Assoclate Java 8
Programmer Certification

damentals

Covers 100% of exam objectives
Focuses on mastering concepts

Includes coding exercises

Complements Enthuware Mock Exams

o NTRU . ARE

LIanmniirmyant NDRachmiailirlhy

OCAJP Associate Java 8 Programmer Certification
Fundamentals 17Z0-808

Hanumant Deshmukh

Monday 3'¢ December, 2018
Build 10.0

For online information and ordering of this book, please contact support@enthuware.com. For more information,
please contact:

Hanumant Deshmukh

4A Agroha Nagar, A B Road,
Dewas, MP 455001

INDIA

Copyright © 2018 by Hanumant Deshmukh All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under the
relevant laws of copyright, without the prior written permission of the Author. Requests for permission should be
addressed to support@enthuware.com

Limit of Liability /Disclaimer of Warranty: The author makes no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limi-
tation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with
the understanding that the author is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. The author shall
not be liable for damages arising herefrom. The fact that an organization or website is referred to in this work as
a citation and/or a potential source of further information does not mean that the author endorses the information
the organization or Web site may provide or recommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was written and
when it is read.

Lead Author and Publisher: Hanumant Deshmukh
Technical Editor: Liu Yang

Technical Validators: Aakash Jangid, Bill Bruening
Technical Proofreaders: Carol Davis, Robert Nyquist
Copy Editor: Lisa Wright

Book Designers: Fatimah Arif

Proofreader: Ben Racca

Typesetter: Lillian Musambi

TRADEMARKS: Oracle and Java are registered trademarks of Oracle America, Inc. All other trademarks are
the property of their respective owners. The Author is not associated with any product or vendor mentioned in this
book.

To my alma mater,

Indian Institute of Technology, Varanasi

Acknowledgements

I would like to thank numerous individuals for their contribution to this book. Thank you to Liu
Yang for being the Technical Editor and Lisa Wright for being the copy editor. Thank you to Carol
Davis and Robert Nyquist for technical proof reading. Thank you to Aakash Jangid and Bill Bru-
ening for validating all the code snippets in this book. This book also wouldn’t be possible without
many people at Enthuware, including Paul A Prem, who have been developing mock exams for the
past fifteen years. Their experience helped fine tune several topics in this book.

I would also like to thank Bruce Eckel, the author of “Thinking In Java” for teaching Java to me
and countless others through his book.

I am also thankful to countless Enthuware.com and CodeRanch.com forum participants for high-
lighting the topics that readers often find difficult to grasp and also for showing ways to make such
topics easy to understand.

Thank you to Edward Dang, Rajashekar Kommu, Kaushik Das, Gopal Krishna Gavara, Dinesh
Chinalachiagari, Jignesh Malavia, Michael Tsuji, Hok Yee Wong, Ketan Patel, Anil Malladi, Bob
Silver, Jim Swiderski, Krishna Mangallampalli, Shishiraj Kollengreth, Michael Knapp, Rajesh Ve-
lamala, Aamer Adam, and Raghuveer Rawat for putting up with me :)

Finally, I would like to thank my family for their support throughout the time I was busy writing
this book.

About the Author

Hanumant Deshmukh is a professional Java architect, author, and director of software consultancy
firm BetterCode Infosoft Pvt. Ltd. Hanumant specializes in Java based multi-tier applications in
financial domain. He has executed projects for some of the top financial companies. He started
Enthuware.com more than fifteen yrs ago through which he offers training courses and learning
material for various Java certification exam. He has also co-authored a best selling book on Java
Servlets/JSP certification, published by Manning in 2003.

Hanumant achieved his Bachelor of Technology from Institute of Technology, Banaras Hindu Uni-
verisy (now, IIT Varanasi) in Computer Science in 1997 and his Masters in Financial Analysis from
ICFAI in 2010. After spending more than a decade working with amazing people in the United
States, he returned back to India to pursue a degree in Law. He is a big believer in freedom of
speech and expression and works on promoting it in his spare time.

You may reach him at support@enthuware.com

=2

-

[Contents At A Glance

Introduction

1

8

9

Kickstarter for Beginners

Java Basics

Working With Java Data Types

Creating and Using Arrays

Using Operators

Using Decision Constructs

Using Loop Constructs

Working with Methods and Encapsulation

Working with inheritance - 1

10 Handling Exceptions

11 Working with Inheritance - 11

12 Working with Selected classes from the Java API

13 Reviews

27

55

93

109

137

153

177

229

267

297

325

377

=2

-

[Contents

Introduction
0.1 Whoisthisbook for?
0.2 How is this book different from others?
0.3 How is this book organized?
0.4 Will this be asked in the exam?
0.5 General tips for theexam L
0.6 Official Exam Details and Exam Objectives
Kickstarter for Beginners
1.1 Keypointsin OOP
1.1.1 A matter of perspective
1.1.2 APL . . e
1.1.3 Type, class, enum, and interface
1.2 Why is somethingso
1.3 Declaration and Definition
1.4 Object and Reference
1.5 staticand instanceo
1.6 Stackand Heap
1.7 Conventions e e e e e e
1.7.1 What is a Convention?
1.7.2 Conventions in Java e
1.8 Compilation and Execution o L
1.8.1 Compilation and Execution
1.8.2 Packaging classesinto Jar
1.9 Nomenclature e e
1.10 Java Identifiers e
Java Basics
2.1 Define the scope of variables L
2.1.1 Scopeofvariables
2.1.2 Scope and Visibility

2.1.3 Scopeand Lifespan

3

2.1.4 Scopes Illustrated 31

21,5 Scopeforthe Exam 32
2.1.6 Quiz e e e 33
2.2 Define the structure of a Javaclass 34
2.2.1 Class disambiguated 34
2.2.2 Structure of a Java sourcefile 34
223 Membersofaclass 35
2.2.4 Relationship between Java source file name and class name 38
225 Quiz e e e 40
2.3 Putting classes into packages 41
2.3.1 The package statement Lo 41
2.3.2 Quiz e e 41
2.4 Importing Java classesintoyour class, 42
2.4.1 The import statement Lo Lo 42
242 Quiz e e e e e 45
2.5 Create executable Java applications with a main method 46
2.5.1 Themainmethod 46
2.5.2 Command line arguments L 48
253 Theendofmain 49
2.6 Run a Java program from the command line 50
2.7 Compare and contrast the features and components of Java.. 50
2.8 EXercises e e e e 53
Working With Java Data Types 55
3.1 DatatypesinJava e 56
3.2 Difference between reference variables and primitive variables 59
3.3 Declare and initialize variables Lo 61
3.3.1 Declare and initialize variables, 61
3.3.2 Uninitialized variables and Default values. 62
3.3.3 Assigning values to variables L oL 66
3.3.4 final variables 72
3.4 Know how to read or write to object fields 73
3.4.1 Accessing object fields 73
3.4.2 Whatis “this”? 74
3.5 Explain an Object’s Lifecycle 77
3.5.1 Life cycle of an Object 7
3.5.2 Garbage Collection 78
3.5.3 Garbage Collection for theexam 81
3.6 Wrapper classes e e e e 85
3.6.1 What are wrapper classes? 85
3.6.2 Creating wrapper objects 87
3.6.3 Converting wrapper objects to primitives 90
3.7 EXercises e e e e e 92

4 Creating and Using Arrays 93

4.1 Declare, instantiate, initialize, and use a one-dimensional array 94
4.1.1 Declaring array variables Lo 94
4.1.2 Creating and initializing array objects 95

4.2 USINg arrays o o v o e e e e e e 97
4.2.1 Arrayindexing 97
4.2.2 Members of an array object Lo 98
4.2.3 Runtime behavior of arrays o 100
424 Usesofarrays 101

4.3 Declare, instantiate, initialize and use multi-dimensional arrays 101
4.3.1 Multidimensional Arrays 101
4.3.2 Assigning arrays of primitives to Object variables 106

4.4 EXErcCiSes v v v i e e e e e e e 107

5 Using Operators 109

5.1 Java Operators e e 110
5.1.1 Overview of operators availablein Java, 110
5.1.2 Expressions and Statements, 121
5.1.3 Post and Pre Unary Increment/Decrement Operators 122
5.1.4 String concatenation using + and += operators 124
5.1.5 Numeric promotion and casting 126
5.1.6 Operator precedence and evaluation of expressions 129

5.2 Equality between Strings 131
52.1 Whatisastring? 131
5.2.2 Comparing two strings L 133

5.3 Exercises e e e 135

6 Using Decision Constructs 137

6.1 Create if and if/else constructs 138
6.1.1 Basic syntax of ifand if-else 138
6.1.2 Usage of if and if-elseintheexam 139

6.2 Create ternary constructs 144

6.3 Use aswitch statement Lo oL 147

6.4 EXercises e e e e e 152

7 Using Loop Constructs 153

7.1 Whatisaloop e e 154

7.2 Create and use while loops 154
7.2.1 Thewhileloop 154
7.2.2 Usingawhileloop 155

7.3 Create and use do-while loops L 156

74 Create and use for loops 158
7.4.1 Going from a while loop toaforloop, 158
74.2 Syntaxofaforloop. 160

743 Partsofaforloop 161

8

7.5 Create and use the enhanced forloop 163
7.5.1 The enhanced forloop oL 163
7.5.2 Syntax of the enhanced forloop 165
7.5.3 Enhanced for loop in practice L. 166

7.6 Use break and continue Lo 167
7.6.1 Terminating a loop using break 0oL, 167
7.6.2 Terminating an iteration of a loop using continue 167

7.7 Using break and continue with nested loops 168
7.7.1 Nestedloop 168
7.7.2 breaking out of and continuing with nested loops 170

7.8 Compare loop constructs 174

7.9 EXercises e e e e 175

Working with Methods and Encapsulation 177

8.1 Create methods with arguments and return values 178
8.1.1 Creatingamethod 178
8.1.2 Returning a value from amethod 179
8.1.3 Varargs 182

8.2 Create overloaded methods 184
8.2.1 Method signatureo 184
8.2.2 Method overloading L 185
8.2.3 Method selection 186

8.3 Apply the static keyword to methods and fields 190
8.3.1 Apply the static keyword to methods and fields 190
8.3.2 Accessing static members L L L 191
8.3.3 Accessing static members from the sameclass 192
8.3.4 Importing static fields 193
8.3.5 Accessing instance members from a static method 194
8.3.6 Class loading and static initializers 195

8.4 Apply access modifiers L e 199
8.4.1 Accessibility 199
8.4.2 Accessmodifiers. e 200
8.4.3 Understanding protected access, 201
8.4.4 Applying access modifiers to types L. 203

8.5 Create and overload constructors 204
8.5.1 Creating instance initializers L. 204
8.5.2 Creating constructors 208
8.5.3 Overloading constructors 211
8.5.4 Instance initializers vs constructors 213
8.5.5 final variables revisited L 214

8.6 Apply encapsulation principlestoaclass 217
8.6.1 Encapsulation 217
8.6.2 JavaBeans naming convention Lo oL 218

8.7 Passing object references and primitive values into methods 220

8.7.1 Passing arguments tomethods L. 220

8.7.2 Passing objects to methods L. 222

8.7.3 Returning a value from amethod 226

8.8 EXercises e e e e 227
9 Working with inheritance - 1 229
9.1 Describe inheritance and its benefits 0oL 230
9.1.1 Understanding inheritance oL, 230
9.1.2 Inheriting features fromaclass 231
9.1.3 Inheritance and access modifiers L. 233
9.1.4 Inheritance of instance members vs static members 236
9.1.5 Benefits of inheritance 237

9.2 Use abstract classes and interfaces L. 239
9.2.1 Using abstract classes and abstract methods 239
9.2.2 Using final classes and final methods 241
9.2.3 Valid combinations of access modifiers, abstract, final, and static 242
9.2.4 Usinginterfaces 244
9.2.5 Implementing an interface o L. 248
9.2.6 Extending an interface oL L 252
9.2.7 Instantiating abstract classes and interfaces 255
9.2.8 Difference between Interface and Abstract Class 255

9.3 Use super and this to access objects and constructors 256
9.3.1 Object initialization revisited 256
9.3.2 Initializing super class using “super” 257
9.3.3 Using the implicit variable “super” 261
9.3.4 Order of initialization summarized 263

9.4 EXErciSes v i e e e e e e e e 265
10 Handling Exceptions 267
10.1 Exceptions e e 268
10.1.1 Java exception handling oL 268
10.1.2 Fundamentals of the try/catch approach 269
10.1.3 Pieces of the exception handling puzzle 271

10.2 Differentiate among checked exceptions, unchecked exceptions, and Errors 276
10.3 Create and invoke a method that throws an exception 279
10.3.1 Creating a method that throws an exception 279
10.3.2 Throwing exceptions from initializers and constructors 282
10.3.3 Invoking a method that throws an exception 285
10.3.4 Using multiple catch blocks 288

10.4 Recognize common exception classes 292
10.5 Exercises e e e e 296
11 Working with Inheritance - 11 297
11.1 Polymorphism e 298
11.1.1 What is polymorphism 298

11.1.2 Overriding and Hiding 301

11.2 Differentiate between the type of a reference and the type of an object 304
11.3 Determine when casting is necessary 305
11.3.1 Bridging the gap between compile time and run time 305
11.3.2 When is casting necessaryo 309
11.3.3 The instanceof operator 311

11.4 Develop code that overrides methods 313
11.4.1 Overriding methods 313
11.4.2 Invalid overrides e 316

11.5 Develop code that makes use of polymorphism 317
11.5.1 Invoking overridden methods. 317
11.5.2 Impact of polymorphism on == and equals method 320

11.6 Exercises e e 322
12 Working with Selected classes from the Java API 325
12.1 Create and manipulate Strings 326
12.1.1 Creating Strings. e 326
12.1.2 String immutability L 329
12.1.3 Manipulating Strings 330

12.2 Manipulate data using the StringBuilder class and its methods 333
12.2.1 Why StringBuilder 333
12.2.2 StringBuilder API 334

12.3 Create and manipulate calendar data 337
12.3.1 Overview of the new Date/Time API 337
12.3.2 Creating date/time objects 340
12.3.3 Converting date/time objects to strings 346
12.3.4 Comparing date/time objects 348
12.3.5 Reading the state of date/time objects 350
12.3.6 Chaining method calls 351

12.4 Declare and use an ArrayList of a giventype 352
12.4.1 ArrayList and collections 352
12.4.2 ArrayList API. 356
12.4.3 ArrayList vs array e 363

12.5 Write a simple Lambda expression. 364
12.5.1 Lambda Expressions 364
12.5.2 Parts of a Lambda expression 368
12.5.3 Using Predicate interface, 370
12.5.4 Using Predicate with ArrayList 372

12.6 ExXercises e 374

13 Reviews 377

=
e

[Introduction

I believe you have already got your feet wet with Java programming and are now getting serious
about your goal of being a professional Java programmer. First of all, let me commend your decision
to consider Java certification as a step towards achieving that goal. I can assure you that working
towards acquiring Oracle’s Java Certification will be very rewarding. Irrespective of whether
you get extra credit for being certified in your job hunt or not, you will be able to speak with
confidence in technical interviews and the concepts that this certification will make you learn, will
improve your performance on the job.

Oracle Certified Associate - Java SE 8 Programmer exam (Exam code 1Z0-808), aka OCAJP
8 exam, is the first of the two exams that you need to pass in order to become an Oracle Certified
Java professional. This exam focuses on the fundamental aspects of Java and is not particularly
tough to pass. If you go through a decent book and practice a few good mock exams, you should
be able to pass it with a couple of months of preparation. However, the topics covered in this
certification form the groundwork for the second step of professional certification, i.e., the Oracle
Certified Professional Java SE 8 Programmer exam (Exam code 1Z0-809), aka OCPJP 8 exam.
The OCPJP 8 is a very tough exam. It is a lot tougher than the OCA exam. You will have trouble
passing that exam if your fundamentals are weak. For this reason, it is very important to not think
of just passing the OCA exam with the bare minimum marks required (65%) but to set a score
of 90% as your target. My objective with this book is to help you achieve 90% plus score on the
OCAJP 8 exam.

About the mock exams ¢

Mock exams are an essential preparation tool for achieving a good score on the exam. However,
having created mock exams for several certifications, I can tell you that creating good quality
questions is neither easy nor quick. Even after multiple reviews and quality checks, it takes years of
use by thousands of users for the questions to shed all ambiguity, errors, and mistakes. I have seen
users come up with plausible interpretations of a problem statement that we could never imagine.
A bad quality mock exam will easily eat up your valuable time and may also shake your confidence.
For this reason, I have not created new mock exams for this book. We have a team that specializes

ii Chapter 0. Introduction

in developing mock exams and I will recommend you to buy the exam simulator created by this
team from our web site Enthuware.com. It is priced quite reasonably (only 9.99 USD) and has
stood the test of time.

0.1 Who is this book for? iii

0.1 Who is this book for?

This book is for OCA Java SE 8 Programmer certification (1Z0-808) aspirants who know how to
program and are at least aware of basic Java terminology. Before proceeding with this study guide,
please answer the following questions. Remember that you don’t have to be an expert in the topic
to answer yes. The intention here is to check if you are at least familiar with the basic concepts. It
is okay if you don’t know the details, the syntax, or the typical usage. I will go through all that in
this book, but I will not teach the basics of programming in this book.

1.

2.

9.

10.

Do you know what OS, RAM, and CPU are?

Do you know what a command line is?

. Do you know basic OS commands such as dir, cd, and mkdir (or if you are a Linux/Mac user

- Do you know how to use 1s, cd, and md)?

Can you write a simple Hello World program in Java and run it from the command line?

. Do you know what variables are?

. Do you know what loops (such as for loop and while loop) are and what they are used for?

Are you aware of arrays?

. Are you aware that Java has classes and interfaces?

Are you aware that classes and interfaces have methods?

Have you installed JDK 1.8 on your computer?

If you answered no to any of the above, this book is not for you. It would be better if you
go through a programming book or a computer book for beginners first, and then come back to
this book. Alternatively, be open to google a term if you are not sure about it at any time before
proceeding further while reading this book.

0.2 How is this book different from others?

With so many certification books around, I think this question is worth answering at the outset.
This book is fundamentally different from others in the following respects:

1.

Focus on concepts - I believe that if you get your basic concepts right, everything else
falls in place nicely. While working with Java beginners, I noticed several misconceptions,
misunderstandings, and bad short cuts that would affect their learning of complex topics
later. I have seen so many people who manage to pass the OCAJP exam but fail in technical
interviews because of this reason. In this book, I explain the important stuff from different
perspectives. This does increase the length of the book a bit but the increase should be well
worth your time.

iv

Chapter 0. Introduction

2. No surgical cuts - Some books try to stick very close to the exam objectives. So close that

sometimes a topic remains nowhere close to reality and the reader is left with imprecise and,
at times, incorrect knowledge. This strategy is good for answering multiple choice questions
appearing on the OCAJP exam but it bites the reader during technical interviews and while
writing code on the job. I believe that answering multiple choice questions (MCQs) should
not be your sole objective. Learning the concepts correctly is equally important. For this
reason, I go beyond the scope of exam objectives as, and when, required. Of course, I mention
it clearly while doing so.

. Structure of the book - I have structured the book to follow the official exam objectives

very closely. This eliminates the need to map chapters and topics with exam objectives. This
helps in tracking your progress and also allows you to sync your preparation with another
course or exam simulator.

. Exercises - “Write a lot of code” is advice that you will hear a lot. While it seems quite

an easy task for experienced programmers, I have observed that beginners are often clueless
about what exactly they should be writing. When they are not sure about what exactly a test
program should do, they skip this important learning step altogether. In my training sessions,
I give code writing exercises with clear objectives. I have done the same in this book. Instead
of presenting MCQs or quizzes at the end of a topic or chapter, I ask you to write code that
uses the concepts taught in that topic or chapter.

Besides, a question in the real exam generally requires knowledge of multiple topics. The
following is a typical code snippet appearing in the exam:

int i = 10;

Long n = 20;

float £ = 10.0;

String s = (String) i+n++;

To determine whether this code compiles or not, you need to learn four topics - wrappers,
operators, String class, and casting. Thus, presenting an MCQ at the end of a topic, that
focuses only on that one topic, creates a false sense of confidence. I believe it is better to
focus on realistic MCQs at the end of your preparation.

. Not being pedantic - If you are preparing for the OCAJP exam, I believe you have already

been through many academic exams in your life. You already know what to expect in an
exam. So, [won’t advise you on the amount of water you should drink before the exam to
avoid a restroom break, or on how much sleep you should get before the exam, or to check
the exam center location a day before. If you have not taken any computer-based exam
containing multiple choice questions, I strongly suggest you use Enthuware’s exam simulator
to get familiar with this style. It closely mimics the user interface of the real exam.

0.3 How is this book organized?

This book consists of twelve chapters plus this introduction at the beginning. Other than the
first chapter “Kickstarter for the Beginners”, the chapters correspond directly to the official exam

0.3 How is this book organized? v

objectives. The sections of a chapter also correspond directly to the items of exam objectives in most
cases. Each chapter lists the exam objectives covered in that chapter at the beginning and includes
a set of coding exercises at the end. It would be best to read the book sequentially because each
chapter incrementally builds on the concepts discussed in the previous chapters. I have included
simple coding exercises throughout the book. Try to do them. You will learn and remember the
concept better when you actually type the code instead of just reading it. If you have already had
a few years of Java development experience, you may go through the chapters in any order.

Conventions used in this book

This book uses certain typographic styles in order to help you quickly identify important informa-
tion. These styles are as follows:

Code font - This font is used to differentiate between regular text and Java code appearing within
regular text. Code snippets containing multiple lines of code are formatted as Java code within
rectangular blocks.

Red code font - This font is used to show code that doesn’t compile. It could be because of
incorrect syntax or some other error.

Output code font - This font is used to show the output generated by a piece of code on the
command line.

Bold font - I have highlighted important words, terms, and phrases using bold font to
help you mentally bookmark them. If you are cruising through the book, the words in bold will
keep you oriented besides making sure you are not missing anything important. Note -

Things that are not completely related to the topic at hand are explained in notes. I have used
notes to provide additional information that you may find useful on the job or for technical
interviews but will most likely not be required for the exam.

Exam Tip:

Exam Tips contain points that you should pay special attention to during the exam. I have
also used them to make you aware of the tricks and traps that you will encounter in the exam.

Asking for clarification

If you need any clarification, have any doubt about any topic, or want to report an error, feel free
to ask on our dedicated forum for this book - http://enthuware.com/forum. If you are reading this
book on an electronic device, you will see this icon ¢ beside every topic title. Clicking on this icon
will take you to an existing discussion on that particular topic in the same forum. If the existing
discussion addresses your question, great! You will have saved time and effort. If it doesn’t, post
your question with the topic title in the subject line. We use the same mechanism for addressing
concerns about our mock exam questions and have received tremendous appreciation from the users
about this feature.

vi Chapter 0. Introduction

0.4 Will this be asked in the exam?

While going through this book, you will be tempted to ask this question many times. Let me answer
this question at the beginning itself. I do talk about concepts in this book that are not explicitly
listed in the official exam objectives but wherever I digress from the official exam objectives, I
clearly specify so. You are free to ignore that section and move on. But I suggest you do not skip
such sections because of the following reasons.

1. While discussing a rule of the language, I may have to refer to some terms and concepts for
the sake of completeness and technical accuracy. For example, let’s say we are talking about
public classes in a file. If I state that you cannot have more than one public class in a file,
it is fine for the purpose of the exam but it is technically incorrect because you can have any
number of public nested classes in a file. Thus, it would be better to state that you cannot
have more than one top-level class in a file. How about one public top-level class and one
public interface? Nope, you can’t do that either. Thus, the statement is still incorrect. The
correct statement would be that you cannot have more than one public top-level reference
type in a file. As you can see, it is imperative for me to mention the meaning of the terms
reference type, nested class, and top level class, even though you won’t be tested on them in
the exam. If you absolutely do not want to spend any time learning about anything that is
not part of the exam, then this book is not for you. I have tried to stick to the objectives
as much as possible but, if I believe you need to know something, I talk about it even if it is
beyond the scope of the exam.

2. I have noticed that most of the OCAJP certification aspirants are new Java programmers
who are either in school or want to start their career with Java programming. They want
to get certified because they ultimately want to land a job as a Java programmer. These
programmers will be facing a lot of technical interviews as well. I want these programmers
to do well on technical interviews.

Certification may get you a foot in the door but you will need to back it up with
strong knowledge of fundamentals in the interview. Therefore, if I believe that something
is important for you to know or that something will be helpful to you in your technical
interview, irrespective of whether it will be asked in the exam or not, I discuss it.

3. Official exam objectives are not exhaustive. They list top level topics that you need to study
but may leave out finer details. You will be asked questions that require you to know those
concepts.

4. Oracle adds new questions to the exam before formally adding a new topic in the official
exam objectives. These questions may not be included in your final scored, i.e., your answers
on such questions are not counted towards your score on the exam. However, test takers
do not know if a question is unscored and so they must attempt it as if it will be counted
towards their final score.

Since we, at Enthuware, conduct classroom training as well, we get to interact with a
lot of test takers. We receive feedback from test takers about getting questions on topics that

0.5 General tips for the exam vii

are not there in the exam objectives. After receiving such multiple reports, we may decide to
add that topic to our content. We clearly specify the reason for their inclusion.

5. Official exam objectives are not constant. Although not frequently, Oracle does add and
remove topics from the objectives from time to time. This may render some of the content
not relevant for the exam. I will update the content as soon as possible.

If you are interested in getting your basics right, then I suggest you do not worry too much about
the exam objectives while following this book. Even if you spend a little more time (not more than
10%, I promise) in your preparation because of this extra content, it will be worth your while.

0.5 General tips for the exam

Here is a list of things that you should keep in mind while preparing for the exam -

1. Code Formatting - You may not find nicely formatted code in the exam. For example, you
may expect a piece of code nicely formatted like this:

if (flag){
while(b<10){
}

}else if(a>10) {

invokeM(a) ;

}

elseq{
System.out.println(10);

}

But you may get the same code formatted like this:

if (flag){
while(b<10){ }
} else
if(a>10) { invokeM(a); }
else { System.out.println(10); }

They do this most likely to save space. But it may also happen inadvertently due to variations
in display screen size and resolution.

2. Assumptions - Several questions give you partial code listings, aka “code snippets”. For
example, what will the following code print?

ArraylList al = new ArrayList();
al.remove(0);
System.out.println(al);

Obviously, the code will not compile as given because it is just a code fragment. You have to
assume that this code appears in a valid context such as within a method of a class. You also

viii

Chapter 0. Introduction

need to assume that appropriate import statements are in place.
You should not fret over the missing stuff. Just focus on the code that is given and assume
that everything else is irrelevant and is not required to arrive at the answer.

. Tricky Code - You will see really weird looking code in the exam. Code that you may never

even see in real life. You will feel as if the exam is about puzzles rather than Java programming.
To some extent, that is correct. If you have decided to go through the certification, there is
no point in questioning the relevance. If you feel frustrated, I understand. Please feel free to
vent, out your anger on our forum and get back to work!

Number of correct options - Every question in the exam will tell you exactly how many
options you have to select to answer that question correctly. Remember that there is no
negative marking. In other words, marks will not be deducted for answering a question
incorrectly. Therefore, do not leave a question unanswered. If you don’t know the answer,
select the required number of options anyway. There is a slight chance that you will have
picked the correct answer.

. Eliminate wrong options - Even better than not leaving a question unanswered is make

intelligent guesses by eliminating obviously incorrect options. You may see options that are
contradictory to each other. This makes it a bit easy to narrow down the correct options.

That’s about it. Hope this book helps you become a better Java programmer besides getting you
the certification.

0.6 Official Exam Details and Exam Objectives

The following are the official exam details published by Oracle as of 1st July 2018. As
mentioned before, Oracle may change these details at any time. They have done it
in the past. Several times. Therefore, it would be a good idea to check the of-
ficial exam page at https://education.oracle.com/pls/web{_}prod-plq-dad/db{_}pages.
getpage?page{_}id=5001&get{_}params=p{_}exam{_}id:1Z0-808 during your preparation.

Exam Details

Duration: 150 Minutes

Number of Questions: 70

Passing Score: 65%

Format: Multiple Choice

Exam Price: USD 245 (varies by country)

Exam Objectives

Assume the following:

1. Missing package and import statements: If sample code do not include package or import

statements, and the question does not explicitly refer to these missing statements, then assume
that all sample code is in the same package, or import statements exist to support them.

0.6 Official Exam Details and Exam Objectives ix

2.

No file or directory path names for classes: If a question does not state the file names
or directory locations of classes, then assume one of the following, whichever will enable the
code to compile and run:

(a) All classes are in one file

(b) Each class is contained in a separate file, and all files are in one directory

. Unintended line breaks: Sample code might have unintended line breaks. If you see a line

of code that looks like it has wrapped, and this creates a situation where the wrapping is
significant (for example, a quoted String literal has wrapped), assume that the wrapping is
an extension of the same line, and the line does not contain a hard carriage return that would
cause a compilation failure.

Code fragments: A code fragment is a small section of source code that is presented with-
out its context. Assume that all necessary supporting code exists and that the supporting
environment fully supports the correct compilation and execution of the code shown and its
omitted environment.

. Descriptive comments: Take descriptive comments, such as “setter and getters go here,”

at face value. Assume that correct code exists, compiles, and runs successfully to create the
described effect.

TOPICS

Java Basics

1.
2.

Define the scope of variables
Define the structure of a Java class

Create executable Java applications with a main method; run a Java program from the com-
mand line; produce console output

. Import other Java packages to make them accessible in your code

Compare and contrast the features and components of Java such as: platform independence,
object orientation, encapsulation, etc.

Working With Java Data Types

1.
2.
3
4.
9.

Declare and initialize variables (including casting of primitive data types)

Differentiate between object reference variables and primitive variables

. Know how to read or write to object fields

Explain an Object’s Lifecycle (creation, “dereference by reassignment” and garbage collection)

Develop code that uses wrapper classes such as Boolean, Double, and Integer

Using Operators and Decision Constructs

X Chapter 0. Introduction
1. Use Java operators; use parentheses to override operator precedence
2. Test equality between Strings and other objects using == and equals ()
3. Create if and if/else and ternary constructs
4. Use a switch statement

Creating and Using Arrays

1.
2.

Declare, instantiate, initialize and use a one-dimensional array

Declare, instantiate, initialize and use multi-dimensional arrays

Using Loop Constructs

1.
2.
3
4.
9.

Create and use while loops

Create and use for loops including the enhanced for loop

. Create and use do/while loops

Compare loop constructs

Use break and continue

Working with Methods and Encapsulation

1.

AR

Create methods with arguments and return values; including overloaded methods

Apply the static keyword to methods and fields

Create and overload constructors; differentiate between default and user defined constructors
Apply access modifiers

Apply encapsulation principles to a class

. Determine the effect upon object references and primitive values when they are passed into

methods that change the values

Working with Inheritance

1.
2.

Describe inheritance and its benefits

Develop code that makes use of polymorphism; develop code that overrides methods; differ-
entiate between the type of a reference and the type of an object

. Determine when casting is necessary
. Use super and this to access objects and constructors

. Use abstract classes and interfaces

0.6 Official Exam Details and Exam Objectives xi

Handling Exceptions

1.

- W

Differentiate among checked exceptions, unchecked exceptions, and Errors

Create a try-catch block and determine how exceptions alter normal program flow
Describe the advantages of Exception handling

Create and invoke a method that throws an exception

Recognize common exception classes (such as NullPointerException, ArithmeticException,
ArrayIndexOutOfBoundsException, ClassCastException)

Working with Selected classes from the Java API

1.
2.

Manipulate data using the StringBuilder class and its methods
Create and manipulate Strings

Create and manipulate calendar data wusing classes from java.time.LocalDateTime,
java.time.LocalDate, java.time.LocalTime, java.time.format.DateTimeFormatter,
java.time.Period

. Declare and use an ArrayList of a given type

. Write a simple Lambda expression that consumes a Lambda Predicate expression

xii

Chapter 0. Introduction

=2

=

(1. Kickstarter for Beginners

This section is for Java beginners. It does not directly relate to any exam objective but is meant
to provide a solid grounding that will help you to easily understand the concepts taught in later
chapters. The concepts covered in this section are important because they kind of repeat over and
over throughout this course. If we get these repetitions over with now, you will be happier later on!

2 Chapter 1. Kickstarter for Beginners

1.1 Key points in OOP

1.1.1 A matter of perspective

Last year, while I was visiting India, I had a tough time plugging in my laptop charger in the
3-pin sockets. Even the international socket adapter kit, which had adapter pins of various sizes,
was not of much help. Sometimes the receiver would be a bit too small and the pins wouldn’t
make steady contact or the pins would be a bit too wide and won’t go into the receiver. I had to
finally cut my cord and stick the bare copper wire ends directly into the sockets. I wondered, why
do all these sockets in the same country have slight differences. During my stay, I observed that
such minor variations were present in other things as well. Doors that wouldn’t completely close,
nuts that wouldn’t turn properly, taps that wouldn’t stop leaking, and other differences. Most of
the time, people there take the trial and error approach when replacing parts. They work with the
expectation that even if they get a part with the right size, it still may not fit perfectly. In other
words, minor variations are expected and well tolerated.

This was unimaginable to me in the US, where everything just fits. I could buy a bolt
from one shop and a nut from another, and it would work perfectly. Everything, from screws, nuts,
and bolts, to wood panels, electrical parts, packing boxes, is standardized. One can easily replace
a part with another built by a totally different company. You just have to specify the right “size”.

This experience led me to a potential cause of why some OOP learners find OOP concepts
confusing. Especially, beginners from non-western background find it really tough to grasp the
fundamental concepts because they do not know the rationale behind so many rules of OOP. This
is reflected in their application design.

In the US, and I imagine in other developed countries as well, things are extremely well de-
fined. Products clearly specify how they should be used and in what cases they will fail. People
can and do rely on these specifications because products work as expected and fail as defined. At
the same time, people expect products to come with detailed specifications. Ready to assemble
furniture is a prime example of how detailed these specifications can be. It’s because of detailed
and clear specifications that people feel comfortable in buying complicated ready-to-assemble
furniture.

In short, people know exactly what they are getting when they acquire something. I think
of it as the society being naturally ‘object-oriented’.

Object orientation is just a name for the same natural sense of things fitting nicely with
each other. A piece of code is not much different from the physical things I mentioned earlier.
If you code it to a specification, it will fit just as nicely as your .16 inch nut on a .16 inch bolt,
irrespective of who manufactured the nut and who manufactured the bolt. The point here is that
the source of the concept of object-oriented programming is the physical world. If you want to
grasp OOP really well, you have to start thinking of your piece of code as a physical component...a
‘thing’that has a well defined behavior and that can be replaced with another component that
adheres to the same behavior. You would not be happy if you bought a tire that doesn’t fit on

1.1 Key points in OOP 3

your car’s wheel even though you bought same ’size’, would you? You should think about the same
issues when you develop your software component. Someone somewhere is going to use it and they
won’t be happy if it fails at run time with an exception that you didn’t say it would throw in a
particular situation.

1.1.2 API

You probably know that API stands for Application Programming Interface. But do you
understand what it really means? This goes back to my previous observation about relating pro-
gramming concepts to real life. When you operate a switch do you really care about what exists
inside the switch? Do you really care how it works? You just connect the switch to a light bulb
and press it to switch the bulb on or off. It is the same with a car. A car provides you with a few
controls that allow you to turn, accelerate, and brake. These controls are all you need to know how
to drive a car.

You should think about developing software components in the same way. A software com-
ponent doesn’t necessarily mean a bunch of classes and packages bundled together in jar file. A
software component could be as simple as a single class with just one method. But while developing
even the smallest and the simplest of software components, you should think about how you expect
the users to use it. You should think about various ways a user can use the component. You should
also think about how the component should behave when a user doesn’t use it the way it is expected
to be used. In other words, you should specify an interface to your component, even before you
start coding for it. Here, by interface, I do not mean it in the strict sense of a Java interface but
a specification that details how to interact with your component. In a physical world, the user’s
manual of any appliance is basically its interface. In the software world, the specification of the
publicly usable classes, methods, fields, enums, et cetera of a software component is its interface.
As an application programmer, if you want to use a component developed by someone else, you
need to worry only about the interface of that component. You don’t need to worry about what
else it might contain and how it works. Hence the phrase ‘Application Programming Interface’.

In the Java world, a collection of classes supplied by a provider for a particular purpose is called
a library and the JavaDoc documentation for those classes describes its API. When you install the
Java Runtime Environment (JRE), it includes a huge number of classes and packages. These
are collectively called the standard Java library and the collection of its public classes and interfaces
is called the Java APIL.

The Java API contains a huge amount of ready-made components for doing basic programming
activities such as file manipulation, data structures, networking, dates, and formatting. When you
write a Java program, you actually build upon the Java API to achieve your goal. Instead of writing
all the logic of your application from scratch, you make use of the functionality already provided
to you, free of cost, by the Java library and only write code that is specific to your needs. This
saves a lot of time and effort. Therefore, a basic understanding of the Java API is very important
for a Java programmer. You don’t need to know by heart all the classes and their methods. It is
practically impossible to know them all, to be honest. But you should have a broad idea about
what the Java API provides at a high level so that when the need arises, you know where to look for
the details. For example, you should know that the standard Java library contains a lot of classes
for manipulating files. Now, when you actually need to manipulate a file, you should be able to go
through the relevant Java packages and find a Java class that can help you do what you want to

4 Chapter 1. Kickstarter for Beginners

do.

The OCAJP 8 exam requires that you know about only a few packages and classes of the Java
API. I will go through them in detail in this book.

If you keep the above discussion in mind, I believe it will be very easy for you to grasp the
concepts that I am going to talk about throughout this book.

1.1.3 Type, class, enum, and interface

A type is nothing but a name given to a behavior. For example, when you define how a bank
account behaves when you interact with it, you are defining a type and if you give this behavior a
name, say Account, then you have essentially defined the Account type.

From this perspective, a class, an enum, and an interface help you define certain kinds of
behaviors and are thus, types of types.

A class allows you to combine the description of a behavior and the implementation that is used
to realize this behavior. The implementation includes logic as well data. For example, an account
allows you to withdraw and deposit money, which is the description of its behavior, and uses
“account balance”, which is the data that it manipulates to realize this behavior. Thus, Account
could be a class. Once you define the behavior of an account and also provide the implementation
to realize this behavior, you can have as many accounts as you want.

An enum, which is a short form for enumeration, also allows you to combine the description of
a behavior and the implementation that is used to realize this behavior. However, in addition, it
provides a fixed number of instances of this type and restricts you from creating any new instances
of this type. For example, there are only 7 days in a week (from Monday to Sunday). Thus, if you
define DayOfWeek, you wouldn’t want to create a day other than those predefined 7 days. Thus,
DayOfWeek could be an enum with 7 predefined unchangeable instances.

An interface allows you to define just the behavior without any implementation for it. For
example, if you want to describe something that moves, you can call it Movable. It doesn’t tell you
anything about how that entity moves. A cow, a car, or even a stock price all move, but obviously,
they move very differently. Thus, Movable could be an interface.

The key point about an interface is that you cannot have an instance of an interface because
it is just a description of the way you can interact with something and is not the description of
the thing itself. For example, you cannot really have just a Movable. You must have a cow or a
car or something else that exhibits the behavior described by Movable. In that sense, an interface
is always abstract. It cannot exist on its own. You need a class to implement the behavior
described by an interface.

Besides the above three, there is something called abstract class. An abstract class lies some-
where in between a class and an interface. Just like a class, it defines behavior as well as implemen-
tation but the implementation that it provides is not complete enough for you to create instances
of it. Therefore, just like an interface, it cannot exist on its own. For example, if you define the
behavior that is common to animals along with some implementation that is common to all animals
in a class. But you know that you can’t really have just an Animal. You can have a cat, or a dog,
or a cow, which are all animals, but not just an animal.

1.2 Why is something so)

1.2 Why is something so

Why does Java not have pointers? Why does Java permit static fields and methods? Why does
Java not have multiple inheritance? Why does this work but that doesn’t? While learning Java,
curious minds get such questions very often. Throughout the book, you will come across rules and
conventions that will trigger such questions. Most of the times the reason is not too complicated.
I will explain four points below that will help you answer most of such questions. I will also refer
to them throughout the book wherever warranted.

1. To help componentize the code - As discussed earlier in the API section, while writing
Java code, you should think about developing components instead of writing just pro-
grams. The difference between the two is in the way they allow themselves to be used
interchangeably. Can you imagine a 3 pin socket that has the ground pin on the left instead
of on the top? No one makes such a thing because it won’t allow any other plug to be
plugged in. In that sense, Components are like generic Lego blocks. You can mix and match
the blocks with basic functionality and build even bigger blocks. You can take out one block
and replace it with another block that has the same connectors. It is the same with software
components.

A well-developed software component is as generic as possible. It is built to do one
thing and allows other components to make use of it without making them dependent on
it. Dependency here means that you should be able to easily replace this component with
another component that does the same thing. Indeed, you should be able to replace a 3
pin socket from one manufacturer with another without needing to replace the entire appliance!

A program, on the other hand, is a monolithic pile of code that tries to do everything
without exposing generic and clear interfaces. Once you start using a program, it is almost
impossible to replace it with another one without impacting all other pieces that work
with that program. It is very much like a proprietary connector that connects a device to
a computer. You have to buy the whole new PC card to support that connector. If the
connector wire goes missing, you are dependent on the maker of that proprietary connector to
provide you with a replacement, at which point, you will wish that you had bought a device
with a USB connector instead. Only a few companies can pull this stunt off on their customers.

Java is designed with this in mind. You will see that many seemingly confusing rules
are there precisely because they promote the development of interchangeable components.
For example, an overriding method cannot throw a more generic exception that the one
declared by the overridden method. On the other hand the constructor of a subclass cannot

throw only a more specific exception than the one thrown by the constructor of the superclass.
Think about that.

2. To eliminate the scope for bugs - Java designers have tried to limit or eliminate features
that increase the possibility of bugs in a piece of code. Pointer arithmetic and goto are
examples of that. They have also tried to add features that help writing bug-free code.
Automatic Garbage Collection and Generics are examples of that.

Chapter 1. Kickstarter for Beginners

3. Make life easier for the programmer - Many older languages such as C/C++ were
built with the flexibility and power to do various kinds of things. Putting restrictions on what
a programmer can do was thought of as a bad idea. On the contrary, how to add features
that will let the programmer do more and more was the focus. Every new language added
more new features. For example, C++ has pointer arithmetic, global functions, operator
overloading, extern declarations, preprocessor directives, unsigned data types, and so many
other “features” that Java simply does not have. These are some really powerful tools in
the hands of a C++ programmer. So why doesn’t Java have them? Java has actually gone
in reverse with respect to features. Java does not have a lot of features that are found
in languages that came before Java. The reason is simple. Java follows the philosophy
of making life simpler for the programmer. Having more and more features is not
necessarily a good thing. For example, having pointer arithmetic and manual allocation and
deallocation of objects is powerful but it makes life hell for the programmer. Thus, unlike
C++, there is no need to allocate memory in Java because all objects are created on the
heap. Why should a programmer have to worry about something that can be taken care of
by the language? Instead of focusing on mastering complicated features, the programmers
should be spending more time in developing business logic. Thus, unlike C++, there is no
need to deallocate memory in Java because Java performs garbage collection automatically.
Furthermore, the cost of maintaining complicated code cascades very quickly. A piece of
code is written once but is read and is overwritten numerous times. What is “clever” for one
programmer becomes a nightmare for the one who follows that programmer.

Java has therefore, introduced several restrictions (I consider them features, actually)
that make Java development substantially simpler overall. For example, in C++, there is no
restriction on the file name in which a class exists. But in Java, a public class has to be in a
file by that name. This is a restriction that doesn’t seem to make sense at first because after
compilation all classes are in the class files with the same names as that of the classes. But
when you think about the organization of your source code and the ease of locating the code
for a class, it makes perfect sense. Forcing every class to be coded in its own independent
file would have been impractical and letting any class to be in a file by any name would have
been too chaotic. So forcing a public class to be in a file by that name is a nice balance.

4. To become commercially successful - “If Java is an Object-Oriented language, then
why does it allow XYZ?” I see this question asked so many times. The answer is simple.
Java was designed by pragmatic folks rather than idealistic ones. Java was designed at a
time when C/C++ was extremely popular. Java designers wanted to create a language
that remained faithful to OOP as much as possible but at the same time did not alienate
the huge community of C/C++ programmers. This community was seen as potential Java
developers and several compromises were made to make it easier for them to program in
Java. Furthermore, not all non-OOP features are completely useless. Features that add value
in certain commonly occurring situations find a place in Java even if they are not strictly
OOP. Static methods is one such feature.

Then there is a matter of “a judgement call”. Java designers are a bunch of smart
people. Some things may not make complete sense from a purely logical or technical

1.2 Why is something so 7

perspective but that’s how they designed those things anyway. They made the decisions
based on their experience and wisdom. For example, it is technically possible to design a
compiler that can figure out the value of a non-final local variable with 100% certainty in the
following code but the Java compiler does not flag an error for “unreachable code” here:

int x = 0;
if (x==0){

throw new Exception();
}

X = 20; //unreachable code here but no compilation error

Sometimes there is a logical explanation for a seemingly confusing rule but the reason is not
very well known. For example, the following code compiles fine even though the compiler
knows that the code is unreachable:

class ConditionalCompilation {
public static final boolean DEBUG = false;
public void method(){
if (DEBUG) {
System.out.println("debug statement here");
} //works
}

But a similar code causes the compiler to flag “unreachable code” error:

class ConditionalCompilation{
public static final boolean DEBUG = false;
public void method(){
while (DEBUG){ //doesn’t work
System.out.println("debug statement here");
'

The reason is that historically, developers have used the combination of a boolean variable and
an ‘if’statement to include or exclude debug statements from the compiled code. A developer
has to change the value of the flag at just one place to eliminate all debug statements. The
‘if’statement in the code above works because Java designers decided to permitted this type
of unreachable code so that conditional compilation could occur.

In conclusion, if you ever find yourself in a situation where you have to explain the reason behind
a weird Java rule or concept, one of the above four would be your best bet. For example, reason
3 answers the question that you asked in the previous section, “why does Java allow fields and
methods to be defined in an interface?”. Why doesn’t Java allow multiple inheritance? Reason 3.
Why are all objects in Java rooted under Object class?. Reason 3.

8 Chapter 1. Kickstarter for Beginners

1.3 Declaration and Definition

In a technical interview, you should always know what you are talking about. A smart interviewer
will catch you in no time if you talk loose. If you answer imprecisely, your credibility will evaporate
faster than water in a frying pan. The certification exam requires the same attitude. You will lose
marks for not knowing the basics.

It is surprising how many people use the terms declaration and definition incorrectly. So let’s
just get this straight from the get-go. A declaration just means that something exists. A definition
describes exactly what it is. For example,

class SomeClass //class declaration
//class definition starts

{
public void m1() //method declaration
//method definition starts
{
}
//method definition ends
}

//class definition ends

As you can see, a declaration provides only partial information. You can’t make use of partial
information. The definition makes it complete and thus, usable.

In terms of variables, Java doesn’t have a distinction between declaration and definition because
all the information required to define a variable is included in the declaration itself. For example,

int i; //this declaration cum definition is complete in itself

However, Java does make a distinction between variable declaration and variable initialization.
Initialization gives a value to a variable. For example, int i = 10; Here i is defined as an int and
also initialized to 10. Object obj = null; Here obj is defined as an Object and is also initialized
to null. I will discuss more about declaration and initialization later.

The above is a general idea but you should be aware that there are multiple viewpoints with
minor differences. Here are some links that elaborate more. You should go through at least the
first link below.

http://stackoverflow.com/questions/11715485/what-is-the-difference-between-
declaration-and-definition-in-java
http://www.coderanch.com/t/409232/java/java/Declaration-Definition

Can you now answer the question what does an interface contain - method declarations or
method definitions?

Java 8 allows an interface to contain method declarations as well as definitions.

1.4 Object and Reference 9

1.4 Object and Reference

A class is a template using which objects are created. In other words, an object is an instance of
a class. A class defines what the actual object will contain once created. You can think of a class
as a cookie cutter. Just as you create cookies out of dough using a cookie cutter, you create objects
out of memory space using a class.

To access an object, you need to know exactly where that object resides in memory. In other
words, you need to know the “address” of an object. Once you know the address, you can call
methods or access fields of that object. It is this “address” that is stored in a reference variable.

If you have trouble understanding this concept, try to imagine the relationship between a Tele-
vision (TV) and a Remote. The TV is the object and the Remote is the reference variable pointing
to that object. Just like you operate the TV using the remote, you operate on an object using a
reference pointing to that object. Notice that I did not say, ”you operate on an object using its
reference”. That’s because an object doesn’t have any special reference associated with it. Just as
a TV can have multiple remotes, an object can have any number of references pointing to it. One
reference is as good as any other for the purpose of accessing that object. There is no difference
between two references pointing to the same object except that they are two different references.
In other words, they are mutually interchangeable.

Now, think about what happens when the batteries of a remote die. Does that mean the
TV stops working? No, right? Does that mean the other remote stops working? Of course not!
Similarly, if you lose one reference to an object, the object is still there and you can use another
reference, if you have it, to access that object.

What happens when you take one remote to another room for operating another TV? Does it mean
the other remote stops controlling the other TV? No, right? Similarly, if you change one reference
to point to some other object, that doesn’t change other references pointing to the that object.

Let me now move to an example that is closer to the programming world. Let’s say, you have
the following code:

String str = "hello";

"hello" is the actual object that resides somewhere in the program’s memory. Here, str is the
remote and "hello" is the TV. You can use str to invoke methods on the "hello" object.

A program’s memory can be thought of as a long array of bytes starting with 0 to NNNN, where
NNNN is the location of last byte of the array. Let’s say, within this memory, the object "hello"
resides at the memory location 2222. Therefore, the variable str actually contains just 2222. It
doesn’t contain "hello". It is no different from an int variable that contains 2222 in that sense.

But there is a fundamental difference in the way Java treats reference variables and non-
reference variables (aka primitive variables).If you print an int variable containing 2222, you
will see 2222 printed. However, if you try to print the value str, you won’t see 2222. You will see
"hello".This is because the JVM knows that str is defined as a reference variable and so it needs
to use its value to go to the memory location and do whatever you want to do with that object.

Another important difference is that you cannot make a reference variable point to a memory
location directly. For example, you can set the int variable to 2250 but you can’t do that to str
i.e. you can’t do str = 2250. It will not compile. You can set str to another string and if that
new string resides at a memory location 2250, str will indeed contain 2250 but you can’t just store
the address of any memory location yourself in any reference variable.

As a matter of fact, there is no way in Java to see and manipulate the exact value contained in

10 Chapter 1. Kickstarter for Beginners

a reference variable. You can do that in C/C++ but not in Java because Java designers decided
not to allow messing with the memory directly.

You can have as many references to an object as you want. When you assign one reference to
another, you basically just copy the value contained in one reference into another. For example, if
you do String str2 = str; you are just copying 2222 into str2. Understand that you are not
copying "hello" into str2. There is only one string containing "hello" but two reference variables
referring to it. Figure 1 illustrates this more clearly.

Memory

Contents Memory

of IVM Address
str and str2 are also stored 0000

at some memory locationin the

Code JVM’s memory space E 2222 0010
2222 0011

String str = “hello”;

. /\ veee

String str2 = str; sV/' 'h '\ 2222

e 2223

I 2224

I | 2225

There is only one String object that contains o / 2226
“hello”. —

Location where the actual object “hello” is stored
in JVM’s memory space is 2222. 2250
2251

Both the references containthe same value 2222

Object and Reference

If you later do str = "goodbye"; you will just be changing str to point to a different string
object. It does not affect str2. str2 will still point to the string "hello".

The question that should pop into your head now is what would a reference variable contain if
it is not pointing at any object? In Java, such a variable is said to be null. After all, as discussed
above, a reference variable is no different from a primitive variable in terms of what it contains.
Both contain a number. Therefore, it is entirely possible that a reference that is not pointing to any
object may actually contain the value 0. However, it would be wrong to say so because a reference
variable is interpreted differently by the JVM. A particular implementation of JVM may even store
a value of -1 in the reference variable if it does not point to any object. For this reason, a reference
variable that does not point to any object is just null. At the same time, a primitive variable can
never be null because the JVM knows that a primitive variable can never refer to an object. It

1.5 static and instance 11

contains a value that is to be interpreted as it is. Therefore,
String str = null; // Okay

int n = 0; //Okay

String str = 0; //will not compile

int n = null; //will not compile.

1.5 static and instance

You will read the word “static” a lot in Java tutorials or books. So it is better to form a clear
understanding of this word as soon as possible. In English, the word static means something that
doesn’t change or move. From that perspective, it is a misnomer in Java. Java has a different word
for something that doesn’t change: final. I will talk more about “final” later.

In Java, static means something that belongs to a class instead of belonging to an instance of
that class. As we discussed in the “Object and Reference” section, a class is just a template. You
can instantiate a class as many times as you want and every time you instantiate a class you create
an instance of that class. Now, recall our cookie cutter analogy here. If a class is the cookie cutter,
the fields defined in the class are its patterns. Each instance of that class is then the cookie and
each field will be imprinted on the cookie - except the fields defined as static. In that sense, a static
member is kind of a tag stuck to a cookie cutter. It doesn’t apply to the instances. It stays only
with the class.

Consider the following code:

class Account {
String accountNumber;
static int numberOfAccounts;

//Create a new Account instance
Account acctl = new Account(); //This Account instance has its own accountNumber field
acctl.accountNumber = "A1"; //But the numberOfAccounts fields does not belong to the

instance, it belongs to the Account class
Account .numberOfAccounts = Account.numberOfAccounts + 1; //Create another Account

instance
Account acct2 = new Account(); //This instance has its own accountNumber field
acct2.accountNumber = "A2"; //the following line accesses the same class field and

therefore, numberOfAccounts is incremented to 2
|Account.numberOfAccounts = Account.numberOfAccounts + 1;

Important points about static -

1. static is considered a non object-oriented feature because as you can see in the above code,
static fields do not belong to an object. So why does Java have it? Check out the “Why is
something so?” section.

2. Here is a zinger from Java designers - even though static fields belong to a class and should be
accessed through the name of the class, for example, Account . numberOfAccounts, it is not an

12 Chapter 1. Kickstarter for Beginners

error if you access it through a variable of that class, i.e., acct1.numberOfAccounts. Accessing
it this way doesn’t change its behavior. It is still static and belongs to the class. Therefore,
acct2.number0fAccounts will also refer to the same field as acct1.numberOfAccounts. This
style only causes confusion and is therefore, strongly discouraged. Don’t write such code.
Ideally, they should have disallowed this usage with a compilation error.

3. Just like fields, methods can be static as well. A static method belongs to the class and can
be accessed either using the name of the class or through a variable of that class.

4. The opposite of static is instance. There is no keyword by that name though. If a class
member is not defined as static, it is an instance member.

1.6 Stack and Heap

When you execute a program, the Operating System (OS) allocates and gives memory to that
program. This memory is used by the program to keep its variables and data. For example,
whenever you create a variable, its value needs to be preserved as long as the program wants to use
it. The program uses its allocated memory to keep it. A program may ask the OS for more memory
if it requires and the OS will oblige if the OS has free memory available. A program may also release
some memory that it does not want back to the OS. Once the OS gives out a chunk of memory
to the program, it is the responsibility of the program to manage it. Once the program ends, this
memory is released and goes back to the OS. This is basically how any executable program works.

Now, think about the following situation. Your program has a method that prints “hello” 100
times. Something like this -

public class Test{
private String str = new String("hello"); //Using new is not a good way to create
strings, but bear with me for a moment
public void print(){
int i = 0;
while (i++<100){
System.out.println(this.str);
}
}
public static void main(String[] args){
Test t = new Test();
t.printQ;
}

In the above class, it is the main method that calls the print method but there could also be
another class, which could make use of the same print method to print hello a 100 times. When
the print method is called, it creates the variable i to keep track of the number of times the while
loop has iterated. This variable needs to be kept somewhere as long as the print method runs.
Similarly, it uses the variable str to print the string that you want the print method to print.

The question is, what happens when the print method ends? The variable i has served its
purpose and is not required anymore. It is not used anywhere except within this method. Therefore,

1.6 Stack and Heap 13

it need not be kept longer than the execution of the print method. But the variable str still can be
used whenever the print method is called. Therefore, the value of str needs to be kept irrespective
of the execution lifetime of the print method.

It should now be clear that a program needs two kinds of memory spaces to keep the stuff. One
for temporary stuff that can be cleaned up as soon as a method call ends and one for permanent
stuff that remains in use for longer than a single method call. The space for storing the temporary
stuff is called Stack space and the space for storing all other stuff is called Heap space. The
reason why they are called Stack and Heap will be clear soon.

In Java, each thread is given a fixed amount of stack space. In the above example, when you
execute the program, a main thread is created with a fixed amount of stack space. All this space
is initially empty. This is represented by the following figure.

Heap Space
of IVM
1 Main thread’s
Stack space

0010
0011
0012
0013
0014
0015

Some other
thread’s Stack space

JVM’s Memory Space

Step 1 - Stack and heap are empty

When this thread invokes the main method, all the temporary variables created by this method
are kept on this stack. In the above example, the main method gets one reference variable named
args and inside the method it creates another reference variable named t. (Note that since args
and t are a reference variables, they contain the address of the location where actual objects referred
to by args and t respectively reside). Therefore, as the following figure shows, the stack fills up by
the amount of space required by these reference variables.

14 Chapter 1. Kickstarter for Beginners

Heap Space

| Location where of JyMm
2 Main thread’s regt Object

Stack space

s

ri

_l—> 0011(str) | 9010

h 011

e 012

| 013

0010 (t) | 014

3333 (args) ° 015

Some other

thread’s Stack space

JVM'’s Memory Space

Step 2 - Stack has two variables and heap has one Test object

Before the main method ends, it calls the print method on the reference t. Since print is an
instance method, a variable named “this” is automatically put on the stack for it so that the
method can access the instance fields on this object. The variable this is also a reference variable
and it contains the address of the location where Test object actually resides. The print method
creates one more temporary variable i. This variable is also kept on the same stack on top of this.
Thus, the stack fills up a little more by amount of space required for storing two variables. This is
represented by the following figure.

Heap Space

. Location where of Jym
3 Main thread’s 7ot object

Stack space

d

r

_L-) 0011(str) | G010

h 011

100 (i) : 012

0010 (this) | 013

0010 (t) | 014

3333 (args)) o 015

Some other

thread’s Stack space

JVM’s Memory Space

Step 3 - Two more variables i and this are added to the stack

When the print method ends, the space used for this and i is reverted back to the stack and
the stack is thus emptied out a little as shown in the following figure.

1.6 Stack and Heap 15

Heap Space
r Location where of Jym
4 Main thread’s ¢ Object
Stack space resid

_l—> 0011(str) | G010

h 011

5 012

| 013

0010 (t) | i

3333 (args) ° ek

Some other
thread’s Stack space

JVM'’s Memory Space

Step 4 - i and this are removed from the stack

The control goes back to the main method. This method also ends and the space used for storing
args and t is cleaned up. There is nothing left on the stack any more at this point. Thus, the stack
is completely empty again.The following figure shows the final state of the stacks and the heap.

5 Heap Space
) Test Object of IVM
Main thread’s omainsin the
Stack space heap.
_‘-—> 0011(str) | §010
h 011
= 012
| 013
| 014
o 015

Some other
thread’s Stack space

JVM’s Memory Space

Step b stack is empty again but the heap still has Test object

As you can observe, the stack space looks like a stack of chips that are kept one on top of the
other. The temporary variables created by a method are added on top of the stack one by one
as and when they are created. As soon as the method ends, all those variables are removed from
the top. Observe that they are removed only after the method ends. If the method calls another
method, then the variables created by the called method are pushed on to the same stack on top
of the variables stored by the caller method. When a thread dies, its stack space is reverted back
to the JVM. Since this space behaves like a stack, it is called stack space.

16 Chapter 1. Kickstarter for Beginners

The heap space, on the other hand, is, well, like a heap! Objects lie in a heap as they please.
JVM goes a great length to organize the heap space. Organization of heap space is an advanced
topic and is very important when you do performance analysis of an application. But it is not
relevant for certification exams and so I will not be discussing it. From the program perspective,
there is not much of an organization in a heap.

Whenever any object is created anywhere in the code (i.e. whether in a method or in a class),
the JVM allocates space for that object on the heap and puts its contents in that space. In Java,
a program never releases this space explicitly. It is managed by the JVM. Again, recall that an
object can only be accessed using its reference. For a method to access an object, it must use a
reference that points to that object. It could get that reference either from a variable kept on its
stack space (if the object was created in this method itself) or through a reference to another object
whose reference is kept on the stack space (if that object has a reference to the required object).
In either case, a method has to start with a reference that exists on its stack space. If there is no
reference on any stack space through which an object can be accessed directly or indirectly, that
object is considered garbage. It is cleaned up automatically by the JVM using a garbage collector.

Recall from our discussion on References and Objects that a reference is merely a variable
that stores the address of the location where the actual object is stored. In that sense, a
reference variable is no different than an int variable. They both store a number. A reference
variable stores a number that indicates the memory location when you can find the actual
object, while an int variable stores a number that is interpreted as a number. It doesn’t
indicate anything else. If you create a variable in a method, whether a reference variable or
a primitive variable, it is kept on the stack but when you create an object, that object is
stored on the heap.

Typically, an object is created using the new keyword. But Java treats Strings as
special and so you can create String objects even without the new keyword. Thus, whether
you do “hello” or new String(“hello”), in both the cases, a String object containing “hello”
is created on the heap.

Points to remember:

1. Local variables are always kept on the stack. Objects are always stored in the heap. (An
optimizing JVM may allocate an object on the stack space, but it is an internal detail of the
JVM and you need not worry about it. For all we care, objects are always on the heap.)

2. JVM may have several threads. Each thread is given a fixed amount of stack space that is
dedicated completely and exclusively to that thread. No one but that thread can access its
stack space. This is called ”"stack semantics”. A thread accesses its stack space by creating
and using variables. There is no other special way of accessing the stack space.

3. Heap space is shared among all threads. Any thread can use space on a heap by creating
objects. Since heap space is shared, it is possible for one thread to access objects created by
another if it has a reference to that object. This is called "heap semantics”.

1.7 Conventions 17

4. Stack space is limited for a program. So if you have a huge chain of method calls where each
method creates a lot of temporary variables (recursion is a good example), it is possible to
run out of stack space. In Java, the default stack space size is 64KB but it can be changed at
the time of executing the program using command line option -Xss . Heap space is unlimited
from the program’s perspective. It is limited only by the amount of space available on your
machine.

5. Only temporary variables i.e. variable created in a method (also known as local variables and
automatic variables) are created on the stack space. Everything else is created on the heap
space. If you have any doubt, ask yourself this question - is this a temporary variable created
in a method? Yes? Then it is created on the stack. No? Then it is on the heap. Actual
objects are ALWAYS created on the heap.

6. When a method is invoked by a thread, it uses the thread’s stack space to keep its temporary
variables.

7. Variables added to the stack space by a method are removed from the stack when that method
ends. Everything else created by a method is left on the heap even after the method ends.

1.7 Conventions

1.7.1 What is a Convention?

You add a 15% tip to your bill at a restaurant. There is no law about that. Nobody is going to
put you in jail if you add nothing for a tip. But you still do it because it is a convention. A lot of
things in the world are based on convention. In India, you drive on the left side of the road. This
is a convention. It has nothing to do with being technically correct. Indeed, people are fine driving
on the right side of the road in the US. But if you drive on the right side of the road in India, you
will cause accidents because that is not what other people expect you to do.

It is the same in the programming world. As a programmer, you are a part of the programmer
community. The code that you write will be read by others and while developing your code, you
will read and use code written by others. It saves everyone time and effort in going through a piece
of code if it follows conventions. It may sound ridiculous to name loop variables as i, j, or k,
but that is the convention. Anyone looking at a piece of code with a variable i will immediately
assume that it is just a temporary variable meant to iterate through some loop.

If you decide to use a variable named i for storing some important program element, your
program will work fine but it will take other people time to realize that and they will curse you for
it.

If you are still unconvinced about the importance of conventions in programming, let me put it
another way. If I ask you to write some code in an interview and if you use a variable named hello
as a loop variable, I will not hire you. I can assure you that most interviewers will not like that
either. Conventions are that important.

1.7.2 Conventions in Java

Some of the most important conventions in Java are as follows:

18 Chapter 1. Kickstarter for Beginners

1. Cases - Java uses “Camel Case” everywhere with minor differences.

(a) Class names start with an uppercase letter. For example, ReadOnlyArrayList is a good
name but Readonlyarraylist is not.

(b) Package names are also in Camel Case but start with a lowercase letter. For example,
dataStructures is a good package name but DataStructures is not.

(c) variable names start with a lower case and may include underscores. For example,
current_account is a good variable name.

2. Naming - Names should be meaningful. A program with a business purpose should not have
variables with names such as foo, bar, and fubar. Although, such nonsensical names are
used for illustrating or explaining code in sample programs where names are not important.

3. Package names use a reverse domain name combined with a group name

and/or application name. For example, if you work at Bank of America’s
Fixed Income Technologies division and if you are developing an application named
FX Blotter, all your packages for this application may start with the name
com.bofa.fit.fxblotter. The full class name for a class named ReadOnlyArrayList could
be - com.bofa.fit.fxblotter.dataStructures.ReadOnlyArrayList.
The reason for using a reverse domain name is that it makes it really easy to come
up with globally unique package names. For example, if a developer in another
group also creates his own ReadOnlyArrayList, the full name of his class could be
com.bofa.derivatives.dataStructures.ReadOnlyArrayList. There would be no problem
if a third developer wants to use both the classes at the same time in his code because their
full names are different. The important thing is that the names turned out to be different
without any of the programmers ever communicating with each other about the name of their
classes. The names are unique globally as well because the domain names of companies are
unique globally.

1.8 Compilation and Execution

1.8.1 Compilation and Execution

Let us go over the basics really quickly. You know that a Java source file is compiled into a Java
class file and a class file is what is executed by the JVM. You also know that you can organize your
Java classes into packages by putting a package statement at the top of a Java source file. The
package name plus the class name is called Fully Qualified Class Name or FQCN for short, of
a Java class. For example, consider the following code:

package accounting;
public class Account{
private String accountNumber;

public static void main(String[] args){

1.8 Compilation and Execution 19

System.out.println("Hello 1 2 3 testing...");

In the above code, accounting.Account is the fully qualified class name of the class. This long
name is the name that you need to use to refer to this class from a class in another package. Of
course, you can “import” accounting package and then you can refer to this class by its short name
Account. The purpose of packages is to organize your classes according to their function to ease
their maintenance. It is no different from how you organize a physical file cabinet where you keep
your tax related papers in one drawer and bills in another.

Packaging is meant solely for ease of maintenance. The Java compiler and the JVM don’t really
care about it. You can keep all your classes in one package for all that matters.

Let us create Account.java file and put it in your work folder (for example, c:\javatest).
Copy the above mentioned code in the file and compile it as follows:

c:\javatest\>javac Account.java

You should see Account.class in the same folder. Now, let us try to run it from the same folder:

c:\javatest>java Account

You will get the following error:

Exception in thread "main" java.lang.NoClassDefFoundError: Account (wrong name:
accounting/Account)

Of course, you need to use the long name to refer to the class, so let’s try this:

c:\javatest>java accounting.Account

You will now get the following error:

Error: Could not find or load main class accounting.Account

Okay, now delete the Account.class file and compile the Java code like this:

c:\javatest\>javac -d . Account.java

You should now have the directory structure as shown below:

&c:
L & javatest
Acccount. java
& accounting
L Account.class

Now, run it like this:

20 Chapter 1. Kickstarter for Beginners

c:\javatest>java -classpath . accounting.Account

You should see the following output:

Hello 1 2 3 testing...

What is going on? Well, by default the Java compiler compiles the Java source file and puts the class
file in the same folder as the source file. But the Java command that launches the JVM expects the
class file to be in a directory path that mimics the package name. In this case, it expects the Ac-
counting.class file to be in a directory named accounting. The accounting directory itself may lie
anywhere on your file system but then that location must be on the classpath for the JVM to find it.

One of the many command line options that javac supports is the -d option. It directs
the compiler to create the directory structure as per the package name of the class and put the
class file in the right place. In our example, it creates a directory named accounting in the current
directory and puts the class file in that directory. The dot after -d in the javac command tells the
compiler that the dot, i.e., the current directory is the target directory for the resulting output.
You can replace dot with any other directory and the compiler will create the new package based
directory structure there. For example, the command c:\ javatest\>javac -d c:\myclassfiles
Account. java will cause the accounting directory to be created in c:\myclassfiles folder.

Now, at the time of execution you have to tell the JVM where to find the class that you
are asking it to execute. The -classpath (or its short form -cp) option is meant exactly for that
purpose. You use this option to specify where your classes are located. You can specify multiple
locations here. For example, if you have a class located in c:\myclassfiles directory and if
that class refers to another class stored in c:\someotherdirectory, you should specify both the
locations in the classpath like this:

c:\java -classpath c:\myclassfiles;c:\someotherdirectory accounting.Account

Observe that when you talk about the location of a class, it is not the location of the class file that
you are interested in but the location of the directory structure of the class file. Thus, in the above
command line, c:\myclassfiles should contain the accounting directory and not Account.class
file. Account.class should be located inside the accounting directory. The JVM searches in all
the locations specified in the -classpath option for classes.

Note: On *nix based systems, you need to use colon (:) instead of semi-colon (;) and forward
slash (/) instead of back slash ().

The Java command scans the current directory for class files (and packages) by default, so
there is usually no need to specify “dot” in the -classpath option. I have specified it explicitly
just to illustrate the use of the -classpath option.

1.8 Compilation and Execution 21

Compiling multiple source files at once

Let’s say you have two source files A. java and B. java in c:\javatest directory with the following
contents:
Contents of A.java:

package p1l;
import p2.B;
public class A{

B b = new B(O;
}

Contents of B.java:

package p2;
public class B{
}

Open a command prompt, cd to c:\javatest, and compile A.java. You will get a compilation
error because class A depends on class B. Obviously, the compiler will not be able to find B.class
because you haven’t compiled B.java yet! Thus, you need to compile B.java first. Of course,
as explained before, you will need to use the -d . option while compiling B. java to make javac
create the appropriate directory structure along with the class file in c:\ javatest directory. This
will create B.class in c:\javatest\p2 directory. Compilation of A.java will now succeed. The
point is that if you have two classes where one class depends on the other, you need to compile the
source file for the independent class first and the source file for the dependent class later. However,
most non-trivial Java applications are composed of multiple classes coded in multiple source files.
It is impractical to determine the sequence of compilation of the source files manually. Moreover,
it is possible for two classes to be circularly dependent on each other. Which source file would you
compile first in such a case?

Fortunately, there is a simple solution. Just let the compiler figure out the dependencies by
specifying all the source files that you want to compile at once. Here is how:

javac -d . A.java B.java

But again, specifying the names of all the source files would also be impractical. Well, there is a
solution for this as well:

javac -d . *.java

By specifying *.java, you are telling the compiler to compile all Java files that exist in the current
directory. The compiler will inspect all source files, figure out the dependencies, create class files
for all of them, and put the class files in an appropriate directory structure as well. Isn’t that neat?
If your Java source files refer to some preexisting class files that are stored in another directory,
you can state their availability to javac using the same -classpath (or -cp) option that we used
for executing a class file using the java command.

I strongly advise that you become comfortable with the compilation process by following
the steps outlined above.

22 Chapter 1. Kickstarter for Beginners

1.8.2 Packaging classes into Jar

Note: Although working with Jar files is not required for the exam, it is an important topic
for a Java programmer. I will explain the most important aspects of Jar files in this short
section.

It is undoubtedly easier to manage one file than multiple files. An application may be composed
of hundreds or even thousands of classes and if you want to make that application downloadable
from your website, you cannot expect the users to download each file individually. You could zip
them up but then the users would have to unzip them to be able to run the application. To avoid
this problem, Java has created its own archive format called “Java Archive”, which is very much
like a zip file but with an extension of jar.

Creating a jar file that maintains the package structure of class files is quite easy. Let us say
you have the directory structure shown below:

& c:
L & javatest
Acccount. java
& accounting
L Account.class

Go to the command prompt, cd to c:\javatest directory and run the following command:
jar -cvf accounting.jar accounting

This command tells the jar utility to create accounting.jar file and include the entire di-
rectory named accounting in it along with its internal files and directories. You should now have
the directory structure shown below:

& c:
L & javatest
Acccount. java
& accounting

L Account.class
acccounting. jar

Assuming that you are still in c:\ javatest directory on your command prompt, you can now run
the class through the jar file like this:

java -classpath .\accounting.jar accounting.Account
Note that you must maintain the package structure of the class while creating the jar file.

If you open accounting.jar in WinZip or 7zip, you will see that this jar contains Ac-
count.class under accounting directory.

1.9 Nomenclature 23

Besides the class files, the Jar file allows you to keep information about the contents of the
jar file within the jar file itself. This information is kept in a special file is called MANIFEST.MF
and is kept inside the META-INF folder of the jar file. (This is just like airlines using a “manifest”
to document the cargo or a list of passengers on a flight.) For example, you can specify the entry
point of an application which will allow you to run a Jar file directly (from the command line or
even by just double clicking the jar file in your file explorer) without having to specify the class
name containing the main method on the command line. Typical contents of this file are as follows

Manifest-Version: 1.0
Created-By: 1.7.0_09-b05 (Oracle Corporation)
Main-Class: accounting.Account

You can actually go ahead and create mymanifest.txt file with the above mentioned contents
in c:\javatest directory and use the following command to create the jar:

jar -cvfm accounting.jar mymanifest.txt accounting

c is for create, v is for verbose (i.e. display detailed information on command line), f is for
the output file, and m is the name of the file the contents of which have to be included in the
jar’'s manifest. Notice that the name of the manifest file on the command line is not important.
Only the contents of the file are important. This command will automatically add a file named
MANIFEST.MF inside the META-INF folder of the jar file.

Once you have this information inside the jar file, all you need to do to run the program is
to execute the following command on the command line:
java -jar accounting. jar

1.9 Nomenclature

During your programming career you will be reading a lot. It could be books, articles, blogs, manu-
als, tutorials, and even discussion forums. You will also be interacting with other Java developers in
various roles such as interviewers, team members, architects, and colleagues. To make the most out
of these interactions, it is very important to form a clear and precise understanding of commonly
used terms.

I will explain the commonly used phrases, names, and terminology in the Java world.

1. Class - Unless stated otherwise or unless clear from the context, the term class includes
class, interface, and enum. Usually, people mean “type” when they say “class”. You should,
however, always try to be precise and use the term class only for class.

2. Type - Type refers to classes, interfaces, enums, and also primitive types (byte, char, short,
int, long, float, double, and boolean).

3. Primitive types - byte, char, short, int, long, float, double, and boolean are called primitive
types because they just hold data and have no behavior. You can perform operations on them
but you cannot call methods on them. They do not have any property or state other than
the data value that they contain. You access them directly and never through references.

24

Chapter 1. Kickstarter for Beginners

10.

11.

. Reference types - Classes, Interfaces, and Enums are called reference types because you

always refer to them through references and never directly. Unlike primitive types, reference
types have behavior and/or state.

. Top-level reference types - Classes, interfaces, or enums that are defined directly under a

package are called top-level classes, interfaces, or enums.

. Nested reference types - Classes, interfaces, and enums that are defined inside another

class, interface, or an enum are called nested classes, interfaces, or enums.

. Inner reference types - Non-static nested classes, interfaces, and enums that are called

inner classes, interfaces, or enums.

. Local reference types - Nested reference types that are defined inside a method (or inside

another code block but not directly inside a class, interface, or enum) are called local classes,
interfaces, or enums.

. Anonymous classes - This is a special case of a nested class where just the class definition

is present in the code and the complete declaration is automatically inferred by the compiler
through the context. An anonymous class is always a nested class and is never static.

Compile time vs run time (i.e. execution time) - You know that there are two steps
in executing Java code. The first step is to compile the Java code using the Java compiler to
create a class file and the second step is to execute the JVM and pass the class file name as
an argument. Anything that happens while compiling the code such as generation of compiler
warnings or error messages is said to happen during “compile time”. Anything that happens
while executing the program is said to happen during the “run time”. For example, syntax
errors such as a missing bracket or a semicolon are caught at compile time while any exception
that is generated while executing the code is thrown at run time. It is kind of obvious but I
have seen many beginners posting questions such as, “why does this code throw the following
exception when I try to compile it?”, when they really mean, “why does this code generate
the following error message while compilation?” Another common question is, “why does this
code throw an exception even after successful compilation?” Successful compilation is not
a guarantee for successful execution! Although the compiler tries to prevent a lot of bugs
by raising warnings and error messages while compilation, successful compilation really just
means that the code is syntactically correct.

Compile-time constants - Normally, it is the JVM that sets the values of variables when a
program is executed. The compiler does not execute any code and it has no knowledge of the
values that a variable might take during the execution of the program. Even so, in certain
cases, it is possible for the compiler to figure out the value of a variable. If a compiler can
determine the value that a variable will take during the execution of the program, then that
variable is actually a compile-time constant. For example, if you define an int variable as
final int x = 10; then x is a compile time constant because the compiler knows tha x will
always have a value of 10 at run time. Similarly, literals such as the numbers 1, 2, and 3, or
the characters written in code within single quotes such as ’a’, or boolean values true and
false, are all compile time constants because the compiler knows that these values will never
change.

1.10 Java Identifiers 25

I will refer to these terms and will also discuss the details of these terms throughout the course
so it will be helpful if you keep the basic idea of these terms in mind.

1.10 Java Identifiers

Java has specific rules to name things such as variables, methods, and classes. All these names
belong to a category of names called “identifiers”.

Java defines an identifier as an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter. An identifier cannot have the same spelling as a Java keyword
or a literal (i.e. true, false, or null).

For example, the following variable names are invalid:

int int; //int is a keyword

String class; //class is keyword
Account 1la; //cannot start with a digit
byte true; //true is a literal

Java letters include uppercase and lowercase ASCII Latin letters A-Z (\u0041-\u005a), and
a-z (\u0061-\u007a), and, for historical reasons, the ASCII underscore (_ or \u005f) and dollar
sign ($ or \u0024). The “Java digits” include the ASCII digits 0-9 (\u0030-\u0039).

Older versions of the exam tested candidates on identifying valid identifiers. However, the
current exam has moved away a bit from making the candidate a human compiler and does
not include this topic. You should still have a basic idea about what an identifier is though
because this concept applies to all kind of names in Java.

26

Chapter 1. Kickstarter for Beginners

=
.

(2. Java Basics

Exam Objectives
1. Define the scope of variables

2. Define the structure of a Java class

w

Importing Java classes into your class

-

Create executable Java applications with a main method
5. Run a Java program from the command line; including console output.

6. Compare and contrast the features and components of Java such as: platform independence,
object orientation, encapsulation, etc.

28 Chapter 2. Java Basics

2.1 Define the scope of variables

2.1.1 Scope of variables

Java has three visibility scopes for variables - class, method, and block.
Java has five lifespan scopes for variables - class, instance, method, for loop, and block.

2.1.2 Scope and Visibility

Scope means where all, within a program, a variable is visible or accessible directly without any
using any referencing mechanism.

For example, the scope of a President of a country is that country. If you say “The President”,
it will be interpreted as the person who is the president of the country you are in. There cannot be
two presidents of a country. If you really want to refer to the presidents of two countries, you must
also specify the name of the country. For example, the President of US and the President of India.

At the same time, you can certainly have two presidents in a country - the President of the
country, and the President of a basketball association within that country! If you are in your
basketball association meeting, and if you talk about the president in that meeting, it will be
interpreted as person who is the president of the association and not the person who is the president
of your country. But if you do want to mean the president of the country, you will have to clearly say
something like the “President of our country”. Here, “of our country” is the referencing mechanism
that removes the ambiguity from the word “president”.

In this manner, you may have several “presidents” in a country. All have their own “visibility”.
Depending on the context, one president may shadow or hide (yes, the two words have different
meanings in Java) another president. But you cannot have two presidents in the same “visibility”
level.

This is exactly how “scope” in Java (or any other programming language, for that matter)
works. For example, if you declare a static variable in a class, the visibility of that variable is the
class in which you have defined it. The visibility of an instance variable is also the class in which it
is defined. Since both have same visibility, you cannot have a static variable as well as an instance
variable with the same name in the same class. It would be like having two presidents of a country.
It would be absurd and therefore, invalid.

If you declare a variable in a method (either as a method parameter or within a method), the
visibility of that variable is within that method only. Since a method scope is different from a class
scope, you can have a variable with the same name in a method. If you are in the method and if you
try to refer to that variable directly, it will be interpreted as the variable defined in the method and
not the class variable. Here, a method scoped variable shadows a class scoped variable. You can,
of course, refer to a class scoped variable within a method in such a case but you would have to use
the class name for a static variable or an object reference for an instance variable as a referencing
mechanism to do that.

Similarly, if you declare a variable in a loop, the visibility of that variable is only within that
loop. If you declare a variable in a block such as an if, do/while, or switch, the visibility of that
variable is only within that block.

Here, visibility is not to be confused with accessibility (public/private/protected). Visibility
refers to whether the compiler is able to see the variable at a given location directly without any

2.1 Define the scope of variables 29

help.
For example, consider the following code:

public class Area{
public static String UNIT="sq mt"; //UNIT is visible all over inside the class Area
public void printUnit(){
System.out.print;n(UNIT); //will print "sq mt" because UNIT is visible here
}
}

public class Volume{
//Area’s UNIT is accessible in this class but not visible to the compiler directly
public static String UNIT="cu mt";

public void printUnit(){
System.out.println(UNIT); //will print "cu mt"
System.out.println(Area.UNIT); //will print '"sq mt"

In the above code, a public static variable named UNIT of a class Area is accessible to all other
classes but that doesn’t mean another class Volume cannot also have a static variable named UNIT.
This is because within the Volume class, Area’s UNIT is not directly visible. You would need to help
the compiler by specifying Area.UNIT if you want to refer to Area’s UNIT in class Volume. Without
this help, the compiler will assume that you are talking about Volume’s UNIT.

Besides shadowing and hiding, there is a third category of name conflicts called “obscuring”.
It happens when the compiler is not able to determine what a simple name refers to. For
example, if a class has a field whose name is the same as the name of a package and if you
try to use that simple name in a method, the compiler will not know whether you are trying
to refer to the field or to a member of the package by the same name and will generate an
error. It happens rarely and is not important for the exam.

2.1.3 Scope and Lifespan

Scope and Lifespan

Besides visibility, scope is also related to the lifespan or life time of a variable. Think of
it this way - what happens to the post of the president of your local basketball association if the
association itself is dissolved? The post of the president of the association will not exist anymore,
right? In other words, the life of the post depends on the existence of the association.

Similarly, in Java, the existence of a variable depends on the existence of the scope to which
it belongs. Once its life time ends, the variable is destroyed, i.e., the memory allocated for that
variable is taken back by the JVM. From this perspective, Java has five scopes: block, for loop,
method, instance,and class.

When a block ends, variables defined inside that block cease to exist. For example,

30 Chapter 2. Java Basics

public class TestClass

{

public static void main(String[] args){

{
int i = 0; //i exists in this block only

System.out.println(i); //0K

}
System.out.println(i); //NOT OK because i has already gone out of scope

Variables defined in a for loop’s initialization part exist as long as the for loop executes. Notice
that this is different from variables defined inside a for block, which cease to exist after each iteration
of the loop. For example,

public class TestClass
{
public static void main(String[] args){
for(int i = 0; i<10; i++)
{
int k = 0; //k is block scoped. It is reset to O in each iteration
System.out.println(i); // i retains its value from previous iteration
}

//i and k are both out of scope here

When a method ends, the variables defined in that method cease to exist.

When an object ceases to exist, the instance variables of that object cease to exist.

When a class is unloaded by the JVM (I will discuss what is meant by class loading/unloading
later), the static variables of that class cease to exist

It is important to note here that lifespan scope doesn’t affect compilation. The compiler checks
for the visibility scope only. In case of blocks, loops, and, methods, the lifespan scope of the
variables coincides with the visibility scope. But it is not so for class and instance variables. Here
is an example:

public class TestClass
{
int data = 10;
public static void main(String[] args){
TestClass t = new TestClass();
t = null;
System.out.println(t.data); //t.data is accessible therefore, it will compile fine
even though the object referred to by t has already ceased to exist

| 3

2.1 Define the scope of variables 31

}

Lifespan scope affects the run time execution of the program. For example, the above program
throws a NullPointerException at run time because t doesn’t exist and neither does t.data at
the time we are trying to access t and t.data.

2.1.4 Scopes Illustrated ¢

The following code shows various scopes in action.

class Scopes{
int x; //visible throughout the class
static int y; //visible throughout the class

public static void method1(int paraml){ //visible throughout the method
int locall = 0; //visible throughout the method

{
int anonymousBlock = 0; //visible in this block only

anonymousBlock = 1; //compilation error

for(int loop1=0; loop1<10; loopl++){
int loop2 = 0; //loopl and loop2 are visible only here

}
loopl = 0; //compilation error
loop2 = 0; //compilation error

if (locall==0){
int blockl = 0; //visibile only in this if block

blockl = 7; //compilation error

switch(paraml){
case O:
int block2 = 10; //visible all over case block
break;
case 1:
block2 = 5; //valid
break;
default:
System.out.println(block2); //block2 is visible here but compilation
error because block2 may be left uninitialized before access
}
block2 = 9; //compilation error
int loopl = 0, loop2 = 0, blockl = 0, block2 = 8; //all valid

32 Chapter 2. Java Basics

2.1.5 Scope for the Exam

The important thing about scopes that you must know for the exam is when you can and cannot
let the variable with different scopes overlap. A simple rule is that you cannot define two variables
with the same name and same visibility scope. For example, check out the following code:

class Person{
private String name; //class scope

static String name = "rob"; //class scope. NOT 0K because name with class scope
already exists

public static void main(String[] args){
for(int i = 0; i<10; i++){

String name = "john"; //OK. name is scoped only within this for loop block
}
String name = "bob"; //0K. name is method scoped
System.out.println(name); //will print bob
}
}

In the above code, the static and instance name variables have the same visibility scope and there-
fore, they cannot coexist. But the name variables inside the method and inside the for loop have
different visibility scopes and can therefore, coexist.

But there is an exception to this rule. Consider the following code:

class Person{
private String name; //name is class scoped

public static void main(String[] args){
String name = "bob"; //method scope. OK. Overlaps with the instance field name

defined in the class
int i = -1; //method scope

for(int i = 0; i<10; i++){ //i has for loop scope. Not OK
String name = "john"; //block scope. Not OK.
}

{ //starting a new block here
int i = 2; //block scope. Not OK.
}

2.1 Define the scope of variables 33

Observe that it is possible to overlap the instance field with a method local variable but it is not
possible to overlap a method scoped variable with a loop or block scoped variable.

2.1.6 Quiz
Q1. What will the following code print when compiled and run?

public class TestClass {
public static void main(String[] args) {

{

int x = 10;
}
System.out.println(x);

Select 1 correct option
A. Tt will not compile.

B. It will print 10
C. It will print an unknown number
Answer is A: Notice that x is defined inside a block. It is not visible outside that block.

Therefore, the line System.out.println(x); will not compile.
Q.2 What will the following code print when compiled and run with the command line:

java ScopeTest hello world

public class ScopeTest {
private String[] args = new String([0];

public static void main(String[] args) {
args = new String[args.length];
for(String arg: args){
System.out.println(arg);
}
String arg = args([0];
System.out.println(arg);

Select 1 correct option
A. Tt will not compile.

B. It will print:

34 Chapter 2. Java Basics

null
null
null

C. It will print:

null
null
hello

Answer is B: The line args = new String[args.length]; creates a new String array with the
same length as the length of the original String array passed to the program and assigns it back
to the same variable args. All the elements of this new array are null. The original String array
passed to the program is lost.

The instance variable args is not touched here because it is an instance variable and you
need to have a reference to an object of class ScopeTest to access it.

2.2 Define the structure of a Java class

2.2.1 Class disambiguated

The word “class” may mean multiple things. It could refer to the OOP meaning of class, i.e., an
abstraction of an entity, it could refer to the code written in a Java source file, or it could refer to
the output of the Java compiler, i.e., a file with .class extension.

For example, let us say you are developing an application for a school. You could model the
Student entity as a class. In this case, Student is a class in the OOP sense. When you actually
start coding your application, you would write the code for Student class in Student.java file. Fi-
nally, you would compile Student.java using javac and produce Student.class file which contains
the bytecode for the Student class.

The exam focuses primarily on the source code aspect of a class, i.e., the contents of Student.java
file of the above example. However, you do need to know the basics of OOP as well because, after
all, a Java source file is meant to let you write code for your OOP class model. You don’t have to
worry about the bytecode version of a class.

2.2.2 Structure of a Java source file

If you have written some Java code before, you are already aware of the basic structure of a Java
source file. I will do a quick recap and then move on to the interesting situations and gotchas that
you need to know for the exam.

A Java source file has the following three parts:
Part 1: zero or one package statement
Part 2: zero or more import statements
Part 3: one or more reference type (i.e. class, interface, or enum) definitions.

2.2 Define the structure of a Java class 35

The ordering mentioned above is important. For example, you cannot have the package state-
ment after the import statements or the class declaration(s). Similarly, you cannot have import
statements after the class declaration.

A Java source file must define at least one Java reference type definition in it. You can define
multiple reference types within a single source file as well. I will talk about the rules of that later.

2.2.3 Members of a class

Within a class definition, you can have field declarations, methods, constructors, and initial-
izers. (You can also have classes, interfaces, and enums, but more on that later). All of these are
called “members” of that class.

Members can be defined as static or non-static aka instance (a member that is not defined
as static is automatically non-static).

For example, the following code shows various members of a class:

//package com.school; //optional

import java.util.Date; //required because we are using Date instead of java.util.Date
in code below

public class Student

{
private static int count = 0; //static field
private String studentId; //instance field

static{ //static initializer
System.out.println("Student class loaded");

{ //instance initializer
Student.count = Student.count +1;
System.out.println("Student count incremented");

public Student(String id){ //constructor
this.studentId = id;
System.out.println(
new Date() +
" Student instance created. Total students created = "+count);

public String toString(){ //instance method
return "Student[studentId = "+studentId+"]";

}

public static void main(String[] args) { //static method
Student s = new Student("A1234");

36 Chapter 2. Java Basics

System.out.println(s.toString());

}

The package statement at the top makes the Student class a member of com.school package.
The import statement lets you use Date class of java.util package in the code by typing just Date
instead of java.util.Date.

The class uses a static field named count to track the number of Student objects that have been
created. Instance field studentld stores an id for each Student instance.

The static initializer is executed only once when the class is first loaded by the JVM and the
instance initializer is executed just before the constructor every time an instance is created.
Don’t worry if you don’t understand the purpose of static and instance initializer blocks. We will
go deep into this later.

Then there is a constructor that allows you to create Student objects with a given id and the
static main method that allows you to execute this class from command line. (Notice that I have
commented out the package statement so that it will be easier to execute the class from command
line without worrying about the directory structure.)

The following output is produced upon executing this class:

Student class loaded

Student count incremented

Mon Jul 31 09:35:19 EST 2017 Student instance created. Total students created = 1
Student [studentId = A1234]

Important - You cannot have any statement in a class that does not belong to any of the
categories specified above. For example, the following will not compile:

public class Studentq{
String id = ""; //this is ok because this statement is a declaration

id = "test"; //this is not ok because this is a simple statement that is not a
declaration, or an initializer block, or a method, or a constructor.
{ //this is ok because it is an initializer block

id = "test"; //this is ok because it is inside an instance initializer block and
not directly within the class

}

}

Comments

Java source files can also contain comments. You will not get questions on comments in the
exam but it good to know that there are two ways to write comments in a Java source file - a
single line comment, which starts with a // and closes automatically at the end of the line (that
means you don’t close it explicitly) closing and a multi line comment, which opens with /* and
closes with */. Multi line comments don’t nest. Meaning, the comment will start with a /* and

2.2 Define the structure of a Java class 37

end as soon as the first */ is encountered.

Comments are completely ignored by the compiler and have no impact on the resulting
class file.

The following are a few examples:
//this is a short comment

/*
This is a multi line
comment.

]

/%

This is a multi line

comment.

//This is another line inside a comment

*/

JavaDoc Comments

Java promotes writing well documented code. It allows you to write descriptions for fields, methods,
and constructors of a class through smart use of comments. If you write comments in a certain
format, you can produce HTML documentation for your code using the JavaDoc tool. This format
is called the JavaDoc comment format and it looks like this:

/ k%

* Observe the start of the comment. It has an extra

* Each line starts with a *

* There is a space after each *

* <h3>You can write HTML tags here.</h3>

* Description of each parameter starts with @param

* Description of the return value starts with Q@return

* Q@see tag is used to add a hyperlink to description of another class
* @param name the location of the image, relative to the url argument
* Q@return the image at the specified URL

* QOsee SomeOtherClassName

*/

public String sayHello(String name) {
return "Hello, "+name;

}

The JavaDoc tool comes bundled with the JDK. It can extract all the information contained in
the comments written in the above format and generate nicely formatted HTML documentation.
In fact, all of the standard Java library classes contain descriptions in the above format. It is
these descriptions that are used to generate the HTML pages of the Java API documentation

38 Chapter 2. Java Basics

automatically using the javadoc tool.

2.2.4 Relationship between Java source file name and class name

Other than the fact that Java source files have an extension .java (or .jav), there is only one
rule about the class name and the name of its source code file - the code for a top level public
type (recall that “type” implies class, interface, or enum) must be written inside a Java file with
the same name (with extension dot java, of course!) .

For example, if you are writing code for a public class named Student, then the name of
the source code file must be Student.java

In light of the above rule, let us take a look at a few questions that might pop into your
head:

Q. Does that mean I cannot have multiple classes in a single file?

A. No, you certainly can have multiple classes in a single file. But only one of them can be public
and the name of that public class must be the same as the name of the file. It is okay even if there
is no public class in a file.

Q. What if I don’t have a public class? What should be the name of the file in
that case?

A. You can code a non-public class in a file with any name. However, it is a good programming
practice to keep even a non-public class in a file by the same name.

Q. What about interfaces? Enums?
A. The rule applies to all types, i.e., classes, interfaces, and enums. For example, you cannot have
a public class and a public interface in the same file. There can be only one public type in one file.

Q. What about nested types? Can I have two public classes inside a class?
A. The rule applies only to top level types. So yes, you can have more than one public types inside
another type. For example, the following is valid:

public class TestClass
{
public interface I1{ }
public class Ci{ }
public static class C2{ }
public enum Ei{ }

2.2 Define the structure of a Java class 39

I1, C1, C2, and E1 are called “nested classes” because their declaration appears within the
body of another class or an interface. Types that are not nested are called “top level” classes.
The topic of nested classes is not included in OCAJP but is included in OCPJP so it is good
to know at least the terminology at this stage.

Remember that this restriction is imposed by the Java compiler and not the JVM. Compiler
converts the source code into class files and generates an independent class file for each type
(irrespective of whether that type is public or not) defined in that source file. Thus, if you
define three classes in Java file (one public and two non-public), three separate class files will be
generated. The JVM has no idea about the Java source file(s) from which the class files originated.

It is a common practice, however, to define each type, whether public or not, in its own
file. Defining each type in its own independent file is a very practical approach if you think about
it. While browsing the code folder of a Java project, you only see the file name. Since you cannot
see inside the file, it will be very hard for you to find out which class is defined in which Java file if
you have multiple definitions in a single Java file.

It is interesting to know (though not required for the exam) that imposition of this rule is
actually optional. A compiler may chose to ignore this rule altogether. Java language
specification, Section 7.6 mentions that this rule may be imposed by a Java compiler only if
the source code is stored in the file system and the type in that source file is being referred to by
other types. Thus, it is possible for a compiler to ignore this rule if, for example, the code is stored
in the database. Or if the type defined in a file is not referred to by other types.

For the purpose of the exam, all you need to know is that Oracle’s Java compiler en-
forces this rule.

You may see multiple public classes in the code listing of a question. But don’t immediately
jump to the conclusion that the code will not compile. Unless the problem statement explicitly
says that these classes are written in the same file, Oracle wants you to assume that they are
written in separate files.

Directory in which source files should reside

Although it is common practice to keep source file in the directory that matches the package name
of the source, there is no restriction on the directory in which the source files should reside.

For example, if the package statement in your Student.java is com.university.admin, then you
should keep Student.java under com/university /admin directory. Check out the Compilation
and Execution section under Kickstarter for Beginners chapter to understand how this works.

40 Chapter 2. Java Basics

2.2.5 Quiz

The following options show complete code listings of a Java file named Student.java. Which of these
will compile without any error? Select 1 correct option.
A.

//Start of file
public class Studentq{
}
public enum Grade{ A , B, C, D }
//End of file

B.

//Start of file

class Studentq{

}

enum Grade{ A , B, C, D }
enum Score{ Al , A2, A3, A4 }
//End of file

C.

//Start of file
public interface Gradableq{

}

public interface Person{

}
//End of file

D.

//Start of file
class Studentq{
}
public class Professor{

}
//End of file

E.

//Start of file
package com.enthuware.ocajp; //End of file

Correct answer is B, D

Option A and C are incorrect because you cannot define more than one public top level type
in a source file. Option D is incorrect because the Professor class is public. A public class must
reside in a file by the same name but here, the name of the file is Student.java. Option E is incorrect
because every source file must have at least on Java artifact defined in it. Option B is correct
because Java allows a file to have any number of non-public types.

2.3 Putting classes into packages 41

2.3 Putting classes into packages

2.3.1 The package statement

Every Java class belongs to some or the other package. The name of this package is specified using
the package statement contained in a source file. There can be at the most one package statement in
the entire source file and, if present, it must be the first statement (excluding comments, of course)
in the file. All top level types defined in this file belong to this package. If there is no package
statement in a Java file, then the classes defined in that file belong to an unnamed package which
is also known as the “default” package. In other words, if you have two Java files without any
package statement, classes defined in those two files belong to the same unnamed package.

Important points about the unnamed package

1. The unnamed package has no name. Dubh!

2. Default is not the name of the unnamed package. There is no package named default. You
cannot even create a package named default by specifying default as the package name for
your class though because default is a keyword.

3. Since the unnamed package has no name, it is not possible to refer to this package. In other
words, it is not possible to import classes belonging to the unnamed package into classes
belonging to another package. You can’t do import *; in your Java file. This is one reason
why it is not recommended to create classes without a package statement.

You can name your package anything but it is recommended that you use the reverse domain
name format for package. For example, if you work at Amazon, you should start your package
name with com.amazon. You should then append the group name and application name to your
package name so as to make your class unique across the globe. For example, if the name of
your group is sales, and the name of the application is itemMaster, you might name your package
com.amazon.sales.itemMaster. If the name of your class is Item, your Item.java source file
will look like this:

package com.amazon.sales.itemMaster;
public class Item{

}

Although you can use non-ascii characters in your package name, the exam will not ask you
questions about package names with such characters.

2.3.2 Quiz

Q1. Which of the following code snippets are valid?
Select 1 correct option.

42 Chapter 2. Java Basics

A.

//in Test.java
package;

public class Testq{
}

B.

//in Test.java

package mypackage;
public class Testq{
}

C.

//in Test.java
package x;

public class Testq
}
package y;

class AnotherTest{
}

D.

//in Test.java
package x;

package y;
public class Testq
}

Correct answer is B.
A is incorrect because you must specify the package name along with the keyword package.
C and D are incorrect because you cannot have more than one package statement in a Java source
file. Moreover, C is incorrect also because the package statement must be the first statement in a
Java file if it exists in the file.

2.4 Importing Java classes into your class

2.4.1 The import statement

If all of your classes are in the same package, you can just use the simple class name of a class to
refer to that class in another class. But to refer to a class in one package from another, you need
to use its “fully qualified class name” or FQCN for short. FQCN of a class is basically the
package name + dot + the class name. For example, if the package statement in your class Test is
package com.enthuware.ocajp;, the FQCN of this class is com.enthuware.ocajp.Test.

2.4 Importing Java classes into your class 43

If you want to refer to this class from another class in a different package, say
com.xyz.abc, you need to use the FQCN, i.e., com.enthuware.ocajp.Test. For example,
com.enthuware.ocajp.Test t = new com.enthuware.ocajp.Test();

If you try to use just the simple class name, i.e., Test t = new Test();, the compiler will
assume that you mean to use the Test class from the same package, i.e., com.xyz.abc and if it
doesn’t find that class in com.xyz.abc package, it will complain that it doesn’t understand what
you mean by “Test”. FQCN tells the compiler exactly which class you intend to use.

If you refer to this class several times in your code, you can see that it will lead to too many
repetitions of “com.enthuware.ocap” in the code. The import statement solves this problem. If you
add an import statement import com.enthuware.ocajp.Test;, you can use just the simple class
name Test in your class to refer to com.enthuware.ocajp.Test class.

If your class refers to multiple classes of the same package, you can use either use one import
statement for each class or you can use just one import statement with a wild card character * for
the whole package. For example, import com.enthuware.ocajp.*; The compiler will try to find
the simple class names used in your code in the imported package(s). You can have as many import
statements as you need. You can also have redundant imports or imports that are not needed.

Although importing all the classes with a wildcard looks a like good idea but I assure you that
it is not. In practice, if a class uses several classes from different packages, it becomes difficult
to figure out which package does a class referred to in the code belongs to. For this reason,
well written, professional code always uses import statements for specific classes instead of
using the wildcard format. Most IDEs even have a feature to clean up import statements of
a class.

The import static statement

Sometimes you need to define values that are to be used in various classes of your application. For
example, if you are developing an application for tax computation, you may want to define a value
for tax rate that is to be used by all other classes. Since all code in Java must be a part of a
reference type (i.e. a class or an interface or an enum), you may define a class named Values and
add this value to this class as follows:

package taxes;
public class Values{

public static double TAX_RATE = 0.15;
}

Now, if you want to use this value in some other class, you have three options. You know the first
two options already:

Option 1 - Don’t import anything and just use taxes.Values.TAX RATE; in your class.

Option 2 - Add import taxes.Values; or import taxes.*; and then use Values.TAX RATE in
your class.

44 Chapter 2. Java Basics

Option 3 - Java 7 onwards, you have a third option called “import static”. To eliminate typing
the class name multiple times, you can simply import the static members of any class using the
import static statement. In this example, you can add import static taxes.Values.TAX RATE;
or import static taxes.Values.*; (the wild card format imports all static members of the
class) to the list of import statements of the class and then use just TAX RATE in your code.

You can import static fields as well as static methods through this statement.So, for example,
if you have static utility method named apply in Values class, you could directly use the name
apply instead of Values.apply if you include import static taxes.Values.apply; or import
static taxes.values.x*;

Remember that import static does not import a class. It imports only the static member(s)
of a class. Thus, you cannot use the simple name Values in your code if you haven’t imported
taxes.* or taxes.Test already using the regular import statement.

The word “import” is really a misnomer here. The import statement doesn’t import anything
into your class. It is merely a hint to the compiler to look for classes in the imported package.
You are basically telling the compiler that the simple class names referred in this code are
actually referring to classes in the packages mentioned in the import statements. If the
compiler is unable to resolve a simple class name (because that class is not in the same
package as this class), it will check the import statements and see if the packages mentioned
there contain that class. If yes, then that class will be used, if not, a compilation error will
be generated.

Important points about the import statement -

1. You can import each class individually using import packagename.classname; statement or
all the classes of a package using import packagename.*; or any combination thereof.

2. import statements are optional. You can refer to a class from another package even without
using import statements. You will have to write FQCN of the class in your code in that case.

3. You can import any number of packages or classes. Duplicate import statements and redun-
dant import statements are allowed. You can import a class even if you are not using that
class in your code. Remember, an import statement is just a shortcut for humans. It doesn’t
actually import anything in your class.

4. java.lang package is imported automatically in all the classes. You don’t need to write
import java.lang.*; in your class even if you use classes from java.lang package. But it
is not wrong to import it anyway because redundant imports are allowed.

What you cannot do:

1. There is no way to import a “subpackage” using the import statement. For example, import
com.enthuware.*; will import all the class in package com.enthuware but it will not import
any class under com.enthuware.ocajp package. Furthermore, import com.enthuware.*.x*;
is illegal. This essentially means that technically, there is no concept of “subpackage” in Java.
Each package must be imported separately.

2.4 Importing Java classes into your class 45

2. You cannot import a package or a class that doesn’t exist. For example, if you try to use
some random package name such as import xyz.*; the compiler will raise an error saying,

error: package xyz does not exist
import xyz.*;

-~

1 error

How does the compiler know whether a package exists or not, you ask? Well, if the compiler
doesn’t find any class in its classpath that belongs to the package that you want to import, it
draws the inference that such a package does not exist.

3. Unpackaged classes (the phrases “unpackaged classes” and “classes in the default or unnamed
package” mean the same thing, i.e., classes that do not have any package statement) cannot
be imported in any other package. You cannot do something like

import *;

4. If a class by the same name exists in multiple packages and if you import both the packages in
your code, you cannot use the simple class name in your code because using the simple name
will be ambiguous. The compiler cannot figure out which class you really mean. Therefore,
you have to use FQCN in such a case. You may import one package or class using the import
statement and use simple name for a class in that package and use FQCN for classes in the
other package.

The requirement to use two classes with same name but from different packages typically
used to arise a lot while using JDBC. JDBC related classes are in java.sql package and
classes in this package use java.sql.Date class instead of java.util.Date. But the
non-JDBC related code of the application uses java.util.Date. In such a situation, it is
preferable to use FQCN of each class in the code to avoid any confusion to the reader even
though you can import one package and use simple name Date to refer to the class of that
package.

However, Java 8 encourages you to use the new Date/Time classes of the java.time
package, which eliminates this annoyance.

2.4.2 Quiz

Q. You have downloaded two Java libraries. Their package names are com.xyz.util and
com.abc.util. Both the packages have a class named Calculator and both the classes have a
static method named calculate().

You are developing your class named MyClass in com.mycompany.app package and your
class code needs to invoke calculate methods belonging to both of the Calculator classes as follows:

46 Chapter 2. Java Basics

public class MyClass{
public static void main(String[] args){
//call xyz’s calculate()
//call abc’s calculate()

}

Which of the following approaches will work?

A.

Add import com.*; to your class. Then use xyz.util.Calculator.calculate(); and
abc.util.Calculator.calculate();

B.

Add import com.xyz.util.Calculator; Then wuse Calculator.calculate(); and
com.abc.util.Calculator.calculate();

C.

Do not use any import statement. In the code, use
com.xyz.util.Calculator.calculate(); and
com.abc.util.Calculator.calculate();

D.

This cannot be done.

Correct answer is B and C.

Option A is incorrect because you cannot import partial package names. While using a class,
you can either use simple class name (if you have imported the class or package using the import
statement) or use Fully Qualified Class Name. You cannot use partial package name to refer to a
class.

2.5 Create executable Java applications with a main
method

2.5.1 The main method

Let’s get one thing out of the way first. Java classes are not executables. You cannot “execute”
Java classes. The Java Virtual Machine (JVM) is an executable. You execute the JVM. You
actually pass the FQCN of a Java class as an argument to the JVM. When the JVM runs, it loads
the given class and looks for a specific method in that class. If it finds that method, it passes control
to that method and this method then becomes the in-charge from there onward. If the JVM doesn’t
find that specific method, it errors out. In common parlance, we call it as executing or running a
Java class or a program.

The method that the JVM is hardwired to look for in the class is called the “main” method
and this method has a very specific signature - its name must be main and it must take exactly
one parameter of type String array. In addition to this, it must return void, must be public and
must also be static. It is free to declare any exception in its throws clause. If your class has such
a method, the JVM can invoke this method and therefore, it is possible to execute the class.

Examples of a valid main method:

2.5 Create executable Java applications with a main method 47

1. public static void main(String[] args){ } - This is the version that you will see most
of the time.

2. public static void main(String... args){ } - Note that String... is the same as
Stringl[] as far as the JVM is concerned. I will talk more about the dot dot dot syntax later.

3. public static void main(String args[]) throws Exception{ throw new Excep-
tion(); } - The main method is allowed to throw any exception.

Examples of an invalid main method:
1. static void main(String abc[]) { } - Invalid because it is not public.
2. public void main(String[] x){ } - Invalid because it is not static.

3. public static void main(String[] a, String b){ }- Invalid because it doesn’t take ex-
actly one parameter of type String array.

4. static void Main(String[] args){ } - Invalid because it is not public and the name starts
with a capital M. Remember that Java is case sensitive.

Note that all of the above methods are valid methods in their own right. It is not a compilation
error if you have these methods in your class. But they cannot be accepted as the “main” method.
JVM will complain if you try to execute a class on the basis of these methods. JVM has gotten
smarter over the years and in Java 8, it gives out a very helpful error message that explains the
problem with your main method. For example, if it is not static, you will see the following message:

Error: Main method is not static in class TestClass, please define the main
method as:
public static void main(String[] args)

Examples of really weird looking main methods:

1. public static native void main(String[] args); - Out of scope for the exam, but good
to know. This is a valid main method. A native method means you are going to implement
this method in a separate executable library which will be linked at run time. In this case, the
JVM will look for the implementation of your main method in a dynamically linked library.
If it finds an implementation, all is good. If not, then it will throw an error saying it is unable
to find the implementation to this native method.

2. public abstract static void main(String[] args); - Invalid because static methods
cannot be abstract.

Just like with any other method, it is possible to have overloaded main methods in a Java class.
I will talk overloading in detail later, but for now, it means having multiple methods with same
name but different parameters. The JVM looks for a specific main method as described above. All
other main methods have no special meaning for the JVM.

48 Chapter 2. Java Basics

Many questions in the certification exam assume the presence of the main method. You may
be given a code snippet and asked to determine the output. If you don’t see any main method
in the given code you need to assume that there is a main method somewhere that is invoked
by the JVM and the given code or a method is invoked through that method.

2.5.2 Command line arguments

It is possible to provide any number of arguments while executing a class by specifying them right
after the name of the class on the command line. The arguments must be separated by a space
character. For example, if you want to pass three arguments to your class named TestClass, your
command would be:

java TestClass a b ¢

The JVM passes on the arguments specified on the command line to the main method through
its String[] parameter. In other words, the String[] parameter of the main method contains
the arguments specified on the command line. An important implication of this is that all the
arguments are passed to the main method as Strings. For example, if your command line is java
TestClass 1, the main method will get a String array with one String element containing 1 and
not an int 1.

Let me now present to you the following program to explain how to use command line arguments.
This simple program prints the arguments that were passed to it from the command line.

public class TestClass{
public static void main(String[] args) throws Exception{
for(int i=0; i<args.length; i++){
System.out.println("args["+i+"] = \""+args[i]+"\"");
}
}

The output of this program will tell you all you need to know about the command line argu-
ments. The following is a table containing the command line used to execute the program and the
corresponding output generated by the program:

2.5 Create executable Java applications with a main method 49

Command line used Output Inference

java TestClass If no argument is specified, args contains
a String array of length 0. Observe that a
NullPointerException is not raised for
args.length. That means args is not
null. In this case args refers to a String
array of length 0.

java TestClass a args[0] = “a” | The first argument is stored at index 0.
The first argument is NOT the name of the
class.
java TestClass a b ¢ args[0] = “a” | Arguments can be separated by one or
args[l] = “b” | more than one white characters. All such
args[2] = “c” | separator characters are stripped away.

java TestClass "a " b | args[0] = “a | If you put quotes around the value that you
” want to pass, everything inside the quotes
args[l] = “b” | is considered one parameter.

Quotes are not considered as part of the

argument. Observe that the first argument

is “a” i.e. a String containing ’a’ followed
by a space.

java TestClass "\"" args[0] =””” | To pass a quote character as an argument,

you have to escape it using a backslash.

By the way, can you guess why the name of class is not passed in as an argument to the main
method? Remember that unlike an executable program, you cannot change the name of a Java
class file. The name of a Java class file will always be the same as the name given to the class in
the Java source file. Therefore, the main method of a class always knows the name of its containing
class.

2.5.3 The end of main

As discussed before, once the JVM passes control to the main method of the class that you are
trying to execute, it is the main method that decides what to do next. As far as the JVM is
concerned, your application has been “launched” upon invocation of the main method. In that
sense, the main method is just an entry point of your application. So what happens when the main
method ends? Does the application end as well? Well, the answer is it depends on what the main
method does.

A simple Java program such as the one we used earlier to print arguments may have all its code
in the main method. Once the main method ends, there is nothing else to do and so the program
ends. While you can write all your application code within the main method, Java applications are
usually composed of multiple classes. At run time, an application consists of instances of several
classes that interact with each other by calling methods on each other. A Java application may
also perform multiple activities in parallel, so even if an activity implemented by one method ends,
another activity implemented by some other method may still be going on. The code in main itself
is just an activity. The end of the main method implies the end of only that activity. It doesn’t
mean the end of all the activities that may be going on in an application.

If it helps, you may think of your Java application as a fast food restaurant and the main method
as its manager opening the restaurant in the morning. The restaurant need not close immediately

50 Chapter 2. Java Basics

after opening if there are no customers lined up. After opening the restaurant, the manager kicks off
a lot of activities such as preparing the food, setting up the dining area, and waiting for customers.
Such activities may continue side by side throughout the course of the day. When the last customer
of the day is gone and when all such actives end, the restaurant closes for the day. The same thing
happens in a Java application. The main method may kick off other activities that run side by side
and the application ends only when all such activities come to an end.

Java allows executing activities in parallel using threads. This topic is beyond the scope of this
exam so | will not discuss it anymore in this book. But you should know that in a nutshell, an
application doesn’t end until all the threads started by the application, including the thread that
executes main, end.

2.6 Run a Java program from the command line

We have already seen the basics of how to compile and execute a Java program in Compilation and
Execution section under Kickstarter for Beginners. I will just summarize the important points that
you need to know for the exam here.

1. The standard Oracle JDK comes bundled with a Java compiler. The executable for the
compiler is named javac. In other words, the program you need to use to compile your Java
code is called “javac”. You may compile a Java source file named TestClass. java using the
command - javac TestClass.java
Notice that you have to specify the full file name including the extension. javac does support
multiple options to fine tune the compilation process but none of these options are required
for the exam.

2. Compilation of a Java file results in one of more class files depending on the contents of the
Java source file.

3. The standard Oracle JDK comes bundled with a Java Virtual Machine (JVM). The executable
for the JVM is named java. In other words, the program you need to launch the JVM and to
execute your Java program is called “java”.

4. To execute a Java class, you can use the following command - java TestClass

Notice the absence of file extension .class while specifying the class name. To com-
pile a Java source file, you must specify the extension of the file, i.e., .java though. Just like
with javac, Java command can take multiple options to fine tune the execution of a Java
program. You do not need to know any of these options for the exam.

2.7 Compare and contrast the features and components of
Java

If you have gone through the topic “Kickstarter for beginners”, you already know all you need to
know about this objective. I will not repeat it but will summarize the important points here.
Features/Benefits of Java -

2.7 Compare and contrast the features and components of Java 51

1. Object-Oriented - Java has features such as classes, objects, and access control, that allow
you to do object-oriented development. It eliminates some non-OQO features such as standalone
functions. The following are some of the “object-oriented features” of Java:

(a) Encapsulation ensures that classes can be designed so that only certain fields and
methods of an object are accessible from other objects. Java allows precise access con-
trol by marking data members as public/protected/private (or default), which promotes
encapsulation.

(b) Java allows a class to extend at most one class but allows a class to implement more
than one interfaces. You will learn more about inheritance later but for now remember
that Java supports multiple inheritance of type but does not support multiple
inheritance of state and implementation.

(c) Polymorphism ensures that at run time the method to be executed depends on the
actual object referred to by a reference. If a subclass overrides a method of a base class
and if the object referred to by a variable is of type subclass, then the subclass’s version
of the method is used even if the declared type of the variable is of base class. This is
also called . Java supports dynamic binding and polymorphism.

2. Platform Independence - Java code is compiled into Java bytecode, which is interpreted
by a virtual machine called the Java Virtual Machine (JVM). JVM is available for multitude
of platforms (CPU+OS architectures). This means that the bytecode can run of all those
platforms without any change. Thus, you do not need a Java compiler for every platform on
which you want to run a Java class. The class files produced on one platform will run without
change on any other platform, if there is a JVM for that platform. If there is no JVM for a
particular platform (for example, Android or iPhone), you cannot run Java program on that
platform.

3. Huge standard library - Java Runtime Environment includes a huge set of readymade
classes are useful for a wide range of applications such as networking, files, databases, format-
ting, data structures, and so on. This allows rapid application development.

4. Less Complex - Java eliminates a lot of complicated programming constructs to make it
the code less prone to errors. For example, Java does not have pointers, multiple inheritance,
operator overloading, goto, pragmas.

5. Garbage collection - Java frees the developers from actively coding for garbage collection.
It performs checks in the background that identify unused object and cleans them up.

6. Secure - A Java application can be run with a . This security manager can be customized to
allow precisely only those operations that you want to allow for an application. Third party
Java applications downloaded from the internet can be run within a sandbox. This limits the
operations that a program can do on the host machine.

7. Multithreading - Java makes developing multi threaded applications a lot easier than other
languages.

52 Chapter 2. Java Basics

Components -

1. Development tools - Java Development Kit (JDK) comes bundled with several applications.
Some are pretty much required such as the compiler (javac) and some are useful while devel-
opment such as debugger (), class inspector (javap), and, documentation generator (javadoc).
It also comes with the JVM (java) for most common platforms.

2. Java standard library - A huge collection of readymade classes upon which any kind of
application can be developed.

2.8 Exercises 33

2.8 Exercises

1.

Create classes in two different named packages. Define static and instance fields in one of
those classes and access those fields from the other class. See what happens when both the
classes try to access the fields of each other.

Hint: If you have trouble compiling classes, check out “Compilation and Execution” section
in Kickstarter for Beginners”.

. Define a local variable in a method. Update this variable in a while loop and print it out

after the while loop ends. Check what happens when you define a variable by the same name
within the while loop.

Create a class in package foo and another class in package foo.bar with a static method.
Invoke the static method from the class in package foo using different import statements.

Create a class with a main method and execute the class with a few arguments. Print the
number of arguments.

. Which Java feature (or lack of thereof) annoys you most. Why?

o4

Chapter 2. Java Basics

=3

=

(3. Working With Java Data Types

Exam Objectives

1.

- W

Declare and initialize variables (including casting of primitive data types)

Difference between reference variables and primitive variables

Know how to read or write to object fields

Explain an Object’s Lifecycle (creation, “dereference by reassignment” and garbage collection)

Develop code that uses wrapper classes such as Boolean, Double, and Integer.

56 Chapter 3. Working With Java Data Types

3.1 Data types in Java

Java has support for two kinds of Data. A data type is essentially a name given to a certain kind
of data. For example, integer data is given the name “int” in Java. Boolean data is given the name
“boolean” in Java. Classifying data into different data types allows you treat data of the same kind
in the same way. It also allows you to define a set of operations that can be performed on data
of the same kind. For example, if you are given data of type int and of type boolean, you know
that you can do addition operation on the int data but not on the boolean data. Data type also
determines the space required to store that kind of data. For example, a byte requires only 8 bits
to store while an int requires 32 bits.

Data types are important for a programming language because they allow you tell the compiler
the kind of data you want to work with. For example, when you say int i; you are telling the
compiler that i is of type int. The compiler will then allow you to store only an integer value in
this variable. Generally, it is not possible to store data of one type into a variable of another type
because of the difference in the amount of space required by different data types or because of their
compatibility. You will learn about the exceptions to this rule soon.

By defining a variable of a certain type, you automatically get the right to perform operations
that are valid for that type on that variable. For example, if i is defined to be of type the int, the
compiler will allow you to perform only mathematical and bit wise operations on this variable. If
b is defined as a boolean, the compiler will allow you to perform only logical operations on this
variable.

Java has two fundamental kinds of data types: primitive and reference.

Primitive data types are designed to be used when you are working with raw data such
integers, floating point numbers, characters, and booleans. Java (by Java, I mean, the Java compiler
and the Java Virtual Machine) inherently knows what these data types mean, how much space they
take up, and what can be done with them. You don’t need to explain anything about them to Java.
Primitive data types are the most basic building blocks of a Java program. You combine primitive
data types together in a class to build more complicated data types.

Reference data types, on the other hand, are designed to be used when you are working with
data that has a special and unique meaning for code that Java has no knowledge of. For example,
if you are developing an application for student management, you might define entities such as
Student, Course, and Grade. Java has no knowledge of what Student, Course, and Grade mean.
It doesn’t know how much space they take, what operations they support, or what properties they
have. Java will expect you to define all these things. Once you define them, you can use them to
implement the business logic of your application. When you write a class, interface, or enum, you
are essentially defining a reference data type. Reference data types are built by combining primitive
data types and other reference data types.

In Java, primitive data types include integral data types (byte, char, short, int, long),
floating point data types (float, double), and boolean data type (there is only one -
boolean). While reference data types include all the classes, interfaces, and, enums, irrespective
of who defines them. If something is a class, an interface, or an enum, it is a reference data type.
Yes, String too is a reference data type because all strings are instances of type java.lang.String
class :) I will talk more about Strings later.

Note that integral and floating point data types are collectively called numeric data types.

The following table lists out the details of primitive data types:

3.1 Data types in Java 57

You will not be asked the details of the sizes of data types in the exam. However, it is
important to know about them as a Java programmer.

Name | Bits Range Examples Supported opera-
tions
byte 8 -2°7 to 277 -1 i.e. -128 to 127 -1,0,1 mathematical, bitwise
char 16 | 0to 2°16-1i.e. 0 to 65,535 0, 1, 2, ’a’, | mathematical, bitwise
\uo0061’

short 16 | -2715 to 2°15-1 i.e. -32,768 to | -1,2, 3 mathematical, bitwise
32,767

int 32 | -2"31 to 2731-1 -1, 2,3 mathematical, bitwise

long 64 | -2°63 to 2763-1 -1, 2,3 mathematical, bitwise

float 32 | approximately 1.1f, 2.0f mathematical
+3.40282347E+38F

double | 64 | approximately 1.1, 2.0 mathematical
+1.79769313486231570E+308

boolean| 1 true or false true, false logical

Notes:

1. byte, char, short, int, and, long are called integral data types because they store
integral values.

2. char is also an integral type that stores numbers just like byte, short, int and long. But it
cannot store a negative number. The number stored in a char variable is interpreted as a
unicode character.

3. float and double store large but imprecise values. Java follows IEEE 754 standard. You
may go through it to learn more but it is not required for the exam.

4. A boolean stores only two values and therefore requires only one bit of memory. However,
officially, its size is not defined because the size depends on the smallest chunk of memory
that can be addressed by the operating system. On 32 bit systems, a boolean may even
require 4 bytes.

58 Chapter 3. Working With Java Data Types

A word on void

void is a keyword in Java and it means “nothing”. It is used as a return type of a method
to signify that the method never returns anything. In that sense, void is a type specification
and not a data type in itself. That is why, even though you can declare a method as returning
void but you cannot declare a variable of type void.

Difference between null and void

null is also a keyword in Java and means “nothing”. However, null is a value. It is used to
signify that a reference variable is currently not pointing to any object. It is not a data type
and so, it is not possible to declare a variable of type null.

Note that null is a valid value for a reference variable while void is not. When a
method invocation returns null, it means that only that particular invocation of the method
did not return a valid reference. It does not mean that the method never returns a valid
reference. On the other hand, void means that a method never returns anything at all.
Therefore, you cannot use void in a return statement. In other words, return null; can
be a valid return statement for a method but return void; is never valid. A method that
declares void as its return type, can either omit the return statement altogether from its
body or have an empty return statement, i.e., return;.

Types of variables

Java has two types of variables to work with the two types of data types, namely primitive vari-
ables and reference variables. Primitive variables let you work with primitive data, while reference
variables let you work with reference data. Thus, when you define int i; i is a variable of the
primitive data type int, but when you define, String str; str is a variable of the reference data
type java.lang.String.

It is very important to understand the fundamental difference between the two types of variables.
A primitive variable contains primitive data within itself, while a reference variable stores only the
address to the location where the actual data data is stored. For example, if you do i = 10;, i
will contain the value 10. But if you do str = "hello";, str will only contain the address of the
memory location where the string "hello" resides. You can now understand why they are called
“reference” variables. Because they are merely references to the actual data!l When you perform
any operation on a reference, the operation is actually performed on the object that is located
somewhere else. In that sense, you can think of a reference variable as a “remote control” of a TV.
(If you have trouble understanding this, you should go through the “Kickstarter for Beginners”
chapter before moving forward.)

Both types of variables support the assignment operation, i.e., they allow you to assign values
to them. For example, the statement i = 20; assigns the value 20 to the variable i.

In case of a reference variable, you cannot assign the address of an object directly. You can
only do so indirectly. For example, in statement the String str = "hello"; you are assigning

3.2 Difference between reference variables and primitive variables 59

the address of the memory location at which the string "hello" is stored to str variable. str,
therefore, now contains the address of a memory location. Similarly, in statement String str2 =
str; you are assigning the value stored in str to str2. You are not copying "hello" to str2.
You are just copying the address stored in str to str2. You cannot assign a memory address to
a reference variable directly because you don’t know the actual address. Only the JVM knows
where an object is stored in memory and it assigns that address to the variable while executing the
assignment operation. The only address you can assign to a reference variable directly is null.

Size of variables

Since a primitive variable stores actual data within itself, the size of a primitive variable depends
on the size of the primitive data. Thus, a byte variable requires 1 byte while an int variable requires
4 bytes and so on.

Since a reference variable stores only the address of a memory location, the size of a reference
variable depends on the addressing mechanism of the machine. On a system with 32 bit OS, a
reference variable will be of 4 bytes, while on a 64 bit systems, it will be of 8 bytes.

Size of reference data types

Size of a reference data type such as a class can be easily determined at compile time by
looking at the instance variables defined in that class. Since every instance variable will
either be a primitive variable or a reference variable, and since you know the sizes of each
of those types, the size of an instance of that class will simply be the sum of the sizes of its
instance variables.

This size never changes for a given class. All instances of a given class always take exactly
the same amount of space in memory, no matter what values its internal variables hold.
Thus, there is never a need to calculate the size of memory space taken by an instance of a
class at run time. And for this reason, there is no such operator as “sizeof” in Java.

3.2 Difference between reference variables and primitive
variables

In the “Object and Reference” lesson, we discussed the relationship between a class, an object, and
a reference. I explained the fundamental difference between an object reference and a primitive.
To recap, there is no difference between an object reference and a primitive variable from a
memory perspective. In memory, both just store a raw number. The difference is in how the JVM
interprets that raw number. In the case of a reference variable, the JVM interprets the number
as an address of another memory location where the actual object is stored, but in the case of
a primitive variable, it interprets the raw number as a primitive data type (i.e. a byte, char,
short, int, long, float, double, or boolean). In that sense, primitives do not have references. There
is nothing like a primitive “reference” because there is no object associated with a primitive variable.

Another crucial point to understand here is that it is the objects that support methods and

60 Chapter 3. Working With Java Data Types

have fields, not the references. Therefore, when you invoke a method (or access a field) using a
reference, the JVM invokes that method on the actual object referred to by that variable and not
on the variable itself.

Since primitives are not objects, you cannot “invoke” any method on a primitive variable. But
you can perform mathematical (+, -, *, /, and, %), logical (||, &&, !, |, and, &), and bitwise(, |,
and, &) operations on the primitive variables themselves.

The following image explains the above with some code. The code assumes that there is a class
named Student defined as follows:

public class Student{

int id;
}
inE il e 19945 Contents of i1 are copied into i2.
int i2? — il;|::> Therefore, i2 now contains 1234 as well.
i2 is set to 0. This doesn't affect il,
18 = f ;[Dvmich still contains 1234

System.out.println(il); C— >| prints the contents of i1 i.e. 1234

The new keyword creates a new Student
object and places it on the heap.

Student sl = new Student(}: Eﬁ)‘ The assignment operator assigns the address
of the location of the Student object to the
variable s1. If the address is, for example,
1001, s1 now contains 1001.

JVM knows that s1 is a reference type (and not a primitive
sl.id = = '|:>’ type) . therefore, it goes to the object stored at the address

contained in s1 and sets that object's id field to 1.

Contents of s1, i.e. 1001, are copied into s2.
Therefore, s2 now contains 1001 as well.

JVM knows that s2 is a reference type and so it goes to the object
s2.id = 2; |::>> stored at the address contained in 52 and sets that object's id field to 2.

System.out.println(sl.id) ; |:l’;~:. Prints 2 because the previous

statement modified the same object.

Difference between reference variable and primitive variable

As you can observe in the above flow diagram, whenever you assign one variable to another,
the JVM just copies the value contained in the variable on the right-hand side of the assignment
operator to the variable on the left-hand side. It does this irrespective of whether the variable is a

3.3 Declare and initialize variables 61

primitive variable or a reference variable. In case of a primitive variable, the value happens to be
the actual primitive value and in case of a reference variable, the value happens to be the address
of an object. In both the cases, it is the value that is copied from one variable to another. For this
reason, it is also said that Java uses “pass by value” semantics instead of “pass by reference”.
We will revisit this later when we discuss about passing variables to method calls.

This concept is very important and you will see many questions that require you to have a clear
understanding of it. The only thing that you need to remember is that a variable, be it of any kind,
contains just a simple raw number. Assigning one variable to another simply copies that number
from one variable to another. It is the JVM’s job to interpret what that number means based on
the type of the variable. Everything else just follows from this fundamental rule.

3.3 Declare and initialize variables

3.3.1 Declare and initialize variables

For better or for worse, Java has several ways of declaring and initializing variables. The exam
expects that you know them all. Although they have substantially reduced the number of questions
that are based solely on quirky syntax, you may still see weird syntax used in code snippets in
questions that test you on something else.

So let’s go through them one by one starting with the most basic - declarations without initialization.

1. —

int x;
String str;
Object obj;

2. —

int a, b, c; //a, b, and ¢ are declared to be of type int
String s1, s2; //sl and s2 are declared to be type String

The following are ways to declare as well as initialize at the same time:
1. int x = 10; //initializing x using an int literal 10

2. int x = new Integer(10); //initializing x using a primitive wrapper class (we
will discuss about this in detail later).

3. int y = x; //initializing y by assigning the value of another variable x
4. String str = "123"; //initializing str by creating a new String

5. SomeClass obj = new SomeClass(); //initializing obj by creating a new in-
stance of SomeClass

6. Object obj2 = obj; //initializing obj using another reference

62 Chapter 3. Working With Java Data Types

7. int a = 10, b = 20, c
different value

30; //initializing each variable of same type with a

8. String sl = "123", s2 "hello";

9. int m = 20; int p = m = 10; //resetting m to 10 and using the new value of m

to initialize p
Mixing the two styles mentioned above:

1. int a, b = 10, ¢ = 20; //a is declared but not initialized. b and c are
being declared as well as initialized

2. String s1 = "123", s2; //Only sl is being initialized

And the following are some illegal ones:

1. int a = 10, int b; //You can have only one type name in one statement.
2. int a, Object b; //You can have only one type name in one statement.

3. int x = y = 10; //Invalid, y must be defined before using it to initialize x.

Observe that there is no difference in the way you declare a primitive variables and a reference
variables. A reference variable, however, has one additional way of initialization - you can assign
null to a reference variable. You can’t do that to a primitive variable. For example, int i = null;
is invalid. But String s1 = null; is valid.

Naming rules for a variable A variable name must be a valid Java identifier. Conventionally
however, a variable name starts with a lower case letter and names for constant variables are in
upper case. Variables created by code generation tools usually start with an underscore or a dollar
(- or §) sign.

3.3.2 Uninitialized variables and Default values

Given just this statement - int i; - what will be the value of i?

If you are from C/C++ world, you may say that the value is indeterminate, i.e., i may have any
value. Java designers didn’t like this undefined behavior of uninitialized variables because it is a
common source of bugs in applications. A programmer may forget to initialize a variable and that
may cause unintended behavior in the application. Uninitialized variables don’t serve any purpose
either. To use a variable, you have to assign it a value anyway. Then why leave them uninitialized?

For this reason, Java designers simply outlawed the use of uninitialized variables altogether in
Java. In fact, they went even further and made sure that if a programmer doesn’t initialize a
variable, the JVM initializes them with known pre-determined values. Well, in most cases!

Try compiling the following code:

3.3 Declare and initialize variables 63

public class TestClass{
static int i;

int y;
public static void main(String[] name){
int p;
}
}

It compiles fine without any issues. It will run fine as well but will not produce any output.
Now, try the same code with a print statement that prints i and y.

public class TestClass{
static int i;

int y;
public static void main(String[] name){
int p;
System.out.println(i+" "+new TestClass().y);
}
}

This also compiles fine. Upon running, it will print 0 0. Now, try the following code that tries
to print p.

public class TestClass{
static int i;

int y;
public static void main(String[] name){
int p;
System.out.println(p);
}
}

This doesn’t compile. You will get an error message saying:

TestClass.java:6: error: variable p might not have been initialized
System.out.println(p);

You can draw the following conclusions from this exercise:

1. Java doesn’t have a problem if you have uninitialized variables as long as you don’t try to use
them. That is why the first code compiles even though the variables have not been initialized.

2. Java initializes static and instance variables to default values if you don’t initialize them
explicitly. That is why the second code prints 0 0.

3. Java doesn’t initialize local variables if you don’t initialize them explicitly and it will not let
the code to compile if you try to use such a variable. That is why the third code doesn’t
compile.

64 Chapter 3. Working With Java Data Types

The first point is straightforward. If a variable is not used anywhere, you don’t have to initialize
it. It is possible that a smart optimizing Java compiler may even eliminate such a variable from
the resulting class file.

Let us look at the second and third points now. To make sure that variables are always initialized
to specific predetermined values before they are accessed, Java takes two different approaches.

The first approach is to let the JVM initialize the variables to predetermined values on its own
if the programmer doesn’t give them any value explicitly. This approach is taken for instance and
static variables of a class. In this approach, the JVM assigns 0 (or 0.0) to all numeric variables (i.e.
byte, char, short, int, long, float, and double), false to boolean variables, and null to reference
variables. These values are called the default values of variables. The following code, therefore,
prints 0, 0.0, false, and null.

public class TestClass{

static int i; //i is of numeric type and is therefore, initialized to O
static double d; //d is a floating numeric type and is therefore, initialized to 0.0
static boolean f; //f is of boolean type and is therefore, initialized to false
static String s; //s is of reference type and is therefore, initialized to null
public static void main(String[] args){

System.out.println(i);

System.out.println(d);

System.out.println(f);

System.out.println(s);

1

Observe that since s is a reference variable, it is initialized to null. You will learn in the next
chapter that an array is also an object, which means that an array variable, irrespective of whether
it refers to an array of primitives or objects, is a reference variable, and is, therefore, treated the
same way.

The above code uses only static variables. You will get the same result with instance vari-
ables:

public class TestClass{

int 1i;

double d;

boolean f;

String s;

public static void main(String[] args){
TestClass tc = new TestClass();
System.out.println(tc.i);
System.out.println(tc.d);
System.out.println(tc.f);
System.out.println(tc.s);

The second approach is to make the programmer explicitly initialize a variable before the

3.3 Declare and initialize variables 65

variable is accessed. In this approach, the compiler raises an error if it finds that a variable may be
accessed without being initialized. This approach is used for local variables (i.e. variables defined
in a method or a block).

Basically, the compiler acts as a cop that prevents you from using an uninitialized variable. If
at any point the compiler realizes that a variable may not have been initialized before it is accessed,
the compiler flags an error. This is called the principle of “definite assignment”. It means that
a local variable must have a definitely assigned value when any access of its value occurs. For
example, the following code compiles fine because even though the variable val is not initialized in
the same line in which it is declared, it is definitely assigned a value before it is accessed:

public class TestClass {
public static void main(String[] args) throws Exception {
int val; //val not initialized here
val = 10;
System.out.println(val); //compiles fine

}

A compiler must perform flow analysis of the code to determine whether an execution path exists
in which a local variable is accessed without being initialized. If such a path exists, it must refuse
to compile the code. A compiler is only allowed to consider the values of “constant expressions”
in its flow analysis. The Java language specification does formally define the phrase “constant
expression” but I will not go into it here because it is outside the scope of the exam. The basic idea
is that a compiler cannot execute code and so it cannot make any inferences based on the result
of execution of the code. It has to draw inferences based only on the information that is available
at compile time. It can take into account the value of a variable only if the variable is a compile
time constant. This is illustrated by the following code:

public class TestClass {
public static void main(String[] args) throws Exception {

int val;
int i = 0; //LINE 4
if(i == 0){
val = 10;
}
System.out.println(val); //val may not be initialized
}
}
This code will not compile. Even though we know that i is 0 and so i == 0 will always be true,

the compiler doesn’t know what the actual value of the variable i will be at the time of execution
because i is not a compile time constant. Therefore, the compiler concludes that if the if condition
evaluates to false, the variable val will be left uninitialized. In other words, the compiler notices
one execution path in which the variable val will remain uninitialized before it is accessed. That
is why it refuses to accept the print statement. If you change line 4 to final int i = 0; the
compiler can take the value of i into account in its flow analysis because i will now be a compile
time constant. The compiler can then draw the conclusion that i==0 will always be true, that

66 Chapter 3. Working With Java Data Types

the if block will always be executed, and that val will definitely be assigned a value before it is
accessed.
Similarly, what if we add the else clause to the if statement as shown below?

int val;
int i = 0; //i is not final
if(i == 0){
val = 10;
Yelseq{
val = 20;
}

System.out.println(val);

Now, i is still not a compile time constant but the compiler doesn’t have to know the value of
i. If-else is one statement and the compiler is now sure that no matter what the value of 1 is, val
will definitely be assigned a value. Therefore, it accepts the print statement.

Let us now change our if condition a bit.

if(i == 0){
val = 10;
}
if(i = 0){
val = 20;
}

It doesn’t compile. It has the exact same problem that we saw in the first version. We, by looking
at the code, know that val will definitely be initialized in this case. We know this only because
we executed the code mentally. As far as the compiler is concerned, these are two independent
if statements. Since the compiler cannot make inferences based on the results of execution of
expressions that are not compile time constants, it cannot accept the argument that val will
definitely be assigned a value before it is accessed in the print statement.

In conclusion, Java initializes all static and instance variables of a class automatically if you
don’t initialize them explicitly. You must initialize local variables explicitly before they are used.

3.3.3 Assigning values to variables

Java, like all languages, has its own rules regarding assigning values to variables. The most basic
way to assign a value to a variable is to use a “literal”.

Literals

A literal is a notation for representing a fixed value in source code. For example, 10 will always
mean the number 10. You cannot change its meaning or what it represents to something else in
Java. It has to be taken literally, and hence it is called a literal. Since it represents a number, it is
a numeric literal. Similarly, true and false are literals that represent the two boolean values. ‘a’ is
character literal. “hello” is a string literal. The words String and name in the statement String

3.3 Declare and initialize variables 67

name; are not literals because Java does not have an inherent understanding of these words. They
are defined by a programmer.

The word int in int i; or the word for in for(int i=0; i<5; i++); are kinda similar to
literals because they have a fixed meaning that is defined by the Java language itself and not
by a programmer. They are actually a bit more than literals because they tell the compiler
to treat the following code in a particular way. They form the instruction set for the Java
compiler using which you write a Java program and are therefore, called “keywords”.

Let me list a few important rules about literals:

1.

To make it easy to read and comprehend large numbers, Java allows underscores in numeric
literals. For example, 1000000.0 can also be written as 1_000_000.0. You cannot start or
end a literal with an underscore. You can use multiple underscores consecutively. You need
not worry about the rules governing the usage of underscores in hexadecimal, binary, and octal
number formats. Note that this is important only for the Java 6 to Java 8 Upgrade
Exam (1Z0-813). The regular exam doesn’t have questions on this feature.

A number without a decimal is considered an int literal, whereas a number containing a
decimal point is considered a double literal.

A long literal can be written by appending a lowercase or uppercase L to the number and
a float literal can be written by appending a lowercase or uppercase f. For example, 1234L
or 1234.0f.

A char literal can be written by enclosing a single character within single quotes, for example,
‘a’ or ‘A’. Since it may not always be possible to type the character you want, Java allows
you to write a char literal using the hexadecimal Unicode character format ('\uxxxx’),
where xxxx is the hexadecimal value of the character as defined in unicode charset. For some
special characters, you can also use escape character \. For example, a new line character
can be written as *\n’.

Note that writing character literals using a unicode or escape sequence is not on the exam. I
have presented this brief information only for the sake of completeness.

. There are only two boolean literals: true and false.

. null is also a literal. It is used to set a reference variable to point to nothing.

Java allows numeric values to be written in hexadecimal, octal, as well as binary formats. In
hexadecimal format (aka hex notation), the value must start with a 0x or 0X and must follow
with one or more hexadecimal digits. For example, you could write OxF instead of 15. In
octal format, the number must start with a 0 and must follow with one or more ocal digits.
For example, 017 is 15 in octal. In binary format, the number must start with a Ob or OB
and must follow with one of more binary digits (i.e. zeros and ones).Understanding of these
formats is not required for the exam and so, I will not discuss these formats any further.

68 Chapter 3. Working With Java Data Types

Assignment using another variable

The second way to assign a value to a variable is to copy it from another variable. For example, int
i = j; or String zipCode = zip; or Student topper = myStudent; are all examples of copying
the value that is contained in one variable to another. This works the same way for primitive as
well as reference variables. Recall from the “Object and Reference” section that a reference variable
simply contains a memory address and not the object itself. Thus, when you assign one reference
variable to another, you are only copying the memory address stored in one variable to another.
You are not making a copy of the actual object referred to by the variable.

Assignment using return value of a method

The third way to assign a value to a variable is to use the return value of a method. For example,
Student topper = findTopper(); or int score = evaluate(); and so on.

Assigning value of one type to a variable of another type

In all of the cases listed above, I showed you how to assign a value of one type to a variable of the
same type, i.e., an int value to an int variable or a Student object to a Student variable. But it is
possible to assign a value of one type to a variable of another as well. This topic is too broad to be
covered fully in this chapter because the rules of such assignments touch upon multiple concepts. I
will cover them as and when appropriate. Let me list them here first:

1. Simple assignments involving primitive types - This includes the assignment of compile time
constants and the concept of casting for primitive variables. I will discuss this topic next.

2. Primitive assignments involving mathematical/arithmetic operators - This includes values
generated using binary operators as well as compound operators, and the concept of implicit
widening and narrowing of primitives. I will discuss this topic in the next chapter.

3. Assignments involving reference types - This expands the scope of casting to reference types.
I will discuss this in the “Working with Inheritance - II” chapter.

Primitive assignment

If the type of the value can fit into the type of the variable, then no special treatment is required.
For example, you know that the size of a byte (8 bits) is smaller than the size of an int (16 bits)
and a byte can therefore, fit easily into an int . Thus, you can simply assign a byte value to an
int variable. Here are a few similar examples:

byte b = 10; //8 bits

char ¢ = ’x’; //16 bits

short s = 300; //16 bits

int i; //32 bits

long 1; //64 bits

float f; //32 bits

double d; // 64 bits

//no special care is needed for any of the assignments below

3.3 Declare and initialize variables 69

’
’

’

|
T A o

f; //observe that the type of the target variable is larger than the type of the
source variable in all of the assignments above.

o Hh R e
|

Assigning a smaller type to a larger type is known as “widening conversion”. Since there is
no cast required for such an assignment, it can also be called “implicit widening conversion”.
It is analogous to transferring water from one bucket to another. If your source bucket is smaller
in size than the target bucket, then you can always transfer all the water from the smaller bucket
to the larger bucket without any spillage.

What if the source type is larger than the target type? Picture the bucket analogy
again, what will happen if you transfer all the water from the larger bucket to the smaller one?
Simple! There may be spillage :) Similarly, when you assign a value of a larger type to a variable of
a smaller type, there may be a loss of information. The Java compiler does not like that. Therefore,
in general, it does not allow you to assign a value of a type that is larger than the type of the target
variable. Thus, the following lines will cause a compilation error:

//assuming variable declarations specified above

c = 1i;

= 1;

= i;

= d; //observe that the type of the target variable on the left is smaller than the
type of the source variable(on the right) in all of the assignments above

H O b

But what if the larger bucket is not really full? What if the larger bucket has only as much water
as can be held in the smaller bucket? There will be no spillage in this case. It follows then that
the compiler should allow you to assign a variable of larger type to the variable of a smaller type
if the actual value held by the source value can fit into the target value. It does, but with a condition.

The problem here is that the compiler does not execute any code and therefore, it cannot
determine the actual value held by the source variable unless that variable is a compile time
constant. For example, recall that the number 10 is actually an int literal. It is not a byte but
an int. Thus, even though an int is larger than a byte, byte b = 10; will compile fine because
the value 10 can fit into a byte. But byte b = 128; will not compile because a byte can only
store values from -128 to 127. 128 is too large to be held by a byte.

Similarly, final int i = 10; byte b = i; will also compile fine because i is now a compile
time constant. Being a compile time constant, i’s value is known to the compiler and since that
value is small enough to fit into a byte, the compiler approves the assignment.

Thus, you can assign a source variable that is a compile time constant to a target variable
of different type if the value held by source variable fits into the target variable. This is called
“implicit narrowing”. The compiler automatically narrows the value down to a smaller type if
it sees that the value can fit into the smaller type. The compiler does this only for assignments and
not for method calls. For example, if you have a method that takes a short and if you try to pass
an int to this method, then the method call will not compile even if the value being passed is small
enough to fit into a short.

70 Chapter 3. Working With Java Data Types

What if the source variable is not a constant? Since the compiler cannot determine the
value held by the variable at run time, it forces the programmer to make a promise that the actual
value held by the source variable at run time will fit into the target variable. This promise is in
the form of a “cast”. Java allows you to cast the value of one primitive type to another primitive
type by specifying the target type within brackets. For example, int i = (int) 11.1; Here, I am
casting the floating point value 1.1 to an int. You can use a cast to assign any primitive integral
(i.e. byte, char, short, int, long) or floating point type (i.e. float and double) value to any
integral or floating point variable. You cannot cast a boolean value to any other type or vice versa.

Here are a few more examples of assignments that can be done successfully with casting:

int i = 10;

char ¢ = (char) i; //explicitly casting i to char
long 1 = 100;

i = (int) 1; //explicitly casting 1 to int

byte b = (byte) i; //explicitly casting i to byte
double d = 10.0;
float f = (float) d; //explicitly casting d to float

A cast tells the compiler to just assign the value and to not worry about any spillage. This is
also known as “explicit narrowing”.

But what will happen if there is spillage?, i.e., what will happen if the actual value held by the
source variable is indeed larger than the size of the target variable? What will happen to the extra
value that can’t fit into the target? For example, what will happen in this case - int i = 128;
byte b = (byte) i; ? The explicit cast should simply assign the value that can fit into the target
variable and throw away the extra. Thus, it should just assign 127 to b and ignore the rest, right?
Wrong! If you print the value of b, you will see -128 instead of 127. There doesn’t seem to be any
relation between 127 and -128! Understanding why this happens is not required for the exam. You
will not be asked about the values assigned to variables in such cases. But I will discuss it briefly
because it is useful to know.

Casting of primitives is pretty much like shoving an object of one shape into a mould of another
shape. It may cause some parts of the original shape to be cut off. To understand this, you need
to look at the bit patterns of int i and byte b. The size of i is 32 bits and the value that it holds
is 128, therefore, its bit pattern is: 00000000 00000000 00000000 10000000. Since you are now
shoving it into a byte, which is of only 8 bits, the JVM will simply cut out the extra higher order
bits that can’t fit into a byte and assign the lowest order 8 bits, i.e., 10000000 to b. Thus, b’s bit
pattern is 10000000. Since byte is a signed integer, the topmost bit is the sign bit (1 means, it is a
negative number). Since negative numbers are stored in two’s complement form, this number is
actually -128 (and not -0!). This process happens in all the cases where the target is smaller than
the source or has a different range than the source. As you can see, determining the value that
will actually be assigned to the target variable is not a simple task for a human. It is, in fact, a
common source of bugs. This is exactly why Java doesn’t allow you to assign just about any value
to any variable very easily. By making you explicitly cast the source value to the target type, it
tries to bring to your attention the potential problems that it might create in your business logic.
You should, therefore, be very careful with casting.

3.3 Declare and initialize variables 71

Assigning short or byte to char

As you know, the sizes of short and char are same, i.e., 16 bits. The size of int and float are also
the same, i.e., 32 bits. Thus, it should be possible to assign a short to a char and a float to an
int without any problem. However, remember that a char is unsigned while a short is not. Their
ranges are different. A char can store values from 0 to 65535, while a short can store values from
-32768 to 32767. Thus, it is possible to lose information while making such assignments. Similarly,
you cannot assign a byte to a char either because even though byte (8 bits) is a smaller type than
char, char cannot hold negative values while byte can.
Here are a few examples that make this clear:

char c1 = ’\u0061’; //ok, unicode for ’a’

short s1 = ’\u0061’; //ok, no cast needed because ’\u0061’ is a compile time constant
that can fit into a short.

short s2 = cl; //will not compile - cl is not a compile time constant, explicit cast is

required.
char c2 = ’\uFEF0’; //ok, unicode for some character.
short s2 = ’\uFEF0’; //will not compile, value is beyond the range of short.

short s3 = (short) ’\uFEF0’; //ok because explicit cast is present

char c3 = 1; //ok, even though 1 is an int but it is a compile time constant whose
value can fit into a char.

char c4 = -1; //will not compile because -1 cannot fit into a char

short s4 = -1;

char c5 = (char) s4; //ok because explicit cast is present

Assigning float to int or double to long and vice-versa £

The same thing happens in the case of int and float and long and double. Even though they
are of same sizes their ranges are different. int and long store precise integral values while float
and double don’t. Therefore, Java requires an explicit cast when you assign a float to a int or a
double to a long.

The reverse, however, is a different story. Although float and double also do lose information
when you assign an int or a long to them respectively, Java allows such assignments without a cast
nonetheless. In other words, Java allows implicit widening of int and long to float and double
respectively.

Here are a few examples that make this clear:

int i = 2147483647; //Integer .MAX_VALUE

float £ = i; //loses precision but ok, implicit widening of int to float is allowed
long g = 9223372036854775807; //Long.MAX_VALUE;

double d = g; //loses precision but ok, implicit widening of long to double is allowed

i
g

f; //will not compile, implicit narrowing of float to int is NOT allowed
d; //will not compile, implicit narrowing of double to long is NOT allowed

You can, of course, assign a float or a double to an int or a long using an explicit cast.

72 Chapter 3. Working With Java Data Types

3.3.4 final variables

A final variable is a variable whose value doesn’t change once it has had a value assigned to it.
In other words, the variable is a constant. Any variable can be made final by applying the keyword
final to its declaration. For example:

class TestClass{
final int x = 10;
final static int y = 20;

public static void main(final String[] args){

final TestClass tc = new TestClass();

//x = 30; //will not compile

//y = 40; //will not compile

//args = new String[0]; //will not compile
//tc = new TestClass(); //will not compile
System.out.println(tc.x+" "+y+" "+args+" "+tc);

}

1

Observe that in the above code, I have made an instance variable, a static variable, a method
parameter, and a local variable final. It prints 10 20 [Ljava.lang.String;052d1fadb Test-
Class@35810a60 when compiled and run.

You cannot reassign any value to a final variable, therefore, the four statements that try to
modify their values won’t compile. Remember that when you make a reference variable final, it
only means that the reference variable cannot refer to any other object. It doesn’t mean that the
contents of that object can’t change. For example, consider the following code:

class Dataf{
int x = 10;
}
public class TestClass {
public static void main(String[] args){
final Data d = new Data();
//d = new Data(); //won’t compile because d is final
d.x = 20; //this is fine because we are not changing d here
}
}

In the above code, we cannot make d refer to a different Data object once it is initialized because
d is final, however, we can certainly use d to manipulate the Data object to which it points. If you
have any confusion about this point, go through the “Object and Reference” section in “Kickstarter
for Beginners” chapter.

There are several rules about the initialization of final variables but they depend on the knowl-
edge of initializers and constructors. I will revisit this topic in the “Working With Methods and
Encapsulation” chapter.

3.4 Know how to read or write to object fields 73

3.4 Know how to read or write to object fields

3.4.1 Accessing object fields

By object fields, we mean instance variables of a class. Each instance of a class gets its own personal
copy of these variables. Thus, each instance can potentially have different values for these variables.
To access these variables, i.e., to read the values of these variables or to set these variables to a
particular value, we must know the exact instance whose variables we want to manipulate. We
must have a reference pointing to that exact object to be able to manipulate that object’s fields.

Recall our previous discussion about how an object resides in memory and a reference variable
is just a way to address that object. To access the contents of an object or to perform operations
on that object, you need to first identify that object to the JVM. A reference variable does just
that. It tells the JVM which object you want to deal with.

For example, consider the following code:

class Student{
String name;
}
public class TestClass{
public static void main(String[] args){
Student s1 = new Student();
Student s2 = new Student();

sl.name = "alice";
System.out.println(sl.name); //prints alice
System.out.println(s2.name); //prints null

s2.name = "bob";
System.out.println(sl.name); //prints alice
System.out.println(s2.name); //prints bob

In the above code, we created two Student objects. We then set the name variable of one Student
object and print names of both the Student objects. As expected, the name of the second Student
object is printed as null. This is because we never set the second Student object’s name variable to
anything. The JVM gave it a default value of null.

Next, we set the name variable of the second Student object and print both the values again.
This time we are able to see the two values stored separately in two Student instances.

This simple exercise shows how to manipulate fields of an object. We take a reference variable
and apply the dot operator and the name of the variable to reach that field of the object pointed to
by that variable. It is not possible to access the fields of an object if you do not have a reference to
that object. You may store the reference to an object in a variable (such as s1 and s2 in the code
above) when that object is created and then pass that reference around as needed. Sometimes you
may not want to keep a reference in a variable. This typically happens when you want to create an
object to call a method on it just once. The following piece of code illustrates this:

|c1ass Calculator{

74 Chapter 3. Working With Java Data Types

public int calculate(int[] iArray){
int sum = O;
for(int i : iArray){ //this is for-each loop, we’ll cover it later
sum = sum+i;
}
return sum;
}
}
public class TestClass {
public static void main(String[] args) {
int result = new Calculator().calculate(new int[J{1, 2, 3, 4, 5});
System.out.println(result);
}
}

Observe that we created two objects in the main method but did not store their references
anywhere - a Calculator object and an array object. Then we called an instance method on the
Calculator object directly without having a reference variable. Since the method call is chained
directly to the object creation, the compiler is able to create a temporary reference variable pointing
to the newly created object and invoke the method using that variable. However, this variable is not
visible to the programmer and therefore, after this line, we have lost the reference to the Calculator
object and there is no way we can access the same Calculator object again.

Within the calculate method, the same Calculator object is available though, through a
special variable called ”this”, which is the topic of the next section.

Similarly, the compiler created a temporary reference variable for the array object and passed
it in the method call. However, we don’t have any reference to this array object after this line and
so we cannot access it anymore. Within the calculate method, however, a reference to that array
object is available through the method parameter iArray.

3.4.2 What is “this”?

Let us modify our Student class a bit:

class Student{
String name;

public static void main(String[] args) {
Student s1 = new Student(); //1
sl.name = "mitchell"; //2
sl.printName(); //3 prints mitchell

}

public void printName (){
System.out.println(name); //5
}

3.4 Know how to read or write to object fields 75

I mentioned earlier that it is not possible to access the fields of an object without having a
reference to that object. But at //5, we are not using any such reference. How is that possible?
How is the JVM supposed to know which Student instance we mean here?

Observe that at //3, we are calling the printName method using the reference variable si.
Therefore, when the JVM invokes this method, it already knows the instance on which it is
invoking the method. It is the same instance that is being pointed to by sl. Now, in Java, if
you don’t specify any reference variable explicitly within any instance method, the JVM assumes
that you mean to access the same object for which the method has been invoked. Thus, within
the printName method, the JVM determines that it needs to access the name field of the same
Student instance for which printName method has been invoked. You can also explicitly use this
reference to the same object by using the keyword "this". For example, //5 can be written as:
System.out.println(this.name);

Thus, the rule about having a reference to access the instance fields of an object still applies.
Java supplies the reference on its own if you don’t specify it explicitly.

By automatically assuming the existence of the reference variable “this” while accessing a
member of an object, Java saves you a few keystrokes. However, it is not considered a good
practice to omit it. You should always type “this.” even when you know that you are accessing
the field of the same object because it improves code readability. The usage of “this.” makes
the intention of the code very clear and easy to understand.

When is “this” necessary?

When you have more than one variable with the same name accessible in code, you may have to
remove the ambiguity by using the this reference explicitly. This typically happens in constructors
and setter methods of a class. For example,

class Student{
String id;
String name;
public void setName(String code, String name){
id = code;
name = name;

}

In the setName method, four variables are accessible: two method parameters - code and name,
and two instance variables - id and name. Now, within the method code, when you do id =
code; the compiler knows that you are assigning the value of the method parameter code to the
instance field id because these names refer to exactly one variable each. But when you do name
= name;, the compiler cannot distinguish between the two name variables. It thinks that name
refers to the method parameter and assigns the value of the method parameter to itself, which is
basically redundant and is not what you want. There is nothing wrong with it from the compiler’s
perspective but from a logical perspective, the above code has a serious bug. In technical terms,

76 Chapter 3. Working With Java Data Types

this is called “shadowing”. A variable defined in a method (i.e. either in parameter list or as a
local variable) shadows an instance or a static field of that class. It is not possible to access the
shadowed variable directly using a simple name. The compiler needs more information from the
programmer to disambiguate the name.
To fix this, you must tell the compiler that the name on left-hand side of = should refer to the
instance field of the Student instance. This is done using "this", i.e., this.name = name;.

While we are on the topic of shadowing, I may as well talk about shadowing of static variables
of a class by local variables. Here is an example:

class Studentq{
static int count = 0;
public void doSomething(){
int count = 10;
count = count; //technically valid but logically incorrect
Student.count = count; //works fine in instance as well as static methods
this.count = count; //works fine in an instance method

}

The above code has the same problem of redundant assignment. The local variable named count
shadows the static variable by the same name. Thus, inside doSomething(), the simple name count
will always refer to the local variable and not to the static variable. To disambiguate count, ideally,
you should use Student.count if you want to refer to the static variable but if you are trying to
use it from an instance method, you can also use this.count. Yes, using this is a horrible way to
access a static variable but it is permissible. I will talk more about static fields and methods in the
“Working with Methods and Encapsulation” chapter.;,

Redundant assignment is one of the traps that you will encounter in the exam. Most IDEs
flash a warning when you try to assign the value of a variable to the same variable. But in the
exam, you won't get an IDE and so you must watch out for it by reading the code carefully.

Here are a few quick facts about this:
1. this is a keyword. That means you can’t use it as variable name or class name.

2. The type of this is the class (or an enum) in which it is used. For example, the type of this
in the printName method of Student class is Student.

3. this is just like any other local variable that is set to point to the instance on which a method
is being invoked. You can copy it to another variable. For example, you can do Student s3
= this; in an instance method of Student class.

4. You can’t modify this, i.e., you can’t set it to null or make it point to some other instance.
It is set by the JVM. In that sense, it is final.

5. this can only be used within the context of an instance of a class. This means, it is available
in instance initializer blocks, constructors, instance methods, and also within a class. It is

3.5 Explain an Object’s Lifecycle 7

not available within a static method and a static block because static methods (and static
initializer blocks) do not belong to an object.

3.5 Explain an Object’s Lifecycle

3.5.1 Life cycle of an Object

You know that objects are always created in heap space. The JVM allocates space in the heap
to store the values of the instance variables of an object. Since every class ultimately extends from
java.lang.Object, even if a class does not define any instance variable of its own, it will inherit
the ones defined in the Object class. Thus, every object will take some space in the heap. Since
heap space is not unlimited, only a limited number of objects can be stored in the heap. Thus,
it is possible to run out of heap space if a program keeps creating objects. We must, therefore,
have some way of getting rid of objects that we don’t need anymore, right? Well, that is exactly
what some languages such as C++ provide. C++ lets you create as well as delete objects. It lets
you allocate and deallocate memory as you please. In other words, it makes the programmer
“manage” the heap space.

In Java, on the other hand, the heap space is managed entirely by the JVM. There is no
way for a programmer to directly manipulate the contents of this space. The only thing a
programmer can do to indirectly affect this space is to create an object. Java does not even let you
“delete” an object. There is no way to “deallocate” the memory consumed by objects either. The
question that one may ask here is how in the world then can a program function if the memory
runs out because of objects that are not needed?

Recall our discussion about object references. An object can be accessed only through its
reference. If you have a reference to an object, you can read from or write to its fields, or invoke
methods. You can keep this reference in a variable. You can also keep multiple copies of the same
reference. You can pass it on to other methods as well. You can think of it like a fish hooked on
at the end of a fishing line. As long as you hold on to the fishing rod, you can get hold of the fish.
You lose the rod, you lose the fish. Similarly, if you lose all the references to an object, there is no
way to get to that object any more. The JVM uses this fact to manage the heap space.

The JVM keeps track of all the references to an object and as soon as it realizes that there
are no references to that object, it concludes that this object is not required anymore and is
basically “garbage”. It then makes arrangements to reclaim the space occupied by the object.
This arrangement for reclaiming the space occupied by such objects is aptly called “garbage
collection”. This essentially is what automatic memory management is, because, as you can see,
the programmer does not have to deal with managing the memory. The programmer focuses only
on creating objects and using them as and when required. The JVM cleans up the memory held
by objects automatically in the background.

With the above discussion in mind, it should be easy to visualize the life cycle of an object.
An object comes alive when it is created.

78 Chapter 3. Working With Java Data Types

An object can be created in three ways - using the new keyword, through deserialization,
and by cloning. Deserialization and cloning are not on the OCAJP exam.

It remains alive as long as it is being referenced from an active part of a program. The object
is dead or inaccessible once there are no references pointing to it. An object no longer exists, once
the JVM destroys, i.e., reclaims the memory consumed by the object during garbage collection.

3.5.2 Garbage Collection
Garbage Collection

Now that we have established what “garbage” is, it is easy to understand what garbage collection
entails. Garbage collection is an activity performed periodically by the JVM to reclaim the memory
occupied by objects that are no longer in use. Let us dig deeper into each part of the previous
sentence:

1. Activity performed periodically - The JVM performs garbage collection at regular in-
tervals so that memory is made available to the program before a request to create an object fails
for want of memory. It is not possible for a program to control the periodicity of this activity. It
not possible for a programmer to even make the JVM perform this activity instantly. There is a
method named gc in java.lang.System class that lets a programmer request the JVM to perform
garbage collection. You can call System.gc () any time you believe it is appropriate to clean up the
memory but this is just a request. There is no guarantee that JVM will actually perform garbage
collection after invocation of this method. A JVM may provide options to customize the behavior
of its garbage collection process through command line arguments. Although a discussion about
these arguments will be beyond the scope of the exam, I suggest you check them out in your spare
time because garbage collection is a favorite interview topic of technical managers.

2. Reclaim the memory - Reclaiming the memory means that the memory occupied by an
object is now marked as free to store new objects. After reclaiming the memory from multiple
objects, the JVM may even reorganize the heap space by moving the objects around and creating
large chunks of free memory. This process is pretty much like the defragmentation of a hard-drive
but within the program’s RAM.

3. Objects that are no longer in use - I mentioned earlier that if an object is not referenced
from any active part of a program, the JVM concludes that the object is no longer in use. While
this statement is true, it is a bit more complicated than it looks. Let us start with the following
code:

public class TestClass{
public static void main(String[] args){
Object ol = new Object(); //1
ol = new Object(); //2

An object is created at line marked //1 and its reference is assigned to variable ol. At this
point there is only one reference variable that is pointing to this object. On the next line, another

3.5 Explain an Object’s Lifecycle 79

object is created and its reference is assigned to the same variable o1. Observe that the value held
by o1 has been overwritten by the new value. Thus, the object that was created at //1 is not being
referenced by any variable at all after the line marked //2. There is no way we can access this
object now because we have lost the only reference that we had of this object. The JVM is aware
of this fact and will mark this object for garbage collection.

The object created at line marked //2 is being referenced by a variable and can be accessed
through this variable. It is, therefore, not eligible to be garbage collected. Well, at least until the
main method ends, after which there will be no reference pointing to this object either, and it will
also be eligible to be garbage collected.

The above code illustrates how an object may be left without any reference variable pointing to
it. Let us take it up a notch:

public class TestClass{

Object instanceVar;

public TestClass(Object methodParam){
instanceVar = methodParam;

}

public static void main(String[] args){
Object tempVar = new Object(); //1
TestClass tc = new TestClass(tempVar); //2
tempVar = new Object(); //3
tc.instanceVar = null; //4

An object of class Object is created at //1 and its reference is assigned to local variable named
tempVar. An object of class TestClass is created at //2 and value of tempVar is passed to Test-
Class’s constructor through method parameter named methodParam. TestClass’s constructor
copies this reference to an instance variable named instanceVar. Thus, after execution of line //2,
the object created at //1 is referred to by two reference variables - tempVar and instanceVar.

Now, at //3, a new object is created and its reference is assigned to the local variable tempVar.
Thus, tempVar stops pointing to the object it was pointing to earlier and starts pointing to this new
object. But observe that the instance variable instanceVar is still pointing to the object created
at //1.

At //4, we make the instanceVar lose its value by assigning it null. Therefore, after this line,
the object that was created at //1 has no reference pointing to it. There is no way to access this
object after this line and thus, this object is eligible to be garbage collected.

In the above two examples, I showed you how an object can be deemed no longer in use when
when there are no reference variables pointing to it. Indeed, if there are no variables pointing to
an object, it is not possible to access that object. But can there be a situation where there is a
variable pointing to an object but that object is still eligible for garbage collection? Let us modify
the above code a bit:

public class TestClass{
Object instanceVar;
public TestClass(Object methodParam){
instanceVar = methodParam;

80 Chapter 3. Working With Java Data Types

}

public static void main(String[] args){
Object tempVar = new Object(); //1
TestClass tc = new TestClass(tempVar); //2
tempVar = new Object(); //3
tc = null; //4

The only change I have made in this code is in the line marked //4. Instead of setting
tc.instanceVar to null, I have set tc to null. Thus, the variable tc does not point to the
TestClass object after this line. In fact, there is no variable that is pointing to the TestClass
object created at //2. Thus, even though the instance variable instanceVar of this TestClass
object still points to the object created at //1, there is no way to access that object because the
only way to access that object was through the TestClass instance, which itself is not accessible
anymore. Thus, both - the TestClass instance created at //2 and the object created at //1 - are
eligible to be garbage collected.

In other words, not only the objects that have no reference to them are eligible for garbage
collection, but the objects that are referenced only by objects that are themselves eligible to be
garbage collected, are also eligible to be garbage collected. In the above example, there was a chain
of just two objects (the TestClass instance and the Object instance) that became eligible for garbage
collection but there could be any number of such interconnected objects that become eligible for
garbage collected if none of the objects of that chain can be referenced from any active part of
a program. This graph of interconnected objects is known as an “island” of isolation and is
considered garbage because none of the objects of that graph are reachable from an active part of
a program even though they are reachable through each other.

Let me now explain what is meant by the cryptic looking phrase “active part of a program”.
Note that it is only when the statements written in a program are executed that objects are created.
A program code may contain several statements that create objects using the new keyword but if
those statements are not executed, obviously, no object will be created. Indeed, the code that we
write is merely a set of instructions to the JVM. Nothing will actually happen if those instructions
are not executed. In Java, execution of the code is done through “threads”. When you run a
program through the command line, a thread called “main thread” is created automatically and
this thread starts executing the statements written in the main method. The statements may be
simple statements such as i = 10; or they could be method calls, in which case the thread will
execute the statements written inside that method first before moving on to the next statement
in the main method. Java also allows you create your own threads and give them separate sets of
instructions to execute. All such code that falls under the scope of the main thread and the threads
created by the programmer is nothing but the active part of the program. When a thread dies,
that is, when it is done executing all the instructions that fall under its scope (for example, the
main thread dies when it reaches the end of the main method), any object that was created by this
thread will be eligible for garbage collection unless the reference of that object is still held on to by
some other live thread.

3.5 Explain an Object’s Lifecycle 81

For the purpose of the OCAJP exam, you do not have to worry about threads or the impact
of threads on garbage collection. The exam merely scratches the surface of this topic. The
exam only expects that you understand the meaning of garbage collection and that an object
can be garbage collected when there are no references pointing to that object. You should
be able to trace the reference variables pointing to an object and identify the point at which
that object loses all its references.

However, a deep understanding of Garbage Collection is very critical for a Java pro-
grammer and that is why it is a favorite topic of discussion in technical interviews. I suggest
you read about the following terms if you want to ace a Java technical interview - finalization,
finalize method, object resurrection, types of references, algorithms used to identify garbage,
customizing the behavior of garbage collector through command line options, and object
generations.

3.5.3 Garbage Collection for the exam

Typically, there are two types of questions that you will encounter in the exam: find out the line
number after which an object becomes eligible for garbage collection; and find out how many objects
will be eligible for garbage collection right after a particular line number. For both kinds you need
to keep track of the references and the objects these references are pointing to at each line. It is
possible to do all this in your head but the questions are designed to make you lose track of the
objects and the references. Therefore, it is best to make use of a pen and paper and draw whatever
is going on in your head. Let me show you how. Consider the following code where you are expected
to find out the line after which the object created at line 3 is eligible for garbage collection.

1: public class TestClass {

2: public static void main(String[] args){
3: Object foo = new Object();
4: Object bar = foo;

5: foo = new Object();

6: Object baz = bar;

T: foo = null;

8: bar = null;

9: baz = new Object();

10: }

11:}

To get to the answer, I will draw a diagram to show the state of affairs after each line of code.
On the left-hand side, I will write the reference variable name and on the right, I will draw a box
to show the existence of an object on the heap. I will also write a number in the box to distinguish
one object from another.

Step 1: At line 3, a new object is created and is assigned to the reference variable foo.

82 Chapter 3. Working With Java Data Types

Ref Nawme | Object

foor

Step 1

Step 2: At line 4, a new variable named bar is defined and is set to the same value as foo.
Thus, foo and bar now point to the same object.

Ref Nawne Object

Step 2

Step 3: At line 5, a new object is created and foo is made to point to this new object.

Ref Nawne Object

foo- ——
by ~

oby 1

—
|~

Step 3

Step 4: At line 6, a new variable named baz is defined and is assigned the value held by bar.
In other words, baz now points to whatever bar is pointing to, i.e., obj 1.

3.5 Explain an Object’s Lifecycle 83

Ref Nawme Object

foor oty 1
par

oty 2

Y\

Step 4

Step 5: At line 7, foo is set to null. In other words, foo is not pointing to the object is
was pointing to earlier. Observe that obj 2 is not being pointed to by any reference variable after
the execution of line 7. Therefore, this object will be eligible for garbage collection after this line.
However, this is not the object you are interested in. So, let’s keep executing the statements.

Ref Nane Object
foor —— il
oby 1

Lo
bag

%
e oty 2

Step 5

Step 6: At line 8, bar is also being set to null.

84 Chapter 3. Working With Java Data Types

Ref Naine: Object

foor —— nuldl

o

bﬂu'/ A

by | L2

Step 6

Step 7: At line 9, a new object is created and assigned to baz. Thus, bar stops pointing to obj
1 and starts pointing to obj 3 after the execution of this line.

After line:9
Ref Nane Object

foor —— null

K

/ =
bou-

bﬂ%\ =y =+

™~

Step 7

oly 3

Observe that nobody is pointing to obj 1 now. This is the object that was created at line 3, and
since it is not being referenced by any variable, it is eligible for garbage collection after line 9.

Now, let us look at the same code from another perspective. What if you are asked about the
number of objects that are eligible for garbage collection after, say, line 87 It is easy to figure that

3.6 Wrapper classes 85

out by looking at the above figures. Status of objects after line 8 shows that obj 2 is the only object
that is not being referred to by any variable. Thus, it is the only object that is eligible for garbage
collection after line 8. What about after line 97 Two (obj 1 and obj 2). At the end of the method
(i.eline 10)7 All three objects.

You should solve a few mock questions using this approach. With practice, you will be able to
do it in your head and will not need to draw the diagrams on paper.

Garbage collection of Strings

While going through mock exams or through other preparation material, you may encounter code
snippets that show multiple String objects getting created. Something like this:

String str = "hello";
for(int i=0; i<5; i++){
str = str + i;

}

The above creates one String object containing "hello" at the beginning and then two more in
each iteration of the loop - a String containing the int value of i and the concatenated String.
Thus, overall, the above code creates 1 + 2*5 = 11 Strings. However, if you are asked how many
String will be eligible to be garbage collected, the answer is not that easy. The Java Language
Specification mentions in Section 15.8.1 that the non-string operand of the + operator is converted
to a String at runtime but it does not clearly tell whether this String goes to the String pool (in
which case it will not be garbage collected) or not.

Let me show you another piece of code:

String s = "hello";
int k = 100;
s = s +"123"+k;

In this case, JLS section 15.8.1 clearly says that a compiler may avoid creating multiple strings
altogether by making use of a StringBuilder. Thus, it is not possible to tell how many Strings will
be created and how many will be eligible to be garbage collected.

Don’t worry, you will not get questions in the exam about garbage collection of Strings. I have
talked about it here only to make you aware of the issue. Strings muddle the topic of garbage
collection so much so that it is a bad idea to use them while explaining garbage collection. You
need not spend anymore time on this topic.

3.6 Wrapper classes

3.6.1 What are wrapper classes?

Before I start talking about wrapper classes, let me recall three topics that are quite fundamental
to understanding wrapper classes - 1. Object and Reference, 2. Stack and Heap, and 3. Difference
between reference variables and primitive variables. I suggest you go through them first if you are
not clear on those three concepts.

86 Chapter 3. Working With Java Data Types

As you are aware, Java is considered an object-oriented language. Pretty much everything in
Java is about objects. You also know that all objects reside on the heap space and can only be
accessed through their references, which are cached in reference variables. This is all good but
from a performance perspective, heap space is bit heavy as compared to stack space. It is also
more permanent than stack space. Recall that JVM performs garbage collection for getting rid of
unused objects from time to time. For many simple programming activities such as loops, decision
constructs, and temporary data storage, objects seem like too much of a hassle.

To address this concern, Java has the provision of “primitive” data types. They are called
primitives because they don’t have any behavior associated with them. They are just raw data. If
you want to run a loop 10 times, all you need is a counter that can count from 0 to 9. The counter
doesn’t serve any purpose after the loop is over and so you don’t need any permanent storage to
store the counter value. A simple int variable that is forgotten as soon as the loop is done, is
sufficient for this purpose. The stack space is perfect for keeping such values because a stack space
is wiped clean as soon as the thread that owns that stack space is finished. There is no need of any
garbage collection to happen here. Furthermore, a program can directly manipulate the value of a
primitive variable without having to go through the indirection of a reference.

The problem with having two different kinds of data types is that it creates a dichotomy between
data represented by primitives and data represented by objects. Due to the difference between how
they are stored, passed, and accessed, a program cannot treat primitives and objects the same way.
For example, let‘s say you have developed some logic to process different types of data and you’ve
captured this logic into a method. What type of input parameters would you use to pass the data
to this method? If you decide to use Object, you cannot pass any primitive to this method and
if you choose a primitive, you cannot pass an object to it. You will either need to write different
methods for each kind or have the caller wrap primitive data into objects and pass the objects to
your method.

A more concrete example would be a class that manages a collection of data. Java has several
standard classes for managing collections. The one most commonly used, and which is also included
in the exam objectives, is java.util.ArrayList. I will discuss this class in detail later, but
basically, you use an ArrayList to collect a bunch of objects. If you have a primitive value that
you want to keep in the collection managed by an ArrayList, you need to wrap that value into an
object because ArrayList only works with objects.

Java designers realized this problem and added ready-made wrapper classes for each of the
primitive data types to Java core library. These classes are - Byte, Character, Short, Integer,
Long, Float, Double, and Boolean. All of these classes are in java.lang package.

Although not important for the exam, it is good to know that wrapper classes meant for the
types that are used to represent numeric data, i.e., Byte, Short, Integer, Long, Float,
and Double, extend from a common base class named java.lang.Number.

Further, Number, Character, and Boolean, classes extend from java.lang.Object.

3.6 Wrapper classes 87

3.6.2 Creating wrapper objects

There are three ways to create objects of wrapper classes. Let us look at them one by one.

1. Using constructors - Like any other object, objects of wrapper classes can be created using
their constructors. For example,

Integer il = new Integer(10);
Integer i2 = new Integer("10");

Character ¢ = new Character(’c’);

Boolean bl = new Boolean(true);
Boolean b2 = new Boolean("true");

float £ = 10.2f;

Float f1 = new Float(f);

Float f2 = new Float(10.2); //valid, even though 10.2 is a double
Float £3 = new Float("10.2");

short s = 10;

Short s1 = new Short(s);

Short s2 = new Short("10");

Short s3 = new Short(10); //this will not compile

Observe that in the above code, I have created instances of wrapper classes using primitive
values as well as String values. It is quite easy to remember the constructors provided by the
wrapper classes. All wrapper classes except java.lang.Character provide two constructors
each - one that takes the relevant primitive type and the second one that takes a String.
java.lang.Character class provides only the char constructor and does not provide the
String constructor. Furthermore, java.lang.Float class provides a third constructor that
takes a double, which is why the line Float f2 = new Float(10.2); works even though
the literal 10.2 is a double.

Further observe that Short s3 = new Short(10); will not compile because 10 is an
int and, as explained above, Short does not have any constructor that takes as int. It has
only two constructors - one that takes a String and one that takes a short. (Recall that
“implicit narrowing” does not happen for method or constructor arguments.)

2. Using the valueOf methods - All wrapper classes have two static value0Of methods each.
One that takes the relevant type as a parameter, and the second one that takes a String.
Character class is an exception because it has only one valueOf method that takes a char.
Unlike constructors, Float class does not have a third valueOf method that takes a double!
Here are a few examples:

float £ = 10.2f;
Float f1 = Float.valueOf(f);

88

Chapter 3. Working With Java Data Types

Float f2 = Float.valueOf("10.2");
Float f2 = Float.value0f(10.2); //will not compile because 10.2 is a double
Integer il = Integer.valueOf (10);

Byte b = Byte.valueOf("10");

Boolean bool = Boolean.valueOf ("true");

In case of the String versions of valueOf methods (and also of the constructors), you have
to be careful about the value that you pass to the method because if you pass a null or a
value that cannot be converted into the required wrapper type, a NumberFormatException
will be thrown. For example, Integer i = Integer.valueO0f("10.2"); will throw a
NumberFormatException because 10.2 cannot be parsed into an integer.

It is interesting to know that you can pass null or any string to Boolean’s constructor or
valueOf method without any exception. All such values will cause it to create a Boolean
object containing false. To get a Boolean containing true, you can pass "true" any case
(upper, lower, or even mixed).

So, what’s the point of having valueOf methods if you can do the same thing using
constructors?

Well, the difference between the two is that a constructor will always create a new
object, while the value0Of method may return a cached object. The value0f methods are
therefore, more efficient than the constructors and should be used when you don’t need to
use separate wrapper objects for the same value.

. Through auto-boxing - Up until Java 1.4, every time you wanted to use a wrapper object,

you would have had to either use a constructor or a valueOf method to create it. Since
wrapper objects are used quite often, this was considered too much of a typing effort for such
a mundane thing.

To make things a little easier and cleaner, Java 1.5 introduced the concept of “auto-
boxing”. All it means is that if you assign a primitive value to a wrapper variable, the
compiler will automatically box the primitive value into a wrapper object. So basically,
instead of writing Integer i = Integer.valueOf (100); you can just write Integer i =
100;.

Similarly, if a method expects an object as an input parameter, you can just pass in
the primitive and the compiler will automatically box it into a wrapper object. For example,
instead of writing myList.add (Integer.valueOf (100)) ;, you can write, myList.add (100) ;.

Observe that I have used the valueOf method instead of a constructor to illustrate
the equivalency of the explicit creation of wrapper objects and autoboxing. This is deliberate.
The reason is that autoboxing for byte, short, char, int, long, and boolean uses cached
objects instead of creating new instances just like the value0f methods. Thus, i1 and i2 in
the following code will refer to the same Integer wrapper object:

3.6 Wrapper classes 89

Integer il
Integer i2

100;
100; //i2 will refer to the same object as il.

Just like the valueOf methods, autoboxing of values from -128 to 127, true and
false, and ’\u0000’ to ’\u007f’ will result in cached objects. Wrappers for other values
may also be cached but that is not guaranteed.

The following is not important for the exam but you might want to know that there is a bit
of an inconsistency in the rules about which values are cached. For all practical purposes
(including for the purpose of the exam), you can assume that autoboxing and valueOf
methods return cached objects for integral types with values ranging between -128 to 127
and for boolean values true and false. However, JLS section 5.1.7 guarantees cached
wrapper objects through autoboxing only for int, char, and boolean.

Furthermore, the JavaDoc API descriptions for the value0f methods of various classes
have minor differences as well. The value0f methods of Byte, Short, Char, Integer, and
Boolean guarantee that they will return cached objects for the same ranges given above, but
the valueOf method of Long is a little different because even though it does return cached
wrapper objects for values between -128 to 127, the JavaDoc description says that it is not
required to cache values of any range.

The valueOf methods of Float and Double are even more different because they don’t
return cached wrapper objects at all, even though the JavaDoc descriptions say that they
should return cached objects for frequently used values.

Here are a few examples that make this clear:

byte b = 127; // bl, b2, and b3 refer to the same Byte instance

Byte bl = Byte.valueOf (b);
Byte b2 = Byte.valueOf (b);
Byte b3 = 127; //autoboxing

continued...

90

Chapter 3. Working With Java Data Types

...Jince a byte can only have values from -128 to 127, it follows that all Byte instances
retrieved using valueOf will be cached.

char ¢ = 97; //same as character ’a’

//cl, c2, and c3 refer to the same Character instance
Character cl Character.valueOf (c) ;
Character.valueOf (c) ;

Character c3 = ’a’;

Character c2

long n = 10; //nl, n2, and n3 refer to the same Long instance
Long nl = Long.valueOf(n);

Long n2 = Long.valueOf(n);

Long n3 10L;

double d = 1.0; //dl, d2, and d3 refer to different Double instances
Double d1 = Double.valueOf(d);

Double d2 = Double.valueOf(d);

Double d3 = 1.0;

Integer il = Integer.valueOf(128);
Integer i2 = Integer.valueOf(128); //il and i2 may or may not refer to the same
Integer instance

3.6.3 Converting wrapper objects to primitives

There are two ways to get primitive values from wrapper objects:

1. Using xxxValue methods - All wrapper classes provide an instance method that returns

the value wrapped by that wrapper object as a primitive. The name of this method follows
the pattern <type>Value. For example, Integer class has intValue, Boolean class has
booleanValue, and Character class has charValue that returns int, boolean, and char
respectively.

Recall that wrapper classes for numeric types (i.e. Byte, Short, Integer, Long,
Float, and Double) have a common base class called Number. This class defines byteValue
and shortValue methods and declares intValue, longValue, floatValue, and double-
Value methods. Therefore, it is possible to get a primitive value of any of these types from
any of numeric wrapper class objects.

. Through unboxing - This is just the opposite of autoboxing. You can assign (or pass as

an argument) any wrapper object to a variable of primitive type directly and the compiler
will automatically extract the primitive value from it and assign it to the target. For example,

Integer il = 10; //autoboxing int value 10 into an Integer object.

3.6 Wrapper classes 91

int i2 = il; //unboxing Integer object and assigning the resulting value to
an int variable.

Remember that unboxing will compile only if the type of the target is wide enough to
accept the type of the wrapper. For example, byte b = il; will not compile because int is
wider than byte, while float f = il; will compile fine because float is wide enough to
hold any int value.

Besides letting you convert wrapper objects to primitives, wrapper classes also contain parseXxx
methods that let you get primitive values from Strings. For example, Integer has parseInt method
that takes in a String as an argument and returns an int. Of course, the argument must have
a valid value that can be parsed as an int otherwise a NumberFormatException will be thrown.
There are several variations of this method but you need not memorize them for the exam.

Wrapper classes contain many useful methods and even though they are not on the exam, I
suggest you quickly browse through their API descriptions, as that will help you on the job.

92

Chapter 3. Working With Java Data Types

3.7 Exercises

1.

Define a reference type named Bird. Define an instance method named fly in Bird. Define
a few instance as well as static variables of type int, float, double, boolean, and String in
Bird.

Create a TestClass that has a static variable of type Bird. Initialize this variable with a
valid Bird object. Print out the default values of static and instance variables of Bird from
the main method of TestClass. Also print out the static variable of TestClass from main.
Observe the output.

Create and initialize one more instance variable of type Bird in TestClass. Use this variable
in TestClass’s main to assign values to the members of Bird explicitly. Assign values to the
members of second Bird using the first Bird. Print the values of the members of both the
Bird objects.

. Write code in £1y method to print out the values of all members of Bird. Alter main method

of TestClass to invoke fly on both the instance of Bird. Observe the values printed for
static variables of Bird.

. Add an instance variable of type Bird in Bird. Initialize this variable on the same line using

"new Bird()” syntax. Instantiate a Bird object in TestClass’s main and execute it. Observe
the output.

. Remove the initialization part of the variable that you added to Bird in previous exercise.

Initialize it with a new Bird object separately from TestClass’s main. Identify how many
Bird objects will be garbage collected when the main method ends.

. Add a parameter of type Float to Bird’s f1ly method. Return an int value from fly by

casting the method parameter to int. Invoke fly multiple times from TestClass’s main by
passing a float literal, a Float object, a double literal, an int, an Integer, and a String
containing a float value. Observe which calls compile.

. Assign the return value of f1y to an int variable, a float variable, a String variable, and

boolean variable. Observe which assignments compile. Try the same assignments with an
explicit cast. Print these variables out and observe the output.

=3

=

(4. Creating and Using Arrays

1. Declare, instantiate, initialize and use a one-dimensional array

2. Declare, instantiate, initialize and use multi-dimensional arrays

94 Chapter 4. Creating and Using Arrays

4.1 Declare, instantiate, initialize, and wuse a one-
dimensional array

4.1.1 Declaring array variables

An array is an object that holds a fixed number of values of a given type. You can think of an array
as a carton of eggs. If you have a carton with 6 slots, then that carton can hold only six eggs. Each
slot of the carton can either have an egg or can be empty. Observe that the carton itself is not an
egg. Similarly, if you have an array of size six of int values (or ints, for short), then that array can
hold six ints but the array itself is not an int.

An array of a given type cannot hold anything else except values of that type. For example, an
array of ints cannot hold long or double values. Similarly, you can have an array of references of
any given type. For example, if you have an array of Strings, this array can only hold references
to String objects. An important point to note here is that even though we call it an “array of
strings”, it does not actually contain String objects. It contains only references to String objects.
You cannot really have an array that contains actual objects.

Array declaration

When you declare an array variable, you are basically specifying the type of values that you want
to deal with through that variable. The way to specify that in Java is to apply [], i.e., square
brackets to the type of the values. For example, if you want a variable through which you will deal
with int values, you will write int[]. Arrays can be multi-dimensional and there will be one set
of opening and closing brackets for each dimension. For example,

int i; //i is an int
int[] ial, ia2; //ial and ia2 are one dimensional arrays of ints
int[][] iaa; //iaa is a two dimensional array of ints and so on

An array declaration can never include the size of the array. Thus, the following are declarations
will not compile:

int[2] invalidil;
int[3][] invalid2;
int[][4] invalid3;

Unfortunately, the above method is not the only way to declare arrays. Java allows you to apply
square brackets to the variable name instead of type name as well. For example,

int i, ial[l; //i is an int but ia is a one dimensional array of int values
int[] ia, iaa[]; //ia is a one dimensional array of ints but iaa is a two dimensional
array of ints and so on

Observe that the rule of thumb of one set of square brackets per dimension still holds. In the
case of iaa, you have one set applied on the type and one set applied on the variable, therefore iaa
is a two dimensional array.

Arrays of objects are declared the same way. For example,

4.1 Declare, instantiate, initialize, and use a one-dimensional array 95

|0bject[] obja, objaall; //obja is a one dimensional array of Objects but objaa is a two |
dimensional array of Objects
|String[] strA; //strA is a one dimensional array of Strings

Note that the statements shown above only declare array variables. They don’t actually create
arrays. Array creation and initialization is a topic in its own right and that is what I will discuss
next.

4.1.2 Creating and initializing array objects

Creating arrays using array creation expressions

You use the new keyword to create an array object. For example,

int[] ia = new int[10]; //an array of ints of size 10

boolean[] ba = new boolean[3]; //an array of booleans of size 2
String[] stra = new String[5]; //an array of Strings of size 5
MyClass[] myca = new MyClass[5]; //an array of MyClass of size 5

int[] invalid = new int[]; //missing size. will not compile

The parts on the right-hand side of = sign in the above statements are called “array creation
expressions”. These expressions merely allocate space to hold 10 ints, 3 booleans, 5 string
references, and 5 MyClass references respectively. Every element of the array is also initial-
ized to its default value automatically by the JVM. The default values of array elements are very
straightforward - references are initialized to null, numeric primitives to 0, and booleans to false.
In the above lines of code, ia is set to point to an array of ten int values and each element of the
array is initialized to 0, ba is set to point to an array of three boolean values and each element
of the array is initialized to false, stra is set to point to an array of five String references and
each element of the array is initialized to null, and finally, myca is set to point to an array of
five MyClass references and each element of the array is initialized to null. Observe that all the
elements of an array are initialized to the same value. This shows us another important aspect of
arrays - that arrays can have duplicate values.

It is important to understand that, in the above statements, we are not creating instances of the
class of the array elements. In other words, we are not creating instances of String or instances of
MyClass. (We are not creating instances of ints or booleans either, for that matter, but since they
are primitives, and since primitives are not objects, they don’t have instances anyway.)

In Java, arrays, whether of primitives or objects, are objects of specific classes. In other words,
an array object is an instance of some class. It not an instance of Object class but since Object is
the root of every class in Java, an array object is an Object and all methods of the Object class
can be invoked on an array. Let us now look at the following program and its output to know more
about the class of the above defined array objects -

public class TestClass{
public static void main(String[] name){
int[] ia = new int[10];
boolean[] ba = new boolean[3];

96 Chapter 4. Creating and Using Arrays

String[] stra = new String[5];
TestClass[] ta = new TestClass[5];
System.out.println(ia.getClass() .getName()+"
"+ia.getClass() .getSuperclass() .getName());
System.out.println(ba.getClass () .getName()+"
"+ba.getClass () .getSuperclass() .getName());
System.out.println(stra.getClass() .getName()+"
"+stra.getClass() .getSuperclass() .getName());
System.out.println(ta.getClass().getName()+"
"+ta.getClass() .getSuperclass() .getName());
}
}

Output:

[T , java.lang.Object

[Z , java.lang.Object
[Ljava.lang.String; , java.lang.Object
[LTestClass; , java.lang.Object

The output shows that ia, which is declared to be of type int [, is not an instance of int but of
a class named [I. stra, which is declared to be of type String[], is not an instance of String but
of a class named [Ljava.lang.String and so on. These names of the classes look weird. Actually,
Java cooks up the name of the class of an array by looking at the number of dimensions and the
type of the elements. For each dimension, there is one opening square bracket. This is followed by
a letter for the class of the elements as per the following table and, if the array is not of a primitive,
the name of the class followed by a semi-colon.

Type Letter
boolean
byte

char

short

int

long

float
double

any Object

il wlkesI ol Rani ROl N@ usi NN

Based on the above table, the name of the class for long[][] (i.e. a two dimensional array
of longs) would be [[J and the name of the class for mypackage.SomeClass[][]1[] (i.e. a three
dimensional array of mypackage.SomeClass) would be [[[Lmypackage.SomeClass;.

Although the above discussion about the class of arrays is not included in the exam objectives,
a few test takers have reported getting a question on the exam that requires this information.

Creating arrays using array initializers

4.2 Using arrays 97

In the previous section, we created array objects using the new keyword. It is possible to create
array objects without using the new keyword. For example, the arrays that we created above can
also be created as follows:

int[] ia = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; //an array of ints of size 10

boolean[] ba = {true, false, false}; //an array of booleans of size 3

String[] str = {"a", "b", "c", "d", "e"}; //an array of Strings of size 5

MyClass[] myca = { new MyClass(), new MyClass(), new MyClass(), new MyClass(), new
MyClass()} ; //an array of MyClass objects of size 5

The parts on the right-hand side of the = sign in the above statements are called “array
initializers”. An array initializer is a shortcut that allows you to create as well as initialize each
element of the array with the values that you want (instead of the default values that you get when
you use array creation expressions).

Since the compiler can find the type of the elements of the array by looking at the declaration
(i.e. the left-hand side of the statement), specifying the same on the right-hand side is not required.
Similarly, the compiler finds out the length of the array as well by counting the number of values
that are specified in the initializer.

Array initializers can also be mixed with array creation expressions. For example:

int[] ia = new int[J{ 1, 2, 3, 4, 5 };

Observe that size is missing from the expression on the right-hand side. Java figures out the
size of the array by counting the number of elements that are specified in the initialization list. In
fact, it is prohibitedto specify the size if you are specifying individual elements. Therefore, the
following is invalid:

int[] ia = new int[2]{ 1, 2 }; //will not compile.

4.2 Using arrays

4.2.1 Array indexing

In Java, array indexing starts with 0. In other words, the index of the first element of an array is 0.
For example, if you have an array variable named accounts that refers to an array of 100 Account
objects, then you can access the first object through accounts[0] and the 100th object through
accounts[99]. accounts[0] or account [99] are like any other variable of type Account.

Similarly, if you have an array variable ia pointing an array of 5 ints, the first element can be
accessed using ia[0] and the last element using ia[4].

java.lang.ArrayIndexOutOfBoundsException

If you try to access any array beyond its range, JVM will throw an instance of ArrayIndexQut-
OfBoundsException. For example, if you have int[] ia = new int[3]; the statements int i =
ia[-1]; and int i = ia[3]; will cause an ArrayIndexOutOfBoundsException to be thrown.
Do not worry if you don’t know much about exceptions at this point. I will discuss exceptions in
detail later.

98 Chapter 4. Creating and Using Arrays

Arrays of length zero

As strange as it may sound, it is possible to have an array of length 0. For example, int[] ia =
new int[0]; Here, ia refers to an array of ints of length 0. There are no elements in this array. It is
important to understand that an array of length 0 is not the same as null. ia = null implies that
ia points to nothing. ia = new int[0]; implies that ia points to an array of ints whose length is
0.

A good example of an array of length 0 is the args parameter of the main method. If you run
a class with no argument, args will not be null but will refer to an array of Strings of length 0.

Changing the size of an array

Java arrays are always of fixed size(or length). Once you create an array, you cannot change the
number of elements that this array can have. So for example, if you have created an array of 5 ints
and if you have 6 int values to store, you will need to create a new int array. There is no way to
increase or decrease the size of an existing array. You may change the array variable to point to a
different array, and you can, of course, change the values that an array contains.

4.2.2 Members of an array object

We saw earlier that arrays are actually objects of specific classes. We also saw the names of some
of these classes. But what do these classes contain? What are the members of these classes? What
functionality do these classes provide? Let us take a look:

Array length
All array classes have one field named length, which is of type int. This field is public and it
stores the length of the array. This field is also final, which reflects the fact that you cannot change
the length of an array after its creation. Since the length of an array can never be less than 0, the
value of this field can never be less than 0 either.

Array cloning

All array classes also have a public method named clone. This method creates a copy of the array
object. Note that it doesn’t create copies of the objects referred to by the array elements. It merely
creates a new array object of the same length and copies the contents of existing array into the new
array. Which means, if the existing array contained primitive values, those values will be copied to
the elements of the new array. If the existing array contained references to objects, those references
will be copied to the elements of the new array. Thus, the elements of the new array will also point
to the same objects. This is also known as “shallow copy”.

For example, the following figure shows exactly what happens when you clone an array of
five ints referred to by the variable myIntArr1 using the statement int[] myIntArr2 = (int[])
myIntArrl.clone(); Don’t worry about the explicit cast for now, but observe that a new array
object with the same number of slots is created and the contents of the slots of the existing array
are copied to the slots of the new array.

4.2 Using arrays 99

—» 2 | 4 (100 1| &

my IntArrl

—» 2 4 1100 -1 6

my IntArr2

Heap Space

Cloning an array of ints

The following figure shows what happens when you clone an array of Strings referred to
by the variable myStringArr1 using the statement String[] myStringArr2 = (String[]) myS-
tringArrl.clone(); Observe that the references are copied into the new array and that no new
String objects are created in the heap space.

» "hello"
//"-: "world"
Stringhdrrl > ol / /; -
myStringArr > A
myStringArr2 >
Heap Space

Cloning an amray of Strings

Shallow copying of an array of ints

100 Chapter 4. Creating and Using Arrays

Cloning is not required for the exam but it is an important aspect of arrays anyway.

Members inherited from Object class

Remember that since java.lang.0Object is the root class of all classes, it is the root class of all
array classes as well and therefore, array classes inherit all the members of the Object class. This
includes toString, equals, and hashCode methods.

4.2.3 Runtime behavior of arrays

Although arrays are the simplest of data structures, they are not without their quirks. To use arrays
correctly and effectively, you must be aware of the two most important aspects of arrays in Java.

The first is that they are “reified”. Meaning, the type checking of arrays and its elements is
done at runtime by the JVM instead of at compile time by the compiler. In other words, the type
information of an array is preserved in the compiled bytecode for use by the JVM during run time.
The JVM knows about the type of an array and enforces type checking on arrays.

For example, if you have an array of Strings, the JVM will not let you set any element of that
array to point to any object other than a String, even though the compiler may not notice such a
violation as illustrated by the following code:

Strlng[] sa = { lllll’ ||2||’ |13|| },
Object[] oa = sa;
0a[0] = new Object();

The above code will compile fine. The compiler has no objection when you try to assign an array of
Strings to a variable of type array of Objects. It has no objection when you try to set an element of
this array of Strings to point to an object that is not a String. But when you run it, the JVM will
throw a java.lang.ArrayStoreException on the third line. This is because the JVM knows that
the array pointed to by oa is actually an array of Strings. It will not let you corrupt that array by
storing random objects in it. It is important to understand this concept because it is diametrically
opposite to how generics work. This is the reason why arrays and generics operate well with each
other. You will realize this when you learn about generics later.

The second thing about arrays is that they are “covariant”. Meaning, you can store a subclass
object in an array that is declared to be of the type of its superclass. For example, if you have an
array of type java.lang.Number, you can store java.lang.Integer or java.lang.Float objects
into that array because both are subclasses of java.lang.Number. Thus, the following code will
compile and run fine:

Number[] na = { 1, 2, 3 };
na[0] = new Float(1.2f);

We haven’t seen anyone getting a question on array reification and covariance in the OCAJP
exam. However, any discussion about arrays is incomplete without these two points and that
is why I have talked about them here.

4.3 Declare, instantiate, initialize and use multi-dimensional arrays 101

4.2.4 Uses of arrays

Arrays are quite powerful as a data structure but they are somewhat primitive as a data type.
As we saw earlier, arrays have only one field and merely a couple of methods. But because of
their simplicity, arrays are used as building blocks for other data types and data structures. For
example, the String data type is built upon an array of chars. So are StringBuffer and String-
Builder. These higher level classes really only wrap an array of characters and provide methods
for manipulating that array.

Arrays are also used extensively for building higher level data structures such as List, Stack,
and Queue. You may have come across the ArrayList class (this class is also on the exam, by the
way, and I will discuss it later). Guess what, it is a List that manages its collection of objects
using an array inside. Since these classes provide a lot of additional features on top of arrays, more
often than not, it is these classes that get used in application programs rather than raw arrays.

Even so, Java standard library does include a utility class named Arrays in package java.util
that makes working with raw arrays a little easier. java.util.Arrays class contains a large number
of utility methods for manipulating any given array object. Although it is a good idea to browse
through the JavaDoc API description of Arrays class to know about these methods, you do not
need to worry about this class for the exam. Some certification books do include a discussion on
the sort and binarySearch methods of this class, but this class is not mentioned in the exam
objectives and I haven’t heard of anyone getting a question on these methods either.

4.3 Declare, instantiate, initialize and wuse multi-
dimensional arrays

4.3.1 Multidimensional Arrays

The phrase multidimensional array brings a picture of a matrix to mind. But it is important to
understand that Java doesn’t have matrix kind of multidimensional arrays. What Java has is arrays
whose elements themselves can be arrays. Recall that, in Java, every array object is an object of a
specific class. For example, the class of an array of ints is [I. Now, what if you want to have an
array of objects of this class. In other words, an array of “array of ints”. You can declare it like
this:

int[][] iaa;

Visually, the declaration looks like iaa is a two-dimensional matrix of ints. But in reality, iaa
points to a single dimensional array, where each element of the array is an array of ints. There is a
fundamental difference between the two approaches. In a matrix, the number of elements in a given
dimension are the same at each index of the higher dimension. For example, in a two dimensional
array, the length of each row will always be the same, i.e., each row will have same number of
columns. While in an array of arrays, there is no such restriction. Each row can refer to an array
of any length. This is illustrated in the following figure:

102 Chapter 4. Creating and Using Arrays

iaa[2x3] iaa[2][]
xxxx [1110 — xxxx | 1111 | —
\: xxxx+1| 1200 | ____ A

1110 | 1 < \l
1111 2 M1] 1 [
1112 3 112 | 2 '{
1113 | 4]
114 | & - /
115 6 1200 | 3 |e"
1116 1201

' 1202 | 5

Rectangular vs Jagged arrays

In this figure, ia[2x3], which is a made up syntax (Java does not have this), is a matrix of size
2x3, i.e., 2 rows and 3 columns. Since the size of each dimension is known in advance, it can be
easily stored in a contiguous chunk of 2x3=6 memory cells. You can also locate the address of any
element using a simple formula.

But in case of an array of array of ints, you can only allocate 2 continuous memory addresses
to store two references - one for each array of ints. These two references can, in turn, point to two
arrays of different lengths. In the above figure, ia[0] points to an array stored at location 1111,
and ia[1] points to another array stored at location 1200. ia[0] points an array of length 2, while
ia[1] points to an array of length 3. This is what Java has. Since the array of arrays are not
required be symmetric, such arrays are called “jagged arrays”. FYI, C# supports both kinds of
arrays, i.e., symmetric as well as jagged.

Keeping the above discussion in mind, let us now look at the rules of declaring and creating

array of arrays in Java:
1. The type of an array is determined by the number of pairs of square brackets applied to the
variable. For example, in case of int[] ia; and int ia[]; ia is an array of ints. In case of int[]
iaal]; and int iaa[][]; iaais an array of arrays of ints. int[][] iaaal[]; is an array of arrays
of arrays of ints.

2. You never specify the length of the array in the type declaration. Thus, int[3] ia; and
int[2] [] iaa; are invalid declarations.

3. The rules of array creation expressions and array initializers that we talked about in the
previous lesson, are applicable here as well.

The following are a few examples:

1. int[][] iaa = new int[2][3];
iaa is created using an array creation expression. iaa refers to an array of length 2. Each
element of this array refers to an array of ints of length 3. Each element of both the arrays of
ints is initialized to 0.

2. int[]J[] iaa = new int[3][];
iaa is created using an array creation expression. iaa refers to an array of length 3. Can

4.3 Declare, instantiate, initialize and use multi-dimensional arrays 103

you guess what each of the three elements of this array are initialized to? Observe that the
type of each element is “array of ints”, which means iaa is an array objects (and not of
primitives). Since every element of array of objects is automatically initialized to null, each
element of the array pointed to by iaa is initialized to null. You can make them point to
arrays of ints like this:

iaa[0] = new int[2]; //ia[0] points to an array of ints of length 2
iaal1] = new int[3]; //ial[l] points to an array of ints of length 3

Each element of these two arrays is now initialized to 0 but iaa[2] is still null.

This example illustrates another important aspect of creating arrays. Notice the dif-
ference between the specification of dimension sizes of example 1 and this one. Example 1
has [2] [3], while here, it is [3] [1. We have omitted the size of the second dimension. The
size of the first dimension tells the JVM how many references you want to store in your array.
(Remember that the type of those references that you want to store is array of ints, i.e.,
int[]). [3] implies that you want to store three references. In other of words, the length of
your array (which is of type array of ints) is 3. However, the size of the second dimension is
not needed because the arrays pointed to by those references can be created later and can be
of different lengths. You will need to specify their lengths only when you create them.

What happens when you create a three dimensional array of ints, i.e., an array of ar-
ray of array of ints? The process is same. You only need to tell the JVM how many number
of references (whose type will be array of array of ints, i.e., int[][]) do you want to keep
in your array. If you want only 2 such references, you can create it with new int[2] [][].
The following three figures illustrates what happens in each step as you initialize an array of
array of array of ints.

123a Address slat 1 (pull;

Address slat 2 inull;

Step 1 - create space to store iaaa.

You can now set the first slot of this array to point to an array of length 2 using iaaa[0] =
new int[2][];

104 Chapter 4. Creating and Using Arrays

. ! -l null l nul| |

Address =lat 2 nulll

Step 2 - create space to store two references of type
array of array ints.

Note that iaaa[1] is still null. Next, you can set iaaa[0] [0] to point to an array of 4 ints
using iaaal0][0] = new int[1{ 1, 2, 3, 4}; or iaaal0][0] = { 1, 2, 3, 4};(You
can also do iaaa[0] [0] = new int[4]; and in that case the value of each element will 0).

1]2] 3 4

jagaa — I E———_ null

null

Step 3 - create space to store array 4 ints.

You cannot, however, leave out the size of a higher dimension if you want to specify the size
of a lower dimension. For example, you cannot do new int[][2]; The reason is simple -
new int[][2] tries to create an array of int[2] objects. But it it does not tell the JVM
how many int [2] objects you want to store. Without this information, the JVM has no idea
how much space it needs to allocate for this array. On the other hand, new int[2] [] is fine

4.3 Declare, instantiate, initialize and use multi-dimensional arrays 105

because now, you are telling the JVM that you want to create an array of length 2. In this
case, the JVM is clear that it needs to allocate space to store 2 references. Remember that
the size of a reference doesn’t depend on the length of the array to which it points. So, the
JVM doesn’t create about the length of the arrays to which these two references will refer. It
simply allocates space to store 2 references.

3. int[1[] iaa = new int[]J[1{ new int[]1{ 1, 2 } }; This statement uses an array
creation expression coupled with array initializer.

int[1[] iaa = { { 1, 2 } }; This is the same as above but with array initializer.

In both the cases, iaa refers to an array of length 1. The first and only element in
this array refers to an array of ints of length 2.

4. Object[] obj[l = { {"string is also an object"}, {null } , { new Object() ,

new Integer(10)} };

obj refers to an array of array of objects. The length of the array is 3. The first array refers
to an array of objects of length 1. The only element of this array of objects points to a String
that contains “string is also an object”. The second array refers to an array of length 1. The
only element of this array points to null. The third array refers to an array of length 2. The
first element of this array points to an object of class Object and the second element points
to an object of class Integer.

Here is a simple program that prints out useful information from an array of arrays. I suggest
you play around with it by changing the arrays.

public class TestClass

{
public static void main(String[] args) {
Object([] iaall] = { {"string is also an object"}, {null } , { new Object() , new
Integer(10)} };
for(int i=0; i<iaa.length; i++){
System.out.println("Element ["+i+"] contains an array of length
"+iaa[i].length);
for(int j = 0; j<iaal[i].length; j++){
System.out.println(" Element["+i+"]["+j+"] contains "+iaal[i] [j1);
}
}
}
}

The output is:

Element [0] contains an array of length 1
Element [0] [0] contains string is also an object

Element[1] contains an array of length 1
Element[1] [0] contains null

Element[2] contains an array of length 2
Element [2] [0] contains java.lang.Object@2al39a55

106 Chapter 4. Creating and Using Arrays

Element [2] [1] contains 10

As an exercise, modify this code to print out the contents of an array of array of array of ints.

You will see questions in the exam that require you to iterate through all the elements of
multi-dimensional arrays using a for loop as well as while/do-while loop. You should come
back to this after going through the chapter on loops.

4.3.2 Assigning arrays of primitives to Object variables

I explained earlier that every array is an object. This means, you can assign any array object to
variable of type Object. Like this:

int[] intArray = new int[1{ 0, 1, 2 };
Object obj = intArray;

This is valid because an array of ints is an Object.

Then how about this - Object[] oa = intArray; ? This will not compile because elements of
the array pointed to by intArray are not Objects. They are ints. Therefore, you cannot assign
an array of ints to a variable of type array of Objects.

You need to be very clear about this concept because it gets confusing very quickly as the
following example shows:

Object[] oa = new int[2][3]; //this is valid.
Object[][] oaa = new int[2][3]; //this will not compile.

Of course, each element of the array created using new int[2] [3] is an array of ints. An array
of ints is an Object and therefore, an array of array of ints is an array of Objects.

4.4 Exercises 107

4.4 Exercises

1.

10.

11.

12.

Create a array of booleans of length 3 inside the main method. Print the elements of the
array without initializing the array elements explicitly. Observe the output.

Given int[] first = new int[3];, int[] second = {};, and int[] third = null;,
print out the length of the three arrays and print out every element of the three arrays.

Create an array of chars containing four values. Write assignment statements involving the
array such that the first element of the array will contain the value of the second element,
second element will have the value that was there in the third element. and third element will
contain the value of the fourth element.

. Declare and initialize an array of length 4 of type array of Strings without using the new

keyword such that no two arrays of Strings have the same length. Print the length of all of
the arrays one by one (including the length of the two dimensional array).

Given the statement String[] [] names = new String[2] [3]; How many Strings will you
need to fill up names completely? Initialize each element of names with a non-null String,.
Print each of those values one by one without using a loop. Do the same using nested for
loops after going through the chapter on loops.

. Define two variables of type array of Strings. Initialize them using the elements of the array

created in the previous exercise.

Define a simple class named Data with a public instance field named value of type int.
Create and initialize a Data variable named d in TestClass’s main. Create an array of Data
of length 3 and initialize each of its elements with the same Data instance. Use any of the
array elements to update the value field of the Data object. Print out the value field of the
Data object using the three elements of the array. Finally, print the value field of the original
Data using the variable d.

Define and initialize an array of array of ints that resembles a triangular matrix of integers.

. Declare another array of array of ints and initialize it using the elements of the array created in

the previous exercise in such a way that it resembles an inverted triangular matrix of integers.

Declare and initialize a variable of type array of Objects of length 3. Initialize the first element
of this array with an array of ints, second with an array of array of ints, and third with an
array of Objects. See which one of the assignments fails compilation.

Given the statement int[][] nums = new int[1][3];, how many int values can nums
store? Write down how each element of nums can be addressed.

Given the following code:

int[J[J[] nums = new int([1][4][2];
for(int i = 0; i<nums.length; i++){
for(int j = 0; j<nums[i].length; j++){

108 Chapter 4. Creating and Using Arrays

for(int k = 0; k<nums[i] [j].length; k++){
nums [i] [j1[k] =i + j + k;
System.out.println("num["+i+"] ["+j+"] ["+k+"] = "+nums[i] [j] [k]);
}
}
}

Write down its output on paper. Run the code and check your answer.

=3

=

(5. Using Operators

1. Use Java operators; use parentheses to override operator precedence

2. Test equality between Strings and other objects using == and equals ()

110 Chapter 5. Using Operators

5.1 Java Operators

A program is nothing but an exercise in manipulating the data represented by variables and objects.
You manipulate this data by writing statements and expressions with the help of operators. In that
respect, operators are kind of a glue that keeps your code together. You can hardly write a statement
without using any operator. Something as simple as creating an object or calling a method on an
object requires the use of an operator (the new operator and the dot operator!). It is therefore,
important to know what all operators does Java have and to understand how they work.

5.1.1 Overview of operators available in Java

Java has a large number of operators. They can be classified based on the type of operations they
perform (arithmetic, relational, logical, bitwise, assignment, miscellaneous) or based on the number
of operands they require (unary, binary, and ternary). They may also be classified on the basis
of the type of operands on which they operate, i.e., primitives (including primitive wrappers) and
objects.

While, as a Java programmer, you should be aware of all of them, for the purpose of the exam,
you can ignore a few of them. The following sections provide a brief description of all the operators.
The ones that are not required for the exam are noted as such.

Arithmetic Operators

Arithmetic operators are used to perform standard mathematical operations on all primitive vari-
ables except boolean. They can also be applied to wrapper objects for numeric types (i.e.
Byte, Short, Character, Integer, Long, Float, and Double) due to auto-unboxing.

Operator | Brief description and Examples
(s)
+, -, *, / | Addition, subtraction, multiplication, and division.
(Binary) | Example:

int a = 10;
Integer b = 100; //using primitive wrapper here
int ¢ = a + b;

5.1 Java Operators 111

% Modulus operator - returns the remainder of the division of first operand by the second one.
(Binary) | Example:

int a = 10;
int b 3;
int ¢ = a % b;

c is assigned a value of 1 because when 10 is divided by 3, the remainder is 1. Here is another
example -

Integer i = 10;
Character c = ’a’;
System.out.println((i%c)); //prints 10

The above example illustrates that these operators work on wrapper objects including
Character. Don’t worry, you will not be required to perform mathematical calculations
involving the modulus operator in the exam. But as an exercise, you should try to find out why
the above code prints 10

- Unary minus - returns a negated value of a literal value or a variable without changing the
(Unary) value of the variable itself.

A unary plus may also be used on a literal or a variable but it is not really an operator because
it doesn’t do anything.

Example:

Using - on a literal :

int a = -10; //assigns -10 to a

Using - on a variable:
int b = -a;
Here, b is assigned the negated value of a i.e. =(-10) i.e 10. a remains -10.

Using + on a variable:

int ¢ = +a;

This is valid but will not assign 10 to c. It will assign -10 to c because a is -10. a remains -10
as well.

112 Chapter 5. Using Operators

+4+, - Unary increment and decrement operators - Unlike the unary minus operator, these
(Unary) operators can only be used on a variable and they actually change the value of the variable on
which they are applied.

Also unlike the unary minus, they can be applied before (pre) as well as after (post) the
variable. I will explain the difference between pre and post later.

Example:
int a = 10;
int b = -10;

Post increment:
a++; //a is incremented from 10 to 11
b++;//b is incremented from -10 to -9

Pre increment:
++a; //a incremented from 11 to 12
++b;//b is incremented from -9 to -8

(works the same way)

Relational Operators

Relational operators are used to compare integral and floating point values. They can also be
applied to wrapper objects for these types due to auto-unboxing.

Operator | Brief description and Examples
(s)
<, >, | Less than, greater than, less than or equal to, and greater than or equal to. What
<=, >= | they do is self explanatory. They work only on numeric types and return a boolean value.
(Binary) | Example:

int a = 10;

Integer b = 100; //using primitive wrapper here

boolean flag = a <b; //flag is assigned a value of true because the
value of a is indeed less than the value of b.

5.1 Java Operators

113

1

==, =

(Binary)

Equal to and Not equal to - These operators are a bit special because they work on all
primitive types (i.e. not just numeric ones but boolean as well) and reference types.

When used on two primitive values or a primitive value and a primitive wrapper, they check
whether the two values are same or not.

Example:

int a = 10; Integer b = 20; char ch = ’a’; Double 4 = 10.0; Boolean flag
= false;

System.out.println(a == b); //comparing an int with an Integer, prints
false because 10 is not equal to 20

System.out.println(a == 10.0); //comparing an int with a double, prints
true because Java considers 10 and 10.0 as equal

System.out.println(a == ch); //comparing an int with a char, prints
false because 10 is not equal to ’a’

System.out.println(97 == ch); //comparing an int with a char, prints
true because int value of ’a’ is indeed 97

System.out.println(a != d); //comparing an int with a Double, prints
false because a and d have the same value

System.out.println(a != 10); //comparing two ints, prints false because
a is 10

System.out.println(false != flag); //comparing a boolean with a Boolean,

prints false because flag is false}

You cannot compare a numeric value and a non-numeric value such as a double and a boolean
or a primitive and a reference (unless the reference is to a primitive wrapper, of course) or even
two references of “different types”. For example, the Java compiler knows that a numeric value
can never be the same as a boolean value or as a reference to a non-numeric wrapper object. If
a piece of code tries to make such nonsensical comparison, the compiler deems it to be a coding
error. Therefore, the following statements will not compile -

System.out.println(10 == false); //can’t compare a number with a boolean

Object obj = new Object();

System.out.println(obj != 10); //can’t compare a reference with a number

System.out.println(obj == true); //can’t compare a reference with a
boolean

Integer INT = 10;

Double D = 10.0;

System.out.println(INT == D);//can’t compare an Integer reference with a
Double reference

114 Chapter 5. Using Operators

When used on references, and != check whether the two references point to the same object
in memory or not. Example:

Object ol = new Object();

Object 02 = o1l;

boolean e = (ol == 02); //e is assigned a value of true because ol and
02 do point to the same object in memory

02 = new Object();

System.out.println(ol == 02); //prints false because ol and 02 now point
to two different objects

String s1 = "hello";

String s2 = "hello";

System.out.println(sl == s2); //prints true because sl and s2 point to
the same String object

Comparing references using and != operators looks straight forward but it is a source of trick
questions in the exam. I will talk about it separately in two parts. One that deals with their

usage on String references and one that deals with their usage on other references. I will discuss
the first part in this chapter and the second part in the “Working with Inheritance - II” chapter.

Logical Operators

Logical operators are used to form boolean expressions using boolean variables and boolean values.
They cannot be applied to any data type other than boolean (or Boolean).

Operator | Brief description and Examples
(s)
&&, || Short circuiting “and” and “or”. They return a boolean value.
(Binary) | Example:

boolean iAmHungry = false;

boolean fridgeHasFood = false;

boolean eatUp = iAmHungry && fridgeHasFood; //eat if you are hungry and
if there is food in the fridge

boolean tooMuchExcitement = true;

boolean eatAnyway = eatUp || tooMuchExcitement; //eat if eatUp is true
or if there is too much excitement in the air!

They are called short circuiting operators because they avoid evaluating parts of an
expression if the value of that part does not make any difference to the final value of the
expression. In that sense, the evaluation of the second operand is ”conditional”. It is
evaluated only if it is required.

Let me explain how it works with the example I gave above. You eating food depends upon two
things - you being hungry and there being food in the fridge. Now, if you are not hungry, would
you still go and check the fridge to see if there is food in it or not? Of course not. Since you are
not hungry, you can already decide that you won’t eat food irrespective of whether there is food
in the fridge or not. Thus, the second part of the expression i.e. the check for fridgeHasFood

part, can be short circuited (i.e. not evaluated) if the first part i.e. check for iAmHungry is false.

5.1 Java Operators 115

Similarly, if you are hungry, do you still need excitement in the air to eat food? Of course not.
Since you are hungry, you can decide right there to eat food irrespective of whether there is
excitement in the air or not. Therefore, even here, the second part of the expression i.e. the
check for tooMuchExcitement can be short circuited if the first part i.e. iAmHungry is true.

Short circuiting behavior is helpful in cases where parts of an expression are too time consuming
to evaluate. Think of the above example again. Would you get up and walk up to the fridge to
see whether it is empty or not when you are not hungry? Nah, it is too much of an effort, right?
Thus, if you have a expression such as iAmHungry && checkFridge(), where checkFridge() is
a method that returns true or false depending on whether there is food in the fridge or not,
this method won’t be invoked if iAmHungry is false. Similarly, evaluating some conditions, such
as those that require looking up the database, may be too time consuming and it may be
desirable to avoid their evaluation if their value doesn’t make a difference to the final value of
the expression.

You need to understand this behavior very clearly because it gets exploited a lot while building
logical expressions in professionally written code

&, | Non-Short circuiting “and” and “or” (| is also known as inclusive or)
(Binary) | Example:

boolean iAmHungry = false;

boolean fridgeHasFood = false;

boolean eatUp = iAmHungry & fridgeHasFood; //eat if you are hungry and
if there is food in the fridge

boolean tooMuchExcitement = true;

boolean eatAnyway = eatUp | tooMuchExcitement; //eat if eatUp is true or
if there is too much excitement in the air!

They are actually bitwise operators and are mostly used to operate on numeric types but they
can also be used on boolean values just like && and | |. The only difference between the two is
that they do not short circuit any part of an expression.

This behavior is useful in cases where parts of an expression has side effects that you do not
want to avoid even if their value is irrelevant to the final value of the expression. For example,
consider the following expression - boolean accessGranted = authenticateUser(userid) &
logToAudit (userid) ;. Now, it is possible to decide that access has not to be granted if the
user is not authenticated irrespective of what logToAudit method returns. However, you may
still want to make sure every request for access is logged. Thus, you may want the logToAudit
method to be invoked irrespective of whether authenticateUser method returns true or
false. Usag<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>