s2);
  }
  static void replaceString(String s) {
     s = s.replace('j', 'l');
  }
  static void replaceStringBuilder(StringBuilder s) {
     s.append("c");
  }
}


 

Correct Option is :  C 

A. javajava
 


B. lavajava
 


C. javajavac
 


D. lavajavac
 


E. None of these.
 


Explanation: 
String is immutable while StringBuilder is not. So no matter what you do in replaceString() method, the original String that was passed to it will not change. On the other hand, StringBuilder methods, such as replace or append, change the StringBuilder itself. So, 'c' is appended to java in replaceStringBuilder() method.

 
Back to Question without Answer
 



24.     QID - 2.1109 : Working with Java API - String, StringBuilder 
 

Which of the following statements are true?
 

Correct Options are :  A D 

A. method length() of String class is a final method.
Actually, String class itself is final and so all of its methods are implicitly final.


B. You can make mutable subclasses of the String class.
Both - String and StringBuilder are final classes. So is StringBuffer.


C. StringBuilder extends String.
StringBuilder extends Object


D. StringBuilder is a final class.
String, StringBuilder, and StringBuffer - all are final classes.



1. Remember that wrapper classes (java.lang.Boolean, java.lang.Integer, java.lang.Long, java.lang.Short etc.) are also final and so they cannot be extended. 



2. java.lang.Number, however, is not final. Integer, Long, Double etc. extend Number.



3. java.lang.System is final as well.


E. String class is not final.
 


 
Back to Question without Answer
 



25.     QID - 2.1248 : Working with Java API - String, StringBuilder 
 

Which of these are valid expressions to create a string of value "hello world" ?
 

Correct Options are :  A C D 

A. " hello world".trim()
trim() removes starting and ending spaces.


B. ("hello" + new String("world"))
It will create helloworld. No space between hello and world.


C. "hello".concat(" world")
 


D. new StringBuilder("world").insert(0, "hello ").toString();
 


E. new StringBuilder("world").append(0, "hello ").toString();
1. append adds the argument to the end.

2. It doesn't take an int as its first argument.


F. new StringBuilder("world").append("hello ", 0 , 6).toString();
There is an append method that takes two ints as shown here but the int parameters are to determine the portion of the String that is to be appended to the target. That portion will still be appended to the end of the target.


G. new StringBuilder("world").add(0, "hello ").toString();
There is no add method in StringBuilder.


Explanation: 
All the expressions are legal. String literals are String objects and can be used just like any other object.

 
Back to Question without Answer
 



26.     QID - 2.1445 : Working with Java API - String, StringBuilder 
 

Assuming that the following method will always be called with a phone number in the format ddd-ddd-dddd (where d stands for a digit), what can be inserted at //1 so that it will return a String containing "xxx-xxx-"+dddd, where dddd represents the same four digits in the original number?



public static String hidePhone(String fullPhoneNumber){

  //1 Insert code here

}
 

Correct Options are :  B D 

A. String mask = "xxx-xxx-";

mask.append(fullPhoneNumber.substring(8)); 

return mask;
Remember that String class doesn't have append (and insert) method because a String cannot be mutated.


B. return new StringBuilder("xxx-xxx-")+fullPhoneNumber.substring(8); 
 


C. return new StringBuilder(fullPhoneNumber).replace(0, 7, "xxx-xxx-").toString(); 
For all of the methods in String and StringBuilder that take two int parameters for specifying a range, remember that the first index is included but the last index is not. 



For example, as in this case, the arguments given are 0 and 7, which means it will include the characters with index 0 to 6, that is, a total of 7 characters 0, 1, 2, 3, 4, 5, and 6. Therefore, this will actually produce "xxx-xxx--dddd".



The same pattern is used for almost all other methods in standard java library classes. The first index is included but the last one is not.


D. return "xxx-xxx-"+fullPhoneNumber.substring(8, 12);
This is another example where the pattern discussed above is used. The character at first index i.e. 8 is included but the last index 12 is not. In fact there is no element at the 12th index in the given string. So the characters returns by the substring will be the ones at index 8, 9, 10, and 11 of the original fullPhoneNumber.


Explanation: 
This is a simple question if you know how the various methods of StringBuilder operate. You need to go through the JavaDoc API descriptions of the methods used in this question. This is important for the exam. The following are the details for your convenience - 

--------------------------

public StringBuilder append(CharSequence s, int start, int end)

Appends a subsequence of the specified CharSequence to this sequence.

Characters of the argument s, starting at index start, are appended, in order, to the contents of this sequence up to the (exclusive) index end. The length of this sequence is increased by the value of end - start.

Let n be the length of this character sequence just prior to execution of the append method. Then the character at index k in this character sequence becomes equal to the character at index k in this sequence, if k is less than n; otherwise, it is equal to the character at index k+start-n in the argument s.

If s is null, then this method appends characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

s - the sequence to append. start - the starting index of the subsequence to be appended. end - the end index of the subsequence to be appended. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if start is negative, or start is greater than end or end is greater than s.length()



--------------------------



public StringBuilder insert(int dstOffset, CharSequence s, int start, int end)

Inserts a subsequence of the specified CharSequence into this sequence.

The subsequence of the argument s specified by start and end are inserted, in order, into this sequence at the specified destination offset, moving up any characters originally above that position. The length of this sequence is increased by end - start.

The character at index k in this sequence becomes equal to:

the character at index k in this sequence, if k is less than dstOffset

the character at index k+start-dstOffset in the argument s, if k is greater than or equal to dstOffset but is less than dstOffset+end-start

the character at index k-(end-start) in this sequence, if k is greater than or equal to dstOffset+end-start

The dstOffset argument must be greater than or equal to 0, and less than or equal to the length of this sequence.

The start argument must be nonnegative, and not greater than end.

The end argument must be greater than or equal to start, and less than or equal to the length of s.

If s is null, then this method inserts characters as if the s parameter was a sequence containing the four characters "null".



Parameters:

dstOffset - the offset in this sequence. s - the sequence to be inserted. start - the starting index of the subsequence to be inserted. end - the end index of the subsequence to be inserted. 



Returns:

a reference to this object. 



Throws:

IndexOutOfBoundsException - if dstOffset is negative or greater



--------------------------



public StringBuilder replace(int start, int end, String str)

Replaces the characters in a substring of this sequence with characters in the specified String. The substring begins at the specified start and extends to the character at index end - 1 or to the end of the sequence if no such character exists. First the characters in the substring are removed and then the specified String is inserted at start. (This sequence will be lengthened to accommodate the specified String if necessary.)



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. str - String that will replace previous contents. 



Returns:

This object. 



Throws:

StringIndexOutOfBoundsException - if start is negative, greater than length(), or greater than end.



--------------------------



public String substring(int start, int end)

Returns a new String that contains a subsequence of characters currently contained in this sequence. The substring begins at the specified start and extends to the character at index end - 1.



Parameters:

start - The beginning index, inclusive. end - The ending index, exclusive. 



Returns:

The new string. 



Throws:

StringIndexOutOfBoundsException - if start or end are negative or greater than length(), or start is greater than end.

 
Back to Question without Answer
 



27.     QID - 2.1285 : Working with Java API - String, StringBuilder 
 

Which of the following operators can be used in conjunction with a String object?
 

Correct Options are :  A C D 

A. +
 


B. ++
 


C. +=
 


D. .
 


E. *
 


Explanation: 
Only + is overloaded for String. a+=x is actually converted to a = a + x. so it is valid for Strings. dot (.) operator accesses members of the String object. There is only one member variable though: CASE_INSENSITIVE_ORDER. It is of type Comparator (which is an interface).

 
Back to Question without Answer
 



28.     QID - 2.1363 : Working with Java API - String, StringBuilder 
 

In Java, Strings are immutable. A direct implication of this is...
 

Correct Options are :  A B 

A. you cannot call methods like "1234".replace('1', '9'); and expect to change the original String.
calling such methods do not change this object. They create a new String object.


B. you cannot change a String object, once it is created.
 


C. you can change a String object only by the means of its methods.
 


D. you cannot extend String class.
That's because it is final, not because it is immutable. You can have a final class whose objects are mutable.


E. you cannot compare String objects.
String class implements Comparable interface.


 
Back to Question without Answer
 



29.     QID - 2.1054 : Working with Java API - String, StringBuilder 
 

What will be written to the standard output when the following program is run?



public class TrimTest{

   public static void main(String args[]){

      String blank  = " ";  // one space

      String line = blank + "hello" + blank + blank;

      line.concat("world");

      String newLine  =  line.trim();

      System.out.println((int)(line.length() + newLine.length()));

   }

}
 

Correct Option is :  E 

A. 25
 


B. 24
 


C. 23
 


D. 22
 


E. None of the above.
It will print 13 !!!


Explanation: 
Note that line.concat("world") does not change line itself. It creates a new String object containing " hello  world" but it is lost because there is no reference to it.

Similarly, calling trim() does not change the object itself.

So the answer is 8 + 5 = 13 !

 
Back to Question without Answer
 



30.     QID - 2.1022 : Working with Java API - String, StringBuilder 
 

What will be the output of the following program (excluding the quotes)?



public class SubstringTest{

   public static void main(String args[]){

      String String = "string isa string";

      System.out.println(String.substring(3, 6));

   }

}
 

Correct Option is :  E 

A. It will not compile.
String String = "String"; is a perfectly valid syntax!


B. "ing is"
 


C. "ing isa"
 


D. "ing " (There is a space after g)
 


E. None of the above.
It will print 'ing'. (No space after 'g')


Explanation: 
Remember, indexing always starts from 0.

 "hamburger".substring(4, 8) returns "urge"

 "smiles".substring(1, 5) returns "mile"

Parameters:

beginIndex - the beginning index, inclusive.

endIndex - the ending index, exclusive.

Returns:

the specified substring.

Throws:

IndexOutOfBoundsException - if the beginIndex is negative, or endIndex is larger than the length of this String object, or beginIndex is larger than endIndex.

 
Back to Question without Answer
 



31.     QID - 2.941 : Working with Java API - String, StringBuilder 
 

What will the following code print?



    String abc = "";

    abc.concat("abc");

    abc.concat("def");

    System.out.print(abc);


 

Correct Option is :  D 

A. abc
 


B. abcdef
 


C. def
 


D. It will print empty string (or in other words, nothing).
 


E. It will not compile because there is no concat() method in String class.
 


Explanation: 
Strings are immutable so doing abc.concat("abc") will create a new string "abc" but will not affect the original string "".

 
Back to Question without Answer
 



32.     QID - 2.1184 : Working with Java API - String, StringBuilder 
 


 

 
Explanation: 
You need to understand how append, insert, delete, and substring methods of StringBuilder/StringBuffer work. Please go through JavaDoc API for these methods. This is very important for the exam. Observe that substring() does not modify the object it is invoked on but append, insert and delete do.



In the exam, you will find questions that use such quirky syntax, where multiple calls are chained together. For example: sb.append("a").append("asdf").insert(2, "asdf"). Make yourself familiar with this technique. If in doubt, just break it down into multiple calls. For example, the aforementioned statement can be thought of as: 



sb.append("a"); 

sb.append("asdf"); 

sb.insert(2, "asdf")



Note that the method substring() in StringBuilder/StringBuffer returns a String (and not a reference to itself, unlike append, insert, and delete). So another StringBuilder method cannot be chained to it. For example, the following is not valid: sb.append("a").substring(0, 4).insert(2, "asdf");



The following is valid though:  String str = sb.append("a").insert(2, "asdf").substring(0, 4);

 
Back to Question without Answer
 



33.     QID - 2.1303 : Working with Java API - String, StringBuilder 
 

Consider following classes:
 

//In File Other.java
package other;
public class Other { public static String hello = "Hello"; }

//In File Test.java
package testPackage;
import other.*;
class Test{
   public static void main(String[] args){
      String hello = "Hello", lo = "lo";
      System.out.print((testPackage.Other.hello == hello) + " ");    //line 1
      System.out.print((other.Other.hello == hello) + " ");   //line 2
      System.out.print((hello == ("Hel"+"lo")) + " ");           //line 3
      System.out.print((hello == ("Hel"+lo)) + " ");              //line 4
      System.out.println(hello == ("Hel"+lo).intern());          //line 5
   }
}
class Other { static String hello = "Hello"; }


What will be the output of running class Test?
 

Correct Option is :  D 

A. false false true false true
 


B. false true true false true
 


C. true true true true true
 


D. true true true false true
 


E. None of the above.
 


Explanation: 
These are the six facts on Strings:

1. Literal strings within the same class in the same package represent references to the same String object. 

2. Literal strings within different classes in the same package represent references to the same String object. 

3. Literal strings within different classes in different packages likewise represent references to the same String object. 

4. Strings computed by constant expressions are computed at compile time and then treated as if they were literals. 

5. Strings computed at run time are newly created and therefore are distinct. (So line 4 prints false.)

6. The result of explicitly interning a computed string is the same string as any pre-existing literal string with the same contents. (So line 5 prints true.)



We advise you to read section 3.10.5 String Literals in Java Language Specification.

 
Back to Question without Answer
 



34.     QID - 2.852 : Working with Java API - String, StringBuilder 
 

What will the following code print?



System.out.println("12345".charAt(6));
 

Correct Option is :  F 

A. 5
 


B. null
 


C. -1
 


D. It will throw an ArrayIndexOutOfBoundsException.
 


E. It will throw a StringOutOfBoundsException.
There is no such exception. The correct name is StringIndexOutOfBoundsException. But that is also not the correct answer.


F. It will throw an IndexOutOfBoundsException
As per the API documentation of this method ( http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#charAt(int) ), this method throws IndexOutOfBoundsException. Although, in practice the method throws StringIndexOutOfBoundsException, which is a subclass of IndexOutOfBoundsException, the implementation is free to throw some other subclass of IndexOutOfBoundsException. Thus, you should rely only on the published API documentation instead of what it actually throws.


Explanation: 
Since indexing starts with 0, the maximum value that you can pass to charAt is length-1.



As per the API documentation for charAt, it throws IndexOutOfBoundsException if you pass an invalid value (that is, if the index argument is negative or not less than the length of this string).



Both - ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException, extend IndexOutOfBoundsException and although in practice, the charAt method throws StringIndexOutOfBoundsException, it is not a valid option because the implementation is free to throw some other exception as long as it is an IndexOutOfBoundsException.



(There are questions on the exam on this aspect.)

 
Back to Question without Answer
 



35.     QID - 2.956 : Working with Java API - String, StringBuilder 
 

Consider the following class...



class MyString extends String{

   MyString(){ super(); }

}





The above code will not compile.
 

Correct Option is :  A 

A. True
 


B. False
 


Explanation: 
This will not compile because String is a final class and final classes cannot be extended. 

There are questions on this aspect in the exam and so you should remember that StringBuffer and StringBuilder are also final. All Primitive wrappers are also final (i.e. Boolean, Integer, Byte etc).

java.lang.System is also final.

 
Back to Question without Answer
 



Working with Java API - Time and Date
 
Exam Objectives - 
 
Create and manipulate calendar data using classes from java.time.LocalDateTime,  java.time.LocalDate, java.time.LocalTime, java.time.format.DateTimeFormatter, java.time.Period



01.     QID - 2.1431 
 

Given the following line of code:



LocalDateTime dt = LocalDateTime.parse("2015-01-02T17:13:50");



Which of the following lines will return the date string in ISO 8601 format?
 

Select 2 options

A. dt.format(java.time.format.DateTimeFormatter.DATE_TIME);
 


B. dt.format(java.time.format.DateTimeFormatter.ISO_DATE_TIME);
 


C. dt.format(java.time.format.DateTimeFormatter.LOCAL_DATE_TIME);
 


D. dt.toString();
 


 
Check Answer
 



02.     QID - 2.1435 
 

Identify the correct statements.
 

Select 1 option

A. LocalDate, LocalTime, and LocalDateTime extend Date.
 


B. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor.
 


C. Both - LocalDate and LocalTime extend LocalDateTime, which extends java.util.Date.
 


D. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor and extend java.util.Date.
 


 
Check Answer
 



03.     QID - 2.1432 
 

What will the following line of code print?

 System.out.println(LocalDate.of(2015, Month.JANUARY, 01).format(DateTimeFormatter.ISO_DATE_TIME));
 

Select 1 option

A. 01 Jan 2015
 


B. 01 January 2015 00:00:00
 


C. 2015-01-01
 


D. 2015-01-01T00:00:00
 


E. Exception at run time.
 


 
Check Answer
 



04.     QID - 2.1430 
 

You want to print the date that represents upcoming tuesday from now even if the current day is a tuesday. Which of the following lines of code accomplishe(s) this?
 

Select 2 options

A. System.out.println(LocalDate.now().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


B. System.out.println(LocalDate.now().with(TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAY)));
 


C. System.out.println(new LocalDate().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


D. System.out.println(new LocalDate().adjust(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


E. System.out.println(TemporalAdjusters.next(DayOfWeek.TUESDAY).adjustInto(LocalDate.now()));
 


 
Check Answer
 



05.     QID - 2.1429 
 

What will the following lines of code print



java.time.LocalDate dt = java.time.LocalDate.parse("2015-01-01").minusMonths(1).minusDays(1).plusYears(1);

System.out.println(dt);


 

Select 1 option

A. Compilation error.
 


B. Exception at run time.
 


C. 2015-12-31
 


D. 2015-11-30
 


 
Check Answer
 



06.     QID - 2.1453 
 

Given:

        LocalDate d1 = LocalDate.parse("2015-02-05", DateTimeFormatter.ISO_DATE);

        LocalDate d2 = LocalDate.of(2015, 2, 5);

        LocalDate d3 = LocalDate.now();

        System.out.println(d1);

        System.out.println(d2);

        System.out.println(d3);



Assuming that the current date on the system is 5th Feb, 2015, which of the following will be a part of the output?
 

Select 1 option

A. 5th Feb, 2015
 


B. 2015-02-05T00:00:00
 


C. 02/05/2015
 


D. 05/02/2015
 


E. java.time.format.DateTimeParseException
 


F. None of the above.
 


 
Check Answer
 



07.     QID - 2.1427 
 

Which of the following classes should you use to represent just a date without any time or zone information?
 

Select 1 option

A. java.util.Date
 


B. java.sql.Date
 


C. java.time.Date
 


D. java.time.LocalDate
 


 
Check Answer
 



08.     QID - 2.1434 
 

Given the following code:



public String getDateString(LocalDateTime ldt){

   return DateTimeFormatter.ISO_ZONED_DATE_TIME.format(ldt);

}



Which of the following statements are correct?
 

Select 1 option

A. The code will compile but will always throw a DateTimeException (or its subclass) at run time.
 


B. DateTimeException must either be caught or declared in the throws clause of this method.
 


C. The method parameter type must be changed from LocalDateTime to ZonedDateTime for it to compile.
 


D. It will return the date string as per the default time zone of the system on which it is run.
 


 
Check Answer
 



09.     QID - 2.1485 
 

Which of the following options correctly add 1 month and 1 day to a given LocalDate -



public LocalDate process(LocalDate ld){

   //INSERT CODE HERE  

   return ld2;

}
 

Select 1 option

A. LocalDate ld2 = ld.plus(Period.ofMonths(1).ofDays(1));
 


B. LocalDate ld2 = ld.plus(new Period(0, 1, 1));
 


C. LocalDate ld2 = ld.plus(new Period(31)).plus(new Period(1));
 


D. LocalDate ld2 = ld.plus(Period.of(0, 1, 1));
 


 
Check Answer
 



10.     QID - 2.1433 
 

What will the following code print when compiled and run?



import java.time.*;

import java.time.format.*;

public class DateTest{

  public static void main(String[] args){ //1

        LocalDateTime greatDay = LocalDateTime.parse("2015-01-01");//2

        String greatDayStr = greatDay.format(DateTimeFormatter.ISO_DATE_TIME); //3

        System.out.println(greatDayStr);//4

   }

}
 

Select 1 option

A. //1 will not compile because of lack of throws clause.
 


B. //2 will not compile because of invalid date string.
 


C. //2 will throw an exception at run time.
 


D. It will print 2015-01-01T00:00:00
 


E. It will print null.
 


 
Check Answer
 



11.     QID - 2.1426 
 

Which of the following are true regarding the new Date-Time API of Java 8?
 

Select 2 options

A. It uses the calendar system defined in ISO-8601 as the default calendar.
 


B. Most of the actual date related classes in the Date-Time API such as LocalDate, LocalTime, and LocalDateTime are immutable.
 


C. LocalDateTime include time zone information but LocalDate does not.
 


D. To create a LocalDate or a LocalDateTime object, you can use one of their several constructors.
 


 
Check Answer
 



12.     QID - 2.1484 
 

Given that Daylight Savings Time ends on Nov 1 at 2 AM in US/Eastern time zone, what will the following code print -



LocalDateTime ld = LocalDateTime.of(2015, Month.OCTOBER, 31, 10, 0);



ZonedDateTime date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Duration.ofDays(1));

System.out.println(date);



date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Period.ofDays(1));

System.out.println(date);



Note: This question refers to ZonedDateTime and Duration, which are not explicitly mentioned in the objectives. However, a few candidates have reported getting a similar question and so we have included it in this question bank.
 

Select 1 option

A. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]
 


B. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


C. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]


 


D. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


 
Check Answer
 



Working with Java API - Time and Date (Answered)



01.     QID - 2.1431 : Working with Java API - Time and Date 
 

Given the following line of code:



LocalDateTime dt = LocalDateTime.parse("2015-01-02T17:13:50");



Which of the following lines will return the date string in ISO 8601 format?
 

Correct Options are :  B D 

A. dt.format(java.time.format.DateTimeFormatter.DATE_TIME);
DATE_TIME is not a valid formatter.


B. dt.format(java.time.format.DateTimeFormatter.ISO_DATE_TIME);
 


C. dt.format(java.time.format.DateTimeFormatter.LOCAL_DATE_TIME);
LOCAL_DATE_TIME is not a valid formatter. ISO_LOCAL_DATE_TIME is valid though, which is same as ISO_DATE_TIME except that it does not use the Zone or Offset. Details are not too important for the exam but you may check out the JavaDoc descriptions of both as they have good examples.


D. dt.toString();
LocalDateTime's toString method generates the String in ISO 8601 format.


 
Back to Question without Answer
 



02.     QID - 2.1435 : Working with Java API - Time and Date 
 

Identify the correct statements.
 

Correct Option is :  B 

A. LocalDate, LocalTime, and LocalDateTime extend Date.
 


B. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor.
 


C. Both - LocalDate and LocalTime extend LocalDateTime, which extends java.util.Date.
 


D. LocalDate, LocalTime, and LocalDateTime implement TemporalAccessor and extend java.util.Date.
 


Explanation: 
Here are some points that you should keep in mind about the new Date/Time classes introduced in Java 8 - 



1. They are in package java.time and they have no relation at all to the old java.util.Date and java.sql.Date.



2. java.time.TemporalAccessor is the base interface that is implemented by LocalDate, LocalTime, and LocalDateTime concrete classes. This interface defines read-only access to temporal objects, such as a date, time, offset or some combination of these, which are represented by the interface TemporalField.



3. LocalDate, LocalTime, and LocalDateTime classes do not have any parent/child relationship among themselves. As their names imply, LocalDate contains just the date information and no time information, LocalTime contains only time and no date, while LocalDateTime contains date as well as time. None of them contains zone information. For that, you can use ZonedDateTime. 



These classes are immutable and have no public constructors. You create objects of these classes using their static factory methods such as of(...) and from(TemporalAccessor ).  For example, 

LocalDate ld = LocalDate.of(2015, Month.JANUARY, 1); or LocalDate ld = LocalDate.from(anotherDate); or LocalDateTime ldt = LocalDateTime.of(2015, Month.JANUARY, 1, 21, 10); //9.10 PM



Since you can't modify them once created, if you want to create new object with some changes to the original, you can use the instance method named with(...). For example, 

LocalDate sunday = ld.with(java.time.temporal.TemporalAdjusters.next(DayOfWeek.SUNDAY));



4. Formatting of date objects into String and parsing of Strings into date objects is done by java.time.format.DateTimeFormatter class. This class provides public static references to readymade DateTimeFormatter objects through the fields named ISO_DATE, ISO_LOCAL_DATE, ISO_LOCAL_DATE_TIME, etc.  For example - 

        

LocalDate d1 = LocalDate.parse("2015-01-01", DateTimeFormatter.ISO_LOCAL_DATE);



The parameter type and return type of the methods of DateTimeFormatter class is the base interface TemporalAccessor instead of concrete classes such as LocalDate or LocalDateTime. So you shouldn't directly cast the returned values to concrete classes like this - 

   LocalDate d2 = (LocalDate) DateTimeFormatter.ISO_LOCAL_DATE.parse("2015-01-01"); //will compile but may or may not throw a ClassCastException at runtime.

You should do like this - 

   LocalDate d2 = LocalDate.from(DateTimeFormatter.ISO_LOCAL_DATE.parse("2015-01-01"));



5. Besides dates, java.time package also provides Period and Duration classes. Period is used for quantity or amount of time in terms of years, months and days, while Duration is used for quantity or amount of time in terms of hour, minute, and seconds.



Durations and periods differ in their treatment of daylight savings time when added to ZonedDateTime. A Duration will add an exact number of seconds, thus a duration of one day is always exactly 24 hours. By contrast, a Period will add a conceptual day, trying to maintain the local time.



For example, consider adding a period of one day and a duration of one day to 18:00 on the evening before a daylight savings gap. The Period will add the conceptual day and result in a ZonedDateTime at 18:00 the following day. By contrast, the Duration will add exactly 24 hours, resulting in a ZonedDateTime at 19:00 the following day (assuming a one hour DST gap).

 
Back to Question without Answer
 



03.     QID - 2.1432 : Working with Java API - Time and Date 
 

What will the following line of code print?

 System.out.println(LocalDate.of(2015, Month.JANUARY, 01).format(DateTimeFormatter.ISO_DATE_TIME));
 

Correct Option is :  E 

A. 01 Jan 2015
 


B. 01 January 2015 00:00:00
 


C. 2015-01-01
 


D. 2015-01-01T00:00:00
 


E. Exception at run time.
Observe that you are creating a LocalDate and not a LocalDateTime. LocalDate doesn't have time component and therefore, you cannot format it with a formatter that expects time component such as DateTimeFormatter.ISO_DATE_TIME. 

Thus, it will print java.time.temporal.UnsupportedTemporalTypeException: Unsupported field: HourOfDay exception message.



If you use DateTimeFormatter.ISO_DATE, it will print 2015-01-01

.



Also, remember that a LocalDateTime object can be formatted using a DateTimeFormatter.ISO_DATE though.


 
Back to Question without Answer
 



04.     QID - 2.1430 : Working with Java API - Time and Date 
 

You want to print the date that represents upcoming tuesday from now even if the current day is a tuesday. Which of the following lines of code accomplishe(s) this?
 

Correct Options are :  A E 

A. System.out.println(LocalDate.now().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
 


B. System.out.println(LocalDate.now().with(TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAY)));
This will return today's date if it is a tuesday, which is not what the question wants.


C. System.out.println(new LocalDate().with(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
You cannot create a LocalDate object using its constructor because it is private.


D. System.out.println(new LocalDate().adjust(TemporalAdjusters.next(DayOfWeek.TUESDAY)));
adjust is not a valid method in LocalDate.


E. System.out.println(TemporalAdjusters.next(DayOfWeek.TUESDAY).adjustInto(LocalDate.now()));
 


Explanation: 
The JavaDoc description of java.time.temporal.TemporalAdjusters is very helpful:



Adjusters are a key tool for modifying temporal objects. They exist to externalize the process of adjustment, permitting different approaches, as per the strategy design pattern. Examples might be an adjuster that sets the date avoiding weekends, or one that sets the date to the last day of the month.

There are two equivalent ways of using a TemporalAdjuster. The first is to invoke the method on the interface directly. The second is to use Temporal.with(TemporalAdjuster):

   // these two lines are equivalent, but the second approach is recommended

   temporal = thisAdjuster.adjustInto(temporal);

   temporal = temporal.with(thisAdjuster);

 

It is recommended to use the second approach, with(TemporalAdjuster), as it is a lot clearer to read in code.

This class contains a standard set of adjusters, available as static methods. These include:

finding the first or last day of the month

finding the first day of next month

finding the first or last day of the year

finding the first day of next year

finding the first or last day-of-week within a month, such as "first Wednesday in June"

finding the next or previous day-of-week, such as "next Thursday"

 
Back to Question without Answer
 



05.     QID - 2.1429 : Working with Java API - Time and Date 
 

What will the following lines of code print



java.time.LocalDate dt = java.time.LocalDate.parse("2015-01-01").minusMonths(1).minusDays(1).plusYears(1);

System.out.println(dt);


 

Correct Option is :  D 

A. Compilation error.
 


B. Exception at run time.
 


C. 2015-12-31
 


D. 2015-11-30
The numbering for days and months starts with 1. Rest is simple math.


Explanation: 
Observe that most of the methods of LocalDate (as well as LocalTime and LocalDateTime) return an object of the same class. This allows you to chain the calls as done in this question. However, these  methods return a new object. They don't modify the object on which the method is called.

 
Back to Question without Answer
 



06.     QID - 2.1453 : Working with Java API - Time and Date 
 

Given:

        LocalDate d1 = LocalDate.parse("2015-02-05", DateTimeFormatter.ISO_DATE);

        LocalDate d2 = LocalDate.of(2015, 2, 5);

        LocalDate d3 = LocalDate.now();

        System.out.println(d1);

        System.out.println(d2);

        System.out.println(d3);



Assuming that the current date on the system is 5th Feb, 2015, which of the following will be a part of the output?
 

Correct Option is :  F 

A. 5th Feb, 2015
 


B. 2015-02-05T00:00:00
Since LocalDate is being created (and not LocalDateTime), none of the printlns will output the time component.


C. 02/05/2015
 


D. 05/02/2015
 


E. java.time.format.DateTimeParseException
 


F. None of the above.
 


Explanation: 
All the three printlns will produce 2015-02-05.

 
Back to Question without Answer
 



07.     QID - 2.1427 : Working with Java API - Time and Date 
 

Which of the following classes should you use to represent just a date without any time or zone information?
 

Correct Option is :  D 

A. java.util.Date
 


B. java.sql.Date
 


C. java.time.Date
 


D. java.time.LocalDate
 


Explanation: 
Java 8 introduces a new package java.time to deal with dates. The old classes such as java.util.Date are not recommended anymore.



Briefly:

java.time Package: This is the base package of new Java Date Time API. All the commonly used classes such as LocalDate, LocalTime, LocalDateTime, Instant, Period, Duration are part of this package. All of these classes are immutable and thread safe. 



java.time.format Package: This package contains classes used for formatting and parsing date time objects such as java.time.format.DateTimeFormatter.



(The following two are not important for the exam.)



java.time.zone Package: This package contains classes for supporting different time zones and their rules.



java.time.chrono Package: This package defines generic APIs for non ISO calendar systems. We can extend AbstractChronology class to create our own calendar system.

java.time.temporal Package: This package contains temporal objects and we can use it for find out specific date or time related to date/time object. For example, we can use these to find out the first or last day of the month. You can identify these methods easily because they always have format “withXXX”.

 
Back to Question without Answer
 



08.     QID - 2.1434 : Working with Java API - Time and Date 
 

Given the following code:



public String getDateString(LocalDateTime ldt){

   return DateTimeFormatter.ISO_ZONED_DATE_TIME.format(ldt);

}



Which of the following statements are correct?
 

Correct Option is :  A 

A. The code will compile but will always throw a DateTimeException (or its subclass) at run time.
Note that LocalDateTime class does not contain Zone information but ISO_ZONED_DATE_TIME requires it. Thus, it will throw the following exception:



Exception in thread "main" java.time.temporal.UnsupportedTemporalTypeException: Unsupported field: OffsetSeconds



UnsupportedTemporalTypeException extends DateTimeException.


B. DateTimeException must either be caught or declared in the throws clause of this method.
DateTimeException extends RuntimeException, so it need not be caught or declared in the throws clause.


C. The method parameter type must be changed from LocalDateTime to ZonedDateTime for it to compile.
Although it is true that this code will never work at runtime, it will compile fine as it is.


D. It will return the date string as per the default time zone of the system on which it is run.
 


 
Back to Question without Answer
 



09.     QID - 2.1485 : Working with Java API - Time and Date 
 

Which of the following options correctly add 1 month and 1 day to a given LocalDate -



public LocalDate process(LocalDate ld){

   //INSERT CODE HERE  

   return ld2;

}
 

Correct Option is :  D 

A. LocalDate ld2 = ld.plus(Period.ofMonths(1).ofDays(1));
ofXXX are static methods of Period class. Therefore, Period.ofMonths(1).ofDays(1) will give you a Period of only 1 day. The previous call to ofMonths(1) does return an instance of Period comprising 1 month but that instance is irrelevant because ofDays is a static method.


B. LocalDate ld2 = ld.plus(new Period(0, 1, 1));
None of the new date related classes have public constructors. So using new to create their instances would be invalid.


C. LocalDate ld2 = ld.plus(new Period(31)).plus(new Period(1));
None of the new date related class have public constructors. So using new to create their instances would be invalid.

Further, a month is not necessarily equal to 31 days. The number of days added to a given month depends on the month to which you are adding a month. For example, if you add 1 month to 1st January, you will get 1 February i.e. 31 days are added. But if you add 1 month to 1st February, you will still get 1 March i.e. only 28 days are added, (or if it is a leap year, 29 days).


D. LocalDate ld2 = ld.plus(Period.of(0, 1, 1));
public static Period of(int years, int months, int days)

Obtains a Period representing a number of years, months and days.

This creates an instance based on years, months and days.


 
Back to Question without Answer
 



10.     QID - 2.1433 : Working with Java API - Time and Date 
 

What will the following code print when compiled and run?



import java.time.*;

import java.time.format.*;

public class DateTest{

  public static void main(String[] args){ //1

        LocalDateTime greatDay = LocalDateTime.parse("2015-01-01");//2

        String greatDayStr = greatDay.format(DateTimeFormatter.ISO_DATE_TIME); //3

        System.out.println(greatDayStr);//4

   }

}
 

Correct Option is :  C 

A. //1 will not compile because of lack of throws clause.
Operations in the new date/time related classes throw java.time.DateTimeException, which extends from RuntimeException. Therefore, this exception is not required to be caught or declared in the throws clause.


B. //2 will not compile because of invalid date string.
The given date string does not contain a time component and so it cannot be parsed by LocalDateTime. However, this is a run time issue and not a compile time one.


C. //2 will throw an exception at run time.
It will throw a DateTimeException because it doesn't have time component.



Exception in thread "main" java.time.format.DateTimeParseException: Text '2015-01-01' could not be parsed at index 10.



A String such as 2015-01-01T17:13:50 would have worked.


D. It will print 2015-01-01T00:00:00
 


E. It will print null.
 


 
Back to Question without Answer
 



11.     QID - 2.1426 : Working with Java API - Time and Date 
 

Which of the following are true regarding the new Date-Time API of Java 8?
 

Correct Options are :  A B 

A. It uses the calendar system defined in ISO-8601 as the default calendar.
This calendar is based on the Gregorian calendar system and is used globally as the defacto standard for representing date and time. The core classes in the Date-Time API have names such as LocalDateTime, ZonedDateTime, and OffsetDateTime. All of these use the ISO calendar system. 



If you want to use an alternative calendar system, such as Hijrah or Thai Buddhist, the java.time.chrono package allows you to use one of the predefined calendar systems. Or you can create your own.


B. Most of the actual date related classes in the Date-Time API such as LocalDate, LocalTime, and LocalDateTime are immutable.
These classes do not have any setters. Once created you cannot change their contents. Even their constructors are private.


C. LocalDateTime include time zone information but LocalDate does not.
None of LocalDate, LocalDateTime, or LocalTime store zone information.



java.time.ZonedDateTime does. ZonedDateTime is an immutable representation of a date-time with a time-zone. This class stores all date and time fields, to a precision of nanoseconds, and a time-zone, with a zone offset used to handle ambiguous local date-times. For example, the value "2nd October 2007 at 13:45.30.123456789 +02:00 in the Europe/Paris time-zone" can be stored in a ZonedDateTime.


D. To create a LocalDate or a LocalDateTime object, you can use one of their several constructors.
These classes do not have any public constructors. You need to use their static factory methods to get their instances.

For example: 



java.time.LocalDate d1 = java.time.LocalDate.of(2015, Month.JANUARY, 31);



java.time.LocalDateTime d2 = java.time.LocalDateTime.of(2015, Month.JANUARY, 31, 10, 56);



java.time.LocalDateTime d3 = java.time.LocalDateTime.parse("2015-01-02T17:13:50");

//Note that this will throw a  java.time.format.DateTimeParseException if the input string lacks the time component i.e.T17:13:50



java.time.LocalDate d4 = java.time.LocalDate.parse("2015-01-02");

//Note that this will throw a  java.time.format.DateTimeParseException if the input string contains the time component



java.time.LocalTime d5 = java.time.LocalTime.parse("02:13:59.985"); 

//Note that this will throw a  java.time.format.DateTimeParseException if the input string contains the Date component






 
Back to Question without Answer
 



12.     QID - 2.1484 : Working with Java API - Time and Date 
 

Given that Daylight Savings Time ends on Nov 1 at 2 AM in US/Eastern time zone, what will the following code print -



LocalDateTime ld = LocalDateTime.of(2015, Month.OCTOBER, 31, 10, 0);



ZonedDateTime date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Duration.ofDays(1));

System.out.println(date);



date = ZonedDateTime.of(ld, ZoneId.of("US/Eastern"));

date = date.plus(Period.ofDays(1));

System.out.println(date);



Note: This question refers to ZonedDateTime and Duration, which are not explicitly mentioned in the objectives. However, a few candidates have reported getting a similar question and so we have included it in this question bank.
 

Correct Option is :  B 

A. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]
 


B. 2015-11-01T09:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


C. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T09:00-05:00[US/Eastern]


 


D. 2015-11-01T10:00-05:00[US/Eastern]

2015-11-01T10:00-05:00[US/Eastern]
 


Explanation: 
Important thing to remember here is that Period is used to manipulate dates in terms of days, months, and years, while Duration is used to manipulate dates in terms of hours, minutes, and seconds. Therefore, Period doesn't mess with the time component of the date while Duration may changed the time component if the date is close to the DST  boundary.



Durations and periods differ in their treatment of daylight savings time when added to ZonedDateTime. A Duration will add an exact number of seconds, thus a duration of one day is always exactly 24 hours. By contrast, a Period will add a conceptual day, trying to maintain the local time.



For example, consider adding a period of one day and a duration of one day to 18:00 on the evening before a daylight savings gap. The Period will add the conceptual day and result in a ZonedDateTime at 18:00 the following day. By contrast, the Duration will add exactly 24 hours, resulting in a ZonedDateTime at 19:00 the following day (assuming a one hour DST gap).

 
Back to Question without Answer
 



Note: The terminology "thrown by the JVM and "thrown by the
application/programatically" is not precise but is used by popular
books. If it helps, you can think of the exception categories as
"thrown implicitly" or "thrown explicitly". An exception is that is
thrown even when there is no throws
statement, is said to be thrown implicitly. For example, calling a
method on null will cause a NullPointerException
to be thrown automatically, even through there is no throws statement.
On the other hand, a method code might check an argument for validity
and if it finds the argument inappropriate, it may throw an exception
explicitly by executing throw new
IllegalArgumentException();. 
 
A quick
way to determine who should throw an exception is to see if the
exception extends java.lang.Error.
Instances of java.lang.Error
are thrown only by the JVM. Some common Errors are java.lang.AssertionError, java.lang.OutOfMemoryError, and java.lang.NoClassDefFoundError 
 
Generally,
RuntimeExceptions are
also thrown by the JVM. However, it is ok for an application code to
throw a RuntimeException
if it makes sense for the application to throw a RuntimeException in a given
situation. 
 
You should know about the following
common exception classes: 
 
	IndexOutOfBoundsException
extends RuntimeException:
Usually thrown by the JVM. Thrown to indicate that an index of some
sort (such as to an array, to a string, or to a vector) is out of
range.  Applications can subclass this class to
indicate similar exceptions.
ArrayIndexOutOfBoundsException
and StringIndexOutOfBoundsException both extend IndexOutOfBoundsException.


	ClassCastException
extends RuntimeException:
Usually thrown by the JVM. Thrown to indicate that the code has
attempted to cast an object to a subclass of which it is not an
instance. For example, the following code generates a ClassCastException:
     Object
x = new Integer(0);
     System.out.println((String)x);



	NullPointerException
extends RuntimeException:
Usually thrown by the JVM. Thrown when an application attempts to use null in a case where an object
is required. These include-
	Calling the
instance method of a null object.
	Accessing or
modifying the field of a null object.
	Taking the
length of null as if it were an array.
	Accessing or
modifying the slots of null as if it were an array.
	Throwing
null as if it were a Throwable value.


Applications
should throw
instances of this class to indicate other illegal uses of the null
object.

	SecurityException
extends RuntimeException:
It is thrown by the security manager upon security violation. For example, when a java program runs in a sandbox (such as an applet) and it tries to use prohibited APIs such as File I/O, the security manager throws this exception.




	IllegalArgumentException extends RuntimeException: Usually thrown by the application if a parameter
passed to a method is not valid. 

	IllegalStateException
extends RuntimeException: Usually thrown by
the application.
Signals that a method has been invoked at an illegal or inappropriate
time. In other words, the Java environment or Java application is not
in an appropriate state for the requested operation. 




 
 
  About the Authors

Mitchell Glenn has over 10 years of
professional Java experience as a developer and an  architect. He has been developing
enterprise applications over the years and has now shifted his focus towards Java training. He has been instrumental in developing the question bank for this exam.


Hanumant Deshmukh has over 15 years of
professional Java
experience as an architect, developer, and teacher. Besides developing
enterprise level projects for several wall street firms over the years,
he has helped Enthuware
in
developing thousands of mock exam questions for various Java related
certifications such as JSP/Servlet, EJB, and JPA. Hanumant
is also very active as
a Public Interest Lawyer and maintains hanumant.com
for the benefit of law students in India.

cover.jpeg
Java SE8 Associate
Practice Exams

120-808

(CEHIITHIED

(%2}
c
Q
=
O
c
ke
o
X
L
£
=
2
(%]
c
Q
=
(%]
()
2
O
+
o
=]
2

M|tChe” Glenn wenu<yhwe





images/00002.gif
Given the following statements, what will be the value of k and m
after these statements are executed.

will not compile  excaption at runtime 12

inta=5,b=7k=0;

Integer m = null;

new Integer (a) + new Integer (b) ;
new Integer (a) + b;

b + new Integer (a);

new Integer (a) + new Integer (b) ;






images/00001.gif
Complete the code using blue labels on the right
50 that the output will 210, _picine 2= a +offsets

(rou may leavs soms blanks 8mBte.) i 2 wupdate(s, 111
2 = wupdate(s, 112);

retum;  public void

public class Updater
{

[ Jupdace(int a, inc offset)
6 {

7 | —

| —

5 ¥
public static veid main(Stringl] arge)
1 Updater u = new Updater();

int a = 89;
7 ——

1 system.out.println(a);






images/00004.gif
Identify the exceptions that will be received when the
code snippets on the left hand side are executed.

.
int Factorial(nt n){

#o==1) retum 1 —————
else returm n*factorial(n-1);

¥

Aszume that it s called vith 3 very big intager,

2
void printe(Object(] 0a){

ot e lengtog 4) —

System.out.printin(oalil);
¥

Aszume tht it is called a2 such: printite(null);

N
Objectm1(){
et e Object0; —
1
void m2(){

g2 st s

¥

ClassCastException  ArrayIndexOutOfBoundsException  NullPointerException

StackOverflowError  Will Not Compile.  No Exception Will Be Thrown.





images/00003.gif
Identify the exceptions that will be received when the
code snippets on the left hand side are executed.

Lintl]ia = newintlI{ 1, 2, 3%
System.out.printinGal-1]);

2
public class X {
staticintk
static
10/0;

2. Some(lass sc = new SomeClass0;
(Assume that SomaClass is not svailable
in runtime dazzpath.)

.

public class  {

static {

if(ue) throw new NullPointerException0;

¥

¥
NoClassDeffoundEmor  NullPointerException Arvay AccessException
ExceptionInInitializerErvor ArvayIndexOut0fBoundsException

TlegalArray AccessException  NoSuchClassException





images/00006.gif
Given the following declarations, identify which
statements will return true or false.

Integerit
Integer

intia = 1
Bytebl
Long g1 = 11;

= new Integer(1);

1.1
2.i1

3.i1==b1 —
4 ilequals(iz) [
Seitequals(gl) ]

6. i equals(bt) [

false.

Wil not compile Exception at runtime





images/00005.gif
Given:
StringBuilder b1 = new StringBuilder(“snorke
StringBuilder b2 = new StringBuilder("yoodler™),

Write the contents of b1 and b2 after the statements shown
on the left are executed independent of each other.

b1.append (h2.substring(2, 5)

_touppexcase()) ; —— |—— 1

b2.insert(3, bl.appendirarh);| 1 (L]

bl.zeplace(3, 4,

b2, substring(4)) — |

. append(b2. append (false) ) ;






images/00008.gif
Drag and drop valid operators (shown in blue) in yellow boxes.
= operator can be used more than once.

= 4=

public class TestClass
«
public static void main(String[] args)
«
Short k = 9;  Integer i=9; Boolean b = false;
char o= 'a'; String str = "1237;

(int) k.shortValue();

str





images/00007.gif
Identify the exceptions that will be received when the
code snippets on the left hand side are executed.

1. String s = null;
System.out.printin(s.length0);

2.intllia = newintl]{ 1, 2, 3}
System.out.printinGal3]

3. Class.forName ("java.lang.String’

.
public class  {

static

throw new NullPointerExceptionO;
¥

¥

AmayIndexOutofBoundsException  ExceptionInlnitializerErvor
ClassNotFoundException NullPointerException

Wil Not Compile. No Exception Wil Be Thrown.





images/00009.gif
Given the definitions of I and Klass, complete the definition of SubClass so that
it extends from Klass and implements 1.
Use minimum number of elements.

¢ f public void mi0{
R

)

astract class mazs

‘
void mi() { };

)

crass swciess [0 [0 [0 0

¢





images/00011.gif
Given the following statements, what will be the value of k and m
after these statements are executed.

will not compile  excaption at runtime 12

inta=5,b=7k=0;

Integer m = null;

new Integer (a) + new Integer (b) ;
new Integer (a) + b;

b + new Integer (a);

new Integer (a) + new Integer (b) ;






images/00010.gif
Complete the code using blue labels on the right
so that the output will 210.

(vou may leave some blanks empty.) Gupdate(s, 110);

retum;  public void

2 public class Updater
i

R Jupdace (int a, inc offset)

public static veid main(Stringl] arge)

Updater u = new Updater();

int a = 95;

system.out.println(a);






images/00013.gif
Identify the exceptions that will be received when the
code snippets on the left hand side are executed.

.
int Factorial(nt n){

#o==1) retum 1 ST e —
else returm n*factorial(n-1);

¥

Aszume that it s called vith 3 very big intager,

2
void printe(Object(] 0a){

ot e lengtog 4) [ —

System.out.printin(oalil);
¥

Aszume tht it is called a2 such: printite(null);

N
Objectm1(){
et e Object0; [ —
1
void m2(){

g2 st s

¥

ClassCastException  ArrayIndexOutOfBoundsException  NullPointerException

StackOverflowError  Will Not Compile.  No Exception Will Be Thrown.





images/00012.gif
Identify the exceptions that will be received when the
code snippets on the left hand side are executed.

Lintl]ia = newintlI{ 1, 2, 3%
System.out.printinGal-1]);

2
public class X {
staticintk
static
10/0;

2. Some(lass sc = new SomeClass0;
(Assume that SomaClass is not svailable
in runtime dazzpath.)

.

public class  {

static {

if(ue) throw new NullPointerException0;

¥

¥
NoClassDeffoundEmor  NullPointerException Arvay AccessException
ExceptionInInitializerErvor ArvayIndexOut0fBoundsException

TlegalArray AccessException  NoSuchClassException





images/00015.gif
Given the following declarations, identify which
statements will return true or false.

Integerit
Integer

intia = 1
Bytebl
Long g1 = 11;

= new Integer(1);

1.1
2.i1

3.i1==b1 | ZEIEE T e —
4. ilequals(iz) Fe ]
S.ilequals(gl) BE ]

6. i equals(b1) FEE]

false.

Wil not compile Exception at runtime





images/00014.gif
Given

Write the contents of b1 and b2 after the statements shown

ingBuilder b1 = new StringBuilder("snorkler");
StringBuilder b2 = new StringBuilder("yoodler”);

on the left are executed independent of each other.

_append(b2. append (£alse)) ;

b1.append (b2.substring(2, 5) |[snorkleronl ] | [zeedter ]
_touppexcase()) +

b2.insext (3, bl.append(*ar)); | [orkiers ]| hoosnonderasier ]

bl.zeplace(3, 4,

b2 substring(4)) [enalerideryoodiarisiza | | [yosdiertaise






images/00020.gif
- |

|— Helper.class

g

|-util.class

g

L stock.class






images/00017.gif
Drag and drop valid operators (shown in blue) in yellow boxes.
= operator can be used more than once.

= 4=

public class TestClass
«
public static void main(String[] args)
«
Short k = 9;  Integer i=9; Boolean b = false;
char o= 'a'; String str = "1237;

(int) k.shortValue();

str

=
g





images/00016.gif
Identify the exceptions that will be received when the
code snippets on the left hand side are executed.

1. String s = null;
System.out.printin(s.length0);

2.intllia = newintl]{ 1, 2, 3}
System.out.printinGal3]

3. Class.forName ("java.lang.String’

.
public class  {

static

throw new NullPointerExceptionO;
¥

¥

AmayIndexOutofBoundsException  ExceptionInlnitializerErvor
ClassNotFoundException NullPointerException

Wil Not Compile. No Exception Wil Be Thrown.





images/00019.gif
N





images/00018.gif
Given the definitions of I and Klass, complete the definition of SubClass so that
it extends from Klass and implements 1.
Use minimum number of elements.

interface T

¢
void mi();

ahstract class Klass

¢
void mif) { };

)

{
FbE e T ]





